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ABSTRACT. Let X be a closed connected and oriented PL manifold whose fundamental
group 7y is a free group of rank p. Let 4 be the integral group ring of z;. Then
H,(X,A) is A-free (see [6]). We show that there is a bijective correspondence between
homotopy equivalence classes of 4-dimensional Poincaré complexes ¥ with ¥ =~ x©)
and invertible hermitian matrices of type k over A, where k is the rank of H,(X, /).

1. Introduction.

By a Poincaré 4-complex we understand a 4-dimensional CW-complex Y
with a fundamental class [Y] € H4(Y,Z) = Z inducing isomorphisms

O[Y} :Hq(YaA) - H4fq(YaA)a

where A4 =Z[r(Y)] is the integral group ring of the fundamental group.
Since we will discuss only fundamental groups which are freely generated, e.g.,
by p generators, there will be no Whitehead torsion. Therefore they will be
finite Poincaré complexes in the sense of [8]. We can also assume that Y is
obtained from the 3-skeleton Y of Y by attaching only one 4-cell (see [8],
p. 30), ie, ¥ =Y U,D* where p:S* — Y is the attaching map. The
following result of T. Matumoto and A. Katanaga will be crucial for our
discussion (see [6], Proposition 2).

ProposiTiON 1.1. Let X be a closed PL four-manifold with ny = «x?Z.
Then X©) is homotopy equivalent to \/"(S' v S*) v (\/ksz).

Let us suppose X to be a PL 4-manifold, hence 7,(X) = Hy(X, A4) is A-
free of rank k. Recall the Whitehead exact sequence ([9])

0 — I'(m) — m3(X®) = Hy (X, 4) — 0,

where I'(n,) is the (quadratic) I'-functor applied to the abelian group 7;(X ) =
Hy(X,A). Note that H3(X®) A) is A-free of rank p. There are canonical
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maps I'(m) — 7 ®z 7, and 7, ® 7 7, — I'(7) such that their composition is
multiplication by 2 on I'(ny). This implies in our case that

F(nz) c ) Qg7 mo.

In fact, I'(m;) can be considered as the subset of symmetric tensors in 7, ® z 7.
Moreover, I'(m;) is a A-submodule of 7, ®7 7, and the induced homo-
morphism

F(ﬂz) ®AZ—>712 ®A7T2

is injective. (Here as elsewhere in this paper, we have, if necessary, to shift
from right- to left-4-module structures using the canonical anti-automorphism
of A.) The purpose of this paper is to study 4-complexes ¥ obtained from X
by attaching one 4-cell with attaching map  : S* — X©® ie, ¥ = X® U, D*.
More precisely, we want to study conditions on i/ to obtain a Poincaré 4-
complex Y. Our basic result is a correspondence between homotopy equiv-
alence classes of PD-duality spaces Y and invertible hermitian matrices over A
of type k (see Theorem 3.3 below).

2. Homological properties of Y.

Let X be an oriented closed PL-manifold of dimension 4. We may
assume that X® is homotopy equivalent to \/”(S' v 8%) v (kaZ). Let

p:S =\ v v (\/'s?)
be the attaching map of the 4-cell and let ¢, be the composition
S LA/ (S vS) v (\/f8?) S\ (St v s
with the collapsing map ¢: \/”(S' v 8% v (\/*8?) — \/”(S' v S?).

LemMmA 2.1. The space Q = \/p(S1 v S Ug, D* is a Poincaré complex of
dimension 4. The canonical map [ : X — Q is of degree 1.

Proor. The collapsing map ¢ induces a map f : X — Q such that the
following diagram commutes

00— H4(Q,Z) — H4(Qv Q(3)3Z) — H3(Q(§)7Z)
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In particular, f, : Hy(X,Z) > H4(Q,Z). Let [Q] = f.[X], then

0.4 % 0.4

N
mox, ) 5 gy )

commutes. For ¢=0 we observe that H°(Q,4) = H°(X,4) =0 since
Hy(X,4)=0. Hence Poincaré duality is trivial in this case. Moreover
for ¢ =1,3 it follows that ﬁ:H4_q(X,A)iH4_q(Q,A) and H’J(Q,A)i
H9(X,A), hence Poincaré duality follows from the previous diagram. It
follows from the diagram

0 — H*0,4) — H3 (0¥, 4) — H*(0,09,4) — H*(0,4) — 0

| | Jr |-

0 — H3 X, A) — H*(X® A) — H*X, X, 4) — H*(X,4) — 0

that f*: H*(Q, 4) = H*(X, 4) hence ()[Q]: H*(Q,4) = Hy(Q, ). Finally
for ¢ =2, we see easily that H?*(Q,4) = Hy(Q,4) =0. []

As explained in the introduction we shall study the space ¥ = X©) U, D*
and [Y] = [p] + 0, with 0 € I'(m2). Note that 0% =\/”(S' v S?), hence we
have

() - Hi (@Y, 4).

|

It follows from the diagram
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that the composition

$? L x® S\ v s
is homotopic to ¢, so this defines a map

Yy L o.

L

Note that g, : Hy(Y,Z)
that g.([¥]) = (0.

LEmMMA 2.2. Cap product with Y] induces isomorphisms H(Y,A) —
Hy (Y, A) for all q # 2.

H,(Q,Z) (as above) and let [Y] € H4(Y,Z) be such

Proor. The proof goes as in Lemma 2.1. []

On the other hand if ¥ = X0) Uy D* is a Poincaré duality space for
¥ :S* — X, then we can construct Q as above and g, : 73(X®) = 73(Y?) —
n3(0P)) is identified with f,. So it follows from diagram (*) that [] — [¢] €
I'(m;). Hence this is also a necessary condition.

REMARK 2.1.  From the universal coefficient spectral sequence we get
H*(Z, A) = Hom4(H,(Z, 1), A)

for all spaces Z under consideration.

3. Poincaré duality in the middle dimension.

As before let ¢:S* — X©® be the attaching map of a 4-cell of the 4-
manifold X. Given an element 0 € I'(n;) we must study the effect of 6 on the
homomorphism

H*(Y,A) — Hy(Y, A),

for Y = X® U, D* with [y] = [p] + 0. To simplify notation we will write 7,
H,, and H? for my(X), Ha(X,A), and H?(X, A), respectively. In particular,
we have m; = Hy. Note that H>(Y, A) = H*(X,A) and Hy(Y, A) = Hy(X, A)
in a canonical way, so we have particularly

N[Y]: H> 5 H,.
Hence we have to study the isomorphism

N[Y] - NX]: H> S H,.
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Let 0 =), u; ® v; € 13 ®z 7, be a symmetric tensor, i.e., 0 € I'(m;). The effect
of 0 on H? is given as the image of § under the canonical homomorphisms

M Qg1 — 1 ®, 1y — Homy (H;, Hy) = Hom,(H?, H,)

where H; = Hom,(H,A). Because m, is A-free these are isomorphisms
(except the first map). Recall also that H?> = Hy. For convenience we
identify Hom (H?, H,) with Hom(H,, H>) via the PD-isomorphism

NIX]: HX(X,A) — Hy(X, A).
The following lemma can be easily checked:

LemMma 3.1. Under the above composition map the element 0= u; ®
v; € I'(mp) gives the following homomorphism

HZ(XaA) - HZ(XaA)a

sending x to Y, uiAx(vi,x). Here ly : Hy(X,A) x Hy(X,A) — A is the inter-
section form over the group ring.

Proor. The only difficulty is to write down the correct A-module
structures. If H, is considered as a A-right module, then H; is in a natural
way a A-left module. For ¢ e HS and A€ 4 we have (A€)(x) = A¢(x). Then
Hj is a right module as follows: ¢ A(x) = A&(x), where ~: 4 — A is the
canonical anti-involution. Now Hom,(H;, H>) are the A-right module homo-
morphisms. Let us for simplicity consider u ®, v e, ®, 7. This defines
in Hom,(H;,H,) the element given by ¢ — ué(v). In Hom,(H? H,) the
expression ¢(v) becomes ¢Nv.  Going from Hom,(H?, Hy) to Hom(H,, Hy)
via PDy : H*(X,4) — Hy(X,A) we have to start with x € H, i.e.,

x — u(PDy (x) Nv) = uly(x,v) = uly (v, x).

Recall for this that Ay(x, y) = (PDy'(x) UPD}! (»))N[X] € Ho(X, 4 ®7 A) =
AR A=A, [

COROLLARY 3.2. If we compose (\[Y]: H* — H, with the Poincaré duality
inverse PDy! : Hy — H? we obtain

(NIY]) o PDy!(x) = x + Z uidx (vi, X).

Let us now choose a A-basis ay,...,a; of Hy. Then

{aig®ajg/|ivj: 1,...,k,g,g/€711}
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is a Z-basis of 1 @zm=Hy®zHy. Let 0=3%, . . aig®ajg'ni(g,9') be
a symmetric element, i.e., 0 € I'(n2), with n;(g,9’) € Z. Then we must have
ni(g,9") = njj(g’,g). Note that the sum which defines 0 is finite. Let us
write the element 0@, 1 e m ® 7o as >, ;a4 @ ajy; with y; =37 m;i(g.9') -
g'g~' € A. The above symmetry condition then implies Vi = V> 1.€., the matrix
I' = (y;) € M(k,k; A) is hermitian: I =TI. Conversely, let be given any
hermitian matrix I" = (y;) over A. Let us write the elements y; € 4 as y; =

D gem Wilg)g. Then y; =7, implies n;(g) = ni(g7'). Let

0=" {ai®agni(9) + a9 @ am(g™")} +>_ a; ® amii(1).
i i
The first sum is taken over all i,j=1,...,k and g enjU{l}, where =] is a
subset of 7;\{1} containing for any g € m; either g or g~'. Then 0 e I'(n,)
and 0®,1 = Ziyja,-®ajyj,-. Applying (([Y]) oPD;(1 to the basis ay,...,a
we get from Corollary 3.2

(N[Y]) o PDy (ar) = ar + > aidx(a;, ar)
07

=as+ Z aiy;itx(aj, ar)
i

=a; + Zaiyijix(aj, ar).

iJ
If we denote by Ly the intersection matrix (Ax(a;,a,)) we get the matrix
Iy +T'Ly =%

associated to (()[Y]) oPDy'. Since Ly is invertible and hermitian, we can
solve this equation for I". Hence, beginning with an invertible hermitian
matrix XL;' = Q we obtain an hermitian A-matrix I” from which we can
construct 0 € I'(my) such that ¥ = X®) U, D* with [y] = [p] + 0 is a Poincaré
duality complex. On the other hand it was shown in [2] that the isomorphic
intersection forms Ay and Ay determine homotopy equivalent Poincaré spaces
X and Y. This means that if the cup product pairings

H*®Q H?> — A

given by [X] and [Y] are the same then X and Y are homotopy equivalent.
Note that the cup product with respect to [Y] is defined by the composition

H@H — HY Y, 40, 4) L Hy(Y, 4@y 4) =~ 4@, 4 = 4.
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If &neH? we have (CUn)N[Y]=EN(N[Y]). Now nN[Y]=nNI[X]+
> jaim(a;y;) (considering n e H 2~ Hj). If we calculate the products of the
Hom -dual basis aj,...,a; € H> we obtain

(@7 Uag) N[Y] = (a7 Uai) N[X]+ 7,
We can therefore summarize to get the following

THEOREM 3.3. Let X* be a closed connected PL 4-manifold with m(X) =
«PZ. Fixing a A-basis {a\,...,ar} of Hr(X,A), there is a bijective corre-
spondence between hermitian invertible matrices Q of type k and homotopy
equivalence classes of Poincaré duality 4-complexes Y with Y ~ x©)

4. A remark on special hermitian forms and their realization by
4-manifolds.

If 7y @Z any non-singular hermitian form has a realization by a 4-
manifold (see [4]). There are forms such that the resulting manifold is not
homotopy equivalent to (S1 X S3)#M " with M’ simply-connected, because
there are forms over A = Z[Z] which are not extended from Z (see [5]). If the
rank of the free group is greater than 1 the realization of a non-singular
hermitian form as intersection form of a closed 4-manifold is a difficult problem
because free non-abelian groups are supposed to be not “good” in the sense of
surgery theory (see [4]). An analogous problem arises by trying to realize
surgery obstructions in dimension 4 (see [9], p. 54). Here the relevant her-
mitian forms are “special hermitian forms” (G, 4,u) (see [9], p. 47). Besides
being based (which we can ignore since the Whitehead group of n; = *’Z
is zero), a special hermitian form can be considered as an even hermitian space
(see [7], Ch. 1). An even hermitian form is an orthogonal complement of
a hyperbolic space (see [9], Lemma 5.4, or [7], Corollary 3.5.4). A hyper-
bolic space can be realized by M = #7(S! x %) # (#"(S* x S?)) for some n.
The collapsing map c¢: M — #7(S' x S%) is a normal map of degree 1 with
associated surgery obstruction g(c) = 0 € L4(71), where Ly(71) is the Wall group
of ;. Recall that L4(n;) = Z and the surgery obstruction is the signature
of the special hermitian form in question (see [1]). Now let us realize the
even hermitian form (G,A) by a Poincaré duality space Y and suppose
that sign(Y) =0. We consider H,(Y,A) as an orthogonal summand in
Hy(M, A).

Now let V < Hy(M,A) be the orthogonal complement of H,(Y,A) <
Hy(M, A). Then sign(V) =0 since sign(M) = sign(Y) =0. This means that
V' is stably a hyperbolic form. In other words, let us consider N =
M #(#"(S* x 8?)) for a large enough r. Let H = Hy(N, A) be the hyperbolic
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space defined by #’(S?xS?). Then V@ H is a sum of hyperbolic planes

0 1 ) .
(1 0> with respect to a symplectic base (ay,bi,...,an,by) of VA H <

H>(N,A). 1In higher dimension, surgery on aj,...,a, can be done to kill
V@ H. In dimension 4 surgery can be done to kill V@ H if the basis
(a1,b1,...,am, by) can be represented by a map

p:J"(S*vS?) =N

such that 7;(Im ¢) — 7;(N) is the zero-map (see [3]). Completing these
surgeries on N we get a manifold W* with intersection form isomorphic
to that of Y, hence W is homotopy equivalent to Y (see [2]). The above
discussion gives also a “stable” result. Note that we can use the interior of
the attached 4-cell of Y to form connected sums with manifolds. Then, if
as before, Ay is even and sign(Y) = 0, then for some r > 0, ¥ # (#'(S? x 8?))
is homotopy equivalent to #7(S' x S%)# (#'%(S* x 8?)), where k is the
rank of H,(Y,A). This follows again from [2], since the intersection forms
are isomorphic.

5. Non-extended hermitian forms.

Let (G,2) be a hermitian form over the group ring 4 = Z[r;]. Note that
Z < A. Let¢: A— Z be the augmentation map. Suppose G =~ @k/l. The
hermitian form A is extended from Z if there is a symmetric bilinear form
b: (P*Z) x (P*Z) — Z such that (G,2) is isomorphic to (G,b), where
b: (@kl) ®z A x ((—BkZ) ®gz A — A is defined by bh(x ® «, y ® ) = ab(x, y)p
for x,ye (—Bkl, o,ff € A. This construction is a special case of the “change
of ring”-construction (see [7]). One can apply this construction to the aug-
mentation homomorphism ¢: 4 — Z. With respect to an associated matrix
B = (bj) e M(k,k;A) one gets the matrix &(B)= (e(b;)) € M(k,k;Z). It
becomes clear that if (G,1) is extended, it must be extended from this Z-
bilinear form. A connected sum #7”(S' x 8 #M', 7 (M’')= {1}, has an
intersection form over A which is extended from the Z-intersection form of
Hy(M',Z). Even if there are many non-singular hermitian forms over A
which are not extended from forms over Z, concrete examples seem to be
rare. Here we report an example of Quebbemann used in [5] to construct a
4-manifold X with 7;(X) = Z and H>(X, 1) = @4/1 which is not a connected
sum (S' x S*)# M’ my(M’') = {1}. Since we will consider 7| = *’Z, p > 1,
the calculations are slightly different. Let & € 7; be an arbitrary element #1.
Denote ¢ =h+h~" and let
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l+t+62 4+ 14+t ¢
t+2 1+ t+2 ot 1+t
1+t t 2 0
t 1+t 0 2

As is indicated in [5], we have det(L) = 1 and ¢(L) is equivalent to the standard
form

S O O =
S O = O
S = O O
- o O O

Let eq,e,,e3,e4 be the standard basis of @4A. Let A be the form defined by
L. Then /(ej,e;) =1+t+1>. The extended form of A is the standard form
4 on @4/1. Note that u(v,v) =S 6w if v=(v1,v2,03,04) € @4/1. The
proof of the non-extendibility consists in showing that there does not exist a
vector v e @4A such that u(v,v) =1+1¢+1¢>. Let us write v; = >y ni(g) €A
Then 14+14+2=3+h+h"'+24+n2=%"1 b0 = >ig. g ti(9)ni(g")g'g ™!
would imply 3 = Ziﬁgn,-(g)z, hence n;(g) # 0 only for three cases (i,g). If
ni(g) #0, then n;(g) = +1. Let us suppose that n;(g1) = +1, n,(g92) = =1,
ny(g3) = £1.  As in [5] we distinguish three cases:

1. case i), ip, i3 are distinct: then we have v;, = +g, v, = g2, v; = tgs.
It follows Y #w; =3 #3+h+h'+h*+ 02

2. case i] =i #i3: then we have v, =¢g; +¢'gp with ¢¢' € {x1} and
vi, = +g3. One obtains > o, =3 +ee' (9195 + gogy!). Write g=g195",
then we must have

e'(g+g ) =3+h+h v n+n?

in A4 with g,hen;. This cannot hold either.

3. case i} = i = i3: here we have v;, = &g +&'gy + &"g3 with g, &', " e { +1}.
Let us write x =¢g;, y =¢&'ga, z=2¢"g3. Then we obtain &;,v;, = Xx+ jy +
Zz=3+4+xy '+ xz ' x4 yz x4 27l Putting a = xy~!, f=xz71,

y=yz~! we get the condition
oo T by =3k b R b7

in A with o,f,y€n (up to sign), which cannot hold.
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