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Abstract. We provide an irreducibility criterion for polynomials in one variable over

a valued field K , in the presence of a secondary valuation defined on K.

1. Introduction

The problem of understanding the structure of irreducible polynomials

over a local field is simpler than the corresponding problem over a global field.

In [6] it is shown how one can construct all the irreducible polynomials in one

variable over a local field. This is done with the aid of the so-called saturated

distinguished chains of polynomials, introduced in [6] and studied also in [1], [4]

and [5]. In this paper we are concerned with an irreducibility criterion for

polynomials in one variable over a field equipped with two valuations. A

classical fact concerning irreducible polynomials over a field K which is com-

plete with respect to a nonarchimedean absolute value j:j, is that if f ðX Þ ¼
X d þ a1X

d�1 þ � � � þ ad A K ½X � is irreducible over K , then there exists an

e > 0 such that any polynomial gðX Þ ¼ X d þ b1X
d�1 þ � � � þ bd A K ½X �, with

jbj � ajj < e for any j A f1; . . . ; dg, is also irreducible over K . A more precise

result in this direction is provided by a well known lemma of Krasner. By

pursuing this kind of ideas, Krasner (see [3]) computed explicitly the number of

extensions of a given degree of a p-adic field. In this paper we present an

irreducibility result as above, which is applicable to some valued fields K that

are not necessarily complete with respect to the given absolute value. As we

shall see, the lack of completeness of the field K is compensated by the ex-

istence of a secondary valuation on K , which satisfies a certain property in

connection with the given, primary valuation. In Section 2 below we consider

the case where K ¼ K0ðtÞ, where K0 is a finite extension of Qp for some prime

number p, and t is an indeterminate. By examining this example we identify

a certain property, which we then take as a starting point in the more general
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case treated in Section 3. In the last section we consider the case of an

algebraic function field of one variable over a p-adic field. It would be in-

teresting to find more instances where properties which are known to hold true

for complete fields can be shown to be satisfied by some valued fields which are

not necessarily complete, and where the lack of completeness is compensated by

the existence of one, or several secondary valuations.

2. The case K ¼ K0ðtÞ

Let p be a prime number, Qp the field of p-adic numbers, K0 a finite

extension of Qp, t an indeterminate and K ¼ K0ðtÞ the field of rational

functions in t with coe‰cients in K0. Denote by j:j the p-adic absolute value

on K0, normalized by jpj ¼ 1
p
, say. If p0 is a uniformizing element of K0

and eðK0=QpÞ denotes the ramification index of K0 over Qp, then jp0j ¼
1
p

� �1=eðK0=QpÞ
. We consider the Gauss extension of j:j to K . This absolute

value, which we continue to denote by j:j, is defined as follows. If PðtÞ ¼
c0t

n þ c1t
n�1 þ � � � þ cn, with c0; . . . ; cn A K0, then

jPðtÞj ¼ max
0ajan

jcjj:ð2:1Þ

Next, j:j is extended from K0½t� to K by multiplicativity, thus if rðtÞ ¼ PðtÞ
QðtÞ A K

with PðtÞ;QðtÞ A K0½t�, then

jrðtÞj ¼ jPðtÞj
jQðtÞj :ð2:2Þ

Note that K is not complete with respect to the absolute value j:j. We now

take a polynomial in one variable

f ðXÞ ¼ X d þ a1X
d�1 þ � � � þ ad ;ð2:3Þ

with a1; . . . ; ad A K0½t�, such that f ðXÞ is irreducible over K , and approximate

f ðX Þ with polynomials

gðXÞ ¼ X d þ b1X
d�1 þ � � � þ bd ;ð2:4Þ

with b1; . . . ; bd A K0½t�. Suppose that

jbj � aj j < e for any j A f1; . . . ; dg;ð2:5Þ

for a given e > 0. One can not conclude that for e small enough, any such

polynomial gðXÞ is irreducible. To see this, consider the following example.

Let p be an odd prime and f ðXÞ ¼ X 2 � ð1þ ptÞ. For each positive integer

m, let
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gmðXÞ ¼ X 2 �
Xm
k¼0

1=2

k

� �
pktk

 !2
;ð2:6Þ

where

1=2

k

� �
¼

1
2

1
2 � 1
� �

. . . 1
2 � k þ 1
� �

k!
:ð2:7Þ

The elements AmðtÞ :¼
Pm

k¼0
1=2
k

� �
pktk A K0½t� are partial sums of the Taylor

series expansion of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pt

p
. Hence 1þ pt� AmðtÞ2, as a polynomial in t, has

only terms of degree > m. These terms are of the form 1=2
i

� �
1=2
j

� �
piþj t iþj

and are small in our absolute value j:j as ði þ jÞ ! y. Thus gmðX Þ ap-

proaches f ðX Þ as m ! y. At the same time, each polynomial gmðX Þ is

reducible over K , while the limiting polynomial f ðXÞ is irreducible over K .

At this point we would say that this was an expected phenomenon, simply

due to the fact that the field K is not complete with respect to the absolute

value j:j. Observe that in the above example the coe‰cients of the polyno-

mials gmðXÞ are elements of K0½t� of higher and higher degree as polynomials

in t over K0. Let us then restrict to the case when the irreducible polynomial

f ðX Þ given by (2.3) is approximated by polynomials gðX Þ as in (2.4) and (2.5),

with the additional constraint that the degrees of all the coe‰cients b0; . . . ; bd ,

as polynomials in t over K0, are bounded by a given number D. Then we do

have an irreducibility result. For e > 0 small enough, depending on K0; f ðXÞ
and D, any polynomial gðXÞ as above is irreducible over K . Indeed, if this

fails, then there is a sequence of polynomials ðgnðX ÞÞn AN,

gnðX Þ ¼ X d þ b1;nX
d�1 þ � � � þ bd;n;

with b1;n; . . . ; bd;n A K0½t�, for which

jbj;n � aj ja
1

n
;ð2:8Þ

for any n A N and any j A f1; . . . ; dg, and such that each polynomial gnðXÞ is

reducible over K . Say

gnðXÞ ¼ GnðX ÞHnðXÞ;

for any n A N, with GnðXÞ;HnðXÞ A K0½t�½X �, deg GnðX Þb 1, deg HnðX Þb 1.

Restricting if necessary to a subsequence, we may assume that deg GnðX Þ ¼ r is

constant. Denote

GnðX Þ ¼ X r þ C1;nX
r�1 þ � � � þ Cr;n;
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where each Cj;n, 1a ja r, is a polynomial in t over K0, of degree at most D,

Cj;n ¼ cj;0;n þ cj;1;ntþ � � � þ cj;D;nt
D:

If we extend the absolute value j:j to an absolute value, also denoted by j:j, on
a fixed algebraic closure K0ðtÞ of K0ðtÞ, then from (2.8) we see that the coef-

ficients, and therefore also the roots of all the polynomials gnðXÞ, are uniformly

bounded in the absolute value j:j. In particular the roots of the polynomials

GnðX Þ, and thus also their coe‰cients Cj;n, are uniformly bounded in the abso-

lute value j:j. Since for any j and any n we have

jCj;nj ¼ max
0asaD

jcj; s;nj;

we deduce that for any j A f1; . . . ; rg and any s A f0; . . . ;Dg, the sequence

ðcj; s;nÞn AN is bounded. The field K0 is locally compact, and so each such

sequence has a subsequence which converges in K0. Therefore there is a sub-

sequence n1 < n2 < � � � < nk < � � � for which

lim
k!y

cj; s;nk ¼ cj; s A K0;ð2:9Þ

for 1a ja r and 0a saD. If we denote

Cj ¼ cj;0 þ cj;1tþ � � � þ cj;Dt
D;

then from (2.9) it follows that

lim
k!y

Cj;nk ¼ Cj ;

for 1a ja r. This means that the sequence of polynomials ðGnk ðXÞÞk AN con-

verges to the polynomial

GðX Þ :¼ X r þ C1X
r�1 þ � � � þ Cr:

Similarly, along a subsequence of this sequence, we have that HnðXÞ ap-

proaches a polynomial HðX Þ A K0½t�½X �. Then clearly gnðXÞ will converge

along this last subsequence, to GðXÞHðX Þ. Thus f ðX Þ ¼ GðXÞHðX Þ, which
contradicts our assumption that f ðX Þ is irreducible.

The above familiar reasoning uses two special properties, particular to this

situation, namely the fact the ring K0½t� containing the coe‰cients of the given

polynomial f ðX Þ is a polynomial ring in one variable over a field K0, and the

fact that K0 is locally compact with respect to the given absolute value j:j. We

would like to find an alternative way of proving a result as above, assuming

less restrictive properties of the rings and absolute values under consideration,

and which will then have a larger area of possible applications.
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Let us also remark that in the above example we have a second absolute

value, namely the one given by the degree of elements from K0½t� viewed as

polynomials in t, whose properties were tacitly used in the proof.

In the next section we consider a more general situation, in which K0½t� is
replaced by a ring A on which we have two absolute values, or, more generally,

two valuations v1 and v2. The valuation v1, which we view as the primary

valuation, will play the role of the above absolute value j:j, and the valuation

v2, which we see as a secondary valuation, will play the role of the degree with

respect to t in the above result. Thus the role of the secondary valuation v2
will be to compensate the lack of completeness of the given field with respect to

our primary valuation v1.

3. An axiomatic treatment

Let K be a field of characteristic zero, equipped with two non-archimedean

valuations v1 and v2. For general definitions and basic properties of valuations

we refer the reader to [7]. For i ¼ 1; 2, let Oi denote the valuation ring of vi,

let Mi be the maximal ideal of Oi, and let ki ¼ Oi=Mi, the residue field of vi.

We also denote by Gi the value group of the valuation vi.

Let now A be a subring of K , with field of fractions K , and which is

integrally closed in K .

Denote by K a fixed algebraic closure of K , and let us fix two valuations

v1 and v2 on K, which are extensions of the given valuations v1 and respectively

v2. For i ¼ 1; 2, denote by Oi;Mi; ki ¼ Oi=Mi and Gi the valuation ring, the

maximal ideal of the valuation ring, the residue field, and respectively the value

group of the valuation vi on K .

So far the valuations v1 and v2 had a symmetric role. We now introduce

a condition which is not symmetric in v1 and v2, and from now on we call v1
the primary valuation, and we call v2 the secondary valuation on K .

Denote by A the integral closure of A in K . Since A is integrally closed

in K , we have AVK ¼ A.

We introduce the following condition. We require that no element from

AnA can be approximated, with respect to v1, by a (generalized) sequence of

elements from A which is bounded with respect to the secondary valuation v2.

Thus, we ask that for any a A AnA, and any g2 A G2, there exists an element

g1 A G1 JG1, such that

v1ðu� aÞa g1; for any u A A with v2ðuÞb g2:ð3:1Þ

Note that (3.1) holds if K is complete with respect to the primary valuation v1,

regardless of the choice of v2.

Note also that (3.1) holds with K as in the previous section, K ¼ K0ðtÞ, K0
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finite extension of Qp, A ¼ K0½t�, v1 the Gauss extension to K0ðtÞ of the p-adic

valuation on K0, and v2 defined by

v2
PðtÞ
QðtÞ

� �
¼ deg QðtÞ � deg PðtÞ;

for any PðtÞ;QðtÞ A K0½t�, QðtÞ0 0. In this case, (3.1) says that no element

a A AnA can be approximated by a sequence of elements from K0½t� whose

degrees with respect to t are uniformly bounded. This happens simply because

any sequence of polynomials in t, of bounded degree, with coe‰cients in K ,

which is a Cauchy sequence in the Gauss valuation, will converge to an element

from K0½t� ¼ A.

Of course, if one would ignore the secondary valuation here and would

only ask whether elements a A K0½t�nK0½t� can be limits with respect to the

Gauss valuation of sequences of elements from K0½t�, we already know that this

does happen indeed. We have seen for instance in the previous section that

the algebraic function a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pt

p
A K0½t�nK0½t� is approximated in the Gauss

valuation by the partial sums of its Taylor expansion.

Returning to the general case, let us remark that (3.1) only depends on the

ring A, which also determines the field K, and on the two valuations v1 and

v2 on K , and does not depend on the particular choice of the extension v1 of v1
to K .

To see this, let us assume that (3.1) holds for a particular extension v1 of

v1 to K , and let us choose any other valuation w on K , whose restriction to K

coincides with v1. Fix elements a A AnA and g2 A G2. We need to show that

there exists an element g1 A G1 such that

wðu� aÞa g1; for any u A A with v2ðuÞb g2:ð3:2Þ

Let

faðXÞ ¼ X d þ c1X
d�1 þ � � � þ cd A A½X �

be the minimal polynomial of a over K , and denote by a1 ¼ a; a2; . . . ; ad the

roots of faðXÞ in K . We apply (3.1), with a replaced by ai, 1a ia d. It

follows that there are elements g1;1; . . . ; g1;d A G1 such that

v1ðu� aiÞa g1; i;ð3:3Þ

for any u A A with v2ðuÞb g2, and any i A f1; . . . ; dg. As a consequence,

v1ð faðuÞÞ ¼
X

1aiad

v1ðu� aiÞa
X

1aiad

g1; i;ð3:4Þ
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for any u A A with v2ðuÞb g2. Since for any such u; faðuÞ belongs to A, we

have that

v1ð faðuÞÞ ¼ v1ð faðuÞÞ ¼ wð faðuÞÞ ¼
X

1aiad

wðu� aiÞ:

Therefore,

X
1aiad

wðu� aiÞa
X

1aiad

g1; i:ð3:5Þ

On the other hand,

X
1aiad

wðu� aiÞbwðu� aÞ þ
X

2ajad

minfwðu� aÞ;wða� ajÞg:ð3:6Þ

Fix an element g 0 A G1 such that

g 0 bwða� ajÞ;ð3:7Þ

for any j A f2; . . . ; dg. We distinguish two cases.

I. If u is such that wðu� aÞa g 0, then (3.2) will hold true for such ele-

ments u, provided that g1 is chosen to be larger than or equal to g 0.

II. If u is such that wðu� aÞb g 0, then from (3.6) and (3.7) we obtain

X
1aiad

wðu� aiÞbwðu� aÞ þ
X

2ajad

wða� ajÞ:ð3:8Þ

Fix an element g 00 A G1 for which

g 00 b
X

1aiad

g1; i �
X

2ajad

wða� ajÞ:ð3:9Þ

By (3.5), (3.8) and (3.9) we find that

wðu� aÞa g 00;

for any u A A for which v2ðuÞb g2 and wðu� aÞb g 0.

In conclusion, if we let

g1 :¼ maxfg 0; g 00g A G1;

then (3.2) will hold true for any u A A with v2ðuÞb g2. This shows that the

above property (3.1) is independent indeed of the particular choice of the val-

uation v1 on K which extends v1.

We prove the following irreducibility result.
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Theorem 1. Let K be a field of characteristic zero, equipped with two non-

archimedean valuations v1 and v2, and let A be a subring of K, with field of

fractions K, and which is integrally closed in K. Denote by G1 and G2 the value

groups of v1 and respectively v2, and assume that (3.1) holds true. Then, for any

polynomial

f ðX Þ ¼ X d þ a1X
d�1 þ � � � þ ad A A½X �;

which is irreducible over K, and for any g2 A G2, there exists g1 A G1 such that, for

any b1; . . . ; bd A A for which

v1ðbi � aiÞb g1; 1a ia d;ð3:10Þ

and

v2ðbiÞb g2; 1a ia d;ð3:11Þ

the polynomial

gðXÞ ¼ X d þ b1X
d�1 þ � � � þ bd ;ð3:12Þ

is irreducible over K.

Proof. Let v1 and v2 be valuations on K whose restrictions to K coincide

with v1 and respectively v2, and denote by G1 and G2 respectively, the value

groups of v1 and v2.

We first work inside the group G2.

Note first that for any polynomial gðXÞ as in (3.12), with b1; . . . ; bd sat-

isfying (3.11), and any root y of gðX Þ in K , we have

dv2ðyÞ ¼ v2ðydÞ ¼ v2 �
X

1aiad

biy
d�i

 !

b min
1aiad

fv2ðbiÞ þ ðd � iÞv2ðyÞgb g2 þ min
1aiad

fðd � iÞv2ðyÞg:

Thus there is an i A f1; . . . ; dg for which

v2ðyÞb
g2
i
:ð3:13Þ

According as to whether g2 is a positive or a negative element of G2, we let

g 02 A G2 be defined by the equality g 02 ¼ g2=d, and respectively by the equality

g 02 ¼ g2. Then, in both cases it follows from (3.13) that

v2ðyÞb g 02;ð3:14Þ

for any root y of any polynomial gðXÞ as in (3.12), with coe‰cients b1; . . . ; bd
satisfying (3.11).
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Let us also remark that in case such a polynomial gðXÞ is reducible, say

gðX Þ ¼ GðXÞHðXÞ;

with GðXÞ;HðXÞ A A½X �, then from (3.14) one obtains bounds for all the coef-

ficients of GðX Þ and HðXÞ, with respect to the valuation v2. More precisely, if

GðX Þ ¼ X r þ C1X
r�1 þ � � � þ Cr;ð3:15Þ

and if y1; . . . ; yr A K are the roots of GðX Þ, then v2ðyjÞb g 02, 1a ja r, and

from the expressions of C1; . . . ;Cr as symmetric functions of y1; . . . ; yr, we see

that

v2ðCiÞb ig 02; 1a ia r;ð3:16Þ

and similarly for the coe‰cients of HðX Þ.
We now return to the given polynomial f ðX Þ, and apply (3.1) for various

symmetric functions of proper subsets of the set of roots of f ðX Þ. Thus, if

a1; . . . ; ad are the roots of f ðXÞ in K , then for any r A f1; . . . ; d � 1g, and any

subset S of f1; . . . ; dg having exactly r elements, we consider the symmetric

sums

sS;1 ¼
X
j AS

aj; sS;2 ¼
X
i; j AS
i<j

aiaj; . . . ; sS; r ¼
Y
j AS

aj :

Clearly, sS; j A A, 1a ja r, and if we consider the polynomial fSðX Þ A A½X �,

fSðXÞ :¼ X r � sS;1X
r�1 þ sS;2X

r�2 þ � � � þ ð�1ÞrsS; r;

then fSðXÞ factors over A, as

fSðXÞ ¼
Y
j AS

ðX � ajÞ:

Since f ðXÞ was assumed to be irreducible over K, it follows that for 1a ra

d � 1, and any subset S of f1; . . . ; dg having exactly r elements, at least one of

the coe‰cients of fSðX Þ belongs to AnA. For any such S, let us denote by

jS A f1; . . . ; rg the smallest positive integer for which sS; jS A AnA. We now

apply (3.1), with a replaced by sS; jS , and g2 replaced by jsg
0
2. It follows that

there is an element of G1, call it g1;S, for which

v1ðu� sS; jS Þa g1;S;ð3:17Þ

for any u A A with v2ðuÞb jSg
0
2.

We now fix an element g1 A G1. The actual choice of g1 will be made

explicit later. We will choose g1 to be large enough so that it satisfies certain

inequalities which will appear in what follows.

Irreducibility over valued fields 169



Let gðX Þ be as in (3.12), with b1; . . . ; bd satisfying (3.10) and (3.11), and let

us assume that gðXÞ is not irreducible over K . Say gðXÞ ¼ GðX ÞHðXÞ, with
GðXÞ;HðX Þ A A½X �, deg Gb 1, deg Hb 1. Denote by y1; . . . ; yd the roots of

gðX Þ in K . Here we order these roots so that y1 is one of the roots of gðXÞ
that are closest to a1, that is,

v1ðy1 � a1Þ ¼ max
1ajad

v1ðyj � a1Þ:

After y1 is chosen, we denote by y2 one of the remaining roots of gðXÞ, which
is closest to a2, so

v1ðy2 � a2Þ ¼ max
2ajad

v1ðyj � a2Þ:

Then continue in the same way with y3; . . . ; yd . Thus for any 1a i < ja d

we have that

v1ðyi � aiÞb v1ðyj � aiÞ:

For any i A f1; . . . ; dg, one hasX
1ajad

v1ðyj � aiÞ ¼ v1ðgðaiÞÞ ¼ v1ðgðaiÞ � f ðaiÞÞð3:18Þ

¼ v1
X

1asad

ðbs � asÞad�s
i

 !

b min
1asad

fv1ðbs � asÞ þ ðd � sÞv1ðaiÞg

b g1 þ min
1asad

fðd � sÞv1ðaiÞg ¼ g1 þ di;

where di A G1 is given by di ¼ 0 if v1ðaiÞb 0, and respectively by di ¼
ðd � 1Þv1ðaiÞ, if v1ðaiÞ < 0. Let us denote

o ¼ max
1ai0jad

v1ðai � ajÞ:

We assume that g1 is chosen such that

g1 > do� di;ð3:19Þ

for any i A f1; . . . ; dg. By (3.18) and (3.19) we see that

X
1ajad

v1ðyj � aiÞ > do;

which further implies that

max
1ajad

v1ðyj � aiÞ > o;ð3:20Þ
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for any i A f1; . . . ; dg. For i ¼ 1, we know that the maximum on the left side

of (3.20) is attained for j ¼ 1, so

v1ðy1 � a1Þ > o:ð3:21Þ

Since v1ða1 � a2Þao < v1ðy1 � a1Þ, we have

v1ðy1 � a2Þ ¼ v1ða1 � a2Þao:ð3:22Þ

By (3.22) and the choice of y2, it follows that for i ¼ 2, the maximum on the

left side of (3.20) is attained for j ¼ 2, hence

v1ðy2 � a2Þ > o:ð3:23Þ

As before we find that v1ðy1 � a3Þ ¼ v1ða1 � a3Þao, and v1ðy2 � a3Þ ¼
v1ða2 � a3Þao, from which we derive that v1ðy3 � a3Þ > o. By repeating the

above reasoning, we conclude that

v1ðyi � aiÞ > o;ð3:24Þ

for any i A f1; . . . ; dg. It also follows that

v1ðyj � aiÞ ¼ v1ðaj � aiÞ;ð3:25Þ

for any 1a i0 ja d. Using (3.18), (3.25) and the equality

v1ð f 0ðaiÞÞ ¼
X

1ajad
j0i

v1ðai � ajÞ;

we deduce that for any i A f1; . . . ; dg,

v1ðyi � aiÞb g1 � v1ð f 0ðaiÞÞ þ di:ð3:26Þ

Assume in what follows that for any i A f1; . . . ; dg,

g1 > v1ð f 0ðaiÞÞ � di þ v1ðaiÞ:ð3:27Þ

By (3.26) and (3.27) it follows that

v1ðyiÞ ¼ v1ðaiÞ;ð3:28Þ

for any i A f1; . . . ; dg. Denote by S the subset of f1; . . . ; dg which corresponds

to the roots of GðXÞ, in the sense that

GðXÞ ¼
Y
j AS

ðX � yjÞ:

Consider the polynomial

fSðXÞ ¼
Y
j AS

ðX � ajÞ:
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By (3.26) we see that for g1 large enough, the corresponding coe‰cients in the

polynomials GðXÞ and fSðXÞ are close to each other. One of the coe‰cients

of fSðX Þ is

sS; jS ¼
X

i1; ...; ijS AS
i1<���<ijS

ai1ai2 . . . aijS :ð3:29Þ

The corresponding coe‰cient in GðXÞ, call it u, is given by

u ¼
X

i1; ...; ijS AS
i1<���<ijS

yi1yi2 . . . yijS :ð3:30Þ

Note that for any 1a i1; . . . ; ik a d, one has

yi1 . . . yik � ai1 . . . aik ¼ yi1 . . . yik�1
ðyik � aik Þ þ yi1 . . . yik�2

ðyik�1
� aik�1

Þaik
þ yi1 . . . yik�3

ðyik�2
� aik�2

Þaik�1
aik þ � � � þ ðyi1 � ai1Þai2 . . . aik :

Combining this with (3.26) and (3.28), we find that

v1ðyi1 . . . yik � ai1 . . . aik Þb v1ðai1 . . . aik Þð3:31Þ

þ min
1alak

fg1 � v1ð f 0ðail ÞÞ þ dil � v1ðail Þg:

Using (3.31) together with (3.29) and (3.30), we obtain

v1ðsS; jS � uÞb g1 þ min
i1;...; ijS AS
i1<���<ijS

�
v1ðai1 . . . aijS Þð3:32Þ

þ min
1alajS

f�v1ð f 0ðail ÞÞ þ dil � v1ðail Þg
	

¼ g1 þ rS;

where rS A G1 denotes the minimum above.

Now sS; jS A AnA, while u A A. By (3.16) we also know that v2ðuÞb jSg
0
2.

Thus (3.17) is applicable, and we get

v1ðsS; jS � uÞa g1;S:ð3:33Þ

The inequalities (3.32) and (3.33) imply that

g1 a g1;S � rS:ð3:34Þ

It follows that if we start with an element g1 of G1 satisfying (3.19), (3.27) and

such that

g1 > g1;S � rS;ð3:35Þ
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for any nonempty, proper subset S of f1; . . . ; dg, then no polynomial

gðX Þ A A½X � as in (3.10), (3.11) and (3.12), can be reducible over K . This

completes the proof of the theorem.

4. The case of an algebraic function field over a p-adic field

We conclude this paper with an example. Let K0 be a p-adic field, as in

Section 2. Denote by O the ring of p-adic integers in K0, and let K be an

algebraic function field of one variable over K0. Choose any prime divisor P

(i.e. any valuation on K which is trivial on K0), and let t be any element of K

whose only pole is at P. The existence of such an element t follows from the

Riemann-Roch theorem (see Chapter II of [2]). Denote by A the integral

closure of O½t� in K . Then A is integrally closed in K , and K is the field of

fractions of A. Also, K is a finite extension of K0ðtÞ. On K0ðtÞ we have an

absolute value, as in Section 2, which is the Gauss extension of the p-adic

absolute value on K0. We fix an extension of this absolute value to K , and

denote it by j:j1. This is our primary absolute value. Next, fix any real

number r > 1, and put

jPðtÞj2 ¼ rdeg PðtÞ;ð4:1Þ

for any PðtÞ A K0½t�. Then extend this absolute value to an absolute value on

K , which we continue to denote by j:j2. This is our secondary absolute value

on K . By the above construction, the extension of the secondary absolute

value from K0½t� to K is unique. Indeed, any two such extensions would

correspond to distinct prime divisors which are poles for t, contrary to our

assumption that the only pole of t is at P. Note that if we extend the absolute

value j:j2 to an absolute value on a fixed algebraic closure K of K , which we

also denote by j:j2, then for any automorphism s A GalðK=K0ðtÞÞ, the map

defined on K by z 7! jsðzÞj2 is also an absolute value on K , and its restriction

to K0ðtÞ coincides with the absolute value j:j2. Since j:j2 has a unique ex-

tension to K , it follows that the two absolute values also coincide on K .

Therefore,

jsðzÞj2 ¼ jzj2;ð4:2Þ

for any s A GalðK=K0ðtÞÞ and any z A K . This shows that for any z A K , jzj2 is

given by

jzj2 ¼ jNormK=K0ðtÞ zj
1=½K :K0ðtÞ�
2 :ð4:3Þ

Note also that

jzj2 b 1; for any 00 z A A:ð4:4Þ
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Let us check that property (3.1) holds in the present context. We choose an

extension of the primary absolute value j:j1 to K , and continue to denote it by

j:j1. Let A denote the integral closure of A in K . Property (3.1) states in our

case that for any a A AnA, and any L > 0, there exists a d > 0 such that

ju� aj1 b d; for any u A A with juj2 aL:ð4:5Þ

Suppose that (4.5) fails for some a A AnA and L > 0. Then there is a sequence

ðunÞn AN of elements from A, with junj2 aL for any n A N, and such that

lim
n!y

jun � aj1 ¼ 0:ð4:6Þ

Denote by ~AA the integral closure of K0½t� in K, and fix an integral basis B ¼
fh1; . . . ; hmg of ~AA over K0½t�, where m ¼ ½K : K0ðtÞ�. Each un belongs to A,

and hence it also belongs to ~AA. We write un in terms of this basis,

un ¼ c1;nh1 þ � � � þ cm;nhm;ð4:7Þ

with c1;n; . . . ; cm;n A K0½t�, for any n A N. Denote by B� ¼ fh�
1 ; . . . ; h

�
mg the

dual basis of B. Then each coe‰cient cj;n can be written as a trace,

cj;n ¼ TraceK=K0ðtÞðunh�
j Þ; 1a jam; n A N:ð4:8Þ

On the other hand, from (4.2) we know that for any automorphism s A
GalðK=K0ðtÞÞ we have

jsðunh�
j Þj2 ¼ junh�

j j2 ¼ junj2 � jh�
j j2 aLjh�

j j2:ð4:9Þ

It follows that

jcj;nj2 aLjh�
j j2;ð4:10Þ

for any n A N and any 1a jam. Therefore, for any fixed j A f1; . . . ;mg, the
sequence ðcj;nÞn AN is a sequence of polynomials in t over K0, of bounded

degree, say

cj;n ¼ cj;n;0 þ cj;n;1tþ � � � þ cj;n;Dt
D;

where cj;n;0; . . . ; cj;n;D A K0 for any n A N and any 1a jam. We claim that

for any 1a jam and any 0a daD, the sequence ðcj;n;dÞn AN is bounded in

the p-adic absolute value. Indeed, each un belongs to A, so un is a root of a

polynomial of the form

PnðXÞ ¼ X ln þ a1X
ln�1 þ � � � þ aln

with a1; . . . ; aln A O½t�. Since ja1j1 a 1; . . . ; jaln j1 a 1, it follows immediately

that junj1 a 1, and also jsðunÞj1 a 1 for any s A GalðK=K0ðtÞÞ. Therefore

jcj;nj1 ¼ jTraceK=K0ðtÞðunh�
j Þj1 amaxfjsðh�

j Þj1 : s A GalðK=K0ðtÞÞg;
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which in turn implies that

jcj;n;d j1 amaxfjsðh�
j Þj1 : s A GalðK=K0ðtÞÞg

for all d A f0; 1; . . . ;Dg. Hence for any 1a jam and any 0a daD the

sequence ðcj;n;dÞn AN is bounded, as claimed. Since K0 is locally compact, it

follows that the sequence ðcj;n;0Þn AN has a subsequence which converges with

respect to the absolute value j � j1 to an element mj;0 of K0. This subsequence

has a subsequence along which cj;n;1 converges to an element mj;1 of K0, and so

on. We conclude that there is a subsequence along which we simultaneously

have that cj;n;0 ! mj;0, cj;n;1 ! mj;1; . . . ; cj;n;D ! mj;D. This means that along

this subsequence cj;n converges in the Gauss absolute value j � j1 to the element

cj :¼ mj;0 þ mj;1tþ � � � þ mj;Dt
D

of K0½t�. This further implies that there is a subsequence n1 < n2 < � � � <
nk < � � � for which we simultaneously have

lim
k!y

jcj;nk � cjj1 ¼ 0; for 1a jam:

Combining this with (4.6) and (4.7), we obtain

a�
X

1ajam

cjhj













1

a ja� unk j1 þ
X

1ajam

jcj;nk � cjj1 � jhj j1 ! 0;

as k ! y. Thus

a ¼
X

1ajam

cjhj A K :

Therefore a A AVK ¼ A, which contradicts our assumption that a A AnA. In

conclusion, property (4.5) holds true.

Theorem 1 is then applicable in our case, and it gives the following result.

Theorem 2. Let K0 be a p-adic field, O its ring of integers, and let K be

an algebraic function field of one variable over K0. Choose any prime divisor

P and any element t A K whose only pole is at P. Denote by A the integral

closure of O½t� in K . Let j:j1 be an absolute value on K whose restriction to

K0½t� coincides with the Gauss extension to K0½t� of the p-adic absolute value on

K0. Choose a real number r > 1, and denote by j:j2 the unique absolute value on

K given by (4.1) and (4.3). Then, for any polynomial

f ðX Þ ¼ X d þ a1X
d�1 þ � � � þ ad A A½X �;

which is irreducible over K, and for any L > 0, there exists a d > 0 such that, for

any b1; . . . ; bd A A for which

jbi � aij1 a d; 1a ia d;
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and

jbij2 aL; 1a ia d;

the polynomial

gðXÞ ¼ X d þ b1X
d�1 þ � � � þ bd ;

is irreducible over K .
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