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Abstract. We investigate relationships between the set By of all infinite ‘‘biconvex’’

sets in the positive root system Dþ of an arbitrary untwisted a‰ne Lie algebra g and the

set Wy of all infinite ‘‘reduced word’’ of the Weyl group of g. The study is applied to

the classification of ‘‘convex orders’’ on Dþ ([5]), which is indispensable to construct

‘‘convex bases’’ of Poincaré-Birkho¤-Witt type of the strictly upper triangular sub-

algebra Uþq of the quantized universal enveloping algebra UqðgÞ. We construct a set

P by using data of the underlying finite-dimensional simple Lie algebra, and bijective

mappings ‘ : P! By and w : P!Wy such that ‘ ¼ Fy � w, where Wy is a

quotient set of Wy and Fy : Wy ! By is a natural injective mapping.

1. Introduction

Let D be the root system of a Kac-Moody Lie algebra g, Dþ (resp. D�) the

set of all positive (resp. negative) roots relative to the root basis P ¼ fai j i A Ig,
and W ¼ hsi j i A Ii the Weyl group of g, where si is the reflection associated

with ai. Then ðW ;SÞ is a Coxeter system with S ¼ fsi j i A Ig ([6]). We call

an infinite sequence s ¼ ðsðpÞÞp AN A SN an infinite reduced word of ðW ;SÞ if the
length of the element ½sjp� :¼ sð1Þ � � � sðpÞ A W is p for each p A N, and call a

subset BHDþ a biconvex set if it satisfies the following conditions:

C( i ) b; g A B, b þ g A Dþ ) b þ g A B;

C(ii) b; g A DþnB, b þ g A Dþ ) b þ g A DþnB.
If, in addition, B is a subset of the set D re

þ of all positive real roots, then B is

called a real biconvex set. The purpose of this article is to investigate in detail

relationships between infinite reduced words and infinite real biconvex sets in

the case where g is an arbitrary untwisted a‰ne Lie algebra.

Before explaining the detail of our work, we will explain the background

of the theory of infinite reduced words and infinite real biconvex sets. The

motive of this study is related to the construction of convex bases of the strictly

upper triangular subalgebra Uþq of the quantized universal enveloping algebra

UqðgÞ. Convex bases are Poincaré-Birkho¤-Witt type bases with a convex
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property concerning the ‘‘q-commutator’’ of two ‘‘q-root vectors’’ of Uþq . The

convex property is useful for calculating values of the standard Hopf pairing

between Uþq and the strictly lower triangular subalgebra U�q , and is applied to

explicit calculations of the universal R-matrix of UqðgÞ ([7], [8]). By the way,

each convex basis of Uþq is formed by monomials in certain q-root vectors of

Uþq multiplied in a predetermined total order with a convex property on Dþ.

Such a total order on Dþ is called a convex order.

In the case where g is an arbitrary finite-dimensional simple Lie algebra,

it is known that there exists a natural bijective mapping from the set of all

convex orders on Dþ to the set of all reduced expressions of the longest element

of W ([10]), and G. Lusztig constructed convex bases of Uþq associated with all

reduced expressions of the longest element of W by using a braid group action

on UqðgÞ ([9]). Therefore all convex bases of Uþq was constructed in the finite

case.

In the case where g is an arbitrary untwisted a‰ne Lie algebra, convex

orders on Dþ are closely related to infinite reduced words of ðW ;SÞ. More

precisely, each infinite reduced word naturally corresponds to a ‘‘1-row type’’

convex order on an infinite real biconvex set. In [5], we showed that each

convex order on Dþ is made from each couple of ‘‘maximal ’’ (infinite) real

biconvex sets with convex orders which divides Dre
þ into two parts. To analyze

convex orders on maximal real biconvex sets, it is important to consider the

following two problems: (1) classify all infinite real biconvex sets; (2) describe

in detail relationships between the set of all infinite reduced words and the set

of all infinite real biconvex sets. In this article, we concentrate on the two

problems above for the untwisted a‰ne case. Applying results in this article to

[5], we classified all convex orders on Dþ, and then gave a general method of

constructing convex orders on Dþ for the untwisted a‰ne case. On the other

hand, in [1], J. Beck constructed convex bases of Uþq associated with convex

orders on Dþ arisen from a certain couple of maximal real biconvex sets with

1-row type convex orders which divides Dre
þ into two parts. However, we seem

that it is possible to generalize Beck’s construction, since we find in [5] that

there exist several types of convex orders called ‘‘n-row types’’ on each maximal

real biconvex set which are not used in Beck’s construction. We are preparing

an article concerning to construct all convex bases of Uþq associated with all

convex order on Dþ by generalizing Beck’s construction for the untwisted a‰ne

Lie algebra.

This paper is organized as follows. In Section 2, we first give the def-

inition of biconvex sets for a class of root systems with Coxeter group actions,

and then state several fundamental results. We next define infinite reduced

words for each Coxeter system ðW ;SÞ and an equivalence relation@ on the set

Wy of all infinite reduced words, and then define Wy to be the quotient set of
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Wy relative to @. We next define an injective mapping Fy : Wy ! By,

where By is the set of all infinite real biconvex sets. At the end of Section

2, we define a left action of W on Wy which plays an important role in the

proof of the main theorem. In Section 3, we introduce some notation for the

untwisted a‰ne cases. In Section 4, we give preliminary results for classical

root systems. From Section 5 to Section 7, we treat only the untwisted a‰ne

case. In Section 5, we give several methods of constructing biconvex sets. In

Section 6, we give a parametrization of real biconvex sets. In Section 7, we

give the following main results.

Main Theorem. If g is an arbitrary untwisted a‰ne Lie algebra, there exist

parametrizations (bijective mappings) ‘ : P! By and w : P!Wy such that

the following diagram is commutative:

By

Fy

����! ����
!

‘

Wy  �����
w

P;

where the set P is defined by using data of the underlying finite-dimensional

simple Lie algebra g̊ (see Definition 6.5). In particular, Fy is bijective.

Moreover, Wy decomposes into the direct finite sum of orbits relative to a left

action of W .

Note that P. Cellini and P. Papi showed in [11] that if B is an infinite

real biconvex set, then there exist v; t A W such that t is a translation, lðvtÞ ¼
lðvÞ þ lðtÞ, and B ¼6

kb0
FðvtkÞ, where FðzÞ ¼ fb A Dþ j z�1ðbÞ A D�g.

2. Definitions and several results

Let R, Q, Z, and N be the set of the real numbers, the rational numbers,

the integers, and the positive integers, respectively. We denote by Nn the set

fm A N jma ng for each n A N, and set Ny :¼ N and N� :¼ N q fyg, where y
is a symbol. We extend the usual order a on N to a total order on N� by

setting n < y for each n A N. We also set yþ n ¼ nþy ¼yn ¼ ny ¼y
for each n A N�. We denote by aU the cardinality of a set U , and write

aU ¼y if U is an infinite set. When A and B are subsets of U , we write

A _HHB or B _IIA if aðAnBÞ < y, and write A _¼¼ B if both A _HHB and A _IIB.

Then _¼¼ is an equivalence relation on the power set of U . For each F HR

and a A R, we set Fba :¼ fb A F j bb ag and F>a :¼ fb A F j b > ag.
Let F be a subfield of R, W a group generated by a set S of involutive

generators (i.e., s0 1, s2 ¼ 1, Es A S), and ðV ;D;PÞ a triplet satisfying the

following conditions FR(i)–FR(iv).
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FR(i) It consists of a representation space V of W over F, a W -

invariant subset DHVnf0g which is symmetric (i.e., D ¼ �D), and a subset

P ¼ fas j s A SgHD.

FR(ii) Each element of D can be written as
P

s AS asas with either as A Fb0

for all s A S or as A Fa0 for all s A S, but not in both ways. Accordingly, we

write a > 0 or a < 0, and set Dþ :¼ fa A D j a > 0g and D� :¼ fa A D j a < 0g.
FR(iii) For each s A S, sðasÞ ¼ �as and sðDþnfasgÞ ¼ Dþnfasg.
FR(iv) If w A W and s; s 0 A S satisfy wðas 0 Þ ¼ as, then ws 0w�1 ¼ s.

Definition 2.1. Define subsets D re, D im, Dre
G , and D im

G of D by setting

D re :¼ fwðasÞ jw A W ; s A Sg; D im :¼ DnDre;

D re
G :¼ D re VDG; D im

G :¼ D im VDG:

Note that W stabilizes Dre and D im
þ . For each y A W , we set

FðyÞ :¼ fb A Dþ j y�1ðbÞ < 0g:

Note that FðyÞHD re
þ .

Theorem 2.2 ([4]). The pair ðW ;SÞ is a Coxeter system, i.e., it satisfies the

exchange condition. Moreover, if y ¼ s1s2 � � � sn with n A N and s1; s2; . . . ; sn A S

is a reduced expression of an element y A Wnf1g, then

FðyÞ ¼ fas1 ; s1ðas2Þ; . . . ; s1 � � � sn�1ðasnÞg

and the elements of FðyÞ displayed above are distinct from each other. In

particular, aFðyÞ ¼ lðyÞ, where l : W ! Zb0 is the length function of ðW ;SÞ.

Remarks. (1) The action of W on V is faithful. Indeed, if y ¼ idV for

y A W , then FðyÞ ¼q, and hence y ¼ 1. Therefore we may regards W as a

subgroup of GLðVÞ.
(2) For each Coxeter system ðW ;SÞ, a triplet ðV ;D;PÞ is called a root

system of ðW ;SÞ over F if it satisfies the conditions FR(i)–FR(iv).

(3) Let s : W ! GLðVÞ be the geometric representation of a Coxeter

system ðW ;SÞ (cf. [2]), where V is a real vector space with a basis P ¼
fas j s A Sg. Then ðV ;D;PÞ is a root system of ðW ;SÞ over R (cf. [4]), where

D ¼ fsðwÞðasÞ jw A W ; s A Sg. We call it the root system associated with the

geometric representation.

(4) Let g be a Kac-Moody Lie algebra over Q with h the Cartan sub-

algebra, DH h�nf0g the root system of g, P ¼ fai j i A Ig a root basis of D,

and W ¼ hsi j i A IiHGLðh�Þ the Weyl group of g, where h� is the dual vector

space of h and si is the simple reflection associated with ai (cf. [6]). Set h�0 :¼
spanQ PH h� and S :¼ fsi j i A Ig. Then ðW ;SÞ is a Coxeter system and

ðh�0;D;PÞ is a root system of ðW ;SÞ over Q.
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Lemma 2.3. Let y1 and y2 be elements of W .

(1) We have Fðy1y2ÞnFðy1ÞH y1Fðy2Þ.
(2) If y1Fðy2ÞHDþ, then Fðy1Þ q y1Fðy2Þ ¼ Fðy1y2Þ.
(3) If Fðy1ÞHFðy2Þ, then Fðy2Þ ¼ Fðy1Þ q y1Fðy�11 y2Þ.
(4) The following two conditions are equivalent:

ðiÞ lðy2Þ � lðy1Þ ¼ lðy�11 y2Þ; ðiiÞ Fðy1ÞHFðy2Þ:

Proof. (1) Suppose that b A Fðy1y2ÞnFðy1Þ. Then we have y�11 ðbÞ > 0

and y�12 ðy�11 ðbÞÞ < 0. Thus we get y�11 ðbÞ A Fðy2Þ or b A y1Fðy2Þ.
(2) If b A y1Fðy2Þ then y�11 ðbÞ > 0, and hence b B Fðy1Þ. Thus we get

Fðy1ÞV y1Fðy2Þ ¼q. Hence, by (1) we have Fðy1y2ÞHFðy1Þ q y1Fðy2Þ.
We next prove that Fðy1ÞHFðy1y2Þ. Suppose that b A Fðy1Þ satisfies b B
Fðy1y2Þ. Then we have y�11 ðbÞ < 0 and y�12 ðy�11 ðbÞÞ > 0, which imply

�y�11 ðbÞ A Fðy2Þ. This contradicts the assumption. Thus we get Fðy1ÞH
Fðy1y2Þ. We next prove that y1Fðy2ÞHFðy1y2Þ. If b A y1Fðy2Þ then

y�11 ðbÞ A Fðy2Þ, and hence y�12 ðy�11 ðbÞÞ < 0. Thus we get b A Fðy1y2Þ.
Therefore Fðy1Þ q y1Fðy2ÞHFðy1y2Þ.

(3) We first prove that y1Fðy�11 y2ÞHDþ. Suppose that b A Fðy�11 y2Þ
satisfies y1ðbÞ < 0. Then we have �y1ðbÞ A Fðy1ÞHFðy2Þ, which implies

y�12 y1ðbÞ > 0. This contradicts b A Fðy�11 y2Þ. Thus we get y1Fðy�11 y2ÞHDþ,

and hence Fðy2Þ ¼ Fðy1Þ q y1Fðy�11 y2Þ by (2).

(4)(i)) (ii) By Theorem 2.2, we have

lðy2Þ � lðy1Þaay�11 fFðy2ÞnFðy1Þg

aaFðy�11 y2Þ ¼ lðy�11 y2Þ ¼ lðy2Þ � lðy1Þ;

where the second inequality follows from (1). Thus we getay�11 fFðy2ÞnFðy1Þg
¼ lðy2Þ � lðy1Þ, and hence Fðy1ÞHFðy2Þ.

(ii)) (i) By (3) and Theorem 2.2, we get lðy2Þ ¼ lðy1Þ þ lðy�11 y2Þ.
r

Definition 2.4. For subsets A;BHDþ satisfying BHA, we call B a

convex set in A if it satisfies the following condition:

C(i)A b; g A B, b þ g A A) b þ g A B.

We also call B a coconvex set in A if it satisfies the following condition:

C(ii)A b; g A AnB, b þ g A A) b þ g A AnB.
Note that B is a coconvex set in A if and only if AnB is a convex set in A.

Furthermore, we call B a biconvex set in A if B is both a convex set in A and a

coconvex set in A. If, in addition, BHD re
þ , then B is said to be a real convex

set in A, a real coconvex set in A, or a real biconvex set in A if B is a convex set

in A, a coconvex set in A, or a biconvex set in A, respectively.
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We will say simply that B is a convex set, a real convex set, a coconvex set,

a real coconvex set, a biconvex set, or a real biconvex set if B is a convex set

in Dþ, a real convex set in Dþ, a coconvex set in Dþ, a real coconvex set in Dþ,

a biconvex set in Dþ, or a real biconvex set in Dþ, respectively. We denote

C(i)Dþ and C(ii)Dþ simply by C(i) and C(ii), respectively. Let B be the set of

all finite biconvex sets and By the set of all infinite real biconvex sets. We set

B� :¼ B qBy.

Remark. The condition C(ii)A is equivalent to the following condition:

b; g A A; b þ g A B) b A B or g A B:

For each couple of subsets A;BHD, we set

AjB :¼ faþ b j a A A; b A BgVD:

Lemma 2.5. Let A, B, and C be subsets of Dþ satisfying B;CHA, and

fBlgl AL a family of subsets of A.

(1) If B is a biconvex set in A, then AnB is biconvex in A.

(2) If B is a biconvex set in A, then BVC is a biconvex set in C.

(3) Suppose that BHC and C is a convex set in A. Then B is a convex

set in C if and only if B is a convex set in A.

(4) If ðBl jBl 0 ÞVAH6
l AL Bl for each pair l; l 0 A L, then 6

l AL Bl is a

convex set in A.

(5) If Bl is a convex set in A for each l A L, then 7
l AL Bl is a convex set

in A.

(6) If Bl is a biconvex set in A for each l and � is a total order on L such

that Bl JBl 0 for each l � l 0, then both 6
l AL Bl and 7

l AL Bl are

biconvex sets in A.

Proof. (1)–(5) They are obvious.

(6) Set B1 :¼6
l AL Bl. By the assumption on the total order �, the

family fBlgl AL satisfies the su‰cient condition in (4). Hence, B1 is a convex

set in A. On the other hand, since AnB1 ¼7
l ALðAnBlÞ, AnB1 is a convex set

in A by (1) and (5). Thus B1 is a biconvex set in A. Set B2 :¼7
l AL Bl. Let

�op be the opposite order of �. Then AnBl JAnBl 0 if l �op l 0. Hence,

B3 :¼6
l ALðAnBlÞ is a biconvex set in A. Thus B2 is a biconvex set in A

since B2 ¼ AnB3. r

Theorem 2.6 ([10]). The assignment y 7! FðyÞ defines an injective mapping

from W to B. Moreover, if the root system ðV ;D;PÞ over F satisfies the

following two conditions, then F is surjective:

FR(v) each a A DþnP can be written as a ¼ b þ g with b; g A Dþ;

FR(vi) there exists a mapping ht : Dþ ! F>0 such that htðb þ gÞ ¼ htðbÞþ
htðgÞ for all b; g A Dþ satisfying b þ g A Dþ.
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Remarks. (1) The surjectivity of the mapping follows from the fact that

if C is a non-empty finite coconvex set then C VP0q. The conditions FR(v)

and FR(vi) are used to prove the fact.

(2) Suppose that the root system ðV ;D;PÞ over F satisfies the following

two condition instead of FR(v) and FR(vi):

FR(v) 0 each a A DþnP can be written as a ¼ bb þ cg with b; c A Fb1 and

b; g A Dþ;

FR(vi) 0 there exists a mapping ht : Dþ ! F>0 such that htðbb þ cgÞ ¼
b htðbÞ þ c htðgÞ for all b; c A F>0 and b; g A Dþ satisfying bb þ cg A Dþ.

Then F is still surjective if B is replaced by the set of all finite subsets BHDþ
satisfying the following two conditions:

FC(i)
0 b; g A B, b; c A F>0, bb þ cg A Dþ ) bb þ cg A B;

FC(ii)
0 b; g A DþnB, b; c A F>0, bb þ cg A Dþ ) bb þ cg A DþnB.

(3) Let ðW ;SÞ be a Coxeter system, and ðV ;D;PÞ the root system of

ðW ;SÞ over R associated with the geometric representation. Then ðV ;D;PÞ
satisfies RR(v) 0 and RR(vi) 0. The condition RR(v) 0 is easily checked by re-

forming the proof of Proposition 2.1 in [3]. Since P is linearly independent,

we can define a mapping ht : Dþ ! R>0 by setting htðaÞ :¼
P

s AS as for each

a A Dþ, where as’s are non-negative real numbers such that a ¼
P

s AS asas.

Then the mapping ht satisfies the required property in RR(vi) 0.

Definition 2.7. For each n A N�, we denote by s ¼ ðsðpÞÞp ANn
a sequence

consisting of elements sðpÞ A S for p A Nn, and denote by SNn the set of

such sequences. We also denote by ðsð1Þ; sð2Þ; . . . ; sðnÞÞ a sequence s A SNn with

n < y. For each s A SNn and m A Nn, we define a sequence sjm A SNm by

setting sjmðpÞ :¼ sðpÞ for each p A Nm, and call the sequence sjm the initial m-

section of s. Let fspgp AN be a family of finite sequences of elements of S such

that sp is the initial mp-section of spþ1 with mp < mpþ1 for each p A N. Then

we see that there exists a unique infinite sequence sy of elements of S such that

sp is the initial mp-section of sy for each p A N, and denote by limp!y sp the

infinite sequence sy. For each s A SNn and s 0 A SNn 0 with n < y and n 0 A N�,

we define a sequence ss 0 ¼ ðss 0ðpÞÞp ANnþn 0
A SNnþn 0 by setting

ss 0ðpÞ :¼ sðpÞ for pa n;

s 0ðp� nÞ for nþ 1a p:

�

The product ss 0 satisfies the associative law: ðss 0Þs 00 ¼ sðs 0s 00Þ for s A SNn ,

s 0 A SNn 0 , s 00 A SNn 00 with n; n 0 < y. Therefore, the product s1 � � � sp�1sp is de-

fined naturally for each family fs1; . . . ; sp�1; spg of sequences of elements of S

such that si for i A Np�1 are finite sequences. For each finite sequence s A SNn

and p A N�, we define sp A SNnp by setting
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sp :¼ s � � � s
zfflffl}|fflffl{p

for p < y; sy :¼ lim
p!y

sp:

For each s A SNn with n < y, we define an element ½s� A W by setting

½s� :¼ sð1Þsð2Þ � � � sðnÞ:

For each s A SNn with n A N�, we define a mapping fs : N! D re by setting

fsðpÞ :¼ ½sjp�1�ðasð pÞÞ

for each p A Nn, where ½sj0� :¼ 1. For each s A SN, we define a mapping ~FFy

from SN to the power set of D re
þ by setting

~FFyðsÞ :¼ 6
p AN

Fð½sjp�Þ:

We call an element s A SN an infinite reduced word of ðW ;SÞ if lð½sjp�Þ ¼ p for

all p A N, and denote by Wy the subset of SN of all infinite reduced words of

ðW ;SÞ.

Lemma 2.8. For a pair ðs; s 0Þ of elements of Wy, we write s@ s 0 if for

each ðp; qÞ A N2 there exists ðp0; q0Þ A Zbp � Zbq such that

lð½sjp��1½s 0jp0�Þ ¼ p0 � p; lð½s 0jq��1½sq0�Þ ¼ q0 � q:

Then @ is an equivalence relation on Wy.

Proof. The reflexive law and the symmetric law are obvious. To prove

the transitive law, suppose that s@ s 0, s 0@ s 00 for some s; s 0; s 00 A Wy. For

each p A N, choose p0 b p and p1 b p0 satisfying lð½sjp��1½s 0jp0�Þ ¼ p0 � p and

lð½s 0jp0�
�1½s 00jp1 �Þ ¼ p1 � p0. Then we have

p1 � p ¼ jlð½sjp��1Þ � lð½s 00jp1�Þja lð½sjp��1½s 00jp1 �Þ

a lð½sjp��1½s 0jp0�Þ þ lð½s 0jp0�
�1½s 00jp1�Þ

¼ ðp0 � pÞ þ ðp1 � p0Þ ¼ p1 � p:

Thus we get lð½sjp��1½s 00jp1�Þ ¼ p1 � p. Similarly, we see that for each q A N

there exists q1 A Zbq such that lð½s 00jq��1½sjq1�Þ ¼ q1 � q. Therefore we get

s@ s 00. r

Definition 2.9. We denote by Wy the quotient set of Wy relative to the

equivalence relation @, and by ½s� the coset containing s A Wy.

Proposition 2.10. Let s and s 0 be elements of SN.
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(1) We have s A Wy if and only if fsðpÞ > 0 for all p A N.

(2) If s A Wy, then ~FFyðsÞ ¼ ffsðpÞ j p A Ng and all the elements fsðpÞ of
~FFyðsÞ are distinct from each other.

(3) If s A Wy, then ~FFyðsÞ A By.

(4) Suppose that s; s 0 A Wy. Then s@ s 0 if and only if ~FFyðsÞ ¼ ~FFyðs 0Þ.

Proof. (1) We see that s A Wy if and only if lð½sjp�1�sðpÞÞ > lð½sjp�1�Þ for
all p A N. Hence the assertion follows from the fact that zðasÞ > 0 if and only

if lðzsÞ > lðzÞ for z A W and s A S.

(2) This follows from Theorem 2.2.

(3) We see that ~FFyðsÞ is an infinite set by (2). For each pa q, we have

Fð½sjp�ÞJFð½sjq�Þ. Thus we get ~FFyðsÞ A By by Lemma 2.5(6) and Theorem

2.6.

(4) By Lemma 2.3(4), we see that the condition s@ s 0 is equivalent to the

condition that for each ðp; qÞ A N2 there exists ðp0; q0Þ A Zbp � Zbq such that

Fð½sjp�ÞHFð½s 0jp0�Þ and Fð½s 0jq�ÞHFð½sjq0�Þ. Thus s@ s 0 if and only if ~FFyðsÞ ¼
~FFyðs 0Þ. r

Definition 2.11. Thanks to Proposition 2.10(3)(4), we have an injective

mapping

Fy : Wy ! By; ½s� 7! Fyð½s�Þ :¼ ~FFyðsÞ:

We define a left action of W on Wy.

Definition 2.12. For each x A W and s A SN, we set

~FFyðx; sÞ :¼ fb A D re
þ j bp0 A N; Epb p0; ðx½sjp�Þ�1ðbÞ < 0g:

Lemma 2.13. (1) If s A Wy, then ~FFyð1; sÞ ¼ ~FFyðsÞ.
(2) If x A W and s A Wy, then there exists an element s 0 A Wy such that

~FFyðs 0Þ ¼ ~FFyðx; sÞ. More precisely, a required s 0 can be constructed by ap-

plying the following procedure Steps 1–3.

Step 1. Choose a non-negative integer p0 such that

Fðx�1ÞV ~FFyðsÞHFð½sjp0 �Þ: ð2:1Þ

Step 2. In the case where x½sjp0� ¼ 1, set s 0ðpÞ :¼ sðp0 þ pÞ for each p A N.

In the case where x½sjp0�0 1, choose a reduced expression x½sjp0� ¼ s 0ð1Þ � � � s 0ðl0Þ
with l0 A N, and set s 0ðl0 þ pÞ :¼ sðp0 þ pÞ for each p A N.

Step 3. Set s 0 :¼ ðs 0ðpÞÞp AN.
(3) If x A W and s A Wy, then

~FFyðx; sÞ ¼ fFðxÞnð�LÞg q fx ~FFyðsÞnLg;

where L :¼ x ~FFyðsÞVD re
� . In particular, if x ~FFyðsÞHD re

þ then
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~FFyðx; sÞ ¼ FðxÞ q x ~FFyðsÞ:

(4) Suppose that s; s 0 A Wy and x; y A W .

( i ) If ~FFyðsÞ ¼ ~FFyðs 0Þ, then ~FFyðx; sÞ ¼ ~FFyðx; s 0Þ.
(ii) If ~FFyðy; sÞ ¼ ~FFyðs 0Þ, then ~FFyðxy; sÞ ¼ ~FFyðx; s 0Þ.

Proof. (1) Suppose that b A ~FFyð1; sÞ. Since ½sjp0�
�1ðbÞ < 0 for some

p0 A N, we have b A ~FFyð½sjp0�ÞH ~FFyðsÞ. Thus we get ~FFyð1; sÞH ~FFyðsÞ. On

the other hand, for each p < q, we have

½sjq��1ðfsðpÞÞ ¼ �sðqÞ � � � sðpþ 1Þðasð pÞÞ < 0;

and hence fsðpÞ A ~FFyð1; sÞ for each p A N. Thus we get ~FFyðsÞH ~FFyð1; sÞ by
Proposition 2.10(2).

(2) Let s 0 be an element of SN constructed as in (Step 1)–(Step 3). By

the construction, we have x½sjp0� ¼ ½s 0jl0� for some unique l0 A Zb0. Since

sðp0 þ pÞ ¼ s 0ðl0 þ pÞ for each p A N, we have

x½sjp0þp� ¼ ½s
0jl0þp�; ð2:2Þ

xfsðp0 þ pÞ ¼ fs 0 ðl0 þ pÞ: ð2:3Þ

By the condition (2.1) and the equality (2.3), we have fs 0 ðl0 þ pÞ > 0 for each

p A N since fsðp0 þ pÞ B Fð½sjp0�Þ. In addition, by Theorem 2.2 we have fs 0 ðpÞ > 0

for each 1a pa l0. Thus we get s 0 A Wy by Proposition 2.10(1). Moreover,

by (1) and the equality (2.2), we get ~FFyðx; sÞ ¼ ~FFyðs 0Þ.
(3) Since �L ¼ FðxÞV ð�x ~FFyðsÞÞ, we have

FðxÞnð�LÞ ¼ fb A Dre
þ j b A FðxÞ;�x�1ðbÞ A D re

þn ~FFyðsÞg:

On the other hand, since x ~FFyðsÞnL ¼ x ~FFyðsÞVDre
þ , we have

x ~FFyðsÞnL ¼ fb A Dre
þ j b B FðxÞ; x�1ðbÞ A ~FFyðsÞg:

Therefore, by (1) we get ~FFyðx; sÞ ¼ fFðxÞnð�LÞg q fx ~FFyðsÞnLg.
(4)(i) This is straightforward from (3).

(4)(ii) By the argument in the proof of (2), there exist an element ~ss A Wy

and ðp0; l0Þ A ðZb0Þ2 satisfying y½sjp0þp� ¼ ½~ssjl0þp� for all p A N. Then we have
~FFyð~ssÞ ¼ ~FFyðy; sÞ ¼ ~FFyðs 0Þ. Hence, by (4)(i) we have ~FFyðx; ~ssÞ ¼ ~FFyðx; s 0Þ.
Moreover, since xy½sjp0þp� ¼ x½~ssjl0þp� for all p A N, we have ~FFyðxy; sÞ ¼ ~FFyðx; ~ssÞ.
Thus we get ~FFyðxy; sÞ ¼ ~FFyðx; ~ssÞ ¼ ~FFyðx; s 0Þ. r

Definition 2.14. Thanks to Proposition 2.10(4) and Lemma 2.13(1)(2)(4),

we have a left action of W on Wy such that x:½s� ¼ ½s 0� if x A W and s; s 0 A Wy

satisfy ~FFyðx; sÞ ¼ ~FFyðs 0Þ.
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Proposition 2.15. If x A W and s A Wy, then

Fyðx:½s�Þ ¼ fFðxÞnð�LÞg q fxFyð½s�ÞnLg;

where L :¼ xFyð½s�ÞVDre
� . In particular, if xFyð½s�ÞHDre

þ then

Fyðx:½s�Þ ¼ FðxÞ q xFyð½s�Þ:

Proof. This follows from Lemma 2.13(3). r

3. Notation for the untwisted a‰ne cases

In this section, we prepare some notation for the untwisted a‰ne cases

referring to the book [6]. Let A ¼ ½aij �i; j A I be a generalized Cartan matrix of

the a‰ne type X
ð1Þ
r with I ¼ f0; 1; . . . ; rg, where X ¼ A;B;C;D;E;F ;G. We

set I̊ ¼ f1; . . . ; rg. Then we may assume that ½aij�i; j A I̊ is the Cartan matrix

of the finite type Xr. Let ðh;P;P4Þ be a minimal realization of A over Q,

that is, a triplet consisting of a ðrþ 2Þ-dimensional vector space h over Q

and linearly independent subsets P ¼ fai j i A IgH h� and P4¼ fa4i j i A IgH h

satisfying ha4i ; aji ¼ aij for each i; j A I, where h� is the dual vector space of

h and h� ; �i : h� h� ! Q is the canonical pairing. Let g be the a‰ne Kac-

Moody Lie algebra over Q associated with ðh;P;P4Þ, DH h�nf0g the root

system of g, D re (resp. D im) the set of all real (resp. imaginary) roots, and

W ¼ hsi j i A IiHGLðh�Þ the Weyl group of g, where si ¼ sai is the reflection

associated with ai. Let Dþ (resp. D�) be the set of all positive (resp. negative)

roots relative to P, D re
þ (resp. D re

� ) the set of all positive (resp. negative) real

roots, D im
þ (resp. D im

� ) the set of all positive (resp. negative) imaginary roots,

and ht : Dþ ! N the height function on Dþ. Set

P̊ :¼ fai j i A I̊g; h̊� :¼ spanQ P̊; W̊ :¼ hsi j i A I̊i; D̊ :¼ W̊ðP̊Þ:

Note that D̊ is a root system in h̊� of the finite type Xr with P̊ a root basis and

W̊ the Weyl group. Let D̊þ (resp. D̊�) be the set of all positive (resp. negative)

roots relative to P̊. Denote by y the highest root of D̊ and set d :¼ a0 þ y.

Then

Dre ¼ fmdþ e jm A Z; e A D̊g; D im ¼ fmd jm A Znf0gg;

Dre
þ ¼ D̊þ q fndþ e j n A N; e A D̊g; D im

þ ¼ fnd j n A Ng:

Let ðdiÞi A I be relatively prime positive integers such that ½diaij �i; j A I is a

symmetric matrix, and l0 a non-zero element of h� such that h� ¼ h�0lQl0
and ha4i ; l0i ¼ di0, where h�0 :¼ spanQ P. Define a non-degenerate symmetric

bilinear form ð�j�Þ : h� � h� ! Q by setting
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ðaijlÞ :¼ diha
4
i ; li ði A I; l A h�Þ; ðl0jl0Þ :¼ 0:

In particular, ðaijajÞ ¼ diaij. Note that ðdjdÞ ¼ 0 and the following direct sum

decomposition is an orthogonal decomposition:

h� ¼ h̊�l ðQdþQl0Þ:

For each l A h�, we denote by l the image of l by the orthogonal projection

onto h̊�. Each b A D can be uniquely written as mdþ b with m A Z and

b A D̊q f0g.
For each a A Dre, we denote by sa the reflection with respect to a. For

each l A h�, we define an element tl A GLðh�Þ called a translation by setting

tlðmÞ :¼ mþ ðmjdÞl� fðmjlÞ þ 1
2 ðljlÞðmjdÞgd

for each m A h�. In particular, tlðmÞ ¼ m� ðmjlÞd for each m A h�0.

Lemma 3.1 ([6]). Set �aai :¼ 2ai
ðai jaiÞ for each i A I̊, and set Q̊4 :¼0

i A I̊ Z�aai and

T :¼ ftl j l A Q̊4g. Then T is a normal subgroup of W such that W ¼ W̊ yT .

Each element x A W can be uniquely written as x ¼ xtx with x A W̊ and

tx A T . The mapping ��� : W ! W̊ , x 7! x, is a group homomorphism, which

satisfies that xðlÞ ¼ xðlÞ and sa ¼ sa for each x A W , l A h�0, and a A D re.

4. Preliminary results for classical root systems

In this section, we give preliminary results for classical root systems. We

use the notation introduced in Section 3. For each subset JH I̊, we set

P̊J :¼ faj j j A Jg; h̊�J :¼ spanQ P̊J;

W̊J :¼ hsj j j A JiH W̊ ; D̊J :¼ W̊JðP̊JÞH D̊:

Note that D̊J is a root system in h̊�J with P̊J a root basis and W̊J the Weyl

group if J0q. Let D̊Jþ (resp. D̊J�) be the set of all positive (resp. negative)

roots relative to P̊J. For each KH J, we denote by W̊ K
J the minimal coset

representatives of the set W̊J=W̊K of all right cosets. If J ¼ I̊ we denote it

simply by W̊ K. Note that each element w A W̊J can be uniquely written as

wKwK with wK A W̊ K
J and wK A W̊K, where wK is a unique element of the

smallest length in the right coset wW̊K. Moreover, we have

W̊ K
J ¼ fw A W̊J jwðajÞ > 0 for all j A Kg;

and W̊ K
J W̊ L

K ¼ W̊ L
J if LHKH J. In addition, we set

D̊K
J :¼ D̊JnD̊K; D̊K

JG :¼ D̊K
J V D̊G:

In the case where J ¼ I̊, we remove J from the symbols above.
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Lemma 4.1. (1) The following equality holds:

D̊K
Jþ ¼ e ¼

X
j A J

mjaj A D̊Jþðmj A Zb0Þ jmj > 0 for some j A JnK
n o

:

(2) We have D̊K
JGj D̊K

JGH D̊K
JG and D̊K

JGj D̊K H D̊K
JG.

(3) For each v A W̊K, we have vD̊K
JG ¼ D̊K

JG.

(4) Let K1 and K2 be subsets of J, and let w1 and w2 be elements of W̊J.

Then the following two conditions are equivalent:

ðiÞ w1D̊
K1

JGHw2D̊
K2

JG; ðiiÞ K1 IK2; w1 A w2W̊K1
:

Proof. (1) This is straightforward from the definition.

(2) This follows immediately from (1).

(3) Let e be an element of D̊K
Jþ, and write e ¼

P
j A J mjaj with mj A Zb0

for all j A J and mj� > 0 for some j� A JnK. Since vðajÞ A aj þ
P

k AK Zak for

each j A JnK, we have vðeÞ ¼
P

j A JnK mjaj þ
P

k AK m 0kak A D̊ with m 0k A Z,

which implies that vðeÞ A D̊K
Jþ since mj� > 0. Thus vD̊K

JþH D̊K
Jþ for each

v A W̊K, and hence vD̊K
Jþ ¼ D̊K

Jþ.

(4) Suppose that K1 IK2 and w1 ¼ w2v with v A W̊K1
. Then, by (3) we

have w1D̊
K1

Jþ ¼ w2D̊
K1

JþHw2D̊
K2

Jþ. Conversely, suppose that wD̊K1

JþH D̊K2

Jþ with

w ¼ w�12 w1. Then we have wK1 D̊K1

JþH D̊K2

Jþ by (3), and hence wK1ðajÞ > 0 for

all j A JnK1 since P̊JnK1
H D̊K1

Jþ. Moreover, wK1ðakÞ > 0 for all k A K1 since

wK1 A W̊ K1

J . Thus wK1ðajÞ > 0 for all j A J, and hence wK1 ¼ 1 and w ¼
wK1

A W̊K1
. Therefore D̊K1

Jþ ¼ wD̊K1

JþH D̊K2

Jþ, which implies that K1 IK2. r

Definition 4.2. Let J be a non-empty subset of I̊.

(1) A subset PH D̊ is called a closed set if it satisfies the condition that

if e; h A P, eþ h A D̊ then eþ h A P (cf. [2, § 1.7]). We call a subset

PH D̊J a coclosed set in D̊J if D̊JnP is a closed set, and call a subset

PH D̊J a biclosed set in D̊J if both P and D̊JnP are closed sets.

(2) We call a subset PH D̊J a parabolic set in D̊J if P is a closed set such

that PU ð�PÞ ¼ D̊J (cf. [2]).

(3) A subset PH D̊ is called a symmetric set if P ¼ �P (cf. [2]).

(4) We call a subset PH D̊ a pointed set if PV ð�PÞ ¼q.

Proposition 4.3 ([2]). The following three conditions are equivalent:

( i ) P is a parabolic set in D̊J;

( ii ) P is a closed subset of D̊J such that PIwD̊Jþ for some w A W̊J;

(iii) P ¼ wðD̊Jþ q D̊K�Þ for some KH J and w A W̊J.

Proposition 4.4 ([2]). If P is a pointed closed subset of D̊J, then there

exists an element w A W̊J such that wPH D̊J�.
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Proposition 4.5. Let P be a subset of D̊. Then there exist a unique

symmetric subset Ps HP and a unique pointed subset Pp HP such that P ¼
Pp q Ps. Moreover, if P is closed then both Ps and Pp are closed sets satisfying

Pp jPs HPp: ð4:1Þ

Proof. Suppose that there exist a symmetric subset Ps HP and a pointed

subset Pp HP such that P ¼ Pp q Ps. Then we have

Ps ¼ fe A P j �e A Pg; ð4:2Þ

Pp ¼ fe A P j �e A D̊nPg: ð4:3Þ

This proves the uniqueness of the decomposition. On the other hand, it is easy

to see that the above subsets give the desired decomposition of P.

In addition, we suppose that P is closed. Let e and h be elements of

Ps such that eþ h A D̊. Then we have eþ h A P and �e;�h A P. Thus we get

�ðeþ hÞ A P, and hence eþ h A Ps. Therefore Ps is closed.

We next prove (4.1). Suppose that eþ h A Ps for some e A Pp and h A Ps.

Then e ¼ ðeþ hÞ þ ð�hÞ A Ps, since Ps is closed and �h A Ps. This is a con-

tradiction. Hence, (4.1) is valid.

Suppose that eþ h A Ps for some e; h A Pp. Then, since �e� h A Ps we

have �e ¼ hþ ð�e� hÞ A Pp by (4.1). This contradicts Pp V ð�PpÞ ¼q. Thus

we get eþ h A Pp for each e; h A Pp satisfying eþ h A D̊. Therefore Pp is closed.

r

Proposition 4.6. The following four conditions are equivalent:

( i ) P is a pointed biclosed set in D̊J;

( ii ) P is a pointed coclosed set in D̊J;

(iii) P is a subset of D̊J such that D̊JnP is a parabolic set in D̊J;

(iv) P ¼ uD̊K
J� for some unique KH J and unique u A W̊ K

J .

Proof. (i)) (ii) It is Clear.

(ii)) (iii) It is clear that PH D̊J. By Proposition 4.5, we have

D̊J ¼ Pp q Ps q ðD̊JnPÞp q ðD̊JnPÞs; ð4:4Þ

where Ps (resp. ðD̊JnPÞs) is the symmetric part of P (resp. D̊JnP) and Pp (resp.

ðD̊JnPÞp) is the pointed part of P (resp. D̊JnP). Then we have

�Pp ¼ ðD̊JnPÞp: ð4:5Þ

Indeed, if e A Pp then we have �e A D̊JnP and �ð�eÞ A P by (4.2), and hence

�e A ðD̊JnPÞp by (4.3). Thus �Pp H ðD̊JnPÞp. Similarly we have �ðD̊JnPÞp H
Pp.
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By (4.5), we have �ðD̊JnPÞ ¼ Pp q ðD̊JnPÞs. Moreover, we have Ps ¼q
since P is pointed. Thus we get D̊J ¼ �ðD̊JnPÞU ðD̊JnPÞ by (4.4), and hence

D̊JnP is a parabolic set in D̊J.

(iii)) (iv) By Proposition 4.3, there exist a subset KH J and an element

w A W̊J such that D̊JnP ¼ wðD̊Jþ q D̊K�Þ. Then P ¼ wD̊K
J� since PH D̊J, and

hence P ¼ wKD̊K
J� by Lemma 4.1(3). The uniqueness follows from Lemma

4.1(4).

(iv)) (i) It is clear that uD̊K
J� is pointed. By Lemma 4.1(2), we have

uD̊K
J�j uD̊K

J�H uD̊K
J�, and hence uD̊K

J� is closed. Moreover, by Lemma 4.1(2)

we have uD̊K
Jþj uD̊K

JþH uD̊K
Jþ and uD̊K

Jþj uD̊K H uD̊K
Jþ. In addition, uD̊K is

closed. Thus D̊JnuD̊K
J� is closed, since D̊JnuD̊K

J� ¼ uD̊K
Jþ q uD̊K. r

5. The construction of biconvex sets

In this section, we give several methods of constructing biconvex sets for

the root system of an arbitrary untwisted a‰ne Lie algebra.

Definition 5.1. For each e A D̊ and PH D̊, we define subsets hei; hPiH
Dre
þ by setting

hei :¼ fmdþ e jm A Zb0gVDre
þ ; hPi :¼

a
e AP

hei:

Lemma 5.2. (1) Let P be a subset of D̊, and x an element of W. Then

ðiÞ hPi ¼ fb A Dþ j b A Pg; ðiiÞ xhPiH xP; ðiiiÞ xhPi _¼¼ hxPi:

(2) For subsets P;P 0H D̊, the following three conditions are equivalent:

ðiÞ PHP 0; ðiiÞ hPiH hP 0i; ðiiiÞ hPi _HH hP 0i:

Proof. (1) The (i) is straightforward from the definition. To prove

(ii), suppose that b A hPi. Then b A P by (i), hence xðbÞ ¼ xðbÞ A xP. Thus

(ii) is valid. We prove (iii). Write x ¼ tlx with l A Q̊4. Then we have

xðmdþ eÞ ¼ ðm� ðxe j lÞÞdþ xe for each m A Zb0 and e A P. Thus we get

xðmdþ eÞ A hxei for all m > ðxe j lÞ, and hence xhei _¼¼ hxei. Thus (iii) is

valid.

(2) It is obvious. r

Definition 5.3. For each subset JH I̊, we set

D re
J :¼ hD̊Ji; DJ :¼ Dre

J q D im;

D re
JG :¼ Dre

J VDG; DJG :¼ DJ VDG:
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We define WJ to be the subgroup of W generated by the set fsa j a A Dre
J g. Let

BJ be the set of all finite biconvex sets in DJþ and By
J the set of all infinite real

biconvex sets in DJþ. We set B�J :¼ BJ qBy
J .

For each non-empty subset JH I̊, let

D̊J ¼
aCðJÞ

c¼1 D̊Jc

be the irreducible decomposition of D̊J with CðJÞ the number of the irreducible

components. For each c ¼ 1; . . . ;CðJÞ, we denote by yJc the highest root of D̊Jc

relative to the root basis P̊Jc , and set

PJc :¼ P̊Jc q fd� yJcg; PJ :¼
aCðJÞ

c¼1 PJc ;

h�0J :¼ spanQ PJ; SJ :¼ fsa j a A PJg:

For each s A SJ, we denote by as a unique element of PJ such that s ¼ sas .

Note that

D re
J ¼

aCðJÞ

c¼1 D
re
Jc
; WJ ¼

YCðJÞ

c¼1 WJc ; h�0J ¼ h̊�J lQd:

We set Q̊4
J :¼0

j A J Z�aaj and TJ :¼ ftl j l A Q̊4
Jg. Then WJ ¼ W̊J yTJ (see

Lemma 3.1). For the sake of notational convenience, we also set Pq :¼q,

Sq :¼q, Wq :¼ f1gHW , and h�0q :¼ f0gH h�.

Proposition 5.4. For each non-empty subset JH I̊, the pair ðWJ;SJÞ is a

Coxeter system and the triplet ðh�0J ;DJ;PJÞ is a root system of ðWJ;SJÞ over Q

with the properties QR(v) and QR(vi).

Proof. Thanks to Theorem 2.2, it su‰ces to show that the triplet

ðh�0J ;DJ;PJÞ satisfies the six conditions QR(i)–QR(vi). The conditions QR(i),

QR(iv), and the first equality in QR(iii) are obvious. By definition, we have

DJ ¼ DJ� q DJþ; DJ� ¼ �DJþ; DJþ ¼6CðJÞ
c¼1 DJcþ:

Hence, to check the condition QR(ii), it su‰ces to show that each element of

DJcþ can be written as
P

a APJc
xaa with xa A Zb0 for all a A PJc . We have

md� yJc ¼ ðd� yJcÞ þ ðm� 1Þd ð5:1Þ

for each m A Zb2, and

md� e ¼ fmd� ðeþ ajÞg þ aj ð5:2Þ

for each m A Zb1 and e A D̊JcþnfyJcg, where j A Jc such that eþ aj A D̊Jcþ. If

b A DJcþnPJc satisfies b A D̊Jcþ, then we have either
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b ¼ mdþ b with mb 1 or b ¼ b ¼ eþ h with e; h A D̊Jcþ: ð5:3Þ

In addition, we have

d ¼ ðd� yJcÞ þ yJc and md ¼ ðm� 1Þdþ d ð5:4Þ

for each m A Zb2. By (5.1)–(5.4), we see that each element of DJcþnPJc can be

written as b þ g with b; g A DJcþ. Hence, by induction on values of elements

of DJcþ by the height function ht : Dþ ! N, we see that each element of DJcþ
can be written as a Zb0-linear combination of PJc . Thus QR(ii) and QR(v)

are satisfied, and QR(vi) is clear since htjDJþ
satisfies the required property

in QR(vi). Finally, we check the second equality in QR(iii). Suppose that

as0 A PJc with s0 A SJc . Since Nas0 VDJcþ ¼ fas0g, each element of DJcþnfas0g
can be written as

P
s ASJc

xsas with xs A Zb0 for all s A SJc and xs1 > 0 for some

s1 0 s0. This fact implies that s0ðDJcþnfas0gÞ ¼ DJcþnfas0g. Thus the second

equality in QR(iii) is valid, since s0 fixes pointwise DJþnDJcþ. r

Corollary 5.5. Let J be an arbitrary non-empty subset of I̊.

(1) The assignment y 7! FJðyÞ :¼ FðyÞVDJþ defines a bijective mapping

from WJ to BJ.

(2) Suppose that y ¼ s1s2 � � � sn with n A N and s1; s2; . . . ; sn A SJ is a

reduced expression of an element y A WJnf1g. Then the following equality

holds:

FJðyÞ ¼ fas1 ; s1ðas2Þ; . . . ; s1 � � � sn�1ðasnÞg;

where the elements of FJðyÞ displayed above are distinct from each other. In

particular, aFJðyÞ ¼ lJðyÞ, where lJ : WJ ! Zb0 is the length function of

ðWJ;SJÞ.

Proof. Since FJðyÞ ¼ fb A DJþ j y�1ðbÞ < 0g, the part (1) follows from

Theorem 2.6 and Proposition 5.4. The part (2) follows from Theorem 2.2 and

Proposition 5.4. r

Remarks. (1) An assertion similar to the part (1) of Corollary 5.5 was

stated by P. Cellini and P. Papi in the proof of Theorem 3.12 in [11] with an

outline of the proof. However, it seems that the detailed proof was not given

in the paper.

(2) By Corollary 5.5(2) and the remark (1) below Theorem 2.2, the action

of WJ on h�0J is faithful, and hence we may regards WJ as a subgroup of

GLðh�0J Þ.

Definition 5.6. For each w A W̊J and KH J, we set

DK
J ðw;GÞ :¼ hwD̊K

JGi:
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We denote it simply by DJðw;GÞ if K ¼q, by DKðw;GÞ if J ¼ I̊, and by Dðw;GÞ
if K ¼q and J ¼ I̊.

Lemma 5.7. (1) The set DK
J ðw;GÞ is an infinite set if and only if KW J.

(2) For each u A W̊ K
J and v A W̊K, we have

DK
J ðuv;GÞ ¼ DK

J ðu;GÞ; ð5:5Þ

DK
J ðu;�Þ ¼ FðuÞ q uDK

J ð1;�Þ; ð5:6Þ

Dre
Jþ ¼ DK

J ðu;�Þ q uD re
Kþ q DK

J ðu;þÞ: ð5:7Þ

Proof. (1) This follows from the fact that D̊K
JG is not empty if and only

if KW J.

(2) By Lemma 4.1(3), we have uvD̊K
JG¼ uD̊K

JG, which implies (5.5). By

definition, we have

DK
J ðu;�Þ ¼ ðD̊Jþ V uD̊K

J�Þ q fmdþ e jm A N; e A uD̊K
J�g

¼ ðD̊Jþ V uD̊K
J�Þ q uDK

J ð1;�Þ:

Moreover, since u A W̊ K
J we have uD̊K�H D̊�, and hence FðuÞ ¼ D̊Jþ V uD̊K

J�.

Thus (5.6) is valid. By definition, we have

D re
Jþ ¼ hD̊Ji; DK

J ðu;GÞ ¼ huD̊K
JGi; uD re

Kþ ¼ huD̊Ki:

Thus (5.7) is valid, since D̊J ¼ uD̊K
J� q uD̊K q uD̊K

Jþ. r

Note that DJþ is a convex set and that a subset BHDJþ is a convex set in

DJþ if and only if B is a convex set (see Lemma 2.5(3)).

Proposition 5.8. Let P be a subset of D̊, and J a non-empty subset of I̊.

(1) If P is a closed set, then hPiq D im
þ is a convex set.

(2) If P is a pointed closed set, then hPi is a real convex set.

(3) If P is a pointed biclosed set in D̊J, then hPi is a real biconvex set

in DJþ.

Proof. (1) Suppose that b þ g A Dþ with b; g A hPiq D im
þ . Then b; g A

Pq f0g and b þ g A D̊q f0g. Since P is closed, we have b þ g A P q f0g, and
hence b þ g A hPi q D im

þ by (i) of Lemma 5.2(1). Thus hPi q D im
þ is a convex

set.

(2) It is clear that hPiHDre
þ . Suppose that b þ g A Dþ with b; g A hPi.

Then b; g A P and b þ g A D̊q f0g. If b þ g ¼ 0 then b ¼ �g A PV ð�PÞ. This

contradicts PV ð�PÞ ¼q. Thus we get b þ g A D̊. Since P is closed, we have

b þ g A P, and hence b þ g A hPi by (i) of Lemma 5.2(1). Therefore hPi is a

real convex set.
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(3) Since P is a pointed closed set, it follows from (2) that hPi is a real

convex set. Since P is a biclosed set in D̊J, the set D̊JnP is a closed set. Thus,

by (1), we see that DJþnhPi is a convex set, since DJþnhPi ¼ hD̊JnPi q D im
þ .

r

Corollary 5.9. Let K be a subset of J, and u an element of W̊ K
J . Then

ðiÞ uDKþ is a convex set; ðiiÞ DK
J ðu;GÞ is a real biconvex set in DJþ:

Proof. We have uDKþ ¼ huD̊Kiq D im
þ . Since uD̊K is a closed set, (i)

follows from Proposition 5.8(1). It follows from Proposition 4.6 that uD̊K
JG is

a pointed biclosed set in D̊J, hence (ii) follows from Proposition 5.8(3). r

Lemma 5.10. For KH J and u A W̊ K
J , we have DK

J ðu;GÞj uDKþHDK
J ðu;GÞ.

Proof. Suppose that b þ g A Dþ with b A DK
J ðu;GÞ and g A uDKþ. Then

we have b A uD̊K
JG, g A uD̊K q f0g, and b þ g A D̊q f0g. Thus we get b þ g A

uD̊K
JG by Lemma 4.1(2), and hence b þ g A DK

J ðu;GÞ by (i) of Lemma 5.2(1).

r

Proposition 5.11. Let K be a subset of J, and u an element of W̊ K
J .

(1) If C is a convex set in uDKþ, then C q DK
J ðu;GÞ is a convex set in DJþ.

(2) If C is a biconvex set in uDKþ, then C q DK
J ðu;GÞ is a biconvex set in

DJþ.

Proof. (1) It follows from (ii) of Corollary 5.9 that DK
J ðu;GÞ is a convex

set in DJþ. Thus the assertion follows from Lemma 2.5(4) and Lemma 5.10.

(2) By the equality (5.7), we have

DJþnfC q DK
J ðu;�Þg ¼ ðuDKþnCÞ q DK

J ðu;þÞ:

Since both C and uDKþnC are convex sets in uDKþ, we see that both

C q DK
J ðu;�Þ and ðuDKþnCÞ q DK

J ðu;þÞ are convex sets in DJ by (1), hence

C q DK
J ðu;�Þ is a biconvex set in DJþ. To prove of the assertion for C q

DJðu;þÞ, it su‰ces to exchange the sign DJðu;�Þ for DJðu;þÞ. r

6. A parametrization of infinite real biconvex sets

In this section, we give a parametrization of the set By
J of all infinite real

biconvex sets in DJþ for each non-empty subset JH I̊.

Lemma 6.1. (1) If B is a real coconvex set in DJþ, then for each e A D̊J we

have either heiHB or hei _HHD re
JþnB.

(2) If B is a real biconvex set in DJþ and a subset PH D̊J satisfies

hPi _HHB, then we have hPiHB and h�PiVB ¼q.
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Proof. (1) Suppose that there exists m A Zb0 such that mdþ e A D re
JþnB.

Since BHDre
þ we have D im

þ HDJþnB. Thus we get ðmþ lÞdþ e A D re
JþnB for all

l A N by the convexity of DJþnB, and hence hei _HHD re
JþnB.

(2) By (1), we have hPiHB. Suppose that h�PiVB0q. Then

there exists an element e A P such that md� e A B for some m A Zb0.

Moreover, we have dþ e A B since heiHB. By the convexity of B, we have

ðmþ 1Þd ¼ ðmd� eÞ þ ðdþ eÞ A B. This contradicts BHDre
Jþ. Hence we have

h�PiVB ¼q. r

Proposition 6.2. Let B be a real convex set in DJþ, and set

B :¼ fb j b A Bg; PB :¼ fe A D̊J j hei _HHBg:

Then both B and PB are pointed closed subsets of D̊J such that PB HB.

Moreover, if B is a real biconvex set in DJþ then PB is a pointed biclosed set

in D̊J.

Proof. It is clear that B;PB H D̊J. Suppose that eþ h A D̊ with e; h A B.

By definition, there exist b; g A B such that b ¼ e, g ¼ h. By the convexity of

B, we have b þ g A B, and hence eþ h ¼ b þ g A B. Thus B is a closed set.

Suppose that eþ h A D̊ with e; h A PB. By definition, we have hei; hhi _HHB,

and hence there exist m; n A Zb0 such that ðmþ kÞdþ e A B and ðnþ kÞdþ h A B

for all k A Zb0. By the convexity of B, we have ðmþ nþ kÞdþ eþ h A B for

all k A Zb0. Thus we get heþ hi _HHB, and hence eþ h A PB. Therefore PB is

a closed set. Suppose that e A BV ð�BÞ. Then we have e;�e A B. Hence we

may assume that e A BV D̊Jþ. Then there exist m A Zb0 and n A N such that

mdþ e, nd� e A B. By the convexity of B, we have ðmþ nÞd ¼ ðmdþ eÞþ
ðnd� eÞ A B. This contradicts BHDre

Jþ. Thus we get BV ð�BÞ ¼q. More-

over, by definition, we have PB HB, and hence PB V ð�PBÞ ¼q.

Next we prove the second assertion. It su‰ces to show that PB is a

coclosed set in D̊J. By the definition of PB and Lemma 6.1(1), we see that

PB ¼ fe A D̊J j heiHBg; D̊JnPB ¼ fe A D̊J j hei _HHD re
JþnBg: ð6:1Þ

Suppose that eþ h A D̊ with e; h A D̊JnPB. Then hei; hhi _HHD re
JþnB by (6.1).

By the convexity of DJþnB, we have heþ hi _HHD re
JþnB, and hence eþ h A D̊JnPB.

Thus PB is a coclosed set in D̊J. r

Proposition 6.3. Let J be an arbitrary non-empty subset of I̊.

(1) If B is a real convex set in DJþ, then there exists an element w A W̊J

such that BHDJðw;�Þ.
(2) The assignment w 7! DJðw;�Þ defines a bijective mapping from W̊J to

the set M of all maximal real convex sets in DJþ (relative to the inclusion

relation). Moreover, M coincides with the set of all maximal real biconvex sets

in DJþ.
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Proof. (1) It follows from Proposition 6.2 that B is a pointed closed

subset of D̊J. Hence, by Proposition 4.4, there exists an element w A W̊J such

that BHwD̊J�. Then the following inclusion relation holds:

BH hBiH hwD̊J�i ¼ DJðw;�Þ:

(2) It follows from Corollary 5.9 that DJðw;�Þ is a real biconvex set in

DJþ for each w A W̊J. In particular, DJðw;�Þ is a real convex set in DJþ. To

prove the maximality of DJðw;�Þ, suppose that DJðw;�ÞHB for some real

convex set B in DJþ. By (1), there exists an element w 0 A W̊J such that BH
DJðw 0;�Þ. Since DJðw;�ÞHDJðw 0;�Þ, we see that wD̊J�Hw 0D̊J�, which implies

that w ¼ w 0, and hence DJðw;�Þ ¼ B. Therefore DJðw;�Þ is a maximal real

convex set in DJþ. Moreover, by the argument above, the injectivity of the

mapping is obvious. Finally, we prove the surjectivity of the mapping. Let B

be a maximal real convex set in DJþ. By (1), there exists an element w A W̊J

such that BHDJðw;�Þ. The maximality of B implies that B ¼ DJðw;�Þ. r

Proposition 6.4. Let J be an arbitrary non-empty subset of I̊, and B a

real biconvex set in DJþ. Then there exist a unique subset KH J and a unique

element u A W̊ K
J such that DK

J ðu;�ÞHB and B _HHDK
J ðu;�Þ. Moreover, B is an

infinite set if and only if KW J.

Proof. It follows from Proposition 6.2 that PB is a pointed biclosed

subset of D̊J. Hence, by Proposition 4.6, there exist a unique subset KH J and

a unique element u A W̊ K
J such that PB ¼ uD̊K

J�. By (6.1), we see that heiHB

for each e A uD̊K
J� and that hei _HHDre

þnB for each e A D̊JnuD̊K
J�. Thus we get

DK
J ðu;�ÞHB and B _HHDK

J ðu;�Þ. The second assertion follows from Lemma

5.7(1). r

Definition 6.5. For each non-empty subset JH I̊, we set

~PPJ :¼ fðK; u; yÞ jKH J; u A W̊ K
J ; y A WKg;

PJ :¼ fðK; u; yÞ A ~PPJ jKW Jg;

where WK is the subgroup of W defined in Definition 5.3. For each

ðK; u; yÞ A ~PPJ, we define a subset ‘JðK; u; yÞHDre
Jþ by setting

‘JðK; u; yÞ :¼ DK
J ðu;�Þ q uFKðyÞ:

Note that ‘JðK; u; yÞ ¼ FJðyÞ if K ¼ J and that ‘JðK; u; yÞ ¼ DJðu;�Þ if K ¼q.

In the case where J ¼ I̊, we remove J from the symbols above.

Lemma 6.6. (1) For each ðK; u; yÞ A ~PPJ, the following equality holds:

‘JðK; u; yÞ ¼ FðuÞ q u‘JðK; 1; yÞ: ð6:2Þ

Moreover, ‘JðK; u; yÞ is an infinite set if and only if ðK; u; yÞ A PJ.
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(2) Let ðK1; u1; y1Þ and ðK2; u2; y2Þ be elements of ~PPJ. Then the following

two conditions are equivalent:

ðiÞ ‘JðK1; u1; y1Þ _HH‘JðK2; u2; y2Þ; ðiiÞ K1 IK2; u1 A u2W̊K1
:

Proof. (1) By the equality (5.6), we have

FðuÞ q u‘JðK; 1; yÞ ¼ FðuÞ q uDK
J ð1;�Þ q uFKðyÞ

¼ DK
J ðu;�Þ q uFKðyÞ ¼ ‘JðK; u; yÞ:

The second assertion follows from Lemma 5.7(1).

(2) The assertion follows from Lemma 4.1(4) and Lemma 5.2(2), since (i)

is equivalent to the condition: DK1

J ðu1;�Þ _HHDK2

J ðu2;�Þ. r

Theorem 6.7. The assignment ðK; u; yÞ 7! ‘JðK; u; yÞ defines a bijective

mapping from ~PPJ to B�J , which maps PJ onto By
J .

Proof. For each ðK; u; yÞ A ~PPJ, we see that uFKðyÞ is a biconvex set in

uDKþ, and hence ‘JðK; u; yÞ is a real biconvex set in DJþ by Proposition 5.11(2).

Thus the mapping ‘J is well-defined. Moreover, we have ‘JðPJÞHBy
J and

‘Jð ~PPJnPJÞHBJ by the second assertion in Lemma 6.6(1). To prove the

injectivity, suppose that ‘JðK1; u1; y1Þ ¼ ‘JðK2; u2; y2Þ. By Lemma 6.6(2), we have

K1 ¼ K2 and u1 A u2W̊K1
, and hence u1 ¼ u2 since u1; u2 A W̊ K1

J . Thus we get

DK1

J ðu1;�Þ ¼ DK2

J ðu2;�Þ and FK1
ðy1Þ ¼ FK1

ðy2Þ. By Corollary 5.5(1), we get

y1 ¼ y2 and ðK1; u1; y1Þ ¼ ðK2; u2; y2Þ. Finally, we prove the surjectivity.

Suppose that B A BJ qBy
J . Then BHD re

Jþ. By Proposition 6.4, there exist a

subset KH J and an element u A W̊ K
J such that DK

J ðu;�ÞHB and B _HHDK
J ðu;�Þ.

Then BV uDre
Kþ is a finite biconvex set in uDKþ, since BV uD re

Kþ ¼ BV uDKþ.

By Corollary 5.5(1), there exists an element y A WK such that BV uD re
Kþ ¼

uFKðyÞ. Moreover, we have BVDK
J ðu;þÞ ¼q by Lemma 6.1(2). Thus we

get ðK; u; yÞ A ~PPJ and B ¼ DK
J ðu;�Þ q uFKðyÞ ¼ ‘JðK; u; yÞ by (5.7). r

7. Main theorem

In this section, we describe in detail relationships between the set Wy
J of

all infinite reduced words of the Coxeter system ðWJ;SJÞ and the set By
J of

all infinite real biconvex sets in DJþ for each non-empty subset JH I̊. Let

Wy
J be the quotient set of Wy

J obtained by applying Definition 2.6 to the

Coxeter system ðWJ;SJÞ, and Fy
J : Wy

J ! By
J the injective mapping obtained

by applying Definition 2.7(1) to the root system ðh�0J ;DJ;PJÞ of the Coxeter

system ðWJ;SJÞ.

Proposition 7.1 ([1]). Let K be a proper subset of J, and l an element of

the lattice Q̊4
J (see Definition 5.3) such that ðajjlÞ > 0 for all j A JnK and
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ðakjlÞ ¼ 0 for all k A K. Choose a reduced expression tl ¼ sð1Þsð2Þ � � � sðnÞ with
n A N and sð1Þ; sð2Þ; . . . ; sðnÞ A SJ, and define an infinite sequence s A SN

J by setting

s :¼ ðsð1Þ; sð2Þ; . . . ; sðnÞÞy (see Definition 2.7). Then the infinite sequence s is an

element of Wy
J such that Fy

J ð½s�Þ ¼ DK
J ð1;�Þ.

Remark. In [1], J. Beck showed the previous proposition in the case

where J ¼ I̊ and K ¼q.

Definition 7.2. For each proper subset K of J, we denote by ZK
J the

unique element of Wy
J such that Fy

J ðZK
J Þ ¼ DK

J ð1;�Þ, and define a mapping

wJ : PJ !Wy
J by setting for each ðK; u; yÞ A PJ:

wJððK; u; yÞÞ :¼ uy:ZK
J :

In the case where J ¼ I̊, we remove J from the symbols above.

Lemma 7.3. For each KH J and y A W̊KTJ, we have

yDK
J ð1;�Þ _¼¼ DK

J ð1;�Þ; ð7:1Þ

yDK
J ð1;�ÞnLHDK

J ð1;�Þ; ð7:2Þ

fFJðyÞnð�LÞgVDre
Kþ ¼ FJðyÞVD re

Kþ; ð7:3Þ

where L :¼ yDK
J ð1;�ÞVD re

J�.

Proof. Since y A W̊K we have yD̊K
J� ¼ D̊K

J� by Lemma 4.1(3). Hence

(7.1) follows from (iii) of Lemma 5.2(1). Moreover, by (ii) of Lemma 5.2(1),

we have

yDK
J ð1;�ÞH D̊K

J�: ð7:4Þ

By the definition of L, we have

yDK
J ð1;�ÞnL ¼ yDK

J ð1;�ÞVDre
Jþ:

Thus (7.2) follows from (7.4). Moreover, by (7.4) we have

�L ¼ ð�yDK
J ð1;�ÞÞVD re

JþHDK
J ð1;þÞ;

and hence ð�LÞVDre
Kþ ¼q. Thus we get

fFJðyÞnð�LÞgVDre
Kþ ¼ FJðyÞVD re

Kþ: r

Theorem 7.4. Let J be an arbitrary non-empty subset of I̊.

(1) For each x A WJ and KW J, we have the following equality:

Fy
J ðx:ZK

J Þ ¼ ‘JðK; xK; zxÞ ð7:5Þ
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with a unique element zx A WK such that

FJððxKÞ�1xÞVDKþ ¼ FKðzxÞ: ð7:6Þ

(2) Both Fy
J and wJ are bijective and the following diagram is commutative:

By
J

Fy
J����

! ����!‘J
Wy

J  �����
wJ

PJ:

(3) We have the following orbit decomposition:

Wy
J ¼

a
KWJ

WJ:Z
K
J :

Proof. (1) Put y ¼ ðxKÞ�1x. Then y A W̊KTJ. By Proposition 2.15, we

have

Fy
J ðy:ZK

J Þ ¼ fFJðyÞnð�LÞg q fyDK
J ð1;�ÞnLg; ð7:7Þ

where L ¼ yDK
J ð1;�ÞVD re

J�. Since aL < y we have Fy
J ðy:ZK

J Þ _¼¼ DK
J ð1;�Þ by

(7.1). Thus, by Lemma 6.1(2) we get

DK
J ð1;�ÞHFy

J ðy:ZK
J Þ; ð7:8Þ

DK
J ð1;þÞVFy

J ðy:ZK
J Þ ¼q: ð7:9Þ

By (7.2), (7.3), (7.6), and (7.7), we see that

Fy
J ðy:ZK

J ÞVD re
Kþ ¼ FJðyÞVD re

Kþ ¼ FKðzxÞ: ð7:10Þ

By (7.8)–(7.10) with (5.7), we have

Fy
J ðy:ZK

J Þ ¼ fFy
J ðy:ZK

J ÞVDJð1;�Þg q fFy
J ðy:ZK

J ÞVDre
Kþg

¼ DK
J ð1;�Þ qFKðzxÞ ¼ ‘JðK; 1; zxÞ:

Hence, by Proposition 2.15 and (6.2), we get

Fy
J ðx:ZK

J Þ ¼ Fy
J ðxK:y:ZK

J Þ ¼ FðxKÞ q xKFy
J ðy:ZK

J Þ ¼ ‘JðK; xK; zxÞ:

(2) By (1), we have

Fy
J ðuy:ZK

J Þ ¼ ‘JðK; u; yÞ ð7:11Þ

for each ðK; u; yÞ A PJ. Hence Fy
J � wJ ¼ ‘J, which implies the surjectivity of

Fy
J since ‘J is bijective (see Theorem 6.7). Moreover, since Fy

J is injective,

Fy
J is bijective, so is wJ.
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(3) Since wJ is surjective, we have Wy
J ¼6

KWJ
WJ:Z

K
J . Hence, it suf-

fices to show that this union is disjoint. By (7.5), (7.11), and the injectivity of

Fy
J , we have the following equality:

x:ZK
J ¼ xKzx:Z

K
J ð7:12Þ

for each x A WJ. Suppose that x:ZK
J ¼ y:ZL

J for some LW J and y A WJ. By

(7.12), we have xKzx:Z
K
J ¼ yLzy:Z

L
J with a unique zy A WL. Thus we get

K ¼ L since wJ is injective. r

Remark. The existence and uniqueness of the element zx A WK satisfying

(7.6) are guaranteed by Lemma 2.5(2) and Corollary 5.5(1).

Lemma 7.5. If B is a biconvex set in DJþ, then we have either BHD re
Jþ or

D im
þ HB.

Proof. We claim that if BVD im
þ 0q then D im

þ HB. Indeed, if md A B

for some m A N, then d A B by the convexity of DJþnB, and hence md A B for

all m A N by the convexity of B, i.e., D im
þ HB. Thus we have either BHD re

Jþ
or D im

þ HB. r

Corollary 7.6. Let B be a subset of DJþ. Then B is a biconvex set in

DJþ if and only if one of the following (a)–(d) holds:

ðaÞ B ¼ FJðzÞ; ðbÞ B ¼ DJþnFJðzÞ; ðcÞ B ¼ Fy
J ðZÞ; ðdÞ B ¼ DJþnFy

J ðZÞ;

where z is an element of WJ and Z is an element of Wy
J .

Proof. The ‘‘if part’’ is obvious. Let us prove the ‘‘only if part’’. By

Lemma 7.5, we have either BHD re
Jþ or D im

þ HB. If BHD re
Jþ and aB < y,

then B ¼ FJðzÞ with z A WJ by Theorem 2.6. If BHDre
Jþ and aB ¼y, then

B ¼ Fy
J ðZÞ with Z A Wy

J by Theorem 7.4(2). If BHD im
þ , then DJþnB is a real

biconvex set in DJþ. Hence we have either DJþnB ¼ FJðzÞ or DJþnB ¼ Fy
J ðZÞ,

i.e., B ¼ DJþnFJðzÞ or B ¼ DJþnFy
J ðZÞ, where z A WJ and Z A Wy

J . r

Remark. By the corollary, we see that a subset BHDJþ is a biconvex set

in DJþ if and only if B satisfies the conditions QC(i)
0 and QC(ii)

0 with replacing

Dþ by DJþ (see the remarks below Theorem 2.6).

Example. Suppose that D is of the type A
ð1Þ
2 and J ¼ I̊ ¼ f1; 2g. Then

fq; f1g; f2gg is the set of all proper subsets of I̊ and the following equalities

hold:

W̊q ¼ W̊ ¼ hs1; s2i; W̊ f1g ¼ f1; s2; s1s2g; W̊ f2g ¼ f1; s1; s2s1g:

Thus the following set
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P ¼ fðq; u; 1Þ j u A hs1; s2ig q fðf1g; u; yÞ j u A f1; s2; s1s2g; y A hsd�a1 ; s1ig

q fðf2g; u; yÞ j u A f1; s1; s2s1g; y A hsd�a2 ; s2ig

parametrizes the set By of all infinite real biconvex set by the following

mapping:

‘ðK; u; yÞ :¼ DKðu;�Þ q uFKðyÞ:

In particular, the following three sets are fundamental infinite real biconvex

sets:

‘ðq; 1; 1Þ ¼ Dqð1;�Þ ¼ fmd� a1;md� a1 � a2;md� a2 jm A Ng;

‘ðf1g; 1; 1Þ ¼ Df1gð1;�Þ ¼ fmd� a1 � a2;md� a2 jm A Ng;

‘ðf2g; 1; 1Þ ¼ Df2gð1;�Þ ¼ fmd� a1;md� a1 � a2 jm A Ng:

[1] Set lq ¼ a1 þ a2. Then lq is an element of Q̊4¼ Za1 lZa2 such

that ða1jlqÞ ¼ ða2jlqÞ ¼ 1 > 0, and hence FðtlqÞ ¼ fd� a1 � a2; d� a1; 2d �
a1 � a2; d� a2g. Since tlq ¼ s0s2s1s2 is a reduced expression, the infinite se-

quence sq :¼ ðs0; s2; s1; s2Þy is an infinite reduced word such that Fyð½sq�Þ ¼
‘ðq; 1; 1Þ. For example, set u :¼ s1s2 and s 0q :¼ ðs1; s2Þsq. Then s 0q is an

infinite reduced word satisfying u:½sq� ¼ ½s 0q� and

Fyð½s 0q�Þ ¼ ‘ðq; u; 1Þ ¼ fmdþ a1 þ a2;mdþ a1; nd� a2 jm A Zb0; n A Ng:

[2] Set lf1g :¼ a1 þ 2a2. Then lq is an element of Q̊4 such that ða1jlf1gÞ ¼ 0

and ða2jlf1gÞ ¼ 3 > 0, and hence Fðtlf1g Þ ¼ fmd� a1 � a2;md� a2 jm ¼ 1; 2; 3g.
Since tlf1g ¼ s0s1s2s0s1s2 is a reduced expression, the infinite sequence sf1g :¼
ðs0; s1; s2Þy is an infinite reduced word such that Fyð½sf1g�Þ ¼ ‘ðf1g; 1; 1Þ. The

group Wf1g is isomorphic to the infinite dihedral group and satisfies the

equality:

Wf1g ¼ fðsd�a1s1Þ
n; ðsd�a1s1Þ

n
sd�a1 ; ðs1sd�a1Þ

n; ðs1sd�a1Þ
n
s1 j n A Zb0g:

For example, set u :¼ s2 and y :¼ ðsd�a1s1Þ
n, then uyðs0s1s2Þ2n ¼ s2ðs0s2s1s2Þ2n,

and hence the infinite sequence s 0f1g :¼ ðs2Þðs0; s2; s1; s2Þ
2nsf1g is an infinite

reduced word satisfying uy:½sf1g� ¼ ½s 0f1g� and

Fyð½s 0f1g�Þ ¼ ‘ðf1g; u; yÞ ¼ fmd� a1 � a2 j 1ama 2ng q Df1gðu;�Þ;

where Df1gðu;�Þ ¼ fmd� a1; ndþ a2 jm A N; n A Zb0g. For one more example,

set u 0 :¼ s1s2 and y 0 ¼ ðs1sd�a1Þ
n, then u 0y 0ðs0s1s2Þ2n�1 ¼ s1s2s1ðs0s2s1s2Þ2n�1, and

hence the infinite sequence s 00f1g :¼ ðs1; s2; s1Þðs0; s2; s1; s2Þ
2n�1sf1g is an infinite

reduced word satisfying u 0y 0:½sf1g� ¼ ½s 00f1g� and
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Fyð½s 00f1g�Þ ¼ ‘ðf1g; u 0; y 0Þ ¼ fmdþ a2 j 0ama 2n� 1g q Df1gðu;�Þ;

where Df1gðu 0;�Þ ¼ fmdþ a1 þ a2;mdþ a1 jm A Zb0g.
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