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ABSTRACT. We provide an irreducibility criterion for polynomials in one variable over
a valued field K, in the presence of a secondary valuation defined on K.

1. Introduction

The problem of understanding the structure of irreducible polynomials
over a local field is simpler than the corresponding problem over a global field.
In [6] it is shown how one can construct all the irreducible polynomials in one
variable over a local field. This is done with the aid of the so-called saturated
distinguished chains of polynomials, introduced in [6] and studied also in [1], [4]
and [5]. In this paper we are concerned with an irreducibility criterion for
polynomials in one variable over a field equipped with two valuations. A
classical fact concerning irreducible polynomials over a field K which is com-
plete with respect to a nonarchimedean absolute value |.|, is that if f(X) =
X+ a X4 ' +... +a,eK[X] is irreducible over K, then there exists an
&> 0 such that any polynomial g(X) = X +b X9 ... +b,; € K[X], with
|bj — aj| < e for any je{l,...,d}, is also irreducible over K. A more precise
result in this direction is provided by a well known lemma of Krasner. By
pursuing this kind of ideas, Krasner (see [3]) computed explicitly the number of
extensions of a given degree of a p-adic field. In this paper we present an
irreducibility result as above, which is applicable to some valued fields K that
are not necessarily complete with respect to the given absolute value. As we
shall see, the lack of completeness of the field K is compensated by the ex-
istence of a secondary valuation on K, which satisfies a certain property in
connection with the given, primary valuation. In Section 2 below we consider
the case where K = Ko (), where K| is a finite extension of Q, for some prime
number p, and ¢ is an indeterminate. By examining this example we identify
a certain property, which we then take as a starting point in the more general
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case treated in Section 3. In the last section we consider the case of an
algebraic function field of one variable over a p-adic field. It would be in-
teresting to find more instances where properties which are known to hold true
for complete fields can be shown to be satisfied by some valued fields which are
not necessarily complete, and where the lack of completeness is compensated by
the existence of one, or several secondary valuations.

2. The case K = Ky(¢)

Let p be a prime number, Q, the field of p-adic numbers, Ky a finite
extension of Q,, ¢ an indeterminate and K = Ko(#) the field of rational
functions in ¢ with coefficients in Ky. Denote by |.| the p-adic absolute value
on Ky, normalized by |p] :%, say. If ny is a uniformizing element of K
and e(Ko/Q,) denotes the ramification index of Ky over Q,, then |ro| =

\/e(Ko/Qy) . . :
(F) . We consider the Gauss extension of |.| to K. This absolute
value, which we continue to denote by |.|, is defined as follows. If P(z) =

cot" + itV + -+ ¢, with ¢, ..., c, € Ky, then

(2.1) |[P(7)] = max |cj].
<j<n
Next, |.| is extended from Kj[f] to K by multiplicativity, thus if r(z) = % eK
with P(7), Q(7) € Kylt], then
[P(1)]
(2.2) |r(8)] = .
Q1)
Note that K is not complete with respect to the absolute value |.|. We now
take a polynomial in one variable
(2.3) fX)=X"4a X"+ +ay
with ay,...,a,; € Ko[t], such that f(X) is irreducible over K, and approximate
f(X) with polynomials
(2.4) g X) =X+ b X 4 4 by,
with by,...,bs € Ko[t]. Suppose that
(2.5) |bj —aj| <e  for any je{l,...,d},

for a given ¢ > 0. One can not conclude that for & small enough, any such
polynomial g(X) is irreducible. To see this, consider the following example.
Let p be an odd prime and f(X) = X2 — (1 + pt). For each positive integer
m, let
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m 1/2 2
2.6 m(X) = X% — kek ],
2.6 on(Y) (;( C)r

where

2.7) (1/2):5@—1)...@_“1).

k k!

The elements A4,,(¢) ==Y/, (1,/(2) pkt* e Ky[t] are partial sums of the Taylor

series expansion of y/1 + pt. Hence 1 + pt — Am(t)z, as a polynomial in ¢, has
only terms of degree > m. These terms are of the form (142) (11/.2) pitiiti

and are small in our absolute value |.| as (i+ j) — oo. Thus g,(X) ap-
proaches f(X) as m — oo. At the same time, each polynomial g,,(X) is
reducible over K, while the limiting polynomial f(X) is irreducible over K.

At this point we would say that this was an expected phenomenon, simply
due to the fact that the field K is not complete with respect to the absolute
value |.|]. Observe that in the above example the coefficients of the polyno-
mials ¢,,(X) are elements of Kj[f] of higher and higher degree as polynomials
in t over Ky. Let us then restrict to the case when the irreducible polynomial
f(X) given by (2.3) is approximated by polynomials g(X) as in (2.4) and (2.5),
with the additional constraint that the degrees of all the coefficients by, ..., by,
as polynomials in ¢ over Ky, are bounded by a given number D. Then we do
have an irreducibility result. For ¢ > 0 small enough, depending on Ky, f(X)
and D, any polynomial g(X) as above is irreducible over K. Indeed, if this

fails, then there is a sequence of polynomials (g,(X)),cn-

gn(X) = Xd + le1Xd71 +---+ bd,m

with by ,,...,b4, € Ko[t], for which

(28) |bj7n - Clj‘ <

)

S

for any ne N and any je {l,...,d}, and such that each polynomial g,(X) is
reducible over K. Say

gn(X) = Gn(X)Hn(X)7

for any ne N, with G,(X), H,(X) € Ko[f][X], deg G,(X) = 1, deg H,(X) = 1.
Restricting if necessary to a subsequence, we may assume that deg G,(X) = r is
constant. Denote

Gn(X) =X"+ Cl,l1)(r71 +--+ Cr,na
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where each C;,, 1 < j <r, is a polynomial in ¢ over Ky, of degree at most D,
D
Gin = ¢on+ Gt + -+ ¢pal”.

If we extend the absolute value |.| to an absolute value, also denoted by |.|, on
a fixed algebraic closure Ky(7) of Koy(z), then from (2.8) we see that the coef-
ficients, and therefore also the roots of all the polynomials g,(X), are uniformly
bounded in the absolute value |.|. In particular the roots of the polynomials
G,(X), and thus also their coefficients C; ,, are uniformly bounded in the abso-

lute value |.|. Since for any j and any n we have

|Gl = max |¢j.s.nl,

we deduce that for any je{l,...,r} and any se {0,...,D}, the sequence
(¢js,n)pen 1s bounded. The field Ky is locally compact, and so each such
sequence has a subsequence which converges in Kj,. Therefore there is a sub-

sequence ny < ny < --- < ng < --- for which
(2.9) lim ¢jgn, = ¢ € Ko,
Jm G, :

for 1 <j<rand 0<s<D. If we denote
Ci=c¢o+cat+-+¢pt”,
then from (2.9) it follows that

lim G = G,
k— o0

for 1 < j <r. This means that the sequence of polynomials (G,, (X)), . con-
verges to the polynomial

GX)=X"+C X'+ +C.

Similarly, along a subsequence of this sequence, we have that H,(X) ap-
proaches a polynomial H(X) e Ko[f][X]. Then clearly g¢,(X) will converge
along this last subsequence, to G(X)H(X). Thus f(X)= G(X)H(X), which
contradicts our assumption that f(X) is irreducible.

The above familiar reasoning uses two special properties, particular to this
situation, namely the fact the ring Ky[¢7] containing the coefficients of the given
polynomial f(X) is a polynomial ring in one variable over a field Ky, and the
fact that K is locally compact with respect to the given absolute value |.|. We
would like to find an alternative way of proving a result as above, assuming
less restrictive properties of the rings and absolute values under consideration,
and which will then have a larger area of possible applications.
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Let us also remark that in the above example we have a second absolute
value, namely the one given by the degree of elements from Kjy[f] viewed as
polynomials in ¢, whose properties were tacitly used in the proof.

In the next section we consider a more general situation, in which Ky[f] is
replaced by a ring 4 on which we have two absolute values, or, more generally,
two valuations v; and vp. The valuation v, which we view as the primary
valuation, will play the role of the above absolute value |.|, and the valuation
vy, which we see as a secondary valuation, will play the role of the degree with
respect to ¢ in the above result. Thus the role of the secondary valuation v,
will be to compensate the lack of completeness of the given field with respect to
our primary valuation vj.

3. An axiomatic treatment

Let K be a field of characteristic zero, equipped with two non-archimedean
valuations v; and v;. For general definitions and basic properties of valuations
we refer the reader to [7]. For i = 1,2, let O; denote the valuation ring of v;,
let M; be the maximal ideal of O;, and let k; = O;/M;, the residue field of v;.
We also denote by [; the value group of the valuation v;.

Let now A4 be a subring of K, with field of fractions K, and which is
integrally closed in K.

Denote by K a fixed algebraic closure of K, and let us fix two valuations
oy and D, on K, which are extensions of the given valuations v; and respectively
v2. For i=1,2, denote by O;, M;,k; = O;/M; and I, the valuation ring, the
maximal ideal of the valuation ring, the residue field, and respectively the value
group of the valuation #; on K.

So far the valuations v; and v, had a symmetric role. We now introduce
a condition which is not symmetric in v; and v, and from now on we call v,
the primary valuation, and we call v, the secondary valuation on K.

Denote by A the integral closure of 4 in K. Since 4 is integrally closed
in K, we have ANK = 4.

We introduce the following condition. We require that no element from
A\A can be approximated, with respect to #;, by a (generalized) sequence of
elements from A4 which is bounded with respect to the secondary valuation v,.
Thus, we ask that for any o € A\A4, and any y, € I, there exists an element
7, € I1 < I, such that

(3.1) o1 (u— o) <y, for any ue A with v(u) > p,.

Note that (3.1) holds if K is complete with respect to the primary valuation vy,
regardless of the choice of v;.
Note also that (3.1) holds with K as in the previous section, K = Ky(¢), Ky
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finite extension of Q,, 4 = Ko[f], v; the Gauss extension to Ko(#) of the p-adic
valuation on Ky, and v, defined by

o2 (1)) = dex 010 ~ deg P(0),
for any P(¢),Q0(t) € Ko[f], O(f) #0. In this case, (3.1) says that no element
ae A\A can be approximated by a sequence of elements from Ko[f] whose
degrees with respect to ¢ are uniformly bounded. This happens simply because
any sequence of polynomials in ¢, of bounded degree, with coefficients in K,
which is a Cauchy sequence in the Gauss valuation, will converge to an element
from Ky[f] = A.

Of course, if one would ignore the secondary valuation here and would
only ask whether elements o e Ko[f]\Ko[f] can be limits with respect to the
Gauss valuation of sequences of elements from Kj[f], we already know that this
does happen indeed. We have seen for instance in the previous section that
the algebraic function « = /1 + pt € Ko[f]\Ko[{] is approximated in the Gauss
valuation by the partial sums of its Taylor expansion.

Returning to the general case, let us remark that (3.1) only depends on the
ring A, which also determines the field K, and on the two valuations v; and
v on K, and does not depend on the particular choice of the extension #; of v
to K.

To see this, let us assume that (3.1) holds for a particular extension o; of
v to K, and let us choose any other valuation w on K, whose restriction to K
coincides with v;. Fix elements « € A\4 and y, € I3. We need to show that
there exists an element y; € I7 such that

(3.2) w(u — o) <y, for any u e A with vy(u) > 7,.

Let

LX) =Xt X 4 ey e A[X]

be the minimal polynomial of o over K, and denote by o; = a,0p,...,0, the
roots of f,(X) in K. We apply (3.1), with o replaced by o;, 1 <i<d. It
follows that there are elements y; y,...,7; 4 € 11 such that

(3.3) O (u— o) < pp s

for any ue A with vy(u) > y,, and any ie {l,...,d}. As a consequence,
(3-4) Bfu) = Y tilw—o) < Dy

1<i<d I1<i<d
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for any ue A with vy(u) > y,. Since for any such u, f,(u) belongs to 4, we
have that

01 (fulw)) = v (falw) = w(fa(w)) = D wlu— ).
1<i<d

Therefore,

(3.5) Z wu —o;) < Z Vi

On the other hand,

(3.6) Z w(u — o) > w(u—o)+ Z min{w(u — o), w(o — o) }.
1<i<d 2<j<d

Fix an element y’ € I such that

(3.7) y = wla— o),

for any je{2,...,d}. We distinguish two cases.
I. If u is such that w(u — o) <y’, then (3.2) will hold true for such ele-
ments u, provided that y, is chosen to be larger than or equal to y’.

II. If u is such that w(u — o) >/, then from (3.6) and (3.7) we obtain
(3.8) Z w(u — o) > w(u— o) + Z w(o — o).
1<i<d 2<j<d
Fix an element y” € I for which
(3.9) P2 Y Y, wle— o).
I<i<d 2<j<d

By (3.5), (3.8) and (3.9) we find that

wiu—a) <",

for any ue A for which vy(u) =y, and w(u —a) =y’

In conclusion, if we let
7, = max{y’,y"} e I,

then (3.2) will hold true for any u e A with vo(u) > p,. This shows that the
above property (3.1) is independent indeed of the particular choice of the val-
uation #; on K which extends v;.

We prove the following irreducibility result.
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THEOREM 1. Let K be a field of characteristic zero, equipped with two non-
archimedean valuations vy and v,, and let A be a subring of K, with field of
fractions K, and which is integrally closed in K. Denote by I and I the value
groups of vy and respectively vy, and assume that (3.1) holds true. Then, for any
polynomial

X)) =X"4a X . tageAX],

which is irreducible over K, and for any y, € I, there exists y, € I such that, for
any by,...,bg e A for which

(310) Ul(bf_af)ZyH 1S1Sda
and
(3.11) v(bi) =y, 1<i<d,

the polynomial
(3.12) g X) =X 4+ b X 4 4 by,
is irreducible over K.

Proor. Let #; and B, be valuations on K whose restrictions to K coincide
with v; and respectively v,, and denote by I7 and I> respectively, the value
groups of #; and ;.

We first work inside the group I>.

Note first that for any polynomial g(X) as in (3.12), with by,... b, sat-
isfying (3.11), and any root 0 of g(X) in K, we have

diy(0) = 5,(07) = b, <— > b,ﬂd’)

1<i<d

> min {vy(b;) + (d = )52(0)} = 7, + min {(d — )52(6)}.

1<i<a

Thus there is an ie {1,...,d} for which

(3.13) 0(0) > e

l

According as to whether p, is a positive or a negative element of /5, we let
75 € I» be defined by the equality y} = y,/d, and respectively by the equality
75 =7,. Then, in both cases it follows from (3.13) that

(3.14) 02(0) = 7,

for any root 6 of any polynomial g(X) as in (3.12), with coefficients b;,...,by
satisfying (3.11).
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Let us also remark that in case such a polynomial g(X) is reducible, say
9(X) = G(X)H(X),

with G(X), H(X) € A[X], then from (3.14) one obtains bounds for all the coef-
ficients of G(X) and H(X), with respect to the valuation v;. More precisely, if

(3.15) GX)=X"+C X'+ 4+ C,

and if 0y,...,0, € K are the roots of G(X), then ,(0;) > 75, 1 <j <r, and
from the expressions of Ci,..., C, as symmetric functions of 0,...,0,, we see
that

(3.16) 0 (C) = iyé, I1<i<r,

and similarly for the coefficients of H(X).
We now return to the given polynomial f(X), and apply (3.1) for various
symmetric functions of proper subsets of the set of roots of f(X). Thus, if

a,...,0y are the roots of f(X) in K, then for any re {1,...,d — 1}, and any
subset S of {l,...,d} having exactly r elements, we consider the symmetric
sums

057125 O(j, gs2 = E aiq/7'~~;as,l‘:Haj'

JjeSs i,jesS jes
i<j

Clearly, o5 ;€ A, 1 < j <r, and if we consider the polynomial fs(X) e A[X],
fs(X) =X =051 X"+ 052X 24+ (1) o5,

then fs(X) factors over 4, as

fs(X0) =[x = o).
jes

Since f(X) was assumed to be irreducible over K, it follows that for 1 <r <
d — 1, and any subset S of {1,...,d} having exactly r elements, at least one of
the coefficients of f5(X) belongs to 4\A. For any such S, let us denote by
Jse{l,...,r} the smallest positive integer for which a5 ;€ A\4. We now
apply (3.1), with « replaced by os j, and y, replaced by jy5. It follows that
there is an element of 73, call it y, 5, for which

(3.17) 01(u—0s,j5) <718

for any ue A with va(u) > jsy}-

We now fix an element y, € /7. The actual choice of y; will be made
explicit later. We will choose y; to be large enough so that it satisfies certain
inequalities which will appear in what follows.
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Let g(X) be as in (3.12), with by, ..., b, satisfying (3.10) and (3.11), and let
us assume that g(X) is not irreducible over K. Say g(X) = G(X)H(X), with
G(X),H(X)e A[X], deg G=1, deg H > 1. Denote by 0,...,0, the roots of
g(X) in K. Here we order these roots so that 6 is one of the roots of g(X)
that are closest to oy, that is,

B1(01 —on) = max 01(0; — ).
After 0, is chosen, we denote by ¢» one of the remaining roots of g(X), which
is closest to oy, so
01(0r — o) = Jmax, 01(0; — 22).
Then continue in the same way with 0s,...,0;. Thus for any 1 <i<j<d
we have that
U1 (0, — O!,‘) > 171(9_/ — O!i).

For any ie{l,...,d}, one has

(3.18) > 0l —w) = 0i(g(x) = 01(g(o) — £ (o))

1<j<d

Uy ( Z (bs - as)“idx>

I<s<d

> min {11(b, - @)+ (d — )51 (%)}

>y + mind{(d — )01 (%)} =y + i,

I<s<

where ;e 17 is given by 6; =0 if (o) >0, and respectively by J; =
(d — 1)oy (o), if 01(o;) < 0. Let us denote

= max o1(o; — o).
@ 1gz‘¢jgdvl(a’ %)

We assume that y, is chosen such that

(3.19) v > dw — d;,

for any ie{l,...,d}. By (3.18) and (3.19) we see that
Z 01(0; — o) > do,
1<j<d

which further implies that

(3.20) max 01(0; — o) > o,
1<j<d
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for any i e {1,...,d}. For i=1, we know that the maximum on the left side
of (3.20) is attained for j =1, so
(3.21) 1_71(()1 — OC]) > .

Since 71(0y — o) < w < 01(0) — o1), we have
(3.22) 01 (01 — x2) = 010 — ) < 0.

By (3.22) and the choice of 6,, it follows that for i = 2, the maximum on the
left side of (3.20) is attained for j =2, hence

(3.23) 1_71(02 — 062) > .

As before we find that 7,(0; —o3) =01(g —o3) <w, and ©7,(0, —o3) =
71 (0p — 03) < w, from which we derive that 7;(03 — a3) > @w. By repeating the
above reasoning, we conclude that

(324) 171(9,’ - O(,') > o,
for any ie{l,...,d}. Tt also follows that
(325) U1 (Hj — OC,') =1 (O(j — OC,'),

for any 1 <i# j<d. Using (3.18), (3.25) and the equality

o (f' () = Y il — o),
l<j<d
J#i

we deduce that for any ie{l,...,d},

(3.26) 01(0; — o) =y, — 01 (f (o)) + 0.
Assume in what follows that for any ie {1,...,d},
(3.27) 1> 01(f"(04)) — 6 + B (o).
By (3.26) and (3.27) it follows that

(3.28) 01(0;) = 01 (o),

for any i€ {1,...,d}. Denote by S the subset of {1,...,d} which corresponds
to the roots of G(X), in the sense that

GX) =[x -0).

JjeS
Consider the polynomial
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By (3.26) we see that for y, large enough, the corresponding coefficients in the
polynomials G(X) and fs(X) are close to each other. One of the coeflicients
of fs(X) is

(329) 0S,js = Z Oy Oy v e OC,‘/.S .

l‘l,.“,ij es
i1<~“<l}'s

The corresponding coefficient in G(X), call it u, is given by

(330) u = Z 9,’1 01'2 e 01,; .
il,.,.,ijSES
i1<“'<ils
Note that for any 1 <ij,...,ix <d, one has
9,’1 e Hik — Oy .. O = 0,'] N 9,’,{71 (Hik — OCl'k) + 0,'] N 0,',\,72 (9[,{71 — (xik,l)fxik

+ 0 - .. 61}73 (HiA'—Z - aik—z)aik>—loci/( +oF (eil - %, )(xiz oo Qb
Combining this with (3.26) and (3.28), we find that
(331) 131(6‘i1 ces Hik — .. OCl‘k) > ﬁ](dil .o OCl'k)

+ min {y, — 01 (f" (o)) + 03y — D1 (%) }.

Using (3.31) together with (3.29) and (3.30), we obtain

(3.32) Ui(os,js —u) =y + min <D0 ... )
/S
i1y ljg €S
l'l<m<lij

+ min {—01(f" (o)) +; — 171(%)}} =71 +7s

1<i<js

where pg e I denotes the minimum above.
Now a5, € A\4, while ue 4. By (3.16) we also know that va(u) > jsy}.
Thus (3.17) is applicable, and we get

(3.33) O1(0s,js — u) < 715
The inequalities (3.32) and (3.33) imply that
(3.34) 1 =715~ Ps-

It follows that if we start with an element y, of I3 satisfying (3.19), (3.27) and
such that

(3.35) V1> 71,8 — Pss
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for any nonempty, proper subset S of {l,...,d}, then no polynomial
g(X) € A[X] as in (3.10), (3.11) and (3.12), can be reducible over K. This
completes the proof of the theorem.

4. The case of an algebraic function field over a p-adic field

We conclude this paper with an example. Let K, be a p-adic field, as in
Section 2. Denote by O the ring of p-adic integers in Ko, and let K be an
algebraic function field of one variable over Kj;. Choose any prime divisor 2
(i.e. any valuation on K which is trivial on Kj), and let ¢ be any element of K
whose only pole is at #. The existence of such an element ¢ follows from the
Riemann-Roch theorem (see Chapter II of [2]). Denote by A4 the integral
closure of O[f] in K. Then A is integrally closed in K, and K is the field of
fractions of 4. Also, K is a finite extension of Ky(f). On Ky(f) we have an
absolute value, as in Section 2, which is the Gauss extension of the p-adic
absolute value on K,. We fix an extension of this absolute value to K, and
denote it by |.|;. This is our primary absolute value. Next, fix any real
number p > 1, and put

(4.1) |P(0)], = ptee ™,

for any P(¢) € Ko[f]. Then extend this absolute value to an absolute value on
K, which we continue to denote by |.|,. This is our secondary absolute value
on K. By the above construction, the extension of the secondary absolute
value from Ky[f] to K is unique. Indeed, any two such extensions would
correspond to distinct prime divisors which are poles for ¢, contrary to our
assumption that the only pole of ¢ is at #. Note that if we extend the absolute
value |.|, to an absolute value on a fixed algebraic closure K of K, which we
also denote by |.|,, then for any automorphism o € Gal(K/K,(t)), the map
defined on K by z +— |a(z)|, is also an absolute value on K, and its restriction
to Ko(t) coincides with the absolute value |.|,. Since |.|, has a unique ex-
tension to K, it follows that the two absolute values also coincide on K.
Therefore,

(4.2) o(2)]> = |21,

for any o € Gal(K/Ky(t)) and any z € K. This shows that for any z € K, |z|, is
given by

(43) |Z|2 = |N0rmK/K0(I) Z|;/[K:KO([)].

Note also that

(4.4) Iz, = 1, for any 0 # z € 4.
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Let us check that property (3.1) holds in the present context. We choose an
extension of the primary absolute value |.|; to K, and continue to denote it by
|.l;- Let 4 denote the integral closure of 4 in K. Property (3.1) states in our
case that for any o e 4\A4, and any L > 0, there exists a J > 0 such that

(4.5) |u—al, =9, for any ue A with |u|, < L.

Suppose that (4.5) fails for some « € A\4 and L > 0. Then there is a sequence
(), cn of elements from A, with |u,|, < L for any ne N, and such that

(4.6) lim |u, — |, = 0.

n— o0

Denote by A the integral closure of Ko[f] in K, and fix an integral basis B =
{m.....nn} of A4 over Ko[f], where m = [K : Ko(¢)]. Each u, belongs to 4,
and hence it also belongs to 4. We write u, in terms of this basis,

(47) Up = Clonl + =+ F Coynly)

with ¢1p,...,cn 0 € Kolt], for any neN. Denote by B* ={y;,...,n,} the
dual basis of B. Then each coefficient ¢;, can be written as a trace,

(4.8) ¢j.n = Tracex g, () (Ut} ), l<j<m,neN.

On the other hand, from (4.2) we know that for any automorphism o e
Gal(K/K((t)) we have

(4.9) |0 (unt )y = Nt |y = lunly - 1071, < Ly,

It follows that

(410) |Cj.l1|2 S L|77;|27

for any n e N and any 1 < j <m. Therefore, for any fixed je {1,...,m}, the
sequence (cj,),cy 1S a sequence of polynomials in ¢ over Ky, of bounded
degree, say

Cin = Cjn0+ Cin1l+ -+ cj,nA,DtDv
where ¢ ,.0,...,¢np € Ko for any neN and any 1 < j<m. We claim that
for any 1 < j <m and any 0 <d < D, the sequence (¢ .q4),.y 15 bounded in

the p-adic absolute value. Indeed, each u, belongs to A, so u, is a root of a
polynomial of the form

Pi(X)=X"+a X 4 ta,

with aj,...,q, € O[f]. Since |ai|; <1,...,]a;|, <1, it follows immediately
that |u,|, <1, and also |o(u,)|; <1 for any o e Gal(K/Ky(t)). Therefore

|¢j.nly = [Tracex k() (i ), < max{|o(n;)|; : o € Gal(K/Ko(1))},
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which in turn implies that
|¢j.n.aly < max{la(n})], : 0 € Gal(K/Ko(1))}

for all de{0,1,...,D}. Hence for any 1 < j<m and any 0 <d < D the
sequence (¢jn.4),.y 15 bounded, as claimed. Since K is locally compact, it
follows that the sequence (cj,0),.y has a subsequence which converges with
respect to the absolute value |- |, to an element g, of Ko. This subsequence
has a subsequence along which ¢; ,, 1 converges to an element y; ; of Ko, and so
on. We conclude that there is a subsequence along which we simultaneously
have that ¢; 0 — #0, ¢n1 = 15+, Cnp — f p.- This means that along
this subsequence c¢; , converges in the Gauss absolute value |- |, to the element

¢ = Mo+ ot gy pt?

of Ky[f]. This further implies that there is a subsequence n; <nm < --- <
ng < --- for which we simultaneously have

khjg I¢jn — ¢jl; =0, for 1 < j<m.

Combining this with (4.6) and (4.7), we obtain

& — Z Cin;

1<j<m

< for =ty |y + Z |¢ome = ¢jly - Iy — 0,

1 1<j<m

as k — oo. Thus

o= Z ¢m; € K.
1<j<m
Therefore o € AN K = A, which contradicts our assumption that z € A\4. In
conclusion, property (4.5) holds true.
Theorem 1 is then applicable in our case, and it gives the following result.

THEOREM 2. Let Ky be a p-adic field, O its ring of integers, and let K be
an algebraic function field of one variable over Ky. Choose any prime divisor
2P and any element t € K whose only pole is at ?. Denote by A the integral
closure of Ot] in K. Let |.|, be an absolute value on K whose restriction to
Ky[f] coincides with the Gauss extension to Ky[t] of the p-adic absolute value on
Ko. Choose a real number p > 1, and denote by |.|, the unique absolute value on
K given by (4.1) and (4.3). Then, for any polynomial

X)) =X"4+aq X .. +a,e AX],

which is irreducible over K, and for any L > 0, there exists a 6 > 0 such that, for
any by,..., by e A for which

|b; — ai|; <9, 1 <i<d,
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and

Alexandru ZAHARESCU

the polynomial

is irreducible over K.
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