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ABSTRACT. In this paper, we consider the L?(R") boundedness for a class of multi-
linear oscillatory singular integral operators with polynomial phases. We show that
if the polynomial phases are non-trivial and the homogeneous kernels satisfy a certain
minimum size condition, then the L?(R") boundedness for the multilinear oscillatory
singular integral operators can be deduced from the L”(R") boundedness for the
corresponding local multilinear singular integral operators.

1. Introduction

We will work on R"(n >2). Let P(x,y) be a real-valued polynomial on
R" x R”, Q(x) be homogeneous of degree zero which has a mean value zero on
the unit sphere S”~'. Define the oscillatory singular integral operator

(1 R I
» x =yl
It is well-known that the operators of this type have arisen in the study
of Hilbert transforms along curves, singular integrals supported on lower-
dimensional varieties and singular Radon transforms, etc. A celebrated result
of Ricci and Stein [9] says that if Q € Lip,(S"!), then T is bounded on L?(R")
for 1 < p < oo, with a bound depending only on n, p and deg P (the total
degree of P), not on the coeflicients of the polynomial. Chanillo and Christ
[2] showed that Q € Lip,(S”"~!) is also sufficient for T to be a bounded mapping
from L' to weak L', and the bound depends only on n and deg P. Lu and
Zhang [7] improved the result of Ricci and Stein, and proved that if Qe
Uq>l L4(S""1), then T is bounded on L?(R") with a bound C(n, p,deg P) for
I <p<oo.
In this paper, we will study the multilinear operators defined by

e 2(x — k
(2) TAl,..u,Akf(x) = J , e’P(“’y> ﬁ H R171/+l (Aja X, y)f(y)dy,
j=1
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where k and m; (j=1,...,k) are positive integers, m= Z/ vmy, A (j=1,...,k)
has derivatives of order m; in BMO(R"), R, 1(4;; x, y) denotes the (m; + ) -th
Taylor series remainder of A4; at x about y, that is,

m+l(A Z DyA ) .
Joe| <m; o!
Operators of this type have been studied in [3], [4], [6] and many other works.

It is easy to see that the operator Ty, . 4, is closely related to the oscillatory
singular integral operator defined by (1) and the multilinear singular integral
operator defined by

Qx—y)
o L HRm,+1 Ay, %, ) (7)dy.

(3) T af(x) = J

R"

Using good-A-inequality techniques, Cohen and Gosselin [5] showed that if Q
satisfies a certain vanishing moment and Q € Lip,(S"!), then for 1 < p < oo,

2

T4l < H Z D% 4jllemow) | LS 1lp-

J=1 \ |o|=m;

In [3], Chen, Hu and Lu considered the L?(R") boundedness for the operator
T4, 4, and proved that if Qe U Li(S"1), and the polynomial P(x,y) is
non-trivial, then the L?(R") boundedness for Ty, 4, can be obtained from the
L?(R") boundedness for the local multilinear singular integral operator

Qx-y) T

Stanf (x) = j I ] Ry (4553, 9) £ (),
[x—y|<1 lx — j=1

(see [2, Theorem 2]). The purpose of this paper is to show that if Qe

L(log L)™' (s™1), and P is non-trivial, then the L”(R") boundedness for
AAAAA .4, can be obtained from the L”(R") boundedness for the local version of
the operator T, 4y...4,- Our main result in this paper can be stated as follows.

THEOREM 1. Let 1 < p < oo, k andm; (j=1,2,...,k) be positive integers,
mzzlk:l my, A; (j=1,2,...,k) be functions on R" whose derivatives of order m;
are in BMO(R").  Suppose that Q is homogeneous of degree zero and belongs to
the space L(log L)™' (S™), that is,

j (") log"* (2 + [2() )’ < o,
n—1
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and the operator

n+m HR"7J+1 )f(y)dy

- )\<1\x yl

is bounded on L?(R"). Then for any real-valued non-trivial polynomial P(x, y),
the operator Ty defined by (2) is also bounded on L? (R"), with a bound depending on
n,p,m (j=1,...,k), Hf:l(Z\aj\:mj D% A;|lsmo(r)) and deg P, not on the
coefficients of P.

2. Proof of Theorem 1

We begin with some preliminary lemmas.

LemMA 1 (see [5]). Let b(x) be a function on R" with derivatives of order m
in LY(R") for some n < q < co. Then

1/q
1
Rubi )| < Gl =31” Y- (| (pb(a) )
‘a\zz,,, [ (x, p)| e, )
where I1(x,y) is the cube centered at x with diameter 5/n|x — y|.

Lemma 2. Let 1 < p< oo, k and m; (j=1,2,...,k) be positive integers,
m= jk:l my, A; (j=1,2,...,k) be functions on R" whose derivatives of order m;
are in BMO(R").  Suppose that Q is homogeneous of degree zero and belongs to

the space L*(S""!). Set
It 1o (HHsznm) § 1}.

k
(5) Utyooayrf(x) =77 J 10 = I T T 1Rm 1 (453 x, )11/ ()]
r j:]

[2<|x—y|<r

o= inf{i >0

Then for any r > 0, the operator

is bounded on L”(R") with a bound C(n,m, p)ig H_;;l (X1 1D 45l BMOR?))-

Proor. Note that for each > 0,

Q oll.,
ztg‘kzinf{bo: ”’i”‘ logk<2+”t)” ) < 1}
_infd 4i: 7 >0, 122l logk 5 €l

[;L [;u

= Mﬁ,k'
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Thus we may assume that Az, = 1/2. Therefore,

12111 log" (2 + [12]|c) < 1

Define the operator E by

zmur:j B (x — ) h(y)dy

[x—y[<1

Denote by E* the adjoint operator of E, that is,

E*h(x) = J 1Q(y — x)|h(y)dy

lx—y|<1

Let by, by, ..., b e BMO(R") and Q be a cube with side length 1. Denote by
mo(b;) the mean value of b; on Q. We claim that for 1 < p < co, supp &
< 10nQ and non-negative integer / < k,

(© J, e VHw (b7 dx

< Clog™ P2 4+ 12|..) HHb Mo
Jj=

hlly,

with the interpretation that when /=0, H_ﬁ.:l |bj(x) —mg(b;)| =1. To prove
(6), we can assume that ||A||, =1. Choose 1 <r; < co such that Z 1/
= 1. By the well-known John-Nirenberg inequality, there is a positive constant
C; = C(p,rj,n) such that

1/(2r;)
(LW)H@M%W> < Gllb o

We may also assume that ||b; HBMO R = =1/C;forall 1 < j<k. We shall carry
out our argument by induction on /. If / =0, the Young inequality gives that

JQ [E*h(y)Pdy < C| Q[T lIAll) < Clog (2 +[|2|.-)-

Now let d < k — 1 be a non-negative integer and assume that the estimate (6)
holds for / =d. We will show that (6) holds for / =d + 1. Observe that &(¢)
=tlog’(2+1) is a Young function and its complementary Young function is
V(f) ~exp t'/7. By the general Holder inequality, it follows that
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d+1
J, 0t T 82) = ot

SCinf{},>0:J me( >H|b )de<1}
0o

x inf{/l >0: J exp<|b’“( *) ql/’ij (brs1)] ) H b (x (b))|Pdx < 2}
%

(see [1] or [8]). Applying the Young inequality again, we have

< ClIQleIll, < I

Our induction assumption now gives that
|p d
J |E*h(x)|” log” (2 >H|b (b)) dx
0

p
< Clog” (2+ ||/1H ) log =K+ DP(2 +112||.0).

Set 4o = log ¥t r(2 +]|Q|,.). An easy computation then leads to that

J JEoneor oge (2 5 )Hb (by)dx < Co.

On the other hand, by the Hdlder inequality,

|bri1(x) —mo(bis1)] »
JQexp< I H|b (by)|dx
/by (x)—mp(b 1/2_d C\Ven
< (JQCXP< | l+1( )il/p Q( l+1)|>dx> 11<JQ |bj(X) mQ(b)|2P/dx>
=

_ 1/2
- (J exp<2|bz+1(x) l/mQ<b’“)|>dx) ’
0 i

which together with the John-Nirenberg inequality implies that

inf{/1>():J exp<|b’+‘( )41/’:9 br1) >H|b )|de<z} C,
Qo
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Therefore,
d+1 B
J \E*h(x |PH|b (B)Pdx < Clog ™22 4+ | D)]..).

We can now prove our Lemma 2. By dilation-invariance, it suffices to
consider the case r=1. Write R" = Uj I;, where each I; is a cube having
side length 1 and the cubes have disjoint interiors. Let y; be the characteristic
function of I Set f;= fy; Then

X) = Z fi(x), a.e. xeR"
J

Since the support of Uy, . 4,:1 f is contained in a fixed multiple of I;, the
supports of various terms {Uy, . 4,.1/;} have bounded overlaps, and so we
have

.....

Thus we may assume that supp f < I for some cube I with side length 1. Set

A =40 - L'm,(D“fAj)y“

oy =m; 7
A straightforward computation shows that for x,y e R”",
R 1(Aj %, ) = Ry 1 (A5 x, ).

Choose n < ¢ < oo Lemma 1 now tells us that

|ij (Aj7 X, .V)|

1/q

_ 1
<Cl—y" 3 | Do) (o)

oo (e 0) iey)

1 1/‘1

< Clx—y|™ ( = J |D*A;(z) — mi(xJ’)(D%/Aj”qu)

[oj|=m, |I(X y)' I(x,y) '

+Clx—y™ Y mi(DA4;) — my ) (DY 4))]
|ogj=m;

< Clx—y|" > (1D 4;llsmome) + [mi(D* 4;) — my, (D% 4;)).

|0y |=m;
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Note that if ye and |x —y| < 1, then I(x,y) = 100nI. This in turn implies
that for yel and 1/2 < |x—y| <1,

imi (D% 4;) — mj, ,(D* 4;)] < C||D* 4| pmor?)-
Thus in this case, we have

R (A x, )] < Clx = y™ > ID¥ Ajllpmowny < C Y 1D 4jl|pmor?)-

logj|=m; Jogj[=m;
Let

k
o) =TI D (D" A4llemowr) + D7 A;(y) — my(D* 4;)|)

J=1\ Joyl=m
We can write
Uiy i1 S (%) < E(|4f1)(x).
A standard duality arguement and the Holder inequality then show that

NUs,...oap1 fllp < sup
supp h=10nl, ||k

JE<|¢f|><x>h<x>dx

Hl)rﬁl

sup J|E*h<y>¢<y>f<y>|dy

supp h<=10nl, ||Al|, <1

< |11l sup |PE™ Al
supp h< 101, ||A]|, <1

where p’ is the dual exponent of p, i.e. p’ = p/(p —1). Invoking the estimate
(6) for 0 </ <k, we finally obtain

k
| Ua,

,4---,A/c;1pr = CH Z ”D“/Aj”BMO(R”) ||f||17
J=1\ Joyl=m;

This completes the proof of Lemma 2.

Proor oF THEOREM 1. Without loss of generality, we may assume that for
1<j<k,

> IDY Ajl|smome) = 1.

Jotj|=m;
Let ko be a positive integer and P(x, y) be a real-valued non-trivial polynomial

having degree k¢ in x and degree [y in y. Write

P(x,y) = Z au v X*y" + R(x, p),
|ul=ko, [vI=lo
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where R(x, y) is a real-valued polynomial which has degree less ko in x. By

dilation-invariance, we may assume that .\ |au|=1. Splite Ty, 4, as

.....

ey Q(x
Ty, ..,,Akf(x) = J GZP(X'”(—HmHRmuH (Au; x, ¥) f(y)dy
oyl <1 |x — ¥l

0

t2

iP(x,7) 79
e T Ry, 1(Au; x, d
JZJ l<|x—y|<2/ |x y|7+ 7H + u J’)f(y) Yy

=1 ,S)+> 1]

We first consider the operator 7}{;7/12“_'7” for j>1. Let Ey={x'eS" !,

|Q(x")] <2} and Ej={x"eS"" 2" <|Q(x")| <2} for positive integer l.
Let € be the restriction of Q on E;. Define the operator 7] ., by

. . N 82 xX—y k
7;1/1 ..... Ak;lf(x) = J elP(XYy) £y|11+121 HRmqul(Au;xa y)f(y)dy

277 < x—y <27 |x =1

.....

lemma.

LeEmMMA 3. Let the polynomial P(x,y), k, m, and A, (u=1,... k) be the
same as above, Q be homogeneous of degree zero and belong to the space
L*(S"™1Y).  Define the operator

i j Jj Q
= [ e Q=) [ R )01
I<|x—y|<2 | y|

Then for 1 < p < oo, there exists positive constants C and 6 which are depending
only on n, p and deg P such that

1V llp < Cl2l2 1111

For the case of k=1, this lemma was proved essentially in [3, page
43-46]. For general positive integer k, Lemma 3 can be proved by induction
on k. We omit the details.

We now estimate 7 .4~ Note that for b€ BMO(R") and 7 > 0, b,(x)
= b(tx) also belongs to “the space BMO(R") and |[|b;||smor”) = [|6l|BMO(R")-
Thus by dilation-invariance and Lemma 3,

(7) I3 aaf lp < C27021| 11,

AAAAA
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On the other hand, Lemma 2 states that

(8) 1T a1 fllp < Chopi

/1y

Set Ay = I¥]|Q]|; +27'. A trivial computation gives that

€20, & «© [1€2]]1 k( IIQzlloo>
log“| 2+ < log"| 2+ <C,
P ik Kl % 21

which in turn implies

©) Ay < CU|ullr +27").

Our hypothesis on Q now says that >, /*"|Q/||; < oo. Let N be a positive
integer such that N >20~'. Combining the inequalities (7) and (8) yields that

< Z” ,,,,, Ak of||p+z ZH ..... Sl

j=11>0 j=1 1>0 j>NI
+Z Z 177 . A
>0 1<j<NI
<CY 27fll, + €Y 2"y 2701,
j=1 >0  j>NI
+CY gkl flp < ClAA.
>0

Now we turn our attention to the operator 7;,(])7““ 4,- The estimate for this
term follows from the following lemma directly.

LEMMA 4. Let 1 <p< oo, and Sy, 4, be defined by (4) with Qe
L(log L)*(S").  Suppose that Siy.... .4, is bounded on LP(R"). Then for any
real-valued polynomial P(x,y), the operator

W41,M,Akf(x) :J eiP(x) n+m H my+1 Auyx y)f( )dy7

l—yl<1 Ix yl Yl
is bounded on L?(R") with a bound C(n,m,p,deg P).

Proor. We follow along the same line as in the proof of Lemma 6 in [3].
We shall carry out the arguement by a double induction on the degree in x
and y of the polynomial. Obviously, Lemma 4 holds if the polynomial P(x, ¥)
depends only on x or only on y. Let u and v be two positive integers and the
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polynomial P(x, y) have degree u in x and v in y. We assume that Lemma 4

is known for all polynomials which are sums of monomials of degree less than

u in x times monomials of any degree in y, together with monomials which

are of degree u in x times monomials which are of degree less than v in y.
We can now write

Z bﬂl’xﬂyv"’_PO(xa y)a
[t

where Py(x, y) satisfies the inductive assumption. We consider the following
two cases.

Case . >, _, - |bw|<1. Asin the proof of Lemma 2, we may assume
that supp f = I for some cube I centered at x( and having side length 1. By
translation-invariance (note that our result is independent of the coefficients of
the polynomial), we may assume that supp f < I, the cube centered at the
origin and having side length 1. Set

P(x,y)=Po(x, )+ Y buy"

= v]=o
Observe that if |[x —y| <1 and y e I, then

|eiP(3) — iPx2)| < Clx — y].

B L(x—Y)
o e T Rt
x—y

+CJ|X J\<1|x y|"+mlH'Rmf+l Agix |17 () ldy

5 Q
< J e:P(x,y)(xi}imHRm]H (Aj;x, y) f(y)dy
oyl <1 x =y

o0
+ szij[JAI,.mAk;Z*ff(x)v
=0
where Uy,  4,.0 is defined by (5). Set

k
Up.... a2 (x) = 270 J (0= T [ 1Rm,1 (Aus x, )1 ()l

' 2771 x—y| <27 =1
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It follows from Lemma 2 and the inequality (9) that

j=0 >0

< Clfl, + Zz > dakllfllp < CUL-

Jj=0 1>1

This via the induction hypothesis tells us that

..... i lp < C(n,m, p,deg P)||f]],-

Case I 37, _, 1=y 1bw| > 1. Set J = (32, = BT Let
b
o(x,»)= > Jj‘L XMy + Po(x/J, p/ ).
ey

Then P(x,y) = Q(Jx,Jy). Define the operator

LnerHRm”+l Auax y)f(y)dy

Wi, ... Akf(x):J £10(x.7)
lx—yl<J |x — ]

By dilation-invariance, it suffices to prove that
(10) [ Way,...a.fllp < C(n,m, p,deg P)||f]],-

We splite the operator WA] _____ 4, as

: Qx—y
lequf(X) = J @ Xy)%HRmﬁl Ay x, y)f(y)dy

eyl <1 |x

. iQ(x Q(x - -
> 0 BTN R (A ) ()
2ty <2/ V|

=1 |x — u=1

. Q(x
+J ') 22— T Ryt (Aus x, ) f (3)dy
20 <|x—y|<J Ix =yl +1H : i

= W (x) + W (x) + WS (x),

where j, is the positive integer such that 2/0 < J < 2/0*! The conclusion of
Case I applies to W', so

IW'f1l < C(n,m, p, deg P)||f1],-
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By the inequalities (7), (8) and (9) as in the estimate for 3., Ej;’sz."yAk, we
can obtain that

|| Wllf‘H]’ < C(n7m7p7deg p)”f”]’
On the other hand, it follows from Lemma 2 and the estimate (9) that
IW s, < Cn,m, p,deg P)||f|],-

This leads to the estimate (10), and completes the proof of Lemma 4.
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