On Poincaré four-complexes with free fundamental groups

Friedrich HEGENBARTH and Salvina PICCARRETA

(Received June 8, 1999) (Revised October 23, 2001)

ABSTRACT. Let X be a closed connected and oriented PL manifold whose fundamental group π_1 is a free group of rank p. Let Λ be the integral group ring of π_1 . Then $H_2(X,\Lambda)$ is Λ -free (see [6]). We show that there is a bijective correspondence between homotopy equivalence classes of 4-dimensional Poincaré complexes Y with $Y^{(3)} \cong X^{(3)}$ and invertible hermitian matrices of type k over Λ , where k is the rank of $H_2(X,\Lambda)$.

1. Introduction.

By a Poincaré 4-complex we understand a 4-dimensional CW-complex Y with a fundamental class $[Y] \in H_4(Y, \mathbb{Z}) \cong \mathbb{Z}$ inducing isomorphisms

$$\bigcap [Y]: H^q(Y, \Lambda) \to H_{4-q}(Y, \Lambda),$$

where $\Lambda = \mathbf{Z}[\pi_1(Y)]$ is the integral group ring of the fundamental group. Since we will discuss only fundamental groups which are freely generated, e.g., by p generators, there will be no Whitehead torsion. Therefore they will be finite Poincaré complexes in the sense of [8]. We can also assume that Y is obtained from the 3-skeleton $Y^{(3)}$ of Y by attaching only one 4-cell (see [8], p. 30), i.e., $Y = Y^{(3)} \cup_{\varphi} D^4$, where $\varphi : \mathbf{S}^3 \to Y^{(3)}$ is the attaching map. The following result of T. Matumoto and A. Katanaga will be crucial for our discussion (see [6], Proposition 2).

PROPOSITION 1.1. Let X be a closed PL four-manifold with $\pi_1 = *^p \mathbf{Z}$. Then $X^{(3)}$ is homotopy equivalent to $\bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3) \vee (\bigvee^k \mathbf{S}^2)$.

Let us suppose X to be a PL 4-manifold, hence $\pi_2(X) = H_2(X, \Lambda)$ is Λ -free of rank k. Recall the Whitehead exact sequence ([9])

$$0 \rightarrow \varGamma(\pi_2) \rightarrow \pi_3(X^{(3)}) \rightarrow H_3(X^{(3)}, \varLambda) \rightarrow 0,$$

where $\Gamma(\pi_2)$ is the (quadratic) Γ -functor applied to the abelian group $\pi_2(X^{(3)}) = H_2(X, \Lambda)$. Note that $H_3(X^{(3)}, \Lambda)$ is Λ -free of rank p. There are canonical

²⁰⁰⁰ Mathematics Subject Classification. 57N65, 57R67, 57Q10.

Key words and phrases. Poincaré complexes, Free fundamental groups, Homotopy type, Hermitian forms.

maps $\Gamma(\pi_2) \to \pi_2 \otimes_{\mathbf{Z}} \pi_2$ and $\pi_2 \otimes_{\mathbf{Z}} \pi_2 \to \Gamma(\pi_2)$ such that their composition is multiplication by 2 on $\Gamma(\pi_2)$. This implies in our case that

$$\Gamma(\pi_2) \subset \pi_2 \otimes_{\mathbb{Z}} \pi_2$$
.

In fact, $\Gamma(\pi_2)$ can be considered as the subset of symmetric tensors in $\pi_2 \otimes_{\mathbb{Z}} \pi_2$. Moreover, $\Gamma(\pi_2)$ is a Λ -submodule of $\pi_2 \otimes_{\mathbb{Z}} \pi_2$, and the induced homomorphism

$$\Gamma(\pi_2) \otimes_{\Lambda} \mathbf{Z} \to \pi_2 \otimes_{\Lambda} \pi_2$$

is injective. (Here as elsewhere in this paper, we have, if necessary, to shift from right- to left- Λ -module structures using the canonical anti-automorphism of Λ .) The purpose of this paper is to study 4-complexes Y obtained from $X^{(3)}$ by attaching one 4-cell with attaching map $\psi: \mathbf{S}^3 \to X^{(3)}$, i.e., $Y = X^{(3)} \cup_{\psi} D^4$. More precisely, we want to study conditions on ψ to obtain a Poincaré 4-complex Y. Our basic result is a correspondence between homotopy equivalence classes of PD-duality spaces Y and invertible hermitian matrices over Λ of type k (see Theorem 3.3 below).

2. Homological properties of Y.

Let X be an oriented closed PL-manifold of dimension 4. We may assume that $X^{(3)}$ is homotopy equivalent to $\bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3) \vee (\bigvee^k \mathbf{S}^2)$. Let

$$\varphi: \mathbf{S}^3 \to \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3) \vee (\bigvee^k \mathbf{S}^2)$$

be the attaching map of the 4-cell and let φ_0 be the composition

$$\mathbf{S}^3 \stackrel{\varphi}{\to} \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3) \vee (\bigvee^k \mathbf{S}^2) \stackrel{c}{\to} \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3)$$

with the collapsing map $c: \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3) \vee (\bigvee^k \mathbf{S}^2) \rightarrow \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3)$.

Lemma 2.1. The space $Q = \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3) \cup_{\varphi_0} D^4$ is a Poincaré complex of dimension 4. The canonical map $f: X \to Q$ is of degree 1.

PROOF. The collapsing map c induces a map $f: X \to Q$ such that the following diagram commutes

$$0 \longrightarrow H_4(Q, \mathbf{Z}) \longrightarrow H_4(Q, Q^{(3)}, \mathbf{Z}) \longrightarrow H_3(Q^{(3)}, \mathbf{Z})$$

$$f_* \uparrow \qquad \qquad f_* \uparrow \cong \qquad \qquad \cong \uparrow$$

$$0 \longrightarrow H_4(X, \mathbf{Z}) \longrightarrow H_4(X, X^{(3)}, \mathbf{Z}) \longrightarrow H_3(X^{(3)}, \mathbf{Z}).$$

In particular, $f_*: H_4(X, \mathbb{Z}) \xrightarrow{\cong} H_4(Q, \mathbb{Z})$. Let $[Q] = f_*[X]$, then

$$H^q(Q,\Lambda) \xrightarrow{\bigcap [Q]} H_{4-q}(Q,\Lambda)$$
 $f^* \downarrow \qquad \qquad f_* \uparrow \qquad \qquad f_* \uparrow \qquad \qquad H^q(X,\Lambda) \xrightarrow{\cong} H_{4-q}(X,\Lambda)$

commutes. For q=0 we observe that $H^0(Q,\Lambda)=H^0(X,\Lambda)=0$ since $H_4(X,\Lambda)=0$. Hence Poincaré duality is trivial in this case. Moreover for q=1,3 it follows that $f_*:H_{4-q}(X,\Lambda)\stackrel{\cong}{\to} H_{4-q}(Q,\Lambda)$ and $H^q(Q,\Lambda)\stackrel{\cong}{\to} H^q(X,\Lambda)$, hence Poincaré duality follows from the previous diagram. It follows from the diagram

$$0 \longrightarrow H^{3}(Q, \Lambda) \longrightarrow H^{3}(Q^{(3)}, \Lambda) \longrightarrow H^{4}(Q, Q^{(3)}, \Lambda) \longrightarrow H^{4}(Q, \Lambda) \longrightarrow 0$$

$$\downarrow f^{*} \qquad \qquad \downarrow f^{*} \qquad \qquad \downarrow f^{*} \qquad \qquad \downarrow f^{*}$$

$$0 \longrightarrow H^3(X,\varLambda) \longrightarrow H^3(X^{(3)},\varLambda) \longrightarrow H^4(X,X^{(3)},\varLambda) \longrightarrow H^4(X,\varLambda) \longrightarrow 0$$

that $f^*: H^4(Q, \Lambda) \stackrel{\cong}{\to} H^4(X, \Lambda)$ hence $\bigcap [Q]: H^4(Q, \Lambda) \stackrel{\cong}{\to} H_0(Q, \Lambda)$. Finally for q = 2, we see easily that $H^2(Q, \Lambda) = H_2(Q, \Lambda) = 0$. \square

As explained in the introduction we shall study the space $Y = X^{(3)} \cup_{\psi} D^4$ and $[\psi] = [\varphi] + \theta$, with $\theta \in \Gamma(\pi_2)$. Note that $Q^{(3)} = \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3)$, hence we have

$$\pi_3(Q^{(3)}) \underset{\simeq}{\longrightarrow} H_3(Q^{(3)}, \Lambda).$$

It follows from the diagram

that the composition ψ_0

$$\mathbf{S}^3 \xrightarrow{\psi} X^{(3)} \xrightarrow{c} \bigvee^p (\mathbf{S}^1 \vee \mathbf{S}^3)$$

is homotopic to φ_0 , so this defines a map

$$Y \stackrel{g}{\rightarrow} Q$$
.

Note that $g_*: H_4(Y, \mathbf{Z}) \xrightarrow{\cong} H_4(Q, \mathbf{Z})$ (as above) and let $[Y] \in H_4(Y, \mathbf{Z})$ be such that $g_*([Y]) = [Q]$.

Lemma 2.2. Cap product with [Y] induces isomorphisms $H^q(Y,\Lambda) \to H_{4-q}(Y,\Lambda)$ for all $q \neq 2$.

PROOF. The proof goes as in Lemma 2.1.

On the other hand if $Y = X^{(3)} \cup_{\psi} D^4$ is a Poincaré duality space for $\psi : \mathbf{S}^3 \to X^{(3)}$, then we can construct Q as above and $g_* : \pi_3(X^{(3)}) = \pi_3(Y^{(3)}) \to \pi_3(Q^{(3)})$ is identified with f_* . So it follows from diagram (*) that $[\psi] - [\varphi] \in \Gamma(\pi_2)$. Hence this is also a necessary condition.

Remark 2.1. From the universal coefficient spectral sequence we get

$$H^2(Z,\Lambda) \cong \operatorname{Hom}_{\Lambda}(H_2(Z,\Lambda),\Lambda)$$

for all spaces Z under consideration.

3. Poincaré duality in the middle dimension.

As before let $\varphi: \mathbf{S}^3 \to X^{(3)}$ be the attaching map of a 4-cell of the 4-manifold X. Given an element $\theta \in \Gamma(\pi_2)$ we must study the effect of θ on the homomorphism

$$H^2(Y, \Lambda) \to H_2(Y, \Lambda),$$

for $Y = X^{(3)} \cup_{\psi} D^4$ with $[\psi] = [\varphi] + \theta$. To simplify notation we will write π_2 , H_2 , and H^2 for $\pi_2(X)$, $H_2(X, \Lambda)$, and $H^2(X, \Lambda)$, respectively. In particular, we have $\pi_2 = H_2$. Note that $H^2(Y, \Lambda) \cong H^2(X, \Lambda)$ and $H_2(Y, \Lambda) \cong H_2(X, \Lambda)$ in a canonical way, so we have particularly

$$\bigcap [Y]: H^2 \stackrel{\cong}{\to} H_2.$$

Hence we have to study the isomorphism

$$\bigcap [Y] - \bigcap [X] : H^2 \stackrel{\cong}{\to} H_2.$$

Let $\theta = \sum_i u_i \otimes v_i \in \pi_2 \otimes_{\mathbb{Z}} \pi_2$ be a symmetric tensor, i.e., $\theta \in \Gamma(\pi_2)$. The effect of θ on H^2 is given as the image of θ under the canonical homomorphisms

$$\pi_2 \otimes_{\mathbf{Z}} \pi_2 \to \pi_2 \otimes_{\Lambda} \pi_2 \xrightarrow{\cong} \operatorname{Hom}_{\Lambda}(H_2^*, H_2) \xrightarrow{\cong} \operatorname{Hom}_{\Lambda}(H^2, H_2)$$

where $H_2^* = \operatorname{Hom}_{\Lambda}(H_2, \Lambda)$. Because π_2 is Λ -free these are isomorphisms (except the first map). Recall also that $H^2 \stackrel{\cong}{\to} H_2^*$. For convenience we identify $\operatorname{Hom}_{\Lambda}(H^2, H_2)$ with $\operatorname{Hom}_{\Lambda}(H_2, H_2)$ via the PD-isomorphism

$$\bigcap [X]: H^2(X, \Lambda) \to H_2(X, \Lambda).$$

The following lemma can be easily checked:

Lemma 3.1. Under the above composition map the element $\theta = \sum_i u_i \otimes v_i \in \Gamma(\pi_2)$ gives the following homomorphism

$$H_2(X,\Lambda) \to H_2(X,\Lambda),$$

sending x to $\sum_i u_i \lambda_X(v_i, x)$. Here $\lambda_X : H_2(X, \Lambda) \times H_2(X, \Lambda) \to \Lambda$ is the intersection form over the group ring.

PROOF. The only difficulty is to write down the correct Λ -module structures. If H_2 is considered as a Λ -right module, then H_2^* is in a natural way a Λ -left module. For $\xi \in H_2^*$ and $\lambda \in \Lambda$ we have $(\lambda \xi)(x) = \lambda \xi(x)$. Then H_2^* is a right module as follows: $\xi \cdot \lambda(x) = \overline{\lambda} \xi(x)$, where $\overline{} : \Lambda \to \Lambda$ is the canonical anti-involution. Now $\operatorname{Hom}_{\Lambda}(H_2^*, H_2)$ are the Λ -right module homomorphisms. Let us for simplicity consider $u \otimes_{\underline{\Lambda}} v \in \pi_2 \otimes_{\Lambda} \pi_2$. This defines in $\operatorname{Hom}_{\Lambda}(H_2^*, H_2)$ the element given by $\xi \to u\overline{\xi}(v)$. In $\operatorname{Hom}_{\Lambda}(H^2, H_2)$ the expression $\xi(v)$ becomes $\xi \cap v$. Going from $\operatorname{Hom}_{\Lambda}(H^2, H_2)$ to $\operatorname{Hom}_{\Lambda}(H_2, H_2)$ via $\operatorname{PD}_X : H^2(X, \Lambda) \to H_2(X, \Lambda)$ we have to start with $x \in H_2$, i.e.,

$$x \to u\overline{(PD_X^{-1}(x) \cap v)} = u\overline{\lambda_X(x,v)} = u\lambda_X(v,x).$$

Recall for this that $\lambda_X(x,y) = (\operatorname{PD}_X^{-1}(x) \cup \operatorname{PD}_X^{-1}(y)) \cap [X] \in H_0(X, \Lambda \otimes_{\mathbf{Z}} \Lambda) \cong \Lambda \otimes_{\Lambda} \Lambda \cong \Lambda.$

COROLLARY 3.2. If we compose $\bigcap[Y]: H^2 \to H_2$ with the Poincaré duality inverse $\operatorname{PD}_X^{-1}: H_2 \to H^2$ we obtain

$$\left(\bigcap[Y]\right)\circ\mathrm{PD}_X^{-1}(x)=x+\sum_i u_i\lambda_X(v_i,x).$$

Let us now choose a Λ -basis a_1, \ldots, a_k of H_2 . Then

$$\{a_i g \otimes a_j g' \mid i, j = 1, \dots, k, g, g' \in \pi_1\}$$

is a **Z**-basis of $\pi_2 \otimes_{\mathbf{Z}} \pi_2 = H_2 \otimes_{\mathbf{Z}} H_2$. Let $\theta = \sum_{i,j,g,g'} a_i g \otimes a_j g' n_{ji}(g,g')$ be a symmetric element, i.e., $\theta \in \Gamma(\pi_2)$, with $n_{ji}(g,g') \in \mathbf{Z}$. Then we must have $n_{ji}(g,g') = n_{ij}(g',g)$. Note that the sum which defines θ is finite. Let us write the element $\theta \otimes_A 1 \in \pi_2 \otimes_A \pi_2$ as $\sum_{i,j} a_i \otimes a_j \gamma_{ji}$ with $\gamma_{ji} = \sum_{g,g'} n_{ji}(g,g') \cdot g' g^{-1} \in \Lambda$. The above symmetry condition then implies $\gamma_{ji} = \overline{\gamma_{ij}}$, i.e., the matrix $\Gamma = (\gamma_{ji}) \in M(k,k;\Lambda)$ is hermitian: $\overline{\Gamma}^t = \Gamma$. Conversely, let be given any hermitian matrix $\Gamma = (\gamma_{ji})$ over Λ . Let us write the elements $\gamma_{ji} \in \Lambda$ as $\gamma_{ji} = \sum_{g \in \pi_1} n_{ji}(g)g$. Then $\gamma_{ji} = \overline{\gamma}_{ij}$ implies $n_{ji}(g) = n_{ij}(g^{-1})$. Let

$$\theta = \sum_{i,j,g} \{a_i \otimes a_j g n_{ji}(g) + a_j g \otimes a_i n_{ij}(g^{-1})\} + \sum_i a_i \otimes a_i n_{ii}(1).$$

The first sum is taken over all i, j = 1, ..., k and $g \in \pi'_1 \cup \{1\}$, where π'_1 is a subset of $\pi_1 \setminus \{1\}$ containing for any $g \in \pi_1$ either g or g^{-1} . Then $\theta \in \Gamma(\pi_2)$ and $\theta \otimes_A 1 = \sum_{i,j} a_i \otimes a_j \gamma_{ji}$. Applying $(\bigcap [Y]) \circ \operatorname{PD}_X^{-1}$ to the basis $a_1, ..., a_k$ we get from Corollary 3.2

$$(\bigcap[Y]) \circ PD_X^{-1}(a_\ell) = a_\ell + \sum_{i,j} a_i \lambda_X(a_j \gamma_{ji}, a_\ell)$$

$$= a_\ell + \sum_{i,j} a_i \overline{\gamma}_{ji} \lambda_X(a_j, a_\ell)$$

$$= a_\ell + \sum_{i,j} a_i \gamma_{ij} \lambda_X(a_j, a_\ell).$$

If we denote by L_X the intersection matrix $(\lambda_X(a_i, a_\ell))$ we get the matrix

$$I_k + \Gamma L_X = \Sigma$$

associated to $(\bigcap[Y]) \circ \operatorname{PD}_X^{-1}$. Since L_X is invertible and hermitian, we can solve this equation for Γ . Hence, beginning with an invertible hermitian matrix $\Sigma L_X^{-1} = \Omega$ we obtain an hermitian Λ -matrix Γ from which we can construct $\theta \in \Gamma(\pi_2)$ such that $Y = X^{(3)} \cup_{\psi} D^4$ with $[\psi] = [\varphi] + \theta$ is a Poincaré duality complex. On the other hand it was shown in [2] that the isomorphic intersection forms λ_X and λ_Y determine homotopy equivalent Poincaré spaces X and Y. This means that if the cup product pairings

$$H^2 \otimes H^2 \to \Lambda$$

given by [X] and [Y] are the same then X and Y are homotopy equivalent. Note that the cup product with respect to [Y] is defined by the composition

$$H^2 \otimes H^2 \longrightarrow H^4(Y, \Lambda \otimes_{\mathbf{Z}} \Lambda) \xrightarrow{\bigcap [Y]} H_0(Y, \Lambda \otimes_{\mathbf{Z}} \Lambda) \cong \Lambda \otimes_{\Lambda} \Lambda \cong \Lambda.$$

If $\xi, \eta \in H^2$ we have $(\xi \cup \eta) \cap [Y] = \xi \cap (\eta \cap [Y])$. Now $\eta \cap [Y] = \eta \cap [X] + \sum_{i,j} a_i \overline{\eta(a_j \gamma_{ji})}$ (considering $\eta \in H^2 \cong H_2^*$). If we calculate the products of the $\operatorname{Hom}_{\Lambda}$ -dual basis $a_1^*, \ldots, a_k^* \in H^2$ we obtain

$$(a_r^* \cup a_s^*) \cap [Y] = (a_r^* \cup a_s^*) \cap [X] + \gamma_{rs}.$$

We can therefore summarize to get the following

THEOREM 3.3. Let X^4 be a closed connected PL 4-manifold with $\pi_1(X) \cong *^p \mathbf{Z}$. Fixing a Λ -basis $\{a_1, \ldots, a_k\}$ of $H_2(X, \Lambda)$, there is a bijective correspondence between hermitian invertible matrices Ω of type k and homotopy equivalence classes of Poincaré duality 4-complexes Y with $Y^{(3)} \cong X^{(3)}$.

4. A remark on special hermitian forms and their realization by 4-manifolds.

If $\pi_1 \cong \mathbb{Z}$ any non-singular hermitian form has a realization by a 4manifold (see [4]). There are forms such that the resulting manifold is not homotopy equivalent to $(S^1 \times S^3) \# M'$ with M' simply-connected, because there are forms over $\Lambda = \mathbb{Z}[\mathbb{Z}]$ which are not extended from \mathbb{Z} (see [5]). If the rank of the free group is greater than 1 the realization of a non-singular hermitian form as intersection form of a closed 4-manifold is a difficult problem because free non-abelian groups are supposed to be not "good" in the sense of surgery theory (see [4]). An analogous problem arises by trying to realize surgery obstructions in dimension 4 (see [9], p. 54). Here the relevant hermitian forms are "special hermitian forms" (G, λ, μ) (see [9], p. 47). Besides being based (which we can ignore since the Whitehead group of $\pi_1 = *^p \mathbf{Z}$ is zero), a special hermitian form can be considered as an even hermitian space (see [7], Ch. 1). An even hermitian form is an orthogonal complement of a hyperbolic space (see [9], Lemma 5.4, or [7], Corollary 3.5.4). A hyperbolic space can be realized by $M = \#^p(\mathbf{S}^1 \times \mathbf{S}^3) \# (\#^n(\mathbf{S}^2 \times \mathbf{S}^2))$ for some n. The collapsing map $c: M \to \#^p(\mathbf{S}^1 \times \mathbf{S}^3)$ is a normal map of degree 1 with associated surgery obstruction $\sigma(c) = 0 \in L_4(\pi_1)$, where $L_4(\pi_1)$ is the Wall group of π_1 . Recall that $L_4(\pi_1) = \mathbf{Z}$ and the surgery obstruction is the signature of the special hermitian form in question (see [1]). Now let us realize the even hermitian form (G, λ) by a Poincaré duality space Y and suppose that sign(Y) = 0. We consider $H_2(Y, \Lambda)$ as an orthogonal summand in $H_2(M,\Lambda)$.

Now let $V \subset H_2(M, \Lambda)$ be the orthogonal complement of $H_2(Y, \Lambda) \subset H_2(M, \Lambda)$. Then sign(V) = 0 since sign(M) = sign(Y) = 0. This means that V is stably a hyperbolic form. In other words, let us consider $N = M \# (\#^r(\mathbf{S}^2 \times \mathbf{S}^2))$ for a large enough r. Let $H \subset H_2(N, \Lambda)$ be the hyperbolic

space defined by $\#^r(\mathbf{S}^2 \times \mathbf{S}^2)$. Then $V \oplus H$ is a sum of hyperbolic planes $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ with respect to a symplectic base $(a_1, b_1, \ldots, a_m, b_m)$ of $V \oplus H \subset H_2(N, \Lambda)$. In higher dimension, surgery on a_1, \ldots, a_m can be done to kill $V \oplus H$. In dimension 4 surgery can be done to kill $V \oplus H$ if the basis $(a_1, b_1, \ldots, a_m, b_m)$ can be represented by a map

$$\varphi: \bigcup^m (\mathbf{S}^2 \vee \mathbf{S}^2) \to N$$

such that $\pi_1(\operatorname{Im}\varphi) \to \pi_1(N)$ is the zero-map (see [3]). Completing these surgeries on N we get a manifold W^4 with intersection form isomorphic to that of Y, hence W is homotopy equivalent to Y (see [2]). The above discussion gives also a "stable" result. Note that we can use the interior of the attached 4-cell of Y to form connected sums with manifolds. Then, if as before, λ_Y is even and sign(Y) = 0, then for some $r \geq 0$, $Y \# (\#^r(\mathbf{S}^2 \times \mathbf{S}^2))$ is homotopy equivalent to $\#^p(\mathbf{S}^1 \times \mathbf{S}^3) \# (\#^{r+k}(\mathbf{S}^2 \times \mathbf{S}^2))$, where k is the rank of $H_2(Y, \Lambda)$. This follows again from [2], since the intersection forms are isomorphic.

5. Non-extended hermitian forms.

Let (G, λ) be a hermitian form over the group ring $\Lambda = \mathbf{Z}[\pi_1]$. Note that $\mathbf{Z} \subset \Lambda$. Let $\varepsilon : \Lambda \to \mathbf{Z}$ be the augmentation map. Suppose $G \cong \bigoplus^k \Lambda$. The hermitian form λ is extended from **Z** if there is a symmetric bilinear form $b: (\bigoplus^k \mathbf{Z}) \times (\bigoplus^k \mathbf{Z}) \to \mathbf{Z}$ such that (G, λ) is isomorphic to (G, \overline{b}) , where $\overline{b}: (\bigoplus^k \mathbf{Z}) \otimes_{\mathbf{Z}} \Lambda \times (\bigoplus^k \mathbf{Z}) \otimes_{\mathbf{Z}} \Lambda \to \Lambda \text{ is defined by } \overline{b}(x \otimes \alpha, y \otimes \beta) = \overline{\alpha}b(x, y)\beta$ for $x, y \in \bigoplus^k \mathbf{Z}$, $\alpha, \beta \in \Lambda$. This construction is a special case of the "change of ring"-construction (see [7]). One can apply this construction to the augmentation homomorphism $\varepsilon: \Lambda \to \mathbb{Z}$. With respect to an associated matrix $B = (b_{ii}) \in M(k, k; \Lambda)$ one gets the matrix $\varepsilon(B) = (\varepsilon(b_{ii})) \in M(k, k; \mathbf{Z})$. It becomes clear that if (G, λ) is extended, it must be extended from this **Z**bilinear form. A connected sum $\#^p(\mathbf{S}^1 \times \mathbf{S}^3) \# M'$, $\pi_1(M') = \{1\}$, has an intersection form over Λ which is extended from the Z-intersection form of $H_2(M', \mathbb{Z})$. Even if there are many non-singular hermitian forms over Λ which are not extended from forms over Z, concrete examples seem to be rare. Here we report an example of Quebbemann used in [5] to construct a 4-manifold X with $\pi_1(X) \cong \mathbb{Z}$ and $H_2(X,\Lambda) \cong \bigoplus^4 \Lambda$ which is not a connected sum $(\mathbf{S}^1 \times \mathbf{S}^3) \# M'$, $\pi_1(M') = \{1\}$. Since we will consider $\pi_1 = *^p \mathbf{Z}, p \geq 1$, the calculations are slightly different. Let $h \in \pi_1$ be an arbitrary element $\neq 1$. Denote $t = h + h^{-1}$ and let

$$L = \begin{pmatrix} 1+t+t^2 & t+t^2 & 1+t & t \\ t+t^2 & 1+t+t^2 & t & 1+t \\ 1+t & t & 2 & 0 \\ t & 1+t & 0 & 2 \end{pmatrix}.$$

As is indicated in [5], we have det(L) = 1 and $\varepsilon(L)$ is equivalent to the standard form

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Let e_1, e_2, e_3, e_4 be the standard basis of $\bigoplus^4 \Lambda$. Let λ be the form defined by L. Then $\lambda(e_1, e_1) = 1 + t + t^2$. The extended form of A is the standard form μ on $\bigoplus^4 \Lambda$. Note that $\mu(v, v) = \sum \bar{v}_i v_i$ if $v = (v_1, v_2, v_3, v_4) \in \bigoplus^4 \Lambda$. The proof of the non-extendibility consists in showing that there does not exist a vector $v \in \bigoplus^4 \Lambda$ such that $\mu(v, v) = 1 + t + t^2$. Let us write $v_i = \sum_g n_i(g) \in \Lambda$. Then $1 + t + t^2 = 3 + h + h^{-1} + h^2 + h^{-2} = \sum_{i=1}^4 \bar{v}_i v_i = \sum_{i,g,g'} n_i(g) n_i(g') g' g^{-1}$ would imply $3 = \sum_{i,g} n_i(g)^2$, hence $n_i(g) \neq 0$ only for three cases (i,g). If $n_i(g) \neq 0$, then $n_i(g) = \pm 1$. Let us suppose that $n_{i_1}(g_1) = \pm 1$, $n_{i_2}(g_2) = \pm 1$, $n_{i_3}(g_3) = \pm 1$. As in [5] we distinguish three cases:

1. case i_1 , i_2 , i_3 are distinct: then we have $v_{i_1} = \pm g_1$, $v_{i_2} = \pm g_2$, $v_{i_3} = \pm g_3$. It follows $\sum \bar{v}_i v_i = 3 \neq 3 + h + h^{-1} + h^2 + h^{-2}$.

2. case $i_1 = i_2 \neq i_3$: then we have $v_{i_1} = \varepsilon g_1 + \varepsilon' g_2$ with $\varepsilon, \varepsilon' \in \{\pm 1\}$ and $v_{i_3} = \pm g_3$. One obtains $\sum \bar{v}_i v_i = 3 + \varepsilon \varepsilon' (g_1 g_2^{-1} + g_2 g_1^{-1})$. Write $g = g_1 g_2^{-1}$, then we must have

$$\varepsilon \varepsilon'(g+g^{-1}) = 3 + h + h^{-1} + h^2 + h^{-2}$$

in Λ with $g, h \in \pi_1$. This cannot hold either.

3. case $i_1=i_2=i_3$: here we have $v_{i_1}=\varepsilon g_1+\varepsilon'g_2+\varepsilon''g_3$ with $\varepsilon,\varepsilon',\varepsilon''\in\{\pm 1\}$. Let us write $x=\varepsilon g_1,\ y=\varepsilon'g_2,\ z=\varepsilon''g_3$. Then we obtain $\bar{v}_{i_1}v_{i_1}=\bar{x}x+\bar{y}y+\bar{z}z=3+xy^{-1}+xz^{-1}+yx^{-1}+yz^{-1}+zx^{-1}+zy^{-1}$. Putting $\alpha=xy^{-1},\ \beta=xz^{-1},\ y=yz^{-1}$ we get the condition

$$\alpha + \alpha^{-1} + \beta + \beta^{-1} + \gamma + \gamma^{-1} = 3 + h + h^{-1} + h^2 + h^{-2}$$

in Λ with $\alpha, \beta, \gamma \in \pi_1$ (up to sign), which cannot hold.

References

- S. Cappell, Mayer-Vietoris sequences in hermitian K-theory, Proc. Conf., Battelle Memor. Inst., Seattle, 1972, Springer Lect. Notes 343 (1973), 478–512.
- [2] A. Cavicchioli and F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415–429.
- [3] M. H. Freedman, Poincaré transversality and four dimensional surgery, Topology 27 (1988), 171–175.
- [4] M. H. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton Univ. Press, Princeton, N. J., 1990.
- [5] I. Hambleton and P. Teichner, A non-extended hermitian form over Z[Z], Manuscripta Math. 93 (1997), 435–442.
- [6] A. Katanaga and T. Matumoto, On 4-dimensional closed manifolds with free fundamental groups, Hiroshima Math. J. 25 (1995), 367–370.
- [7] M. A. Knus, Quadratic and hermitian forms over rings, Grundlehren der Math. Wiss 294, Springer, 1991.
- [8] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, London—New York, 1970.
- [9] J. H. C. Whitehead, On a certain exact sequence, Ann. of Math. 52 (2) (1950), 51-110.

Friedrich Hegenbarth
Dipartimento di Matematica
Università di Milano
Via Saldini 50, 20133 Milano, Italy
E-mail: hegenbarth@vmimat.mat.unimi.it

Salvina Piccarreta
Dipartimento di Matematica
Università di Milano
Via Saldini 50, 20133 Milano, Italy
E-mail: piccarreta@socrates.mat.unimi.it