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Abstract. The aim of this paper is to discuss a uniqueness property for Sobolev

functions with certain condition on area integrals.

1. Introduction and statement of results

In 1950, Tsuji [13] discussed a uniqueness property for analytic func-

tions on the unit disk with certain condition on area integrals. His result

has recently been extended in several manners (see Jenkins [5], Koskela [7],

Miklyukov-Vuorinen [8] and Mizuta [11]). In this paper we further extend

those results in the weighted case.

Let 1 < p < y and D be an open set in Rn. For a Borel measure m

on D, consider the ðp; mÞ-capacity capp;mð�;DÞ relative to D. When K is a

compact subset of D, it is defined by

capp;mðK ;DÞ ¼ inf

ð
D

j‘ujpdm;

where the infimum is taken over all functions u A Cy
c ðDÞ such that ub 1 on

K ; here Cy
c ðDÞ denotes the space of infinitely di¤erentiable functions with

compact support in D. We extend the capacity capp;mð�;DÞ in the usual way

(see Heinonen-Kilpeläinen-Martio [4]). In case m is the Lebesgue measure

in Rn, ðp; mÞ-capacity will be called p-capacity. We say that a set EHRn has

ðp; mÞ-capacity zero if

capp;mðE VG;GÞ ¼ 0

for every bounded open set GHRn. In this case we write capp;mðEÞ ¼ 0.

If E is not of ðp; mÞ-capacity zero, we say that E has positive ðp; mÞ-capacity
and write capp;mðEÞ > 0.

P. Koskela [7, Theorem A] proved that a continuous ACLp-function u on
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the unit ball B in Rn, which approaches zero in the weak sense for a set in

qB of positive p-capacity, is identically zero provided thatð
Bu; e

j‘uðxÞjpdxaCep log
1

e

� �p�1

for all 0 < e < 1=2, where Bu; e ¼ fx A B : juðxÞj < eg. Recall that u approaches

zero in the weak sense for a set F H qB if for each x A F and all rectifiable

curves g in B terminating at x there exists a sequence of points in g for which

u tends to zero. In view of [7, Remark (3)], one can replace B by a bounded

domain if one replaces the p-capacity by the p-modulus. Y. Mizuta [11,

Theorem 1] replaced ðlogð1=eÞÞp�1 by a positive nonincreasing function j on

the interval ð0;yÞ satisfying ðj1Þ and ðj2Þ given in Theorem 1 below.

For a family G of curves on Rn, we denote by FðGÞ the family of all

nonnegative Borel functions r on Rn such thatð
g

r dsb 1

for each locally rectifiable curve g A G . For 1 < p < y and a Borel measure

m on Rn, we define the ðp; mÞ-modulus of G by

MpðG ; mÞ ¼ inf
r AFðGÞ

ð
rðxÞpdmðxÞ;

in case FðGÞ ¼q, we set MpðG; mÞ ¼y. For elementary properties of moduli,

see Ohtsuka [12], Väisälä [14] and Vuorinen [15].

We say that a property holds ðp; mÞ-a.e. on a curve family G if it holds

except on a subfamily G 0 of G with MpðG 0; mÞ ¼ 0. Further a function u on

D is called ðp; mÞ-precise if u is absolutely continuous along ðp; mÞ-a.e. curve in

D and the partial derivatives of u are Lp-integrable with respect to m. When

m is the Lebesgue measure on D, we write Mpð�;DÞ and p-precise instead of

Mpð�; mÞ and ðp; mÞ-precise, respectively. We say that u is called locally p-

precise in D if u is p-precise on every relatively compact open subset of

D. Note that if u is locally p-precise in D, then u is ACL on D and the partial

derivatives of u are Borel measurable (see [12, Theorem 4.6]).

For E;F HD, we denote by LDðE;F Þ the family of all curves g : ½a; b�
! D such that gðaÞ A E, gðbÞ A F and gðtÞ A D for a < t < b. For simplicity,

set LDðF Þ ¼ LDðD;FÞ.
Our aim in this paper is to show the following theorem.

Theorem 1. Let j be a positive nonincreasing function on the interval

ð0;yÞ satisfying

A�1jðrÞa jðr2ÞaAjðrÞ for all r > 0ðj1Þ
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with a constant Ab 1 andð1
0

½jðrÞ��1=ðp�1Þr�1dr ¼ y:ðj2Þ

Let o be a positive continuous function on a domain D and set dmðxÞ ¼ oðxÞdx.
Suppose u is a locally p-precise function on D satisfyingð

Du; e

j‘uðxÞjpdmðxÞa epjðeÞ for every e > 0ð1Þ

where Du; e ¼ fx A D : juðxÞj < eg. If there exists a set F H qD such that

MpðLDðF Þ; mÞ > 0 and u tends to zero along ðp; mÞ-a.e. curve g A LDðFÞ, then

u ¼ 0 in D.

Remark 1. The existence of boundary limits was studied by many

authors. Carleson [2] showed the existence of nontangential limits for har-

monic functions in weighted Sobolev classes in connection with the conver-

gence property of Fourier series. We know that a locally p-precise function

u on D satisfying ð
D

j‘uðxÞjpdmðxÞ < y

has a finite limit along ðp; mÞ-a.e. curve g A LDðqDÞ, which is denoted by uðgÞ
(see e.g. Ohtsuka [12], Väisälä [14], Vuorinen [15] and Ziemer [16, 17]). Here

we note that u tends to zero along ðp; mÞ-a.e. curve g A LDðFÞ if u approaches

zero in the weak sense for a bounded set F H qD.

Remark 2. The boundary uniqueness for analytic functions f on the unit

disk U HC (complex plane) with j f 0j A L2ðUÞ was first studied by Tsuji [13].

Mizuta [11] treated p-precise functions u A W 1;pðBÞ, whose extension u
 to Rn

vanishes on a set F H qB of positive p-capacity. We see that u tends to zero

along p-a.e. rectifiable curve g A LBðF Þ and MpðLBðFÞ;BÞ > 0 (cf. Remark 1

and Lemma 7). Recently, Miklyukov-Vuorinen [8] has extended these results

to a bounded domain in the non-weighted case.

For dmðxÞ ¼ oðxÞdx with oðxÞ ¼ j1� jxj jadx, �1 < a < p� 1, we con-

sider a locally p-precise function u on B satisfyingð
B

j‘uðxÞjpdmðxÞ < y:

In view of [9], we can find a ðp; mÞ-precise extension u
 on Rn such that u
 ¼ u

on B and
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ð
R n

j‘u
ðxÞjpdmðxÞ < y:

Note that u
 is uniquely determined on B except for ðp; mÞ-capacity zero.

Corollary 1. Let j be as in Theorem 1 and �1 < a < p� 1. Let u be

a locally p-precise function on B satisfyingð
Bu; e

j‘uðxÞjpð1� jxjÞadxa epjðeÞ for every e > 0:ð2Þ

If u
 vanishes on a set EH qB with capp;mðEÞ > 0, then u ¼ 0 in B.

Our theorem is sharp, as the following result shows.

Theorem 2. Let j be a positive nonincreasing function on the interval

ð0;yÞ satisfying ðj1Þ and ð1
0

½jðrÞ��1=ðp�1Þr�1dr < y:ðj3Þ

Let o be a positive continuous function on B such that

oðxÞaCð1� jxjÞa for all x A B

with a positive constant C and a nonpositive constant a. Then there exists a

p-precise and continuous function u on Rn such that u > 0 on B, u ¼ 0 outside

B and ð
Bu; e

j‘uðxÞjpoðxÞdxa epjðeÞ for every e > 0:ð3Þ

2. Proof of Theorem 1

Let D be a domain and m be a Borel measure on D with a positive

continuous density. Consider a nonnegative Borel function h on D which

is Lp-integrable with respect to m. We say that two points x and y in D are

h-equivalent if there exists a rectifiable curve g A LDðfxg; fygÞ such thatÐ
g
hds < y. It is clear that this is an equivalence relation in D which par-

titions D into h-equivalence classes; each class consists of all points which are

h-equivalent to a given one. Further note that there exists an h-equivalence

class EDðhÞ which contains almost all points of D.

First we collect several lemmas from Ohtsuka [12], whose proofs will be

given for the reader’s convenience.

Let us begin with the following lemma.
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Lemma 1. Let DHRn be a domain and m be a Borel measure on D with

a positive continuous density. If GyðDÞ denotes the family of all curves g such

that the linear measure of gVK is infinity for some compact set K HD, then

MpðGyðDÞ; mÞ ¼ 0:

To prove this, for a compact set K HD, letting GyðD;KÞ be the family

of all curves g such that the linear measure of gVK is infinity, we have only

to see that

MpðGyðD;KÞ; mÞ ¼ 0:

Lemma 2. Let DHRn be a domain and m be a Borel measure on D with

a positive continuous density. Then, for a set EHD, the following assertions

are equivalent:

( i ) MpðLDðEÞ;DÞ ¼ 0.

( ii ) MpðLDðEÞ; mÞ ¼ 0.

(iii) EHDnEDðhÞ for some nonnegative Borel function h A LpðD; mÞ.
(iv) E has p-capacity zero.

Proof. Clearly (i) is equivalent to (ii). Since the equivalence of (i) and

(iv) can be carried out in a way similar to that of [16, Theorem 4.3], we have

only to check the equivalence of (ii) and (iii). Assume that (ii) holds. Then

there exists a nonnegative Borel function h A LpðD; mÞ such that
Ð
g
h ds ¼ y for

all g A LDðEÞ. It follows from the definition of EDðhÞ that EHDnEDðhÞ.
Conversely, assume that (iii) holds, that is, there exists a nonnegative

Borel function h A LpðD; mÞ such that EHDnEDðhÞ. Since DnEDðhÞ has mea-

sure zero, we obtain MpðG ; mÞ ¼ 0 for the family G of curves g in D sat-

isfying jgV ðDnEDðhÞÞj > 0 or
Ð
g
h ds ¼ y. It su‰ces to show that LDðEÞn

ðGyðDÞUGÞ is empty. If LDðEÞnðGyðDÞUGÞ has a curve g terminating

at x A E, then there exists a point y A EDðhÞV g. Since g is rectifiable andÐ
g
h ds < y, two points x and y are h-equivalent, so that x A EDðhÞ. This gives

a contradiction by (iii).

Lemma 3. Let DHRn be a domain and m be a Borel measure on D with

a positive continuous density. If E and F are subsets of D which have positive p-

capacity, then

MpðLDðE;FÞ; mÞ > 0:

Proof. Suppose MpðLDðE;FÞ; mÞ ¼ 0 on the contrary. Then there exists

a nonnegative Borel function h A LpðD; mÞ such thatð
g

h ds ¼ y

for each g A LDðE;FÞ. In view of Lemma 2, there are x A E VEDðhÞ and y A
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F VEDðhÞ. Since x and y are h-equivalent, this gives a contradiction by the

definition of EDðhÞ.
Lemma 4. Let DHRn be a domain, F HD and m be a Borel measure on D

with a positive continuous density. Suppose EHD is a set of positive p-capacity

and G is a relatively compact subset of D with MpðLDðG;FÞ; mÞ > 0. Then

MpðG ; mÞ > 0 for the family G consisting of g A LDðE;F Þ intersecting G.

Proof. Suppose MpðG ; mÞ ¼ 0 on the contrary. Then there exists a non-

negative Borel function h A LpðD; mÞ such that
Ð
g
h ds ¼ y for each g A G . We

may assume that h has positive lower bound in a neighborhood U of G, if

we replace h by hþ 1 in U . We denote by G 0 HG the set of all points x such

that
Ð
g
h ds ¼ y for all g A LDðfxg;EÞ. Then we see that MpðLDðG 0;EÞ; mÞ ¼

0, which gives MpðLDðG 0Þ; mÞ ¼ 0 by Lemmas 2 and 3. Since any curve g A
LDðG 0;FÞ contains a subcurve in LDðG 0Þ, we have

MpðLDðG 0;F Þ; mÞ ¼ 0:

Since h has positive lower bound in U , if a curve g A LDðfxgÞ for x A G

satisfies
Ð
g
h ds < y, then there exists a rectifiable subcurve g 0 A LDðfxgÞ of

g. Hence by the definition of G 0, we have MpðLDðGnG 0;F Þ; mÞ ¼ 0, so that

MpðLDðG;FÞ; mÞ ¼ 0. This contradicts our assumption. Now our lemma is

proved.

Lemma 5. Let DHRn be a domain and m be a Borel measure on D

with a positive continuous density. Suppose F H qD. Then MpðLDðFÞ; mÞ ¼
0 if and only if there exists a set EHD such that MpðLDðEÞ;DÞ > 0 and

MpðLDðE;F Þ; mÞ ¼ 0.

Proof. Assume that there exists a subset E of D such that MpðLDðEÞ;DÞ
> 0 and MpðLDðE;FÞ; mÞ ¼ 0. For a proof of MpðLDðF Þ;DÞ ¼ 0, it su‰ces

to show that MpðLDðG;FÞ; mÞ ¼ 0 for all relatively compact subset G of D.

Suppose MpðLDðG;F Þ; mÞ > 0 for some relatively compact subset G of D. It

follows from lemma 4 that MpðG ; mÞ > 0 for the family G of curves g A
LDðE;FÞ intersecting G. Hence we have MpðLDðE;FÞ; mÞ > 0, which gives a

contradiction.

The converse is evident.

Here we prepare the following technical lemma needed for the proof of

Theorem 1.

Lemma 6 (cf. [11, Lemma 2]). Let j be a positive nonincreasing function

on the interval ð0;yÞ satisfying ðj2Þ. Then there exists a positive nondecreasing

function h satisfying ð 1
0

hðrÞr�1dr ¼ yðh1Þ
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and ð1
0

hðrÞpjðrÞr�1dr < y:ðh2Þ

Now we give a proof of Theorem 1.

Proof of Theorem 1. Set

E ¼ fx A D : juðxÞj > 0g

and suppose that MpðLDðEÞ;DÞ > 0. Next, we define a function r by

rðxÞ ¼
Xy
j¼1

2 jhð2�jÞj‘uðxÞjwGj
ðxÞ;

where h is as in Lemma 6 and wGj
denotes the characteristic function of Gj ¼

fx A D : 2�j < juðxÞja 2�jþ1g. Then we have by (1) and (h2)

ð
rðxÞpoðxÞdx ¼

Xy
j¼1

½2 jhð2�jÞ�p
ð
Gj

j‘uðxÞjpoðxÞdx

a
Xy
j¼1

½2 jhð2�jÞ�p2ð�jþ1Þpjð2�jþ1Þ

¼ 2p
Xy
j¼1

hð2�jÞpjð2�jþ1Þ

a 2pþ1
ð1
0

hðrÞpjðrÞr�1dr < y:

In view of Lemma 2, we note that a function v on D is absolutely

continuous along p-a.e. curve in D if and only if v is absolutely continuous

along ðp; m 0Þ-a.e. curve in D for all m 0 with a positive continuous density o 0

in D. Hence u is absolutely continuous along all curves in D except for a

family G1 with MpðG1; mÞ ¼ 0. By our assumption, there exists a subfamily

G2HLDðF Þ such that MpðG2; mÞ ¼ 0 and u tends to zero along each g A
LDðFÞnG2. Fix a locally rectifiable curve g A LDðE;F ÞnðG1 UG2Þ. Then for

large j ð jb j0Þ there exists a subcurve gj HGj of g such thatð
gj

j‘ujdsb 2�j:

It follows from (h1) that
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ð
g

r dsb
Xy
j¼j0

2 jhð2�jÞ
ð
gj

j‘ujds

b
Xy
j¼j0

hð2�jÞ

b 2

ð2�j0

0

hðrÞr�1dr ¼ y:

Thus we can easily see that MpðLDðE;F ÞnðG1 UG2Þ; mÞ ¼ 0. Therefore we

have

MpðLDðE;FÞ; mÞ ¼ 0;

which gives a contradiction by Lemma 5, since MpðLDðF Þ; mÞ > 0.

3. Proof of Corollary 1

The Riesz capacity of index ðb; pÞ is denoted by Cb;p; for its definition

we refer the reader to [10].

Now Corollary 1 is obtained from Theorem 1 and the following lemma.

Lemma 7. Let F H qB and dmðxÞ ¼ j1� jxj jadx with �1 < a < p� 1.

Then the following assertions are equivalent:

(a) MpðLBðF Þ; mÞ ¼ 0.

(b) capp;mðFÞ ¼ 0.

(c) C1�a=p;pðFÞ ¼ 0.

Proof. It is well known that (b) is equivalent to (c) (see [10, Lemma

8.3.3]). Clearly (b) implies (a). Hence it remains to check that (a) implies (c).

Suppose that MpðLBðF Þ; mÞ ¼ 0. Then there exists a positive function h

in B such that ð
B

hðxÞpdmðxÞ < yð4Þ

and ð
g

h ds ¼ yð5Þ

for each locally rectifiable g A LBðFÞ. Here we assume that h ¼ 0 in RnnB
and set

K ¼ x A qB :

ð
Bðx;1Þ

jx� yj1�n
hðyÞdy ¼ y

( )
:
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Note here that

C1�a=p;pðKÞ ¼ 0

(see [10, Lemma 8.2.3]).

Fix x A F . It follows from (5) thatð1
0

hðxþ rzÞdr ¼ y

for all z with xþ z A B. Hence we have

ð
Bðx;1Þ

jx� yj1�n
hðyÞdy ¼

ð
qB

 ð1
0

hðxþ rzÞdr
!
dHn�1ðzÞ ¼ y:

This implies that F HK and (c) follows.

Remark 3. Let D be a bounded ðe; dÞ domain in Rn due to Jones [6]

and denote by rDðxÞ the distance of x A Rn from the boundary qD. In view of

Chua [3], if rDðxÞ
a is in the Muckenhoupt class Ap, then every locally p-precise

function u on D satisfyingð
D

j‘uðxÞjprDðxÞ
a
dx < y

can be extended to a function u
 on Rn such that u
 ¼ u on D andð
Rn

j‘u
ðxÞjprDðxÞ
a
dx < y:

Hence Corollary 1 is also valid for every bounded ðe; dÞ domain in Rn.

4. Proof of Theorem 2

For a proof of Theorem 2, we need the following lemma.

Lemma 8 (cf. [10, Lemma 5.3.1]). Let j be a positive nonincreasing func-

tion on the interval ð0;yÞ satisfying (j1). If a > 0, then there exists a positive

constant M ¼ MðaÞ such that

sajðsÞaMtajðtÞ whenever t > s > 0:ðj4Þ

We are now ready to prove Theorem 2. It su‰ces to show the case that

oðxÞ ¼ ð1� jxjÞa with aa 0. Suppose

ð1
0

½jðrÞ��1=ðp�1Þr�1dr < y:
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Set

f ðtÞ ¼ C

ð t

0

½jðrÞ��1=ðp�1Þr�1dr
� �ð p�1Þ=ðp�1�aÞ

where C is a positive constant. We can easily see that f is a positive increas-

ing continuous function on ð0;yÞ and

f 0ðtÞ ¼ Cs0s�10 f ðtÞa=ðp�1ÞjðtÞ�1=ðp�1Þt�1;

where s0 ¼ ðp� 1� aÞ=ðp� 1Þ. Consider the function u A CðRnÞ given by

uðxÞ ¼ f �1ð1� jxjÞ if x A B,

0 if x B B.




We have only to show that u satisfies (3) if we choose C large enough.

For small e > 0, we can find d > 0 such that e ¼ f �1ðdÞ. Then

Bu; e ¼ fx A Rn : 1� d < jxj < 1g:

Hence we have by Lemma 8ð
Bu; e

j‘uðxÞjpð1� jxjÞadx ¼
ð
f1� d<jxj<1g

jð f �1Þ0ð1� jxjÞjpð1� jxjÞadx

¼ sn

ð1
1� d

jð f �1Þ0ð1� rÞjpð1� rÞarn�1dr

a sn

ð d
0

jð f �1Þ0ðsÞjpsads

¼ sn

ð e
0

j f 0ðtÞj�pþ1
f ðtÞadt

¼ snC
a�pþ1

ð e
0

jðtÞtp�1dt

a snC
a�pþ1MepjðeÞ;

where sn denotes the surface area of the unit sphere and M is a positive

constant independent of e. If we take C such that snC
a�pþ1M ¼ 1, then u

satisfies (3).
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[11] Y. Mizuta, Remarks on the results by Koskela concerning the radial uniqueness for Sobolev

functions, Proc. Amer. Math. Soc. 126 (1998), 1043–1047.

[12] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima

University, 1973.

[13] M. Tsuji, Beurling’s theorem on exceptional sets, Tôhoku Math. J. 2 (1950), 113–125.
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