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ABSTRACT. The aim of this paper is to discuss a uniqueness property for Sobolev
functions with certain condition on area integrals.

1. Introduction and statement of results

In 1950, Tsuji [13] discussed a uniqueness property for analytic func-
tions on the unit disk with certain condition on area integrals. His result
has recently been extended in several manners (see Jenkins [5], Koskela [7],
Miklyukov-Vuorinen [8] and Mizuta [11]). In this paper we further extend
those results in the weighted case.

Let 1 < p< oo and D be an open set in R". For a Borel measure u
on D, consider the (p,u)-capacity cap, ,(; D) relative to D. When K is a
compact subset of D, it is defined by

cap, ,(K; D) = inf JD \Vul?du,

where the infimum is taken over all functions u € C(D) such that > 1 on
K; here C*(D) denotes the space of infinitely differentiable functions with
compact support in D. We extend the capacity cap, ,(; D) in the usual way
(see Heinonen-Kilpeldinen-Martio [4]). In case u is the Lebesgue measure
in R", (p, u)-capacity will be called p-capacity. We say that a set £ = R” has
(p, 1)-capacity zero if

cap, ,(ENG;G) =0

for every bounded open set G = R". In this case we write cap, ,(E)=0.
If E is not of (p,u)-capacity zero, we say that E has positive (p,u)-capacity
and write cap, ,(E) > 0.

P. Koskela [7, Theorem A] proved that a continuous 4CL”-function u on
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the unit ball B in R”, which approaches zero in the weak sense for a set in
0B of positive p-capacity, is identically zero provided that

!
J [Vu(x)|?dx < Ce? (log E)
B, .

for all 0 < ¢ < 1/2, where B, . = {x € B: |u(x)| < ¢}. Recall that u approaches
zero in the weak sense for a set F < 0B if for each x € F and all rectifiable
curves y in B terminating at x there exists a sequence of points in y for which
u tends to zero. In view of [7, Remark (3)], one can replace B by a bounded
domain if one replaces the p-capacity by the p-modulus. Y. Mizuta [11,
Theorem 1] replaced (log(1/¢))”" by a positive nonincreasing function ¢ on
the interval (0, c0) satisfying (pl) and (¢2) given in Theorem 1 below.

For a family I" of curves on R”, we denote by % (I') the family of all
nonnegative Borel functions p on R” such that

deszl
.

for each locally rectifiable curve y e I'. For 1 < p < oo and a Borel measure
1 on R", we define the (p,u)-modulus of I by

My(Fig) = inf [ )/ du():
in case 7 (I') = &, we set M,(I";u) = co. For elementary properties of moduli,
see Ohtsuka [12], Viisdld [14] and Vuorinen [15].

We say that a property holds (p,u)-a.e. on a curve family I' if it holds
except on a subfamily I of I with M,(I"’;4) = 0. Further a function u on
D is called (p,u)-precise if u is absolutely continuous along (p,u)-a.e. curve in
D and the partial derivatives of u are L”-integrable with respect to 4. When
u is the Lebesgue measure on D, we write M,(-; D) and p-precise instead of
M,(;u) and (p,u)-precise, respectively. We say that u is called locally p-
precise in D if u is p-precise on every relatively compact open subset of
D. Note that if u is locally p-precise in D, then u is ACL on D and the partial
derivatives of u are Borel measurable (see [12, Theorem 4.6]).

For E,F = D, we denote by Ap(E,F) the family of all curves y: [a,]]
— D such that y(a) e E, y(b) € F and y(t) € D for a <t <b. For simplicity,
set Ap(F) = Ap(D,F).

Our aim in this paper is to show the following theorem.

THEOREM 1. Let ¢ be a positive nonincreasing function on the interval
(0, 00) satisfying

(pl) A Yo(r) < 9(r?) < Ap(r)  for all >0
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with a constant A > 1 and

1
(92) Jo [(p(r)]fl/(pfl)r_]dr = .

Let w be a positive continuous function on a domain D and set du(x) = w(x)dx.
Suppose u is a locally p-precise function on D satisfying

(1) JD Vu(x)|"du(x) < e’p(e)  for every ¢ >0

where D, .= {xeD:|u(x)| <e}. If there exists a set F < 0D such that
M,(Ap(F);u) >0 and u tends to zero along (p,u)-a.e. curve y € Ap(F), then
u=20 in D.

REMARK 1. The existence of boundary limits was studied by many
authors. Carleson [2] showed the existence of nontangential limits for har-
monic functions in weighted Sobolev classes in connection with the conver-
gence property of Fourier series. We know that a locally p-precise function
u on D satisfying

J [Vu(x)[Pdu(x) < oo
D

has a finite limit along (p,u)-a.e. curve y € Ap(dD), which is denoted by u(y)
(see e.g. Ohtsuka [12], Viisdld [14], Vuorinen [15] and Ziemer [16, 17]). Here
we note that u tends to zero along (p,u)-a.e. curve y € Ap(F) if u approaches
zero in the weak sense for a bounded set F < ¢D.

ReEmMARK 2. The boundary uniqueness for analytic functions f on the unit
disk U = C (complex plane) with |f'| e L>(U) was first studied by Tsuji [13].
Mizuta [11] treated p-precise functions u € W!?(B), whose extension u* to R”
vanishes on a set F < 0B of positive p-capacity. We see that u tends to zero
along p-a.e. rectifiable curve y € Ag(F) and M,(Ag(F);B) > 0 (cf. Remark 1
and Lemma 7). Recently, Miklyukov-Vuorinen [8] has extended these results
to a bounded domain in the non-weighted case.

For du(x) = w(x)dx with o(x) =1 — |x]||*dx, -1 <a < p—1, we con-
sider a locally p-precise function u on B satisfying

L Vu(x)Pdu(x) < oo.

In view of [9], we can find a (p, u)-precise extension u* on R” such that u* =u
on B and
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J [V (x)|P du(x) < 0.
R

Note that u* is uniquely determined on B except for (p,u)-capacity zero.

COROLLARY 1. Let ¢ be as in Theorem 1 and —1 < a < p—1. Let u be
a locally p-precise function on B satisfying

. JB . Vu(x)|"(1 = |x])%dx < e’p(e)  for every &> 0.

If u* vanishes on a set E = B with cap, ,(E) >0, then u=0 in B.
Our theorem is sharp, as the following result shows.

THEOREM 2. Let ¢ be a positive nonincreasing function on the interval
(0, 00) satisfying (pl) and

(p3) Jol [(p(r)]fl/(pfl)r_ldr < 0.

Let @ be a positive continuous function on B such that
w(x) < C(1—|x|)*  for all xeB

with a positive constant C and a nonpositive constant o. Then there exists a
p-precise and continuous function u on R" such that u >0 on B, u =0 outside
B and

(3) J “ Vu(x)|"o(x)dx < e’p(e)  for every &> 0.

u, &

2. Proof of Theorem 1

Let D be a domain and u be a Borel measure on D with a positive
continuous density. Consider a nonnegative Borel function # on D which
is L’-integrable with respect to u. We say that two points x and y in D are
h-equivalent if there exists a rectifiable curve ye Ap({x},{y}) such that
| hds < co. Tt is clear that this is an equivalence relation in D which par-
titions D into h-equivalence classes; each class consists of all points which are
h-equivalent to a given one. Further note that there exists an /h-equivalence
class Ep(h) which contains almost all points of D.

First we collect several lemmas from Ohtsuka [12], whose proofs will be
given for the reader’s convenience.

Let us begin with the following lemma.



Uniqueness property for weighted Sobolev functions 443

LemMma 1. Let D = R" be a domain and u be a Borel measure on D with
a positive continuous density. If T o (D) denotes the family of all curves y such
that the linear measure of yN\K is infinity for some compact set K = D, then

M, (1" (D); ) = 0.

To prove this, for a compact set K = D, letting I',,(D; K) be the family
of all curves y such that the linear measure of yN K is infinity, we have only
to see that

M, (I" (D; K); 1) = 0.

LemMmA 2. Let D = R" be a domain and u be a Borel measure on D with
a positive continuous density. Then, for a set E < D, the following assertions
are equivalent:
(i) M,(4p(E); D) =0.
(i) M,(Ap(E);u) = 0.
(iii) E < D\Ep(h) for some nonnegative Borel function h e L?(Dj;p).
(iv)

iv) E has p-capacity zero.

Proor. Clearly (i) is equivalent to (ii). Since the equivalence of (i) and
(iv) can be carried out in a way similar to that of [16, Theorem 4.3], we have
only to check the equivalence of (ii) and (iii). Assume that (i) holds. Then
there exists a nonnegative Borel function & € L?(D; u) such that [ & ds = co for
all ye Ap(E). It follows from the definition of Ep(h) that E c D\Ep(h).

Conversely, assume that (iii) holds, that is, there exists a nonnegative
Borel function /& € L?(D;u) such that E = D\Ep(h). Since D\Ep(h) has mea-
sure zero, we obtain M,(I;u) =0 for the family I" of curves y in D sat-
isfying |yN (D\Ep(h))| >0 or fyh ds = oco. It suffices to show that Ap(E)\
(Fn(D)UT) is empty. If Ap(E)\(I'w(D)UI') has a curve y terminating
at x € E, then there exists a point ye Ep(h)Ny. Since y is rectifiable and
jy h ds < oo, two points x and y are h-equivalent, so that x € Ep(h). This gives
a contradiction by (iii).

LemMmA 3. Let D = R”" be a domain and u be a Borel measure on D with
a positive continuous density. If E and F are subsets of D which have positive p-
capacity, then
M, (Ap(E, F); ) > 0.

PrOOF.  Suppose M,,(Ap(E, F); 1) =0 on the contrary. Then there exists
a nonnegative Borel function s e L”(D;u) such that

Jhds:oo
.

for each ye Ap(E,F). In view of Lemma 2, there are x€ ENEp(h) and y e
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FNEp(h). Since x and y are h-equivalent, this gives a contradiction by the
definition of Ep(h).

LemMA 4. Let D = R” be a domain, F = D and u be a Borel measure on D
with a positive continuous density. Suppose E — D is a set of positive p-capacity
and G is a relatively compact subset of D with M,(Ap(G,F);p) >0. Then
M, (I"; ) > 0 for the family I’ consisting of y € Ap(E,F) intersecting G.

PrOOF. Suppose M, (I'; #) = 0 on the contrary. Then there exists a non-
negative Borel function 2 € L”(D; u) such that th ds = oo for each ye I'.  We
may assume that 4 has positive lower bound in a neighborhood U of G, if
we replace # by 7+ 1 in U. We denote by G’ = G the set of all points x such
that [ i ds= oo for all y e Ap({x},E). Then we see that M, (Ap(G', E); u) =
0, which gives M, (Ap(G'); ) =0 by Lemmas 2 and 3. Since any curve y €
Ap(G',F) contains a subcurve in Ap(G’), we have

M, (4p(G', F); ) = 0.

Since s has positive lower bound in U, if a curve ye Ap({x}) for xe G
satisfies [ hds < oo, then there exists a rectifiable subcurve ' € Ap({x}) of
y. Hence by the definition of G’, we have M,(Ap(G\G',F);u) =0, so that
M, (4p(G,F);u) = 0. This contradicts our assumption. Now our lemma is
proved.

LeMMa 5. Let D = R" be a domain and u be a Borel measure on D
with a positive continuous density. Suppose F < dD. Then M,(Ap(F);u) =
0 if and only if there exists a set E < D such that My(Ap(E); D) >0 and
M, (Ap(E, F); 1) = 0.

ProoOF. Assume that there exists a subset E of D such that M, (Ap(E); D)
>0 and M,(Ap(E,F);u) =0. For a proof of M,(Ap(F); D) =0, it suffices
to show that M,(Ap(G,F);u) =0 for all relatively compact subset G of D.
Suppose M, (Ap(G, F);u) > 0 for some relatively compact subset G of D. It
follows from lemma 4 that M,(I;u) >0 for the family I' of curves ye
Ap(E, F) intersecting G. Hence we have M, (Ap(E, F); ) > 0, which gives a
contradiction.

The converse is evident.

Here we prepare the following technical lemma needed for the proof of
Theorem 1.

LemmA 6 (cf. [11, Lemma 2]). Let ¢ be a positive nonincreasing function
on the interval (0, o0) satisfying (92). Then there exists a positive nondecreasing
function h satisfying

1
(h1) Jo h(r)rtdr = oo
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and

1
(h2) Jo h(r)Po(r)rdr < .

Now we give a proof of Theorem 1.

PrROOF OF THEOREM 1. Set
E={xeD:ulx)| >0}

and suppose that M,(Ap(E); D) > 0. Next, we define a function p by
= > 2Yh27)Vu(x)lxg, (x),
=

where /1 is as in Lemma 6 and yg denotes the characteristic function of G; =
{xeD:27 <|u(x)| <27*'}. Then we have by (1) and (h2)

Jp z@: 27h(277)] J \Vu(x)|"o(x)dx

= i

—_

[2’/1(2 1)]1’2( —j+1)p (2,#1)

Méﬁ

~.
Il
—

—or Z h(27)Pp(277+1)
j=1

1
< 2ort! J h(r)Po(r)rdr < oo.
0
In view of Lemma 2, we note that a function v on D is absolutely
continuous along p-a.e. curve in D if and only if v is absolutely continuous
along (p,u')-a.e. curve in D for all 4’ with a positive continuous density o’
in D. Hence u is absolutely continuous along all curves in D except for a
family I"; with M,(/"1;4) =0. By our assumption, there exists a subfamily
I'y « Ap(F) such that M,(/>;4) =0 and u tends to zero along each ye
Ap(F)\I'>. Fix a locally rectifiable curve y € Ap(E,F)\(I'1UI). Then for
large j (j =jo) there exists a subcurve 7; = Gj of y such that

J |Vulds > 27.
Y

J

It follows from (hl) that
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J pds > ZZjh(2’j)J |Vulds
y 7

J=ho

J

0

> h27)

J=ho

\Y

270
> 2J h(r)r~dr = 0.
0

Thus we can easily see that M,(Ap(E, F)\(I'1UTI2);u) =0. Therefore we
have

MP(AD(E:F)W) =0,

which gives a contradiction by Lemma 5, since M, (Ap(F);u) > 0.

3. Proof of Corollary 1

The Riesz capacity of index (f,p) is denoted by Cp p; for its definition
we refer the reader to [10].
Now Corollary 1 is obtained from Theorem 1 and the following lemma.

LemMA 7. Let F < 0B and du(x)=|1—|x||"dx with -1 <a<p—1.
Then the following assertions are equivalent:
(a) M, (4a(F); ) = 0.
(b) cap, ,(F)=0.
(©) Crapp(F) =0.

Proor. It is well known that (b) is equivalent to (c) (see [10, Lemma
8.3.3]). Clearly (b) implies (a). Hence it remains to check that (a) implies (c).

Suppose that M,(Ag(F);u) =0. Then there exists a positive function /
in B such that

(4) JB h(x)Pdu(x) < oo
and
(5) J hds = oo

for each locally rectifiable y € Ag(F). Here we assume that 7 =0 in R"\B
and set

K:{xe@B:J |x_y|1"h(y)dy:oo}.
B(x,1)
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Note here that
lea/p,p(K) =0

(see [10, Lemma 8.2.3]).
Fix xe F. It follows from (5) that

1
J h(x + r{)dr =
0

for all { with x+ (e B. Hence we have

1
J Ix — y|'""h(y)dy = J (J h(x + r{)dr) d#"1(0) = .
B(x, 1) B\ Jo
This implies that F < K and (c) follows.

REMARK 3. Let D be a bounded (¢J) domain in R” due to Jones [6]
and denote by pp(x) the distance of x € R” from the boundary 6D. In view of
Chua [3], if pp(x)” is in the Muckenhoupt class 4, then every locally p-precise
function # on D satisfying

| wuor o < oo

D

can be extended to a function u* on R” such that u* =u on D and
J [Vu* (x)[”pp(x)*dx < .
R}‘l

Hence Corollary 1 is also valid for every bounded (¢,5) domain in R”.

4. Proof of Theorem 2
For a proof of Theorem 2, we need the following lemma.

LemMA 8 (cf. [10, Lemma 5.3.1]). Let ¢ be a positive nonincreasing func-
tion on the interval (0, c0) satisfying (pl). If a > 0, then there exists a positive
constant M = M (a) such that

(p4) sp(s) < Mty(t) whenever t > s > 0.
We are now ready to prove Theorem 2. It suffices to show the case that

w(x) = (1 —|x])* with « <0. Suppose

Jl[(p(r)]l/(pl)r_'dr < .
0
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Set

f(t) = C(J;[(p(r)]1/@1)rldr>(p1)/(p11)

where C is a positive constant. We can easily see that f is a positive increas-
ing continuous function on (0, o) and

L1 = Cosg L f (00D /0Dt
where 5o = (p —1—o)/(p—1). Consider the function u e C(R") given by
-1 _ .
u(x) = {f (1—|x|) %fxeB,
0 if x ¢B.
We have only to show that u satisfies (3) if we choose C large enough.
For small &> 0, we can find 6 > 0 such that ¢ =f~!(5). Then
B,.,={xeR":1-0<|x|<1}.
Hence we have by Lemma 8§
| wator = pax= | )= )L~ )
B, : {1-o<|x|<1}
1
=0, (D' A =P =) tar
Ji-s

J

< an (1) (9)1"s”ds
0

—a [ 11017 0
0

&

= g,C* P! J p()t"dt
0

< 0, C* P MePo(e),
where o, denotes the surface area of the unit sphere and M is a positive

constant independent of ¢. If we take C such that ¢,C*?*'M =1, then u
satisfies (3).
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