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quasilinear ordinary differential equations with sub-homogeneity
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ABSTRACT. We give asymptotic forms of positive solutions of second-order quasilinear
ordinary differential equations. We obtain further the uniqueness of positive decaying
solutions.

1. Introduction

We consider second-order quasilinear ordinary differential equations of the
form

(L.1) (") = p(0) "y

on which we impose the following assumptions throughout this paper:
(H1) o and A are positive constants satisfying the sub-homogeneity
condition 0 < A < o
(H2) p:[to,0) — (0,00) is a continuous function such that p(z) ~ t? as
t — 0.
Henceforth the notation “f(f) ~ g(z) as ¢t — c0” means that lim,_., f(¢)/g(¢)
=1.

By a solution of (1.1) we mean a function u such that « and |u'|* s’ are
of class C!, and u satisfies (1.1) near +c0. Throughout this paper we shall
confine ourselves to the study of those solutions that do not vanish identically
near —+oo.

When o =1, equation (1.1) reduces to the well-known Emden-Fowler
equation of sublinear type:

(1.2) W' =p(Oul ', 0< i<l

Qualitative theory for (1.2) has been studied in great detail by many authors;
see, for example [2, 5, 7, 8]. Therefore it is an interesting problem to show
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how one can extend asymptotic theory obtained for (1.2) to the quasilinear
equation (1.1). It was shown in [6] that some of known results can be extended
surely to equation (1.1). In the earlier paper [4] the authors have considered
(1.1) under the super-homogeneity condition 0 < o < A, and have shown that
asymptotic forms for positive solutions of (1.1) with o« =1 are still valid for
those of (1.1) with some obvious modifications. However, it seems to the
authors that only a few of known results for (1.2) have been extended to (1.1)
(under the sub-homogeneity assumption). We therefore in the present paper
intend to study further asymptotic theory of positive solutions of (1.1).
In particular, we aim to obtain asymptotic forms of positive solutions of
(1.1).

To make a survey for possible asymptotic behavior of positive solutions of
equation (1.1) we consider the equation

(1.3) ()" u') = g(0)ul ",

with 0 < A < a and ¢ € C([ty, 20); [0, 0)), which has slight generality than (1.1).

Let us give a rough classification of positive solutions of (1.3), as a first
step, according to their asymptotic behavior. It is known that for every
positive solution u, exactly one of the following four asymptotic behavior is
possible:

(D) (decaying solution)

lim u'(¢) = lim u(z) = 0;

—o0 —0o0

(AC)  (asymptrotically constant solution)

lim »'(f)=0 and lim u(z) = const € (0, 0);

1— o0 =0
(AL)  (asymptotically linear solution)

t
lim u'(1) = lim KI) = const € (0, 00);

(ASL) (asymptotically superlinear solution)

. . t

lim u'(¢) = lim ult) _ +00.

t— o0 t—oo
Necessary and/or sufficient conditions for the existence and nonexistence of
solutions of types (D), (AC), (AL), and (ASL), respectively, have been obtained
in [6]: Equation (1.3) has solutions of
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(i) type (D) if Jm (Jm q(s)ds)l/xdt < o0;

1

0

o0 1/0(
(i) type (AC) if and only ifJ (J q(s)ds) dt < oo;

t

(iii) type (AL) if and only if J thq(1)dt < oo

(iv) type (ASL) if and only ifJ t*q(t)dt = oo,

and has no solutions of type (D) if lim inf, .., t!**g(¢) > 0.

These results yield necessary and sufficient conditions for (1.1) to have
solutions of type (D), (AC), (AL) and (ASL), respectively: Equation (1.1) has
a positive solution of

I) type (D) if and only if o4+ a+1<0;

( (

(I1) type (AC) if and only if o 4+o0+1<0;
(II) type (AL) if and only if o +24+1<0;
(

IV) type (ASL) if and only if o+41+1>0.

It is not known how positive solutions of type (D) and type (ASL) behave near
+oo. In order to give asymptotic forms of all possible positive solutions it is
essential to determine asymptotic forms near +o0o of positive solutions of those
types. We can settle this problem completely in this paper.

It is of another interest to see whether or not positive solutions of each of
above-mentioned types are unique. We will show that equation (1.1) has at
most one positive solution of type (D).

This paper is organized as follows: In §2 we prepare auxiliary
lemmas which will be employed later. In §3 we give two theorems concerning
asymptotic properties of positive solutions of type (ASL) and of type (D).
These theorems play crucial role in establishing our results. Asymptotic forms
for all positive solutions of equation (1.1) are given in §4, which is the main
object of this paper. In §5 we give uniqueness theorems of solutions of type
(D) as an application of our asymptotic theory. Lastly in §6 we will mention
the duality between the results of super-homogeneous case obtained in [4] and
those of sub-homogeneous case obtained in this paper.

2. Preliminary lemmas

In this section we collect preliminary lemmas which will be employed in
the sequel.
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Consider two differential equations of the same kind
(2.1) (1917 = gy" 1y,
(2.2) (YY) = @)Yy,
where f > 0 is a constant.

LeMMA 2.1. Suppose that ¢ and @ are nonnegative and continuous and
¢(t) <D(t) for a<t<b, and y and Y are positive solutions on [a,b] of (2.1)
and (2.2), respectively. If y(a) < Y(a) and y'(a) < Y'(a) then y(t) < Y (¢) for
a<t<hb.

A proof of Lemma 2.1 is found in [4].

LemMMA 2.2. Let f € C'[T, ) be such that f' is bounded, and [* |f(t)|"dt
< o for some y > 1. Then, lim, ., f(t)=0.

A proof of Lemma 2.2 is found in [3]. The following is a variant of
I’'Hospital’s rule:

Lemma 2.3. Let f(t) and g(t) be continuously differentiable functions
defined near oo and ¢'(t) #0. Then, we have
/() f() 1)

!

!
lim inf < lim inf —= < lim sup —= < lim sup f/(l)
meg'(n) T e g(1) oo g(1) i g'(1)

if either lim,_, g(f) = oo or lim,_, g(¢t) =lim,, f(z) =0 holds.
Lastly we consider the two dimensional first-order differential system

(2.3) % = (4 + B(1))w,

where A4 is a constant matrix with simple characteristic roots and B e C[T, o)
satisfies lim,_.., B(f) = 0.

LEMMA 2.4. Let k be an arbitrary characteristic root of A. Then we can
find a solution w of (2.3) satisfying the inequalities

t

1 exp {(Re K)t —dy JT ||B(s)|ds} < |w(®)]l

< ¢y exp {(Re K)t+ da J; ||B(s)||ds] ,

for some positive constants cy,cy,d, and d;.

A proof of Lemma 2.4 is found in [1, Chapter 2].
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3. Asymptotic equivalence theorems

Let us consider the following two equations
(3.1) (11" x)" = a(o)]x* ',

(3.2) (11" = b)[y* "y,

where 0 < A < a, a and b are positive continuous functions near +oo. The
next theorem asserts that, if « and b have the same asymptotic behavior, then
so do positive solutions of type (ASL) of equation (3.1) and of equation (3.2).

THEOREM 3.1. Suppose that

lim & =1

M2 B(0)
holds. Let x and y be positive solutions of type (ASL) of (3.1) and (3.2),
respectively.  Then x(t) ~ y(t) as t — oo.

Proor. For fixed #p » 1, we can find a sufficiently small number m > 0
and a sufficiently large number M > 0 such that

mx(ty) < y(to) < Mx(ty), mx'(t9) < y'(to) < Mx'(19).

Furthermore there exists #; > #o such that m*“a(t) < b(t) < M*a(t) for
t > 1. Since the function X(#) = Mx(z) is a positive solution of type (ASL)
of the equation

(|)—C/|a71)—c/)/ _ a(l)

i1
=i |x|" %,

we see that X(7) = Mx(t) > y(¢), t > t; by Lemma 2.1. Similarly we see that
mx(t) < y(t), t > t,. Put /=Iliminf, ., x(#)/y(). We know from the above
observation that 0 </ < co. Employing Lemma 2.3, we obtain

x(1)

[ = lim inf —= > lim inf

OO
mint S = i ind s =t ine ()

R OIN L (aoxo?\
meggﬁnf([y’(t)“}) ln’g‘lﬁnf<b(t)y(l)i> -

hence / > 1. Similarly we obtain lim sup,_, ., x(¢)/y(¢) < 1. This implies that
lim, ., x(#)/y(¢) = 1; that is x(¢) ~ y(z). This completes the proof.

The next theorem asserts that if « in equation (3.1) and b in equation (3.2)
have the same asymptotic behavior in some sence, then positive solutions of
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type (D) of equation (3.1) and of equation (3.2) also have the same asymptotic
behavior.

THEOREM 3.2. Let o+ o+ 1< 0. Suppose that

0 < lim inf alt) < lim sup @ <
t—oo to — o0 1o
and
im @ =1
t— 00 ([)

If x and y are positive solutions of (3.1) and of (3.2), respectively, of type (D),
then x(t) ~ y(t).

Proor. First we will show that there exists positive constants c;, c3, ¢a
and c¢s satisfying
ot' < x <cst’, et t < —x' < est’ ! for large 1,

where v= (6 +a+1)/(2—a) < 0. Integrating (3.1) from ¢ to +00, we obtain

o0
(3.3) [-x'(0)]" < J sx* ds

t

Cl a+1 A

t t
T —o—1 0",
that is
—X'x7H* < crlot N/ for large ¢,

where ¢ > 0 is a constant. Again integrating the above inequality from ¢ to
+00, we obtain x < ¢;t" near +o0, where ¢; > 0 is a constant. Substituting this
estimate into (3.3), we obtain —x'(¢) < cst"~!, where cg is a positive constant.

Next we will show that there exist positive constants ¢y and cjo satisfying

X > cot’, —x" > ¢pr"™! for large t.
To this end let z = x(—x')*. Then z satisfies the identity

o, a(r)xi]

X (—x")"]"

Invoking Young’s inequality, we have

2> ez —x) (Aota)/ (Jot20+1) M (0+1)/ (Aa+22+1)
> “r
— ey za(f) T G2 (o) Gk 2t ) (ory (o) (ot 2 1)

— cl1Z(m+o<+/1+l)/(m+2a+l)a(t)(ac+1)/(m+2a+1)

)
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that is,

—(AotatA+1)/(Ao+20+1) (Z)(a+1)/().a+2a+l)

—z'z > cq1a for large ¢,

where c); is a positive constant. Integrating this inequality from 7 to oo, we
obtain

Z(ocf/l)/().oc+20<+1) > clzl(a(oc+1)+/lo<+2a+1)/(io{+2a+l)

b

that is,

xozfﬂ(_xl)a(fx—l) > cl3[0(a+l)+).ot+2z+l for large ‘
where c¢j, and c¢j3 are positive constants. From the result —x’ < cs¢'~! for
large ¢ as shown above, we see

xaflta(acfi)(vfl) > Cl4[0(1+1)+}.a+21+1

= )
that is,
x = cist’ for large ¢,

where ¢4 and c¢;s are positive constants. Moreover some simple computation
shows that —x’ > c¢¢¢"~!, where c|¢ is a positive constant. Similarly, we find
that

ot < y(t) < ct’ and 541“]_1

hold near +oo for some constants ¢; >0, i = 2,3,4,5.
Put / = lim inf,_., x(¢)/y(¢). We know from the above consideration that
0 << oo. Invoking Lemma 2.3, we obtain

) ) ()
=t i S = i = ()

)N (ax?
> hI}liﬁ(W) = lim inf (ﬁ) — ],

This implies that /> 1. Similarly we obtain lim sup,_, x(¢)/y(¢) <1, and
hence lim, .., x(#)/y(#) = 1. This completes the proof.

4. Asymptotic forms of positive solutions

Possible asymptotic formulae for positive solutions of (1.1) are given here.
To get an insight into our problem, let us consider the typical case that

p(t) =17
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(4.1) (lu'|" ") = t%|ul* "

As was pointed out in [4], (4.1) may possess an exact positive solution of the
form ct’, ¢ >0, /e R. In fact we can see that the function

@42)  wo(t)= ek with k= %“1‘1 and &% = ok(k — 1)[k|*"!

is a positive solution of (4.1) if k < 0 or k > 1. We further emphasize that u is
of type (D) if k < 0, and of type (ASL) if k > 1. This observation enables us
to expect that positive solutions of type (D) and of type (ASL) behave like ug
in case of k <0 and k > 0, respectively. We will find that this conjecture is
true. It is worth noting that the following equivalences hold:

k<0 So4+a+1<0;
k=0 <o+a+1=0;
O<k<leot+i+l<0<otoa+1;
k=1 ©o+1+1=0;

k>1 ©o+i+1>0.

It will be found that asymptotic forms of positive solutions are affected by
the order relations of the three numbers 0, 1 and k.

THEOREM 4.1. Let 0+ A+ 1>0 (k> 1). Then every positive solution u
of equation (1.1) has the asymptotic form

u(t) ~up(t) = étk,

where uq is the function given by (4.2).

We can see this theorem by applying Theorem 3.1 to equations (1.1) and
4.1).

THEOREM 4.2. Let 0+ A+ 1=0 (k=1). Then every positive solution u
of equation (1.1) has the asymptotic form

o\ 1/(e=4) ;
u(t) ~ (“ ”) 1(log )"/,

o

To see this theorem, it suffices to notice that the equation

. 1 1 * 1+4—« .

ro—=1_1/ /—1
=— l+—Fr— l+——

(™70 s ( (o — 4) log t) ( (o — 4) log [>|v|

<
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has a positive increasing solution v explicitly given by

e ﬂ
u(t) = (oc ) t(log 1)"/*4).

o

This simple observation and Theorem 3.1 give the validity of Theorem 5.2.

THEOREM 4.3. Let 0+ i+1<0<oc+oa+1 (0<k<1). Then every
positive solution u of equation (1.1) has the asymptotic form

u~ cit,
where ¢ is a positive constant.

This is a simple consequence of the observation given in the Introduction.

THEOREM 4.4. Let o+ o0+ 1 <0 (k<0). Then every positive solution u
of equation (1.1) has one of the following asymptotic forms

u~ug(t) = étk,
u(t) ~ ¢y,
u(t) ~ cat,

where ¢ and ¢, are positive constants, and uq is given by (4.2).

To see this theorem we apply Theorem 3.2 to equations (1.1) and (4.1).

5. Uniqueness of positive decaying solutions

We now turn our attention to the problem of uniqueness of positive
solutions of type (D).

THEOREM 5.1.  Under the assumption of Theorem 4.4, equation (1.1) does
not have more than one positive solutions of type (D).

By this theorem we find, for example, that the function u(¢) is the only
positive solution of type (D) of equation (4.1) if k£ < 0.

Proor oF THEOREM 5.1. Let x(¢) and y(¢) be positive solutions of (1.1) of
type (D). By Theorem 4.4, we know that

(5.1) x(0),y(t) ~ ¢tk as t — .
Furthermore, it is easy to see that
(5.2) x'(1),y" (1) ~ ékt*! as t — oo,

where ¢ and k are given by (4.1).
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Put z(¢#) = x(¢t) — y(¢). It suffices to show that z=0. By using the mean
value theorem, we know that there exist continuous functions &;(¢) and &,(¢)
such that

(5.3) [0, (1)) = dp(0)E (1) 'z,

where &,(1), &(1) lie between x(7) and y( ), x'(1) and y'(7), respectively. By
(5.1) and (5.2) we see that & (1) ~ ¢kt*, &,(r) ~ ¢k, For the simplicity, we
rewrite (5.3) in the form

(5.4) [E1(2)2") = 2k(k — 1)&(1)z,

where & (1) ~ t®"DE=D and &, (1) ~ toHk-D),

The proof is divided into three cases according to the exponent
(k—1)(x—1). Here we will consider only the case (k—1)(a—1) <1, ie
[~ fl(r)fldr: oo because parallel arguments hold in the other cases. The
change of variable s = ftfl(r)fldr transforms (5.4) into

(5.5) 2y = Mk(k = 1)&1 ()& (1),

where él() 2(t) ~1/[1 = (k—1)(2 — 1)]s*> as s — oo. Hence we can rewrite
(5.5) a

(56) . Me(k —1) 1 +6(s)

- (k—D@-1 ¢

)

where d(s) is a continuous function satisfying lim,_., d(s) = 0. Moreover the
change of variable s = ¢” transforms (5.6) into
2k (k

.. ~ 1) .
(5.7) Z_Z_[lf(kfl)(ocfl)]z(l—i_é( )z,

where "= d/dr and J(r) is a continuous function satisfying lim,_,., d(r) = 0.
Now we reduce (5.7) to a first-order system by introducing the new variables
Wy =12z, wp =2

(5.8) %: (A + B(r))w,

where

0 1
w:<W1>, A= k(k —1) L
1= (k= 1)(a—1)
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0 0
B(r) = Mke(k—1) S(r
(1= (k= D) — 1) "

The eigenvalues of A are
1 141 4ik(k — 1) ).
2 [1—(k=1)(a—1)]
For simplicity, we put
<1+\/1+ A2k —1) 2>>0,
(1= (k=1)(x—1)]

b:l<1_¢1+ 4ik{k — 1) 2><0.
2 1= (= Dz =1

By Lemma 2.4, there exist solutions (i, w2) and (wi,w») of (5.8) satisfying

-

N —

(59) c1 exp[(41 + o(1))r] < |wi| + | 2| < 2 exp[(41 + o(1))7],
| s expl(2 + o(1))] < | + lwa| < 4 expl(ia + o(1))r],

where ¢j, ¢, ¢3 and ¢4 are positive constants. It is easily seen from (5.9) that
{(W1, W), (w1, w2)} consists of a base of solutions of (5.8). Hence z is rep-
resented as

(5.10) zZ = sy + Wi,
(5.11) Z=csWy + cewa,

where ¢s and ¢ are constants. We notice from (5.1) and (5.2) that

z2(r) = 0<eXp(1 g _ki)w — 1)))’

i) = 0<exp<1 —(k _k;)(a — 1)))

Below we will show that ¢s = ¢ =0. If ¢5 # 0, then we find from (5.10) and
(5.11) that

|2 + |2]

&

By (5.9) we know that the left-hand side of (5.12) tends to oo as r — oo;

C,
(5.12) |91] + |2 < ol Q] + ).
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however, the right-hand side remains bounded. Hence we must have ¢;5 = 0;
that is

Z = CeW1, Z=Cews.
It follows therefore that
(513)  (Jz] eI e (] + e /0D D),

By the estimates for z and Z, the left-hand side of (5.13) is bounded, while the
right-hand side of (5.13) is estimated as

les|([wi] + [w2l) exp( 1- (k _kllf)(a _ 1)>

> 3 exp[(l — __ﬁ(a ) + A +0(1)>r]

Since 0 < 4 < o, if ¢g # 0, then the right-hand side of (5.13) diverges as r — o
which is a contradiction. Hence ¢ =0, i.e., z=0. This completes the proof.

If o =1, the condition for the uniqueness of positive decaying solutions
can be relaxed. We consider the equation

(5.14) W' =g, 0< i<,
where g is a positive function of class C' near +oo.

THEOREM 5.2. Let 0 < A< 1 and o < —2. Suppose that ¢(t) satisfies

(5.15) 0 < lim inf 9() < lim sup 0] < 00,
t— o0 1o — o0 1o
and
ot v
5.16 0 < timinf —29 < fim sup =20 < o
1 1
t—0 A4 — o0 Al

Then (5.14) has at most one positive solution of type (D).

Proor. We find from the proof of Theorem 3.2 that, for each positive
solution u of (5.14) of type (D), there exist positive constants c¢j, ¢z, ¢3 and ¢4
satisfying

(5.17) at® <u < ek, et < —u' < ept® 1 for large ¢,
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Let x(¢) and y(¢) be positive decaying solutions of (5.14). Introduce the
new functions w(t) = x(¢)/y(t) and 7= J",; dr/y(r)*. A computation gives

Wer = g(t)y(t)pﬁ(w/l —w), 7>0.

Moreover the change of variable

s= j g(1(2)) 2 (1()) I ac

0

transforms this equation into
(5.18) W—f(s)w=wh—w, s >0,
where "= d/ds, and

f(s) = =3g() ()" VP g 0y (1) + (2 + 3)g(0)y' (1):
From condition (5.15) and (5.16) we find that
(5.19) 0 < liminf f(s) < lim sup f(s) < co.

§—00 S0

While from (5.17) and

dt dt

el (A+3)/2
dt ds

W= w'(1) (x'y —xp")g 2y~ :

we know that

(5.20) 0 < lim inf w(s) < lim sup w(s) < oo and Ww(s) = O(1).

§=0 §—00

Multiplying (5.18) by w and integrating the resulting equation on [sg,s], we
obtain

W21’ s Wil 210
(5.21) [T]SO—J f(r)wdr = L+ 1 —TLO.

S0

By (5.19) and (5.20) this implies that v e L*[sp, c0). Since obviously 17 = O(1)
as s — oo, Lemma 2.2 shows that lim,_,,, w(s) =0. From Theorem 3.2 we see
that lim,_.,, w(s) = L.

Multiplying (5.18) by w again and integrating the resulting equation on
[s,00), we obtain

2

f ()’ dr =

)4./2 0 1 1 W2+1 N W2
s A+1 2 A+1 27

This formula shows that if w # 0, then
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1 1wl 2

—= - for all .
T 2<i+1 > or all s near o

Since w > 0, this inequality can not hold. Hence w =0, i.e., w=1. Hence

x =y. This completes the proof.

6. Duality between super-homogeneous case and sub-homogeneous case

It is well known [7] that if o = 1, i.e., for Emden-Fowler equations, there
is a duality between the superlinear case (4> 1) and the sublinear case
(0<A<1). It is natural to expect that for equation (1.1) there exists
similar duality between the super-homogeneous case (0 < o < A) and the sub-
homogeneous case (0 < 4 < «). Hence we compare the results obtained in this
paper and those obtained in [4]. To bring out the duality in full relief, we
summarize our results in the following table:

Super-homogeneous case: Sub-homogeneous case:
o< A A<
Possible Possible
Relation of asymptotic Relation of asymptotic
parameters forms parameters forms
k>1 o+ A+1<0 | wu(t),cit,er || 6+A4+1>0 up(?)
k=1 c+A+1=0 c c+1+1=0 | Logarithmic
growth
O0<k<l || o+a+1<0 cl o+i+1<0 cit
<o+i+1 <o+oa+1
k=0 c+oa+1=0 | Logarithmic c+a+1=0 cyt
decay
k<0 c+o+1>0 uo(?) og+a+1<0 | uy(t),cit,c

In this table ¢; and ¢, are positive constants. When « < 4 and o+ o+ 1 =0,
every positive solution u of (1.1) has a logarithmic decay in the sense that

)l

(log ¢

5

u(t) ~ (xl/(}fv.)( o )1/(/17«)
A— o
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