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Abstract. When the polynomials f1; . . . ; fn A C½x1; . . . ; xn� satisfy the Jacobian

condition det
qfi

qxj

� �
i; j

A C�, the Kernel Conjecture says that Ker q

qfn

� �
should be

C½ f1; . . . ; fn�1�. In this paper, we prove a weaker version: When the leading mono-

mials LMð f1Þ; . . . ;LMð ftÞ of f1; . . . ; ft (under a given monomial ordering) are linearly

independent, then 7
i>t

Ker q

qfi

� �
¼ C½ f1; . . . ; ft�.

The main tool is the higher derivations q
½L�
fi
, which behave like 1

L!
q

qfi

� �L
, but are

defined for any rings, including positive characteristic ones. We reduce the problem of

calculating the (higher) derivation kernels to the positive characteristic case, where we

have a better control.

1. Introduction

The celebrated Jacobian Conjecture states that when a polynomial map

j : Cn ! Cn is locally isomorphic (or étale, in algebraic geometric term), then j

is isomorphic. Algebraically, it says that when the polynomials f1; . . . ; fn A

C½x1; . . . ; xn� satisfy the Jacobian condition, namely when det
qfi

qxj

� �
i; j¼1;...;n

is

invertible, then C½ f1; . . . ; fn� ¼ C½x1; . . . ; xn�, namely these polynomials generate

the whole polynomial ring. It is crucial to assume j to be a polynomial

map. The function ex is an immediate counterexample in 1 variable, and even

when we require det
qfi

qxj

� �
to be a constant, ðx; yÞ 7! ð�e�x; yexÞ has Jacobian

determinant 1 without being isomorphic.

The Jacobian Conjecture is also false when the characteristic is pos-

itive. When k is a field of characteristic p > 0, the function xp þ x A k½x�
satisfies the Jacobian condition as d

dx
ðxp þ xÞ ¼ 1, however k½xp þ x�0 k½x�

(kðxp þ xÞH kðxÞ is a field extension of degree p). Still there are several

attempts to attack the Jacobian Conjecture via positive characteristic. For

example, Adjamagbo [1] conjectures that if the degree of the field extension

is not divisible by p, then étale morphisms are isomorphic, which conjecture

would imply the Jacobian conjecture in characteristic 0. In this paper, we will

make an another attempt via positive characteristic.
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In preparation for explaining our approach, we would like to introduce the

Kernel conjecture. Let f1; . . . ; fn A k½x1; . . . ; xn� and g A k½ f1; . . . ; fn� be poly-

nomials. Then one can compute the partial derivative of g by the chain rule;
qg

qxi
¼
Pn
j¼1

qfj

qxi

qg

qfj
, which can be displayed by matrix form:

qg

qx1

..

.

qg

qxn

0BBBBBBB@

1CCCCCCCA¼
qf1

qx1
� � � qfn

qx1

..

. . .
. ..

.

qf1

qxn
� � � qfn

qxn

0BBBBBBB@

1CCCCCCCA

qg

qf1

..

.

qg

qfn

0BBBBBBB@

1CCCCCCCA
Now assume that f1; . . . ; fn satisfy the Jacobian condition, namely the matrix

above is invertible. Then multiplying the inverse matrix from the left, we

obtain the formula for
qg

qfj
in terms of

qg

qxi
and

qfj

qxi
, which makes sense even for

g A k½x1; . . . ; xn�, not assuming that g A k½ f1; . . . ; fn�, and we adopt this as the

definition of q

qfi
: k½x1; . . . ; xn� ! k½x1; . . . ; xn� (see Definition 2.3). Then the

Kernel conjecture states that if f1; . . . ; fn satisfy the Jacobian condition, then

Ker q

qfn
¼ k½ f1; . . . ; fn�1�. The Kernel conjecture for nþ 1 variables implies the

Jacobian Conjecture for n variables: When f1; . . . ; fn A k½x1; . . . ; xn� satisfy the

Jacobian condition, then f1; . . . ; fn; fnþ1 A k½x1; . . . ; xnþ1� with fnþ1 ¼ xnþ1 also

satisfy the Jacobian condition, and the Kernel conjecture says k½ f1; . . . ; fn�
¼ Ker q

qfnþ1
¼ k½x1; . . . ; xn�. On the other way, suppose the Jacobian Conjec-

ture for n variables. When f1; . . . ; fn satisfy the Jacobian condition, the

polynomials fi’s are just another variables to generate the polynomial ring, and

hence the Kernel conjecture for n variables holds. In this sense, the Kernel

conjecture is equivalent to the Jacobian Conjecture.

The argument above indicates that the Kernel conjecture is also false for

positive characteristics. Interestingly, in positive characteristic, Nousiainen’s

theorem ([2, Thm 2.2]) is known (see Proposition 2.4), which gives a precise

formula for the derivation kernel in characteristic p, namely, Ker q

qfn
¼ k½xp

1 ;

x
p
2 ; . . . ; x

p
n ; f1; . . . ; fn�1�, when fi’s satisfy the Jacobian condition. In this paper,

we start from Nousiainen’s theorem, and investigate the behavior of higher

derivations. The main technical achievement of this paper is the construction

of higher derivations q
½L�
fi

which behave like
1

L!

q

qfi

� �L
for polynomials f1; . . . ; fn

satisfying the Jacobian condition (see Theorem 2.13), then we can give a precise

formula for the kernels of these higher derivations. More concretely, we have

7
L>0

Ker q
½L�
fn
¼7

r>0
k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�1�;

where the left hand side correspondes to Ker q

qfn
in characteristic 0.
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Recall that in characteristic 0, the calculations of the derivation kernels are

much harder. Sometimes, the derivation kernels are not finitely generated as

k-algebras [4], and we do not know how to describe the kernel ring. On the

other hand in positive characteristic, we even have a concrete algorithm to

compute the derivation kernel (see [7] for example). In our case, we do not

know if the right hand side of the formula above is finitely generated or not as

k-algebra either, but at least we have a precise description.

Good news is that under some condition (admittingly a strong condition),

we can prove that the right hand side 7
r>0

k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�1� equals
k½ f1; . . . ; fn�1� (Corollary 4.7). Using the Groebner basis and mimicking the

technique of reduction to positive characteristic, used in Mori program, we can

lift the results to the characteristic 0 situation.

Bad news is that our condition is too strong to be very useful. So we

introduce a Weak Kernel Conjecture 5.1, for which conjecture, we can prove a

special case. Our main result states that if f1; . . . ; fn satisfy the Jacobian

condition, and if the leading monomials LMð f1Þ; . . . ;LMð ftÞ, considered as

vectors in Zn HQn, are linearly independent, then 7
i>t

Ker q

qfi
¼ k½ f1; . . . ; ft�

holds (Theorem 5.3). In particular, the Weak Kernel conjecture holds when

t ¼ 1. It includes the Kernel Conjecture for 2 variables (Corollary 5.4, which

is classically known by a di¤erent proof, see [6]).

In our approach to Jacobian conjecture, the only missing point is the

study of the ring 7
r>0

k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft�. If one can find a good

condition for a k subalgebra RH k½x1; . . . ; xn�, in order that the equality

R ¼7
r>0

R½xpr

1 ; . . . ; xpr

n � holds, then that would imply the Jacobian Con-

jecture. We have an example 7
r>0

k½xpr

; xp þ x� ¼ k½x�I k½xp þ x�, so we

need some assumption. It seems (or at least we hope) that if the characteristic

of k is ‘‘large enough’’ compared to the multi-degrees of the terms of the

generators of R, then the equality holds.

Our construction of higher derivations q
½L�
fi

is based on positive charac-

teristic argument. Let f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition

with R a ring with characteristic pe, a power of a prime, then by Nousiainen’s

theorem, any polynomial g A R½x1; . . . ; xn� can be uniquely written as

g ¼
X

0aa1;...;an<pN

aa1;...;anðx
pN

1 ; . . . ; xpN

n Þ f
a1
1 . . . f an

n

for any N (Corollary 2.6). The higher derivaiton q
½L�
fi

should look like

1

L!

q

qfi

� �L
, so it is natural to define

q
½L�
fi
g ¼

X
0aa1;...;an<pN

aa1;...;anðx
pN

1 ; . . . ; xpN

n Þ
ai

L

� �
f a1
1 . . . f ai�L

i . . . f an
n
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when N is large enough, because any (higher) derivation of aðxpN

1 ; . . . ; xpN

n Þ is a
multiple of a high power of p, hence is 0 in R coe‰cient.

We prove that this definition is well defined independent of the choice of

N (Proposition 3.6). Hence it induces a definition of a higher derivation

in lim �
e

R=ðpeRÞ½x1; . . . ; xn� when R is Noether (Proposition 3.8). This again

induces a higher derivation in R½x1; . . . ; xn� via the canonical map R½x1; . . . ; xn�
!
Q

p lim �
e

R=ðpeRÞ½x1; . . . ; xn� when R is a finitely generated ring over Z

(Proposition 3.12). Finally it induces higher derivations for any ring (Theorem

2.13), because any ring is an inductive limit of finitely generated rings over Z.

2. Nousiainen’s Theorem

Definition 2.1. If the unit 1 of a ring R has a finite order N in the

additive group, we say that R has characteristic N. If the order of 1 is infinite,

we say that R has characteristic 0.

Definition 2.2. Let R be a ring. Polynomials f1; f2; . . . ; fn A
R½x1; x2; . . . ; xn� are said to satisfy the Jacobian condition when the determinant

of the matrix
qfi

qxj

� �
1ai; jan

is in the multiplicative group of units R½x1; . . . ; xn��.

Definition 2.3. Let the polynomials f1; f2; . . . ; fn A R½x1; x2; . . . ; xn� satisfy
the Jacobian condition. Define a derivation q

qfi
: R½x1; . . . ; xn� ! R½x1; . . . ; xn� by

q

qf1

..

.

q

qfn

0BBBBBB@

1CCCCCCA :¼

qf1

qx1
� � � qfn

qx1

..

. . .
. ..

.

qf1

qxn
� � � qfn

qxn

0BBBBBB@

1CCCCCCA

�1 q

qx1

..

.

q

qxn

0BBBBBB@

1CCCCCCA:

Proposition 2.4. Assume that the characteristic of R is a prime number p >

0. For polynomials f1; f2; . . . ; fn A R½x1; x2; . . . ; xn�, the following are equivalent:

(1) The polynomials f1; f2; . . . ; fn satisfy the Jacobian condition.

(2) R½xp
1 ; x

p
2 ; . . . ; x

p
n ; f1; f2; . . . ; fn� ¼ R½x1; x2; . . . ; xn�.

(3) R½x1; x2; . . . ; xn� is a free module over R½xp
1 ; x

p
2 ; . . . ; x

p
n � with a basis

f f a1
1 f a2

2 . . . f an
n g0aa1;a2;...;an<p.

Proof. The implication (3)) (2) is trivial.

For (2)) (1), assuming (2), each xi can be written as xi ¼P
ai;aðxp

1 ; . . . ; x
p
n Þ f a, where a ¼ ða1; a2; . . . ; anÞ A Zn

b0 is a multi-index. Take

the partial derivative of both sides by xj. Then we obtain
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di; j ¼
X

ai;aðxp
1 ; . . . ; x

p
n Þalf a�el qfl

qxj

where el ¼ ð0; 0; . . . ; 0; 1; 0; . . . ; 0Þ is a multi-index with the l-th com-

ponent being 1 and the other components 0. Hence, the matrix

ð
P

ai;aðxp
1 ; . . . ; x

p
n Þaj f a�ej Þ1ai; jan is the inverse matrix of the Jacobian matrix,

which implies (1).

For (1)) (3), we define an R½xp
1 ; x

p
2 ; . . . ; x

p
n �-module homomorphism

j : R½x1; x2; . . . ; xn� ! R½x1; x2; . . . ; xn� to be

X
0aa1;...;an<p

xa1
1 . . . xan

n

Yn
i¼1

1� fi
q

qfi

� �p�1
 !

�
Yn
i¼1

1

ðaiÞ!
q

qfi

� �ai
:

One easily checks that

j
X

0aa1;...;an<p

aaðxp
1 ; . . . ; x

p
n Þ f a

 !
¼

X
0aa1;...;an<p

aaðxp
1 ; . . . ; x

p
n Þxa:

Letting M be the submodule of R½x1; . . . ; xn� generated by the set

f f a1
1 f a2

2 . . . f an
n g0aa1;a2;...;an<p, one verifies that j induces a surjection from M

to R½x1; . . . ; xn�. Because R½x1; . . . ; xn� is a free R½xp
1 ; . . . ; x

p
n �-module with the

number of generators exactly same as the generators of M, we conclude

that M is freely generated by our generators, and j is a bijection from M

to R½x1; . . . ; xn�. Hence R½x1; . . . ; xn� is a direct sum of M and Ker j, and

because rank M ¼ rank R½x1; . . . ; xn� as R½xp
1 ; . . . ; x

p
n �-modules, we see that

Ker j ¼ 0, proving (3). r

Corollary 2.5. If f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition

and R has a prime characteristic p, then q

qfi

� �p
¼ 0.

Proof. Proposition 2.4 implies that when we assume the Jacobian

conditoin, any polynomial g A R½x1; . . . ; xn� is written as
P

aðxp
1 ; . . . ; x

p
n Þ f a.

The homomorphism q

qfi

� �p
is an R½xp

1 ; . . . ; x
p
n �-homomorphism, so we have only

to prove that q

qfi

� �p
f a ¼ 0. q

qfi

� �p
f a is aiðai � 1Þ . . . ðai � pþ 1Þ f a�pei , and one

of ai; ðai � 1Þ; . . . ; ðai � pþ 1Þ is a multiple of p, hence it is 0. r

Corollary 2.6. Suppose R has a characteristic pe, a power of a prime

number p. If f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition, then for

any positive integer r, we have R½x1; . . . ; xn� ¼ R½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�. More-

over, any polynomial g A R½x1; . . . ; xn� can be uniquely written as

g ¼
X

0aa1;...;an<pr

aaðxpr

1 ; . . . ; xpr

n Þ f a:
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Proof. First, we assume that e ¼ 1. For the equality R½x1; . . . ; xn� ¼
R½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�, we need to show that x
p
i A R½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�
for each i. We proceed by induction on r. The case r ¼ 1 is done

in Proposition 2.4. By the induction hypothesis, we can write xi ¼P
aaðxpr�1

1 ; . . . ; xpr�1
n Þ f a. Applying the Frobenius map, we have

x
p
i ¼

X
aaðxpr

1 ; . . . ; xpr

n Þð f pÞa A R½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�;

where aa is the polynomial aa with each coe‰cient raised to the p-th

power.

For each expression g ¼
P

aaðxpr

1 ; . . . ; xpr

n Þ f a, using the fact that f
pr

i A

R½xpr

1 ; . . . ; xpr

n �, we can move f
pr

i to aaðxpr

1 ; . . . ; xpr

n Þ until we get ai < pr for all

a and i.

When e > 1, let MHR½x1; . . . ; xn� be an R½xpr

1 ; . . . ; xpr

n � module gen-

erated by f f a1
1 ; . . . ; f an

n j 0a a1; . . . ; an < prg. Then the e ¼ 1 case implies

that M þ pR½x1; . . . ; xn� ¼ R½x1; . . . ; xn�, hence Nakayama’s lemma implies

M ¼ R½x1; . . . ; xn�. In particular, we have R½x1; . . . ; xn� ¼ R½xpr

1 ; . . . ; xpr

n ;

f1; . . . ; fn�, and each polynomial g A R½x1; . . . ; xn� has an expression g ¼P
0aa1;...;an<pr aaðxpr

1 ; . . . ; xpr

n Þ f a.

To prove the uniqueness of the expression, observing that the number of

generators of M is pnr, which is same as the rank of free module R½x1; . . . ; xn�
as an R½xpr

1 ; . . . ; xpr

n � module, we can conclude that f f a1
1 ; . . . ; f an

n j 0a a1; . . . ;

an < prg is a free basis. r

Lemma 2.7. Let p be a prime number, R a ring, and assume that

f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition. For any positive integer

N and M and any polynomial G A R½x1; . . . ; xn�, there exists a polynomial

aaðxpN

1 ; . . . ; xpN

n Þ A R½xpN

1 ; . . . ; xpN

n � for each multi index a with 0a a1; . . . ; an <

pN such that

G �
X

0aa1;...;an<pN

aaðxpN

1 ; . . . ; xpN

n Þ f a A pMR½x1; . . . ; xn�:

Proof. If p A R is a unit, the statement is trivial. Otherwise, apply

Corollary 2.6 to ðR=pMRÞ½x1; . . . ; xn�. r

Definition 2.8. When L is a positive integer and p a prime number,

define dpðLÞ to be the order of multiples of p in L! (namely, dpðLÞ ¼ ordpðL!Þ

in the usual notation). More concreterly, when L ¼
Pt
i¼0

ci p
i, 0a ci < p is the

p-adic representation of L, then we have dpðLÞ ¼
Pt
i¼1

ci
p i�1
p�1 .
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Lemma 2.9. Let f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition, p

a prime number and L a positive integer. Then for any G A R½x1; . . . ; xn�, we
have q

qfi

� �L
G A pdpðLÞR½x1; . . . ; xn�.

Proof. By Lemma 2.7, letting N ¼ dpðLÞ, we have an expression

G1
X

0aa1;...;an<pN

aaðxpN

1 ; . . . ; xpN

n Þ f a mod pN :

By Leibniz rule, we have

q

qfi

� �L
G1

X
0aa1;...;an<pN ; sþt¼L

L

s

� �
q

qfi

� �s
aaðxpN

1 ; . . . ; xpN

n Þ
q

qfi

� �t
f a mod pN :

We have q
qfi
aaðxpN

1 ; . . . ; xpN

n Þ1 0 mod pN and hence q

qfi

� �s
aaðxpN

1 ; . . . ; xpN

n Þ1 0

mod pN for s > 0. On the other hand, when s ¼ 0, we have q

qfi

� �L
f a ¼

L! ai
L

� �
f a�Lei 1 0 mod pdpðLÞ. Therefore we conclude that q

qfi

� �L
G A

pdpðLÞR½x1; . . . ; xn�. r

Proposition 2.10. Suppose f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian

condition. For G A R½x1; . . . ; xn�, we have q

qfi

� �L
G A L!R½x1; . . . ; xn�.

Proof. By Lemma 2.9, for each prime paL, there exists a poly-

nomial jp A R½x1; . . . ; xn� such that q
qfi

� �L
G ¼ pdpðLÞjp. The GCD of the

integers fL!=ðpdpðLÞÞ j paLg is 1, hence we can find integers mp so thatP
mpðL!=ðpdpðLÞÞÞ ¼ 1. Taking the polynomial j ¼

P
mpjp, we have

L!j ¼ L!
X

mpjp ¼
X

mp

L!

pdpðLÞ
pdpðLÞjp ¼

q

qfi

� �L
G:

We are done. r

Corollary 2.11. If L! A R is a non-zero-divisor and F1; . . . ;Fn A

R½x1; . . . ; xn� satisfy the Jacobian condition, then an R homomorphism 1
L!

q
qFi

� �L
:

R½x1; . . . ; xn� ! R½x1; . . . ; xn� is canonically determined. If moreover there is

a ring homomorphism R! S such that S has a characteristic pe where p > 0 is

a prime number, when we set fi to be the image of Fi and N :¼ eþ dpðLÞ, the
induced homomorphism S½x1; . . . ; xn� ! S½x1; . . . ; xn� sends g ¼

P
0aa1;...;an<pN

aa �

ðxpN

1 ; . . . ; xpN

n Þ f a to
P

0aa1;...;an<pN

aaðxpN

1 ; . . . ; xpN

n Þ ai
L

� �
f a�Lei . In particular, the

induced homomorphism is independent of the choice of R and Fi, if we start from

S and fi.
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Proof. The well-definedness of 1
L!

q

qFi

� �L
is obvious. Take any preimage

G1
P

0aa1;...;an<pN AaðxpN

1 ; . . . ; xpN

n ÞF a mod pN of g, we have

1

L!

q

qFi

� �L
G1

X
0aa1;...;an<pN

AaðxpN

1 ; . . . ; xpN

n Þ
ai

L

� �
F a�Lei mod pN : r

Definition 2.12. Let f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian con-

dition. When R has a characteristic pe with a prime number p, we define

q
½L�
fi

: R½x1; . . . ; xn� ! R½x1; . . . ; xn� to be an R homomorphism sending g ¼P
0aa1;...;an<pN

aaðxpN

1 ; . . . ; xpN

n Þ f a to
P

0aa1;...;an<pN ;aibL

aaðxpN

1 ; . . . ; xpN

n Þ ai
L

� �
�

f a�Lei , with N ¼ eþ dpðLÞ. Also when L! is a non-zero-divisor in R, we

define q
½L�
fi

: R½x1; . . . ; xn� ! R½x1; . . . ; xn� to be the unique R homomorphism

such that L!q
½L�
fi
¼ q

qfi

� �L
.

Definition 2.12 will be generalized to any ring R (see Definition 3.16 for

the general R, and Definition 3.13 for the case R finitely generated over Z),

with properties as in Theorem 2.13 below. The proof of Theorem 2.13 will be

postponed until the next section (see Remark 3.17).

Theorem 2.13. For each set of polynomials f1; . . . ; fn A R½x1; . . . ; xn� which
satisfies the Jacobian condition, there is an R endmorphism q

½L�
fi

: R½x1; . . . ; xn� !
R½x1; . . . ; xn� which satisfies the following properties;

(1) If R has characteristic pe with a prime number p, q
½L�
fi

coincides with

the one defined in Definition 2.12;

(2) if L! is non-zero-divisor in R, then q
½L�
fi

coincides with the one defined in

Definition 2.12;

(3) q
½L�
fi

is functorial. Namely, when j : R! S is a ring homomorphism,

then for any g A R½x1; . . . ; xn�, we have jðq½L�fi
gÞ ¼ q

½L�
jð fiÞjðgÞ.

Moreover, the system to associate R homomorphisms fq½L�fi
g : R½x1; . . . ; xn�

! R½x1; . . . ; xn� to the polynomials f1; . . . ; fn A R½x1; . . . ; xn� with Jacobian con-

dition is unique, if this system satisfies the properties (1) and (3) above.

Lemma 2.14. Let R be a ring of prime characteristic p > 0, and assume

that f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition. Define Xi to be

Xi ¼ x
pr

i A R½x1; . . . ; xn�. Then the polynomials f
pr

1 ; f pr

2 ; . . . ; f pr

n A R½X1; . . . ;Xn�
satisfy the Jacobian condition.

Proof. By Proposition 2.4, each xi can be written as xi ¼P
aaðxp

1 ; . . . ; x
p
n Þ f a. Take the pr-th power. We see that x

pr

i A S½xprþ1

1 ; . . . ;

xprþ1
n ; f

pr

1 ; . . . ; f pr

n �, therefore R½X1; . . . ;Xn� ¼ S½X p
1 ; . . . ;X

p
n ; f

pr

1 ; . . . ; f pr

n �. By
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Proposition 2.4 again, we conclude that f
pr

1 ; . . . ; f pr

n satisfy the Jacobian

condition. r

Proposition 2.15. Suppose f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian

condition. When the characteristic of R is a prime number p > 0, then for

g ¼
P

0aa1;...;an<pr

aaðxpr

1 ; . . . ; xpr

n Þ f a, we have

q
½ pr�
fi

g ¼
X

0aa1;...;an<pr

q

qf
pr

i

 !
aaðxpr

1 ; . . . ; xpr

n Þ f a

where by Lemma 2.14, f
p r

1 ; . . . ; f pr

n A R½xpr

1 ; . . . ; xpr

n � satisfy the Jacobian con-

dition, and q

qf
p r

i

: R½xpr

1 ; . . . ; xpr

n � ! R½xpr

1 ; . . . ; xpr

n � is the R homomorphism defined

by Definition 2.3.

Proof. We may assume that g ¼ aðxpN

1 ; . . . ; xpN

n Þ f prbþa, where

N ¼ 1þ dpðprÞ and 0a a1; . . . ; an < pr. Applying q
½ pr�
fi

to g, we obtain

aðxpN

1 ; . . . ; xpN

n Þ prbiþai
p r

� �
f prb�preiþa, which equals to aðxpN

1 ; . . . ; xpN

n Þ �

bi f
p rðb�eiÞf a, because prbiþai

p r

� �
1 bi mod p if 0a ai < pr. r

Corollary 2.16. Suppose f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian

condition. When the characteristic of R is a prime number p > 0, we have

7
L>0; i>t

Ker q
½L�
fi
¼7

r>0
R½xpr

1 ; . . . ; xpr

n ; f1; f2; . . . ; ft�:

Proof. If g A 7
r>0

R½xpr

1 ; . . . ; xpr

n ; f1; f2; . . . ; ft�, then g can be written as

a linear combination of aaðxpN

1 ; . . . ; xpN

n Þ f a with a1 ¼ � � � ¼ at ¼ 0 and N

arbitrary large. Hence its image by q
½L�
fi

with i > t is zero for dpðLÞ < N,

therefore g is in the left hand side.

Conversely, assume that g is in the left hand side. It is easy to check that

if q
½1�
fi
g ¼ 0 for i ¼ tþ 1; tþ 2; . . . ; n, then g A R½xp

1 ; . . . ; x
p
n ; f1; . . . ; ft�. Pro-

ceeding by induction on r, assume that g A R½xpr

1 ; . . . ; xpr

n ; f1; f2; . . . ; ft�, namely

we can write

g ¼
X

0aatþ1;...;an<pr

aaðxpr

1 ; . . . ; xpr

n Þ f
a1
1 . . . f at

t

for some r > 0, with r ¼ 1 case already checked. We apply q
½ pr�
fi

to g to obtainP
q

qf
p r

i

� �
aaðxpr

1 ; . . . ; xpr

n Þ f
a1
1 . . . f at

t ¼ 0 by Proposition 2.15. By the unique-

ness of such a representation (Proposition 2.4), we have q
½1�
f
p r

i

aaðxpr

1 ; . . . ; xpr

n Þ ¼ 0

for i ¼ tþ 1; tþ 2; . . . ; n, hence we have aaðxpr

1 ; . . . ; xpr

n Þ A R½xprþ1

1 ; . . . ; xprþ1
n ;

f
pr

1 ; . . . ; f pr

t �, which shows that the rþ 1 case holds. We are done. r
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3. Higher derivations

In this section, we prove Theorem 2.13.

Lemma 3.1. Let R be a ring, and assume that f1; . . . ; fn A R½x1; . . . ; xn�
satisfy the Jacobian condition. Then a polynomial g A R½xpN� j

1 ; . . . ; xpN� j

n � can
be written as g ¼

P
0aa1;...;an<p j aaðxpN

1 ; . . . ; xpN

n Þ f pN� ja þ phðx1; . . . ; xnÞ.

Proof. By Lemma 2.14, f
pN� j

1 ; . . . ; f pN� j

n satisfy the Jacobian condition

in ðR=pRÞ½xpN� j

1 ; . . . ; xpN� j
n �, hence by Corollary 2.6, we have the desired ex-

pression. r

Lemma 3.2. Let c1; . . . ;cr A R½x1; . . . ; xn� be polynomials. Then any

polynomial j A R½cpN

1 ; . . . ;cpN

r �HR½x1; . . . ; xn� can be written as j ¼PN
i¼0 p

ijiðx
pN�i

1 ; . . . ; xpN�i
n Þ.

Proof. By multinomial expansion formula, if g ¼
Pr

j¼1 aaj x
aj , we have

gpN ¼
X

d1þ���þcr¼pN

pN !

d1!d2! . . . dr!

Y
ðcaj xaj Þdj

with pi divides
pN !

d1!d2!...dr!
if one of dj ’s is not divisible by pN�iþ1, hence gpN

is

in
PN

i¼0 p
iR½xpN�i

1 ; . . . ; xpN�i
n �. The polynomial j is a linear combination of

such polynomials, therefore it is also in
PN

i¼0 p
iR½xpN�i

1 ; . . . ; xpN�i
n �. r

Lemma 3.3. If f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition, then

for each multi-index a, we can write

f pNa ¼ g0ðxpN

1 ; . . . ; xpN

n Þ þ
XN
i¼1

X
pN�i jb;0ab1;...;bn<pN

piabðxpN

1 ; . . . ; xpN

n Þ f b

0@ 1A:

Proof. As f pNa mod p is in ðR=pRÞ½xpN

1 ; . . . ; xpN

n �, we can find a

polynomial g0ðxpN

1 ; . . . ; xpN

n Þ such that f pNa � g0 A pR½x1; . . . ; xn�. By Lemma

3.2, we can write f pNa ¼ g0ðxpN

1 ; . . . ; xpN

n Þ þ
PN

i¼1 p
igiðxpN�i

1 ; . . . ; xpN�i

n Þ. We

will show that f pNa can be written as

f pNa ¼ g0ðxpN

1 ; . . . ; xpN

n Þ þ
Xj�1
i¼1

X
pN� jþ1jb;0ab1;...;bn<pN

p j�1abðxpN

1 ; . . . ; xpN

n Þ f b

0@ 1A
þ
XN
i¼j

pigiðxpN�i

1 ; . . . ; xpN�i

n Þ

by induction on j. Assuming the j-th case, by Lemma 3.1, we can write

gjðxpN� j

1 ; . . . ; xpN� j

n Þ1
X

0ag<p j

agðxpN

1 ; . . . ; xpN

n Þ f pN� jg mod p:
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By Lemma 3.2, gj �
P

ag f
pN�jg A R½xpN�j

1 ; . . . ; xpN�j
n ; f pN�j

1 ; . . . ; f pN�j
n � is in

XN
i¼j

pi�jR½xpN�i

1 ; . . . ; xpN�i

n �V pR½x1; . . . ; xn� ¼
XN
i¼jþ1

pi�jR½xpN�i

1 ; . . . ; xpN�i

n �

substituting which gives the j þ 1-st expression, and the induction (hence the

proof ) is complete. r

Lemma 3.4. Let R be a ring with characteristic a prime power pe > 0, and

f1; . . . ; fn A R½x1; . . . ; xn� polynomials with the Jacobian condition. Let us write

f a as f a ¼
P

0ab<pN abðxpN

1 ; . . . ; xpN

n Þ f b. If pN�jþ1 does not divide ai � bi for

each i, then ab A p jR½xpN

1 ; . . . ; xpN

n �.

Proof. We will show that f a can be written as

f a ¼
Xj�1
i¼0

X
pN�i jða�bÞ;0ab1;...;bn<pN

piabðxpN

1 ; . . . ; xpN

n Þ f b

0@ 1A

þ
XN
i¼j

X
pN�i jða�bÞ

piabðxpN

1 ; . . . ; xpN

n Þ f b

0@ 1A
by induction on j. Take a multi-index a0 with a0 1 a mod pN and

0a a0 < pN . Then writing a ¼ a0 þ pNg, we have f a ¼ f a0 f pNg, and sub-

stituting the expression of f pNg of Lemma 3.3, we prove the case for j ¼ 1.

Assuming the case for j, for each f b with pN�j jb and bA pN , we write

b ¼ b0 þ pNd, 0a b0 < pN , and substitute the expression of f pNd of Lemma

3.3 to f b ¼ f b0 f pNd. Then we obtain the expression for j þ 1, and the in-

duction completes. r

Lemma 3.5. Assume that R has a prime power charactersitic pe,

and f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian condition. Suppose that the

multi-index a is such that 0a a1; a2; . . . ; ai�1; aiþ1; . . . ; an < pN, pN a ai <

pN þ L with L > 0 an integer and N ¼ eþ dpðLÞ. When we write f a ¼P
0ab1;...;bn<pN abðxpN

1 ; . . . ; xpN

n Þ f b , then we have

ai

L

� �
f a�Lei ¼ 0 ¼

X
0ab1;...;bn<pN

abðxpN

1 ; . . . ; xpN

n Þ
bi
L

� �
f b�Lei :

Proof. The assumption pN a ai < pN þ L implies that pN�dpðLÞ ¼ pe

divides ai
L

� �
, hence the left hand side is 0. For the right hand side, for each
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b, choose j so that pN�j j ða� bÞ but pN�jþ1 F ða� bÞ. If N � j < dpðLÞ, then
we have j > e, and by Lemma 3.4, we have ab ¼ 0. On the other hand, if

N � jb dpðLÞ, then bi
L

� �
is divisible by pN�j�dpðLÞ, and again by Lemma 3.4,

abðxpN

1 ; . . . ; xpN

n Þ is divisible by p j, hence bi
L

� �
ab is divisible by pN�dpðLÞ ¼ 0,

hence the right hand side is also 0. r

Proposition 3.6. Assume that R has a prime power characteristic pe. If

g ¼
P
a

aaðxpN

1 ; . . . ; xpN

n Þ f a A R½x1; . . . ; xn� with a not necessarily in the range of

0a a < pN, and N ¼ eþ dpðLÞ, then we have

q
½L�
fi
g ¼

X
aaðxpN

1 ; . . . ; xpN

n Þ
ai

L

� �
f a�Lei

Proof. By linearity, we may assume that g ¼ f a. First, we treat the

case where ai bL. When we write f a�Lei ¼
P

0ab1;...;bn<pN abðxpN

1 ; . . . ; xpN

n Þ f b,

then ai
L

� �
f a�Lei ¼

P
abðxpN

1 ; . . . ; xpN

n Þ ai
L

� �
f b. For each b, take j so that

a� Lei � b is divisible by pN�j , but not by pN�jþ1. If jb e, then by

Lemma 3.4, ab ¼ 0. On the other hand, if j < e, then biþL
L

� �
1 ai

L

� �
mod pN�j�dpðLÞ and p jjab by Lemma 3.4 again, which imply that ai

L

� �
f a�Lei ¼P

abðxpN

1 ; . . . ; xpN

n Þ biþL
L

� �
f b. Because f ¼

P
0ab<pN abðxpN

1 ; . . . ; xpN

n Þ f bþLei , we

may assume that 0a ak < pN for k0 i and pN a ai < pN þ L from the

beginning. But this speicial case is already proved in Lemma 3.5.

We still need to prove Proposition for the case ai < L. In that case,

when we write f a ¼
P

0ab1;...;bn<pN abðxpN

1 ; . . . ; xpN

n Þ f b, if pN�jþ1 does not

divide a� b, then ab is divisible by p j by Lemma 3.4. Also if pN�j divides

a� b, then bi
L

� �
is divisible by pN�j�dpðLÞ. Hence choosing j to be such that

a� b is divisible by pN�j but not by pN�jþ1, we conclude that each ab
bi
L

� �
is

divisible by pN�dpðLÞ ¼ 0. We have q
½L�
fi
f a ¼ 0 ¼

P
abðxpN

1 ; . . . ; xpN

n Þ bi
L

� �
f bLei

in this case. r

Lemma 3.7. Let j : R! S be a ring homomorphism, and assume that R

has a prime power characteristic pe. Let f1; . . . ; fn A R½x1; . . . ; xn� satisfy the

Jacobian Condition, g A R½x1; . . . ; xn� a polynomial, and by abuse of notation,

we write j : R½x1; . . . ; xn� ! S½x1; . . . ; xn� for the induced homomorphism with

jðxiÞ ¼ xi. Then S has a prime power characteristic, jð f1Þ; . . . ; jð fnÞ A
S½x1; . . . ; xn� satisfy the Jacobian Condition, and we have the compatibility

formula jðq½L�fi
gÞ ¼ q

½L�
jð fiÞjðgÞ.

Proof. The compatibility formula follows from Proposition 3.6. The

rest is easy. r
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Proposition 3.8. Let R be a Noetherian ring, and assume that f1; . . . ; fn A
R½x1; . . . ; xn� satisfy the Jacobian condition. For a prime number p and each

integer e > 0, define the canonical homomorphism jpe : R½x1; . . . ; xn� !
R=ðpeRÞ½x1; . . . ; xn�. Then for a polynomial g A R½x1; . . . ; xn�, the system of

polynomials fq½L�
jp e ð fiÞ

jpeðgÞge¼1;2;... forms an inverse system, and determines an

element

q
½L�
jpy ð fiÞ

jpyðgÞ A lim �
e

R=peR

 !
½x1; . . . ; xn�:

Proof. By Lemma 3.7, the higher derivations are compatible with the

ring homomorphisms, hence the system fq½L�
jp e ð fiÞ

jpeðgÞge¼1;2;... forms an inverse

system. We need to show that the degrees are bounded, which implies that the

inverse limit lies in the polynomial ring, in the ring of the power series.

Define an ideal I HR by I :¼ fr A R j psr ¼ 0 for some s > 0g. As R is

Noetherian, peI ¼ 0 for some e > 0. Let e 0 > e, and take c A R=ðpe 0RÞ to be

the coe‰cient of xa in q
½L�
j
p e
0 ð fiÞjpe 0 ðgÞ, where the coe‰cients of xa in both

q
½L�
jp e ð fiÞ

jpeðgÞ and q
qfi

� �L
g are zero. We will show that c ¼ 0, which implies the

boundedness of the degree.

Let e 00 ¼ e 0 þ dpðLÞ, then by Lemma 3.7, c is the image of the coe‰-

cient c1 A R=ðpe 00RÞ of xa in q
½L�
j
p e
00 ð fiÞjpe 00 ðgÞ. Then L!c1 is the coe‰cient of

xa in q
qj

p e
00 ð fiÞ

� �L
jpe 00 ðgÞ, which is zero by the assumption of c. As L!

pdpðLÞ

is invertible in R=ðpe 00RÞ, we have pdpðLÞc1 ¼ 0. Let ~cc1 A R be a preimage

of c1, then we have pdpðLÞ ec1c1 ¼ pe 00 ec 0c 0 for some ec 0c 0 A R. Also the image of

c1 in R=ðpeRÞ is zero by the assumption of c, hence we have ec1c1 ¼ pe~cc

for some c A R. Hence we have pe 00 ec 0c 0 ¼ pdpðLÞ ec1c1 ¼ pdpðLÞpe~cc, therefore

peþdpðLÞð~cc� pe 0�eec 0c 0Þ ¼ 0, which means ~cc� pe 0�eec 0c 0 A I , hence peð~cc� pe 0�eec 0c 0Þ ¼
0, and we obtain ec1c1 ¼ pe~cc ¼ pe 0 ec 0c 0. We conclude c ¼ ec1c1 mod pe 0R ¼ 0 as

desired. r

The following result is well known.

Lemma 3.9. Let R be a ring finitely generated over Z. If mHR is a

maximal ideal, then the characteristic of R=m is positive. r

Lemma 3.10. Let R be a finitely generated ring over Z, then the canonical

homomorphism

j : R½x1; . . . ; xn� !
Y
p

lim �
e

R=ðpeRÞ½x1; . . . ; xn�

where p runs over all prime numbers, is injective.
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Proof. It is enough to show that R!
Q
p

lim �
e

R=ðpeRÞ is injective. Let

r A R be a non-zero element, I ¼ annðrÞHR be the annihilator ideal, and

mI I be any maximal ideal. By Lemma 3.9, the characteristic of R=m is

positive, say p. We will show that the image of r in lim �
e

R=ðpeRÞ is non-

zero. Assuming to the contrary, taking the ideal J ¼7 peR, we suppose

that r A J. Let s1; . . . ; st be a set of generators of the ideal J, then because

J ¼ pJ ¼ ðps1; . . . ; pstÞ, there is a matrix A A MtðRÞ such that pA

�
s1
..
.

st

�
¼�

s1
..
.

st

�
. Multiplying the adjoint matrix of I � pA from the left side, we

conclude that detðI � pAÞJ ¼ 0, hence detðI � pAÞr ¼ 0, so we have

detðI � pAÞ A I . On the other hand, we have detðI � pAÞ1 1 mod p, hence

one can find an element u A R so that 1� pu ¼ detðI � pAÞ A I Hm C p, a

contradiction. r

Lemma 3.11. Let R be a finitely generated ring over Z, N A Z a positive

integer, and consider the homomorphism j : R!
Q
p

lim �
e

R=ðpeRÞ, then j induces

an isomorphism from annðNÞHR to annðNÞH
Q
p

lim �
e

R=ðpeRÞ.

Proof. By Lemma 3.10, j is injective, so we need only to show the

surjectivity of jjannðNÞ. Each lim �
e

R=ð1peRÞ has only torsion of the order

some power of p, so we may assume that N ¼ pd , and consider the homo-

morphism jp : R! lim �
e

R=ðpeRÞ. Let fr1; r2; . . .g A annðpdÞH lim �
e

R=ðpeRÞ,

with ri A R=ðpiRÞ. First, we claim that one can find a preimage ~rri A R of ri so

that pd~rri ¼ 0. Let ~rr 0i A R be any preimage for each ri. Because fr1; r2; . . .g is

an inverse system, if i > j, we have ~rr 0i 1 ~rr 0j mod p jR. Also, because pdri ¼ 0,

one can find si A R so that pd~rr 0i ¼ pisi for each i. Let us take ~rri :¼ ~rr 0iþd �
pisiþd , then ~rri is a preimage of ri, and pd~rri ¼ pd~rr 0iþd � piþdsiþd ¼ 0.

Similarly to the proof of Proposition 3.8, let us take the ideal I :¼
fr A R j psr ¼ 0 for some s > 0g, then for some e > 0, we have peI ¼ 0. We

claim that if ib jb e, then ~rri ¼ ~rrj. Since fr1; r2; . . .g forms an inverse system,

we have ~rrj 1 ~rri mod p jR, hence there is some t A R such that ~rri � ~rrj ¼ p jt. As

pd~rri ¼ pd~rrj ¼ 0, we have pdð~rri � ~rrjÞ ¼ pdþjt¼0, so t is in the ideal I .

Therefore, we have ~rri � ~rrj ¼ p jt ¼ p j�epet ¼ 0, because peI ¼ 0.

By replacing ~rri with i < e by ~rre, we conclude that our torsion element

fr1; r2; . . .g is the image of ~rre, a torsion element in R. We are done. r

Proposition 3.12. Let R be a finitely generated ring over Z, f1; . . . ; fn A
R½x1; . . . ; xn� satisfy the Jacobian condition, and g A R½x1; . . . xn� a polynomial,
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then
Q
p

ðq½L�
jpy ð fiÞ

jpyðgÞÞ is in
Q
p

lim �
e

R=ðpeRÞ½x1; . . . ; xn�, and it lies in the

image of the canonical ring homomorphism j : R½x1; . . . ; xn� !
Q
p

lim �
e

R=

ðpeRÞ½x1; . . . ; xn�. Morever, if L! is invertible in R, then we have jðq½L�fi
gÞ ¼Q

p

ðq½L�
jpy ð fiÞ

jpyðgÞÞ defined in Definition 2.12.

Proof. Each ðq½L�
jpy ð fiÞ

jpyðgÞÞ is a polynomial by Proposition 3.8. Also

for p > L, L! is invertible in each R=ðpeRÞ, hence ðq½L�
jpy ð fiÞ

jpyðgÞÞ is the inverse

limit of 1
L! jpe

q
qfi

� �L
g

� �
, hence the degree of

Q
p

ðq½L�
jpy ð fiÞ

jpyðgÞÞ is bounded,

and is a polynomial.

By Proposition 2.10, we can write q
qfi

� �L
g ¼ L!h for some h A R½x1; . . . ; xn�,

and then we have L! jðhÞ �
Q
p

ðq½L�
jpy ð fiÞ

jpyðgÞÞ
 !

¼ 0. By Lemma 3.11,

there is h1 A R½x1; . . . ; xn� such that jðh1Þ ¼ jðhÞ �
Q

pðq
½L�
jpy ð fiÞ

jpyðgÞÞ, henceQ
p

ðq½L�
jpy ð fiÞ

jpyðgÞÞ equals jðh� h1Þ, in the image of j. If L! is invertible in R,

then h ¼ q
½L�
fi
g, and h1 ¼ 0. r

Definition 3.13. When R is finitely generated ring over Z and f1; . . . ;

fn A R½x1; . . . ; xn� satisfy the Jacobian condition, then for g A R½x1; . . . ; xn�, we
define the higher derivation q

½L�
fi
g to be the preimage of

Q
p

ðq½L�
jpy ð fiÞ

jpyðgÞÞ.

Remark 3.14. By Proposition 3.12, the preimage exists, and by Lemma

3.10, it is unique. If L! is invertible in R, then this definition coincides with

Definition 2.12 by Proposition 3.12. Also if R has a prime power charac-

teristic pe, then
Q
p

lim �
e

R=ðpeRÞ½x1; . . . ; xn�
 !

F lim �
e

R=ðpeRÞ½x1; . . . ; xn�F

R½x1; . . . ; xn�, and by the construction, Definition 3.13 and Definition 2.12

agree.

Lemma 3.15. Let c : R! S be a homomorphism between rings finitely

generated over Z, f1; . . . ; fn A R½x1; . . . ; xn� satisfy the Jacobian Condition, and

g A R½x1; . . . ; xn� a polynomial. By abuse of notation, let c : R½x1; . . . ; xn� !
S½x1; . . . ; xn� be the extension of c, defined by cðxiÞ ¼ xi. Then cðq½L�fi

gÞ ¼
q
½L�
cð fiÞcðgÞ holds.

Proof. By the definition of the higher derivation, we may assume that

R has a prime power characteristic, which case is already proved in Lemma

3.7. r
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Definition 3.16. Let R be any ring, f1; . . . ; fn A R½x1; . . . ; xn� satisfy the

Jacobian Condition, and g A R½x1; . . . ; xn� a polynomial. Take a ring injection

c : S ! R so that cðSÞ½x1; . . . ; xn� contains f1; . . . ; fn, g and det
qfi
qxj

� ��1
i; j
. Let ~ffi

and ~gg be the preimages of fi and g respectively, and define q
½L�
fi
ðgÞ to be the

image of q
½L�
~ffi
ð~ggÞ.

Remark 3.17. By Lemma 3.15, this definition is well defined, independent

of the choice of the injection c. By this definition, Theorem 2.13 obviously

holds.

4. SAGBI basis

Definition 4.1. Let k be a field. Throughout this section, fix a mon-

omial order for the monomials in k½x1; . . . ; xn� (see [3]). For a k subalgebra

RH k½x1; . . . ; xn�, define LMðRÞ to be fLMð f Þ j f A Rg, where LMð f Þ is the

leading monomial of f .

Lemma 4.2. Let SHR be k subalgebras of k½x1; . . . ; xn�. If LMðSÞ ¼
LMðRÞ, then S ¼ R.

Proof. Assume that S is a proper subalgebra of R. Take a polynomial

f A R� S with LMð f Þ minimal, which is possible because monomial order is

a well ordering. As LMðSÞ ¼ LMðRÞ, for some g A S, we have LMðgÞ ¼
LMð f Þ. Then for a suitable constant c A k �, LMð f � cgÞ < LMð f Þ, and

f � cg A R� S, a contradiction. r

Definition 4.3. Consider LMðRÞ as a monoid under multiplication.

When fLMð flÞgl AL generates LMðRÞ, the set f fl j l A Lg is called a SAGBI

basis of R.

Remark 4.4. Even when R is a finitely generated k subalgebra of

k½x1; . . . ; xn�, it is possible that there is no finite SAGBI basis for R (see [8]).

Definition 4.5. Let p be a prime. For each f A k½x1; . . . ; xn�, con-

sider LMð f Þ ¼ xa as a vector a ¼ ða1; . . . ; anÞ A Zn. Polynomials f1; . . . ; ft A
k½x1; . . . ; xn� are said to have linearly independent degree modulo p, if

LMð f1Þ; . . . ;LMð ftÞ A Fn
p are linearly independent in the vector space over Fp,

where LMð fiÞ is the image of LMð fiÞ by the natural map Zn ! F n
p .

Proposition 4.6. Let k be a field with characteristic p > 0, and r > 0

an integer. If f1; . . . ; fn A k½x1; . . . ; xn� have linearly independent degree modulo

p, then fxpr

1 ; . . . ; xpr

n ; f1; . . . ; fng is a SAGBI basis of the k subalgebra

k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�H k½x1; . . . ; xn�.
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Proof. If g A k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; fn�, we can write g ¼P
0ab1;...;bn<pr

abðxpr

1 ; . . . ; xpr

n Þ f b, because f prb A k½xpr

1 ; . . . ; xpr

n � by the Frobenius

map. We claim that the elements LMðabðxpr

1 ; . . . ; xpr

n Þ f bÞ; ð0a b1; . . . ; bn <

prÞ, are all distinct, which implies that LMðgÞ ¼ max LMðabðxpr

1 ; . . . ; xpr

n Þ f bÞ A
hLMðxpr

1 Þ; . . . ;LMðxpr

n Þ;LMð f1Þ; . . . ;LMð fnÞi.
Let vi ¼ LMð fiÞ A Zn, considered as a vector as in Definition 4.5.

Assuming that LMðabðxpr

1 ; . . . ; xpr

n Þ f bÞ ¼ LMðagðxpr

1 ; . . . ; xpr

n Þ f gÞ, we will

show that b ¼ g. We have
P
ðbi � giÞvi 1 0 mod pr. Let di :¼ bi � gi, thenP

divi 1 0 mod pr. We prove that each di can be written as di ¼ p jdi; j
with di; j A Z, j ¼ 0; 1; . . . ; r by induction on j. When j ¼ 0, nothing is to be

proved. Assume that di ¼ p jdi; j with j < r. Then since
P

divi 1 0 mod pr,

we have
P

di; jvi 1 0 mod pr j

. The vectors vi :¼ vi mod p are linearly in-

dependent over Fp by assumption, we have d1; j 1 d2; j 1 � � � 1 dr; j 1 0 mod p,

the induction completes. Hence di ¼ bi � gi is divisible by pr, and because

0a bi; gi < pr, we conclude that b ¼ g. r

Corollary 4.7. If f1; . . . ; ft have linearly independent degree modulo

p > 0, with p the charactersitic of k, then 7
r>0

k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft� ¼
k½ f1; . . . ; ft�.

Proof. Let S ¼ k½ f1; . . . ; ft�, and R ¼7
r>0

k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft�, then
obviously SHR. By Lemma 4.2, it is enougth to show that LMðSÞI
LMðRÞ. Let g A R be a non-zero polynomial, then for any r > 0, we have

g A k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft�. Pick r large enough so that the degree of g in xi
is less than pr for all i. By Proposition 4.6, we have LMðgÞ A hLMðxpr

1 Þ; . . . ;
LMðxpr

n Þ;LMð f1Þ; . . . ;LMð ftÞi. But because LMðgÞ is not divisible by x
pr

i ,

actually LMðgÞ A hLMð f1Þ; . . . ;LMð ftÞiHLMðSÞ. We are done. r

Remark 4.8. If f1; . . . ; fn A k½x1; . . . ; xn� satisfy the Jacobian condition

and f1; . . . ; fn have linearly independent degree modulo p > 0, the characteristic

of k, then combining Corollary 4.7 with Corollary 2.6, one immediately proves

the Jacobian conjecture in characteristic p in this special case. Unfortunately,

from the proof of Corollary 4.7, it follows that LMðSÞ ¼ hLMð f1Þ; . . . ;
LMð fnÞi, which means that our assumption holds only when LMð f1Þ; . . . ;
LMð fnÞ are distinct degree 1 monomials, too trivial case to be mentioned.

Remark 4.9. This section is the only ‘‘missing link’’ in the proof of

Jacobian conjecture in general. All we have to solve is the following problem:

Find a ‘‘good’’ condition for f1; . . . ; ft so that 7
r>0

k½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft� ¼
k½ f1; . . . ; ft� holds.
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5. Reduction to positive characteristic

Conjecture 5.1. Weak Kernel Conjecture WKCðn; tÞ: Let k be a field of

charecteristic 0, and f1; . . . ; fn A k½x1; . . . ; xn� satisfy the Jacobian Condition.

Then we have

7
i>t

Ker
q

qfi
¼ k½ f1; . . . ; ft�

Remark 5.2. When t ¼ n� 1, the Weak Kernel Conjecture

WKCðn; n� 1Þ is the standard Kernel Conjecture for n variables, which implies

the Jacobian Conjecture for n� 1 variables. Conversely, the Jacobian Con-

jecture for n variables implies the standard Kernel Conjecture for n variables

([5]). If tb s, WKCðn; tÞ implies WKCðn; sÞ.

The goal of this section (and this paper) is the following theorem.

Theorem 5.3. Let k be a field of characteristic 0, and f1; . . . ; fn A
k½x1; . . . ; xn� satisfy the Jacobian Condition. Fix a monomial order for the

monomials in k½x1; . . . ; xn�. Consider LMð f1Þ; . . . ;LMð fnÞ in Zn, as vectors in

Qn. If LMð f1Þ; . . . ;LMð ftÞ are linearly independent, then 7
i>t

Ker q
qfi
¼

k½ f1; . . . ; ft�.

Corollary 5.4. WKCðn; 1Þ holds. In particular, it gives a new proof for

the Kernel Conjecture for 2 variables.

The key tool to reduce the WKC to positive characterisitc is the following

lemma.

Lemma 5.5. Let k be a field of characteristic 0, f1; . . . ; ft; g A k½x1; . . . ; xn�
polynomials, a1; . . . ; as A k � finitely many non-zero elements in k, and N an

positive integer. If g B k½ f1; . . . ; ft�, then there exists a subring RH k which

satisfies the following conditions.

(1) The ring R is finitely generated over Z.

(2) f1; . . . ; ft; g A R½x1; . . . ; xn�.
(3) The elements a1; . . . ; as are invertible in R.

(4) For any maximal ideal mHR, let f1; . . . ; ft; g A R=m½x1; . . . ; xn� be the

canonical images of f1; . . . ; ft; g A R½x1; . . . ; xn�, then g B R=m½ f1; . . . ; ft �.
(5) For any maximal ideal mHR, the characteristic of R=m is larger than N.

Proof. First, in order that f1; . . . ; ft; g A R½x1; . . . ; xn�, the ring R must

contain all the coe‰cients of fi’s and g’s. Also to make sure that a1; . . . ; as are

invertible in R, R must contain 1
a1
; . . . ; 1

as
.

Next, the assumption that g B k½ f1; . . . ; ft� can be verified by the fol-

lowing calculation: Let I H k½x1; . . . ; xn; y1; . . . ; yt� be the ideal generated by
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y1 � f1; . . . ; yt � ft. Take an elimination monomial order in k½x1; . . . ; xn;
y1; . . . ; yt�, namely an order such that any monomial ya1

1 . . . yat
t is smaller than

each of x1; . . . ; xn. Calculate the Groebner basis of the ideal I under this

monomial order by Buchberger algorithm to obtain fh1; . . . ; hsg, and apply the

division algorithm to divide g by fh1; . . . ; hsg. When r is the remainder, g is

not in k½ f1; . . . ; ft� if and only if r contains a term involving x, namely,

r B k½y1; . . . ; yt�.
In the calculation above, notice that we use the divisions by elements of k

only finitely many times. We would like R to contain 1
a
whenever we use the

division by a A k in the calculation. Also in the final step of the verification

of g B k½ f1; . . . ; ft�, we look up a term in the remainder r, which involves x,

and see that its coe‰cient is non-zero. We would like R also to contain the

multiplicative inverse of the coe‰cients.

Finally, to make sure that the characteristic of R=m is larger than N, it is

enough that R contains 1
N! , because the characteristic of R=m is positive by

Lemma 3.9.

Once we generate the ring R by all these finitely many elements over Z,

the calculation to verify that g B R=m½ f1; . . . ; ft � proceeds exactly parallel to the

verification of g B k½ f1; . . . ; ft�. r

Lemma 5.6. Let f1; . . . ; ft A k½x1; . . . ; xn� be polynomials, where the poly-

nomial ring has some fixed monomial order. If the vectors LMð f1Þ; . . . ;
LMð ftÞ A Zn HQn are linearly independent, then there exists some integer N so

that for any prime p > N, f1; . . . ; ft have linearly independent degree modulo p.

Proof. Let vi ¼ LMð fiÞ A Zn be the leading monomial of fi considered as

a vector. Because v1; . . . ; vt are linearly independent, there exists a non-zero

t� t minor in the canonical matrix representation of ðv1; . . . ; vtÞ. One can

choose N to be the absolute value of the determinant of the minor. r

Now we are ready to prove our main theorem.

Proof (of Theorem 5.3). The inclusion 7
i>t

Ker q
qfi

I k½ f1; . . . ; ft� is

obvious. Pick a polynomial g B k½ f1; . . . ; ft�. Assume that qg
qftþ1
¼ � � � ¼ qg

qfn
¼ 0,

and we need to get some contradiction. Because LMð f1Þ; . . . ;LMð ftÞ are

linearly independent, by Lemma 5.6, there is some N such that for any prime

p > N, the polynomials f1; . . . ; ft have linearly independent degree modulo

p. Let ai be the leading coe‰cient of fi for i ¼ 1; 2; . . . ; t, and atþ1 ¼
det

qfi
qxj

� �
i; j¼1;...;n

, and take the subring RH k with s ¼ tþ 1 as in Lemma 5.5.

Let mHR be any maximal ideal, p > N the characteristic of R=m, and let

g; f1; . . . ; ft as in Lemma 5.5.

As det qfi
qxj

� �
is invertible in R, we can define the higher derivations q

½L�
fi
g,
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i ¼ tþ 1; tþ 2; . . . ; n, L > 0, with R coe‰cients, and they are zero by the

compatibility for RH k. Again by compatibility for R! R=m, we have

q
½L�
fi
g ¼ 0 for L > 0, i ¼ tþ 1; . . . ; n, hence by Corollary 2.16, we have

g A 7
r>0

R=m½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft�. By Corollary 4.7, we have 7
r>0

R=

m½xpr

1 ; . . . ; xpr

n ; f1; . . . ; ft � ¼ R=m½ f1; . . . ; ft �, contradicting the choice of R so

that g B R=m½ f1; . . . ; ft �. r
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