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Abstract. The oscillatory behavior of fourth order functional di¤erential equations

ðjy 00ðtÞja sgn y 00ðtÞÞ 00 þ qðtÞjyðgðtÞÞjb sgn yðgðtÞÞ ¼ 0ðAÞ

is investigated. First, criteria are given for the existence of nonoscillatory solutions

with specific asymptotic behavior, and then criteria for all solutions to be oscillatory are

derived by comparing (A) with the associated di¤erential equation without functional

argument.

1. Introduction

The objective of this paper is to study the oscillatory and nonoscillatory

behavior of fourth order nonlinear functional di¤erential equations

ðjy 00ðtÞja sgn y 00ðtÞÞ00 þ qðtÞjyðgðtÞÞjb sgn yðgðtÞÞ ¼ 0ðAÞ
where

(a) a and b are positive constants;

(b) q : ½0;yÞ ! ð0;yÞ is a continuous function;

(c) g : ½0;yÞ ! ð0;yÞ is a continuously di¤erentiable function such that

g 0ðtÞ > 0, tb 0, and lim
t!y

gðtÞ ¼ y.

By a solution of (A) we mean a function y : ½Ty;yÞ ! R which is twice

continuously di¤erentiable together with jy 00ja sgn y 00 and satisfies the equation

(A) at all su‰ciently large t. Those solutions which vanish in a neighborhood

of infinity will be excluded from our consideration. A solution is said to be

oscillatory if it has a sequence of zeros clustering around y, and nonoscillatory

otherwise.

We first (in Section 1) study the existence of nonoscillatory solutions. The

set of nonoscillatory solutions of (A) is decomposed into six disjoint classes

according to their asymptotic behavior at y, and existence criteria are estab-

lished for each of these classes. Some of the criteria are shown to be necessary

as well.
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We next derive criteria for any solution of (A) to be oscillatory. Our

derivations depends heavily on oscillaiton theory of fourth order nonlinear

ordinary di¤erential equations

ðjy 00ja sgn y 00Þ 00 þ qðtÞjyjb sgn y ¼ 0ðBÞ

recently developed by Wu [6]. A comparison principle enables us to deduce

oscillation of an equation of the form (A) from that of a similar equation with

a di¤erent functional argument. As a result, we are able to demonstrate the

existence of classes of equations of the form (A) for which sharp oscillation

criteria can be established.

We note that oscillation properties of second order functional di¤erential

equations involving nonlinear Sturm-Liouville type di¤erential operators have

been investigated by Kusano and Lalli [1], Kusano and Wang [3] and Wang [5].

The present paper is a step toward generalizing the above results to higher order

functional di¤erential equations whose principal parts are genuinely nonlinear.

2. Nonoscillation theorems

Our purpose here is to make a detailed analysis of the structure of the set

of all possible nonoscillatory solutions of the equation (A), which can also be

expressed as

ððy 00ðtÞÞa�Þ00 þ qðtÞðyðgðtÞÞÞb� ¼ 0ðAÞ

in terms of the asterisk notation

xg� ¼ jxjg sgn x ¼ jxjg�1x; x A R; g > 0:ð2:1Þ

A) Classification of nonoscillatory solutions. It su‰ces to restrict our

consideration to eventually positive solutions of (A), since if yðtÞ is a solution

of (A) then so is �yðtÞ. Let yðtÞ be one such solution. Then, as is easily

verified, yðtÞ satisfies either

I: y 0ðtÞ > 0, y 00ðtÞ > 0, ððy 00ðtÞÞa�Þ0 > 0 for all large t

or

II: y 0ðtÞ > 0, y 00ðtÞ < 0, ððy 00ðtÞÞa�Þ0 > 0 for all large t.

(See Wu [6].) It follows that yðtÞ; y 0ðtÞ; y 00ðtÞ and ððy 00ðtÞÞa�Þ0 are eventually

monotone, so that they tend to finite or infinite limits as t ! y. Let

lim
t!y

yðiÞðtÞ ¼ oi; i ¼ 0; 1; 2; and lim
t!y

ððy 00ðtÞÞa�Þ0 ¼ o3:

It is clear that o3 is a finite nonnegative number. One can easily show that:

(i) if yðtÞ satisfies I, then the set of its asymptotic values foig falls into

one of the following three cases:
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I1: o0 ¼ o1 ¼ o2 ¼ y, o3 A ð0;yÞ;
I2: o0 ¼ o1 ¼ o2 ¼ y, o3 ¼ 0;

I3: o0 ¼ o1 ¼ y, o2 A ð0;yÞ, o3 ¼ 0.

(ii) if yðtÞ satisfies II, then the set of its asymptotic values foig falls into

one of the following three cases:

II1: o0 ¼ y, o1 A ð0;yÞ, o2 ¼ o3 ¼ 0;

II2: o0 ¼ y, o1 ¼ o2 ¼ o3 ¼ 0;

II3: o0 A ð0;yÞ, o1 ¼ o2 ¼ o3 ¼ 0.

Equivalent expressions for these six classes of positive solutions of (A) are

as follows:

I1: lim
t!y

yðtÞ
t2þ1=a

¼ const > 0;

I2: lim
t!y

yðtÞ
t2þ1=a

¼ 0, lim
t!y

yðtÞ
t2

¼ y;

I3: lim
t!y

yðtÞ
t2

¼ const > 0;

II1: lim
t!y

yðtÞ
t

¼ const > 0;

II2: lim
t!y

yðtÞ
t

¼ 0, lim
t!y

yðtÞ ¼ y;

II3: lim
t!y

yðtÞ ¼ const > 0.

B) Integral representations for nonoscillatory solutions. We shall establish

the existence of positive solutions for each of the above six classes. For this

purpose a crucial role will be played by integral representations for those six

types of solutions of (A) as derived below.

Let yðtÞ be a positive solution of (A) such that yðtÞ > 0 and yðgðtÞÞ > 0

for tbT > 0. Integrating (A) from t to y gives

ððy 00ðtÞÞa�Þ0 ¼ o3 þ
ðy
t

qðsÞðyðgðsÞÞÞbds; tbT :ð2:2Þ

If yðtÞ is a solution of type Ii ði ¼ 1; 2; 3Þ, then we integrate (2.2) three times

over ½T ; t� to obtain

ð2:3Þ

yðtÞ ¼ k0 þ k1ðt� TÞ þ
ð t
T

ðt� sÞ k a
2 þ

ð s
T

o3 þ
ðy
r

qðsÞðyðgðsÞÞÞbds
� �

dr

� �1=a
ds;

for tbT , where k0 ¼ yðTÞ, k1 ¼ y 0ðTÞ and k2 ¼ y 00ðTÞ are nonnegative con-

stants. The equality (2.3) gives an integral representation for a solution yðtÞ of
type I1. A type-I2 solution yðtÞ of (A) is expressed by (2.3) with o3 ¼ 0.
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If yðtÞ is a solution of type I3, then, first integrating (2.2) from t to y and

then integrating the resulting equation twice from T to t, we have

ð2:4Þ

yðtÞ ¼ k0 þ k1ðt� TÞ þ
ð t
T

ðt� sÞ oa
2 �

ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds; tbT ;

where T is chosen su‰ciently large.

An integral representation for a solution yðtÞ of type II1 is derived by

integrating (2.2) with o3 ¼ 0 twice from t to y and then once from T to t:

ð2:5Þ

yðtÞ ¼ k0 þ
ð t
T

o1 þ
ðy
s

ðy
r

ðs� rÞqðsÞðyðgðsÞÞÞbds
� �1=a

dr

 !
ds; tbT :

An expression for a type-II2 solution is given by (2.5) with o1 ¼ 0. If yðtÞ is

a solution of type II3, then integrations of (2.2) with o3 ¼ 0 three times yield

yðtÞ ¼ o0 �
ðy
t

ðs� tÞ
ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds; tbT :ð2:6Þ

C) Nonoscillation criteria (necessary and su‰cient conditions). It will

be shown that necessary and su‰cient conditions can be established for the

existence of positive solutions of the four types I1; I3; II1 and II3.

Theorem 2.1. The equation (A) has a positive solution of type I1 if and

only if ðy
0

ðgðtÞÞð2þ1=aÞb
qðtÞdt < y:ð2:7Þ

Proof. Suppose that (A) has a solution yðtÞ of type I1. Then, it satisfies

(2.3) for tbT , when T > 0 is su‰ciently large, which implies thatðy
T

qðtÞðyðgðtÞÞÞbdt < y:

This together with the asymptotic relation lim
t!y

yðtÞ=t2þ1=a ¼ const > 0, shows

that the condition (2.7) is satisfied.

Suppose now that (2.7) holds. Let k > 0 be any given constant. Choose

T > 0 large enough so that

a2

ðaþ 1Þð2aþ 1Þ

� �bðy
T

ðgðtÞÞð2þ1=aÞb
qðtÞdta ð2kÞa � k a

ð2kÞb
:ð2:8Þ

Put T� ¼ min T ; inf
tbT

gðtÞ
� �

, and define
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Gðt;TÞ ¼
ð t
T

ðt� sÞðs� TÞ1=ads ¼ a2

ðaþ 1Þð2aþ 1Þ ðt� TÞ2þ1=a; tbT ;ð2:9Þ

Gðt;TÞ ¼ 0; taT :

Let Y HC½T�;yÞ and F : Y ! C½T�;yÞ be defined as follows:

Y ¼ fy A C½T�;yÞ : kGðt;TÞa yðtÞa 2kGðt;TÞ; tbT�g;ð2:10Þ

FyðtÞ ¼
ð t
T

ðt� sÞ
ð s
T

k a þ
ðy
r

qðsÞðyðgðsÞÞÞbds
� �

dr

� �1=a
ds; tbT ;ð2:11Þ

FyðtÞ ¼ 0; T� a taT :

Clearly, Y is a closed convex subset of the Frechét space C½T�;yÞ with the

topology of uniform convergence on compact subintervals of ½T�;yÞ.
If y A Y , then for tbT

FyðtÞb k

ð t
T

ðt� sÞðs� TÞ1=ads ¼ kGðt;TÞ

and

FyðtÞa
ð t
T

ðt� sÞ
ð s
T

k a þ
ðy
r

qðsÞð2kGðgðsÞ;TÞÞbds
� �

dr

� �1=a
ds

a

ð t
T

ðt� sÞ
ð s
T

k a þ a2 � 2k
ðaþ 1Þð2aþ 1Þ

� �bðy
r

qðsÞðgðsÞÞð2þ1=aÞb
ds

 !
dr

" #1=a
ds

a 2k

ð t
T

ðt� sÞðs� TÞ1=ads ¼ 2kGðt;TÞ;

and hence Fy A Y . Thus, F maps Y into itself. Let fyng be a sequence of

functions in Y converging to y A Y in the metric topology of C½T�;yÞ. Then,

by using Lebesgue’s dominated convergence theorem, we can prove that the

sequence fFynðtÞg converges to FyðtÞ as n ! y uniformly on every compact

subinterval of ½T�;yÞ, that is, Fyn ! Fy as n ! y in C½T�;yÞ. Hence F is

a continuous mapping.

For any y A Y we have

ðFyðtÞÞ0 ¼
ð t
T

ð s
T

k a þ
ðy
r

qðsÞðyðgðsÞÞÞbds
� �

dr

� �1=a
ds; tbT ;

which implies that

0a ðFyðtÞÞ0 a 2k

ð t
T

ðs� TÞ1=ads ¼ 2ka

aþ 1
ðt� TÞ1þ1=a; tbT :
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From this inequality, together with the fact that Fy A Y , we conclude that the

set FðY Þ is relatively compact in the topology of C½T�;yÞ. Therefore, by the

Schauder-Tychono¤ fixed point theorem, there exists a fixed element y A Y of

F, i.e., y ¼ Fy, which satisfies the integral equation

yðtÞ ¼
ð t
T

ðt� sÞ
ð s
T

k a þ
ðy
r

qðsÞðyðgðsÞÞÞbds
� �

dr

� �1=a
ds; tbT :ð2:12Þ

This is a special case of (2.3) with k0 ¼ k1 ¼ k2 ¼ 0 and o3 ¼ k a. Di¤er-

entiation of (2.12) shows that yðtÞ is a positive solution of (A) for all large t.

Since lim
t!y

ððy 00ðtÞÞaÞ0 ¼ k a > 0, yðtÞ is a desired solution of type I1. This

completes the proof.

Theorem 2.2. The equation (A) has a positive solution of type I3 if and

only if ðy
0

tðgðtÞÞ2bqðtÞdt < y:ð2:13Þ

Proof. A positive solution yðtÞ of type I3, if exists, has an integral rep-

resentation (2.4) for some T > 0, which implies thatðy
T

ðt� TÞqðtÞðyðgðtÞÞÞbdt < y:

Since lim
t!y

yðtÞ=t2 ¼ const > 0, we see that the condition (2.13) is satisfied.

Suppose now that (2.13) holds. Let k > 0 be an arbitrarily fixed constant

and choose T > 0 so large that

ðy
T

tðgðtÞÞ2bqðtÞdta ð2kÞa � k a

k b
:ð2:14Þ

Let T� ¼ min T ; inf
tbT

gðtÞ
� �

and consider the set Y HC½T�;yÞ defined by

Y ¼ y A C½T�;yÞ : k
2
ðt� TÞ2þ a yðtÞa kðt� TÞ2þ; tbT�

� �
;ð2:15Þ

where ðt� TÞþ ¼ t� T if tbT , and ðt� TÞþ ¼ 0 if taT . Define the

mapping G : Y ! C½T�;yÞ by

GyðtÞ ¼
ð t
T

ðt� sÞ ð2kÞa �
ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds; tbT ;ð2:16Þ

GyðtÞ ¼ 0; T� a taT :
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That GðYÞHY is an immediate consequence of (2.14). Since the continuity

of G and the relative compactness of GðYÞ can be proved routinely, there exists

an element y A Y such that y ¼ Gy, which satisfies

yðtÞ ¼
ð t
T

ðt� sÞ ð2kÞa �
ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds; tbT :ð2:17Þ

This is a special case of (2.4) with k0 ¼ k1 ¼ 0 and o2 ¼ 2k. Di¤erentiating

(2.17), we see that yðtÞ is a positive solution of (A) for all large t with the

property that lim
t!y

y 00ðtÞ ¼ 2k > 0. Thus, yðtÞ is a type-I3 solution of (A).

This completes the proof.

Theorem 2.3. The equation (A) has a positive solution of type II1 if and

only if ðy
0

ðy
t

ðs� tÞðgðsÞÞbqðsÞds
� �1=a

dt < y:ð2:18Þ

Proof. To prove the ‘‘only if ’’ part of the theorem it su‰ces to observe

that a positive solution yðtÞ of type II1 satisfies lim
t!y

yðtÞ=t ¼ const > 0 and

ðy
T

ðy
t

ðs� tÞqðsÞðyðgðsÞÞÞbds
� �1=a

dt < y:

To prove the ‘‘if ’’ part, assume that (2.18) holds, and for any fixed con-

stant k > 0 choose T > 0 so that

ðy
T

ðy
t

ðs� tÞðgðsÞÞbqðsÞds
� �1=a

dta 2�b=ak1�b=a:ð2:19Þ

Let T� ¼ min T ; inf
tbT

gðtÞ
� �

and consider the set Y HC½T�;yÞ and the

mapping H : Y ! C½T�;yÞ defined by

Y ¼ fy A C½T�;yÞ : kta yðtÞa 2kt; tbT�gð2:20Þ

and

HyðtÞ ¼ ktþ
ð t
T

ðy
s

ðy
r

ðs� rÞqðsÞðyðgðsÞÞÞbds
� �1=a

drds; tbT ;ð2:21Þ

HyðtÞ ¼ kt; T� a taT :

It can be verified as in the preceding theorems that (i) HðYÞHY , (ii) H

is continuous, and (iii) HðY Þ is relatively compact. Therefore, H has a fixed
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point y A Y , which gives rise to a positive type-II1 solution of (A), since it

satisfies

yðtÞ ¼ ktþ
ð t
T

ðy
s

ðy
r

ðs� rÞqðsÞðyðgðsÞÞÞbds
� �1=a

drds; tbT :ð2:22Þ

Note that (2.22) is a special case of (2.5), and lim
t!y

y 0ðtÞ ¼ k. The proof is thus

complete.

Theorem 2.4. The equation (A) has a positive solution of type II3 if and

only if ðy
0

t

ðy
t

ðs� tÞqðsÞds
� �1=a

dt < y:ð2:23Þ

Proof. Let yðtÞ be a type-II3 solution of (A). Then yðtÞ satisfies (2.6),

which implies thatðy
T

t

ðy
t

ðs� tÞqðsÞðyðgðsÞÞÞbds
� �1=a

dt < y:

Since lim
t!y

yðtÞ ¼ const > 0, (2.23) follows from the above inequality.

Suppose now that (2.23) holds. Let k > 0 be any fixed constant and take

T > 0 so large that ðy
T

t

ðy
t

ðs� tÞqðsÞds
� �1=a

dta
1

2
k1�b=a:ð2:24Þ

Let T� ¼ min T ; inf
tbT

gðtÞ
� �

, and define the mapping I by

IyðtÞ ¼ k �
ðy
t

ðs� tÞ
ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds; tbT ;ð2:25Þ

IyðtÞ ¼ IyðTÞ; T� a taT :

Then, it can be verified without di‰culty that I has a fixed element y in the set

Y ¼ y A C½T�;yÞ : k
2
a yðtÞa k; tbT�

� �
:

This fixed point gives rise to a required positive solution of (A), since it satisfies

yðtÞ ¼ k �
ðy
t

ðs� tÞ
ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds; tbT ;ð2:27Þ

which is nothing else but (2.6). Note that lim
t!y

yðtÞ ¼ k. This completes the

proof.
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D) Nonoscillation criteria (su‰cient conditions). Let us now turn our at-

tention to positive solutions of types I2 and II2 of (A). We are content with

su‰cient conditions for the existence of positive solutions with ‘‘intermediate’’

growth. We observe that this kind of problem has not been dealt with even

for ordinary di¤erential equations without functional arguments of the form

(B); see Wu [6].

Theorem 2.5. The equation (A) has a positive solution of type I2 ifðy
0

ðgðtÞÞð2þ1=aÞb
qðtÞdt < yð2:28Þ

and ðy
0

tðgðtÞÞ2bqðtÞdt ¼ y:ð2:29Þ

Proof. Choose T > 0 large enough so that T� ¼ min T ; inf
tbT

gðtÞ
� �

b 1

and ðy
T

ðgðtÞÞð2þ1=aÞb
qðtÞdta 1

2aþ1

ðaþ 1Þð2aþ 1Þ
a2

� �a
:ð2:30Þ

Define

Y ¼ y A C½T�;yÞ : 1

21þ1=a
ðt� TÞ2þ a yðtÞa t2þ1=a; tbT�

� �
;ð2:31Þ

JyðtÞ ¼
ð t
T

ðt� sÞ 1

2
þ
ð s
T

ðy
r

qðsÞðyðgðsÞÞÞbdsdr
� �1=a

ds; tbT ;ð2:32Þ

JyðtÞ ¼ 0; T� a taT :

If y A Y , then, using the inequality ðAþ BÞ1=a a ð2AÞ1=a þ ð2BÞ1=a, Ab 0,

Bb 0, (2.30) and (2.9), we have for tbT

1

21þ1=a
ðt� TÞ2 aJyðtÞ

a

ð t
T

ðt� sÞ 1þ 2

ðy
T

qðsÞðgðsÞÞð2þ1=aÞb
ds

� �1=a
ðs� TÞ1=a

( )
ds

a

ð t
T

ðt� sÞdsþ ðaþ 1Þð2aþ 1Þ
2a2

ð t
T

ðt� sÞðs� TÞ1=ads

¼ 1

2
ðt� TÞ2 þ 1

2
ðt� TÞ2þ1=a

a t2þ1=a;
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which implies that J sends Y into itself. Since it is easy to verify that all the

other conditions of the Schauder-Tychono¤ fixed point theorem are fulfilled,

there exists an element y A Y such that y ¼ Jy, which satisfies the integral

equation

yðtÞ ¼
ð t
T

ðt� sÞ 1

2
þ
ð s
T

ðy
r

qðsÞðyðgðsÞÞÞbdsdr
� �1=a

ds; tbT :ð2:33Þ

Di¤erentiating (2.33) four times, we see that yðtÞ is a solution of (A) on ½T ;yÞ.
It is clear that lim

t!y
ððy 00ðtÞÞa�Þ0 ¼ 0. That yðtÞ satisfies lim

t!y
y 00ðtÞ ¼ y follows

from the calculation below:

y 00ðtÞ ¼ 1

2
þ
ð t
T

ðy
s

qðrÞðyðgðrÞÞÞbdrds
� �1=a

b
1

2
þ 1

2ð1þ1=aÞb

ð t
T

ðy
s

qðrÞðgðrÞ � TÞ2bþ drds

� �1=a

b
1

2
þ 1

2ð1þ1=aÞb

ð t
T

ðs� TÞqðsÞðgðsÞ � TÞ2bþ ds

� �1=a
; tbT :

This completes the proof.

Theorem 2.6. The equation (A) has a positive solution of type II2 ifðy
0

ðy
t

ðs� tÞðgðsÞÞbqðsÞds
� �1=a

dt < yð2:34Þ

and ðy
0

t

ðy
t

ðs� tÞqðsÞds
� �1=a

dt ¼ y:ð2:35Þ

Proof. Let k > 0 be any fixed constant and choose T > 0 so large that

T� ¼ min T ; inf
tbT

gðtÞ
� �

b 1 and

ðy
T

ðy
t

ðs� tÞðgðsÞÞbqðsÞds
� �1=a

dta 2�b=ak1�b=a:ð2:36Þ

Consider the set Y HC½T�;yÞ and the mapping K : Y ! C½T�;yÞ defined by

Y ¼ fy A C½T�;yÞ : ka yðtÞa 2kt; tbT�g;ð2:37Þ

KyðtÞ ¼ k þ
ð t
T

ðy
s

ðy
r

ðs� rÞqðsÞðyðgðsÞÞÞbds
� �1=a

drds; tbT ;ð2:38Þ

KyðtÞ ¼ k; T� a taT :
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Then, the Schauder-Tychono¤ theorem can be applied to the existence of a

fixed element y A Y of K. This y ¼ yðtÞ gives a solution of (A) on ½T ;yÞ,
since

yðtÞ ¼ k þ
ð t
T

ðy
s

ðy
r

ðs� rÞqðsÞðyðgðsÞÞÞbds
� �1=a

drds; tbT :ð2:39Þ

That lim
t!y

yðtÞ ¼ y is a consequence of the following observation:

yðtÞb k þ
ð t
T

ðs� TÞ
ðy
s

ðr� sÞqðrÞðyðgðrÞÞÞbdr
� �1=a

ds

b k þ k b=a

ð t
T

ðs� TÞ
ðy
s

ðr� sÞqðrÞdr
� �1=a

ds; tbT :

Therefore, yðtÞ is a positive solution of type II2. This completes the proof.

3. Oscillation theorems

A) Our aim in this section is to establish criteria (preferably sharp) for all

solutions of the equation (A) to be oscillatory. We are essentially based on

some of the oscillation results of Wu [6], which are collected as Theorem W

below, for the associated ordinary di¤erential equation (B).

Theorem W. (i) Let ab 1 > b. All solutions of (B) are oscillatory if and

only if ðy
0

tð2þ1=aÞbqðtÞdt ¼ y:ð3:1Þ

(ii) Let aa 1 < b. All solutions of (B) are oscillatory if and only ifðy
0

tqðtÞdt ¼ yð3:2Þ

or ðy
0

tqðtÞdt < y and

ðy
0

s

ðy
s

ðr� sÞqðrÞdr
� �1=a

ds ¼ y:ð3:3Þ

B) Comparison theorems. Our idea is to deduce oscillation criteria for

(A) from Theorem W by means of the following two lemmas (comparison

theorems) which relate the oscillation (and nonoscillation) of the equation

ðju 00ðtÞja sgn u 00ðtÞÞ00 þ F ðt; uðhðtÞÞÞ ¼ 0ð3:4Þ

to that of the equations
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ðjv 00ðtÞja sgn v 00ðtÞÞ00 þ Gðt; vðkðtÞÞÞ ¼ 0ð3:5Þ

and

ðjw 00ðtÞja sgn w 00ðtÞÞ00 þ l 0ðtÞ
h 0ðh�1ðlðtÞÞÞF ðh

�1ðlðtÞÞ;wðlðtÞÞÞ ¼ 0:ð3:6Þ

With regard to (3.4)–(3.6) it is assumed that a > 0 is a constant, that h; k; l

are continuously di¤erentiable functions on ½0;yÞ such that

h 0ðtÞ > 0; k 0ðtÞ > 0; l 0ðtÞ > 0; lim
t!y

hðtÞ ¼ lim
t!y

kðtÞ ¼ lim
t!y

lðtÞ ¼ y;

and that F ;G are continuous functions on ½0;yÞ � R such that uFðt; uÞb 0,

uGðt; uÞb 0 and Fðt; uÞ;Gðt; uÞ are nondecreasing in u for any fixed tb 0.

Naturally, h�1 denotes the inverse function of h.

Lemma 3.1. Suppose that

hðtÞb kðtÞ; tb 0ð3:7Þ

F ðt; xÞ sgn xbGðt; xÞ sgn x; ðt; xÞ A ½0;yÞ � R:ð3:8Þ

If all the solutions of (3.5) are oscillatory, then so are all the solutions of (3.4).

Lemma 3.2. Suppose that lðtÞb hðtÞ for tb 0. If all the solutions of (3.6)

are oscillatory, then so are all the solutions of (3.4).

These lemmas can be regarded as generalizations of the main comparison

principles developed in the papers [2, 4] to di¤erential equations involving

higher order nonlinear di¤erential operators. To prove these lemmas we need

a result which describes the equivalence of nonoscillation situation between

(3.4) and the di¤erential inequality

ðjz 00ðtÞja sgn z 00ðtÞÞ00 þ F ðt; zðhðtÞÞÞa 0:ð3:9Þ

Lemma 3.3. If there exists an eventually positive function satisfying (3.9),

then (3.4) has an eventually positive solution.

Proof of Lemma 3.3. Let zðtÞ be an eventually positive solution of (3.9).

It is easy to see that zðtÞ satisfies either

I: z 0ðtÞ > 0, z 00ðtÞ > 0, ððz 00ðtÞÞa�Þ0 > 0, tbT ,

or

II: z 0ðtÞ > 0, z 00ðtÞ < 0, ððz 00ðtÞÞa�Þ0 > 0, tbT ,

provided T > 0 is su‰ciently large.

If zðtÞ satisfies I, integrating (3.9) from t to y, we have

ððz 00ðtÞÞa�Þ0 boþ
ðy
t

F ðs; zðhðsÞÞÞds; tbT ;ð3:10Þ
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where o ¼ lim
t!y

ððz 00ðtÞÞa�Þ0 b 0. Further integrations of (3.10) three times from

T to t yield the inequality

ð3:11Þ

zðtÞb zðTÞ þ
ð t
T

ðt� sÞ
ð s
T

oþ
ðy
r

F ðs; zðhðsÞÞÞds
� �

dr

� �1=a
ds; tbT :

Let T� ¼ min T ; inf
tbT

hðtÞ
� �

. Put

U ¼ fu A C½T�;yÞ : 0a uðtÞa zðtÞ; tbT�gð3:12Þ

and define

FuðtÞ ¼ zðTÞ þ
ð t
T

ðt� sÞ
ð s
T

oþ
ðy
r

Fðs; uðhðsÞÞÞds
� �

dr

� �1=a
ds; tbT ;ð3:13Þ

FuðtÞ ¼ zðtÞ; T� a taT :

Then, it is easily verified that F maps continuously U into a relatively compact

set of U , and so there exists a function u A U such that u ¼ Fu, which implies

that

ð3:14Þ

uðtÞ ¼ zðTÞ þ
ð t
T

ðt� sÞ
ð s
T

oþ
ðy
r

Fðs; uðhðsÞÞÞds
� �

dr

� �1=a
ds; tbT :

This shows that uðtÞ is a positive solution of the equation (3.4).

If zðtÞ satisfies II, then (3.10) holds with o ¼ 0, and integrating (3.10) from

t to y, we find

�z 00ðtÞb
ðy
t

ðs� tÞF ðs; zðhðsÞÞÞds
� �1=a

; tbT ;ð3:15Þ

from which, integrating twice, first from t to y and then from T to t, we

obtain

zðtÞb zðTÞ þ
ð t
T

ðy
s

ðy
r

ðs� rÞF ðs; zðhðsÞÞÞds
� �1=a

drds; tbT :ð3:16Þ

Let T� ¼ min T ; inf
tbT

hðtÞ
� �

and let U and C be defined, respectively, by

(3.12) and

CuðtÞ ¼ zðTÞ þ
ð t
T

ðy
s

ðy
r

ðs� rÞFðs; uðhðsÞÞÞds
� �1=a

drds; tbT ;ð3:17Þ

CuðtÞ ¼ zðtÞ; T� a taT :
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The Schauder-Tychono¤ fixed point theorem also applies to this case, and there

exists a function u A U such that u ¼ Cu, that is,

uðtÞ ¼ zðTÞ þ
ð t
T

ðy
s

ðy
r

ðs� rÞFðs; uðhðsÞÞÞds
� �1=a

drds; tbT :ð3:18Þ

It follows that uðtÞ is a positive solution of (3.4). This completes the proof of

Lemma 3.3.

Proof of Lemma 3.1. It su‰ces to prove that if (3.4) has an eventually

positive solution, then so does (3.5).

Let uðtÞ be an eventually positive solution of (3.4). Note that uðtÞ is

monotone increasing for all su‰ciently large t. In view of (3.7) and (3.8), we

see that there exists T > 0 such that uðhðtÞÞb uðkðtÞÞ, tbT , and

F ðt; uðhðtÞÞÞbGðt; uðkðtÞÞÞ; tbT :

This together yields

ðju 00ðtÞja sgn u 00ðtÞÞ00 þ Gðt; uðkðtÞÞÞa 0; tbT ;

and application of Lemma 3.3 then shows that the equation (3.5) has an

eventually positive solution vðtÞ. This completes the proof.

Proof of Lemma 3.2. The conclusion of the lemma is equivalent to the

statement that if there exists an eventually positive solution of (3.4) then the

same is true of (3.6).

Let uðtÞ be an eventually positive solution of (3.4). The following two

cases are possible:

I: u 0ðtÞ > 0, u 00ðtÞ > 0, ððu 00ðtÞÞa�Þ0 > 0 for all large t;

II: u 0ðtÞ > 0, u 00ðtÞ < 0, ððu 00ðtÞÞa�Þ0 > 0 for all large t.

Suppose that I holds. Then we have

ð3:19Þ

uðtÞb uðTÞ þ
ð t
T

ðt� sÞ
ð s
T

oþ
ðy
r

Fðs; uðhðsÞÞÞds
� �

dr

� �1=a
ds; tbT ;

where o ¼ lim
t!y

ððu 00ðtÞÞa�Þ0 b 0. Combining (3.19) with the inequality

ðy
r

Fðs; uðhðsÞÞÞds ¼
ðy
l�1ðhðrÞÞ

F ðh�1ðlðrÞÞ; uðlðrÞÞÞ l 0ðrÞ
h 0ðh�1ðlðrÞÞÞ dr

b

ðy
r

Fðh�1ðlðrÞÞ; uðlðrÞÞÞ l 0ðrÞ
h 0ðh�1ðlðrÞÞÞ dr;

we get
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uðtÞb uðTÞ þ
ð t
T

ðt� sÞ
�ð s

T

�
oþ

ðy
r

Fðh�1ðlðrÞÞ; uðlðrÞÞÞð3:20Þ

� l 0ðrÞ
h 0ðh�1ðlðrÞÞÞ dr

�
dr

�1=a
ds; tbT :

We now observe that an essential part of the proof of Lemma 3.3 is the

generation of a solution of the integral equation (3.14) [or (3.18)] on the basis

of the existence of a function satisfying the corresponding integral inequality

(3.11) [or (3.16)]. Here proceeding in a similar fashion, from the fact that uðtÞ
satisfies (3.20) we conclude that there exists a positive solution of the equation

wðtÞ ¼ uðTÞ þ
ð t
T

ðt� sÞ
�ð s

T

�
oþ

ðy
r

Fðh�1ðlðrÞÞ;wðlðrÞÞÞð3:21Þ

� l 0ðrÞ
h 0ðh�1ðlðrÞÞÞ dr

�
dr

�1=a
ds; tbT :

It can be checked by di¤erentiation that wðtÞ provides a positive solution of the

di¤erential equation (3.6).

Suppose next that II holds. Then, uðtÞ is shown to satisfy the inequality

uðtÞb uðTÞ þ
ð t
T

ðy
s

ðy
r

ðy
s

F ðr; uðhðrÞÞÞdrds
� �1=a

drds; tbT :ð3:22Þ

Repeating the same argument as above with (3.19) replaced by (3.22), we are

led to the conclusion that there exists a positive solution wðtÞ of the integral

equation

wðtÞ ¼ uðTÞ þ
ð t
T

ðy
s

�ðy
r

ðy
s

F ðh�1ðlðrÞÞ;wðlðrÞÞÞð3:23Þ

� l 0ðrÞ
h 0ðh�1ðlðrÞÞÞ drds

�1=a
drds; tbT ;

which clearly gives a positive solution of the di¤erential equation (3.6). This

completes the proof of Lemma 3.2.

C) Oscillation criteria. We first give a su‰cient condition for all solu-

tions of (A) in the sub-half-linear case to be oscillatory.

Theorem 3.1. Let ab 1 > b. Suppose that there exists a continuously

di¤erentiable function h : ½0;yÞ ! ð0;yÞ such that h 0ðtÞ > 0, lim
t!y

hðtÞ ¼ y, and

minft; gðtÞgb hðtÞ for all large t:ð3:24Þ

Fourth order quasilinear functional di¤erential equations 311



If ðy
0

ðhðtÞÞð2þ1=aÞb
qðtÞdt ¼ y;ð3:25Þ

then all solutions of (A) are oscillatory.

Proof. Let us consider the equations

ðjz 00ðtÞja sgn z 00ðtÞÞ00 þ qðtÞjzðhðtÞÞjb sgn zðhðtÞÞ ¼ 0;ð3:26Þ

ðjw 00ðtÞja sgn w 00ðtÞÞ00 þ qðh�1ðtÞÞ
h 0ðh�1ðtÞÞ jwðtÞj

b sgn wðtÞ ¼ 0:ð3:27Þ

Since ðy
tð2þ1=aÞb qðh�1ðtÞÞ

h 0ðh�1ðtÞÞ dt ¼
ðy

ðhðtÞÞð2þ1=aÞb
qðtÞdt ¼ y

by (3.25), Theorem W-(i) implies that all solutions of (3.27) are oscillatory.

Application of Lemma 3.2 then shows that all solutions of (3.26) are oscil-

latory, and the conclusion of the theorem follows from comparison of (A) with

(3.26) by means of Lemma 3.1.

It will be shown below that there is a class of sub-half-linear equations of

the type (A) for which the oscillation situation can be completely characterized.

Theorem 3.2. Let ab 1 > b and suppose that

lim sup
t!y

gðtÞ
t

< y:ð3:28Þ

Then, all solutions of (A) are oscillatory if and only if

ðy
0

ðgðtÞÞð2þ1=aÞb
qðtÞdt ¼ y:ð3:29Þ

Proof. That the oscillation of (A) implies (3.29) is an immediate con-

sequence of Theorem 2.1.

Assume now that (3.29) is satisfied. The condition (3.28) means that there

exists a constant c > 1 such that

gðtÞa ct for all su‰ciently large t:

Consider the ordinary di¤erential equation

ðjz 00ðtÞja sgn z 00ðtÞÞ00 þ cqðg�1ðctÞÞ
g 0ðg�1ðctÞÞ jzðtÞj

b sgn zðtÞ ¼ 0:ð3:30Þ
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Since by (3.29)ðy
tð2þ1=aÞb cqðg�1ðctÞÞ

g 0ðg�1ðctÞÞ dt ¼
ðy gðtÞ

c

� �ð2þ1=aÞb
qðtÞdt ¼ y;

all solutions of (3.30) are oscillatory according to Wu’s theorem: Theorem

W-(i). From Lemma 3.1 it follows that the equation

ðju 00ðtÞja sgn u 00ðtÞÞ00 þ cqðg�1ðctÞÞ
g 0ðg�1ðctÞÞ juðctÞj

b sgn uðctÞ ¼ 0ð3:31Þ

has all of its solutions oscillatory. Comparison of (A) with (3.31) via Lemma

3.2 then leads to the desired conclusion of the theorem. This completes the

proof.

An oscillation criterion for the equation (A) in the super-half-linear case is

given in the following theorem.

Theorem 3.3. Let aa 1 < b and suppose that

lim inf
t!y

gðtÞ
t

> 0:ð3:32Þ

Then, all solutions of (A) are oscillatory if and only if either (3.2) or (3.3) holds.

Proof. We need only to prove the ‘‘if ’’ part of the theorem, since the

‘‘only if ’’ part follows immediately from Theorem 2.4.

In view of (3.32) there exists a positive constant c < 1 such that

gðtÞb ct for all su‰ciently large t:ð3:33Þ

Consider the ordinary di¤erential equation

ðjz 00ðtÞja sgn z 00ðtÞÞ00 þ 1

c
q

t

c

� �
jzðtÞjb sgn zðtÞ ¼ 0:ð3:34Þ

Using the assumptions on qðtÞ, we see that eitherðy
0

t

c
q

t

c

� �
dt ¼ c

ðy
0

tqðtÞdt ¼ y

or ðy
0

t

ðy
t

ðs� tÞ 1
c
q

s

c

� �
ds

� �1=a
dt ¼ c1þ1=a

ðy
0

t

c

ðy
t=c

s� t

c

� �
qðsÞds

" #1=a
dt ¼ y;

which implies that all the solutions of (3.34) are oscillatory. We now apply

one of the comparison principles, Lemma 3.2, to compare (3.34) with the

equation
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ðju 00ðtÞja sgn u 00ðtÞÞ00 þ qðtÞjuðctÞjb sgn uðctÞ ¼ 0;ð3:35Þ

and conclude that (3.35) has the same oscillatory behavior as (3.34). Since

(3.33) holds, applying another comparison principle, Lemma 3.1, we conclude

that all the solutions of (A) are necessarily oscillatory. This completes the

proof.

From the proof of Theorems 3.2 and 3.3 we see that in case ab 1 > b or

aa 1 < b, the oscillation of the functional di¤erential equation

ðjy 00ðtÞja sgn y 00ðtÞÞ00 þ qðtÞjyðctÞjb sgn yðctÞ ¼ 0

is equivalent to that of the ordinary di¤erential equation (B). This observation

combined with our comparison principles (Lemmas 3.2 and 3.3) will lead to the

following result.

Corollary. Let either ab 1 > b or aa 1 < b and suppose that gðtÞ in

(A) satisfies

0 < lim inf
t!y

gðtÞ
t

; lim sup
t!y

gðtÞ
t

< y:

Then all solutions of the equation (A) are oscillatory if and only if the same is

true for the equation (B).

Example. We present here an example which illustrates oscillation and

nonoscillation theorems proven in Sections 1 and 2.

Consider the equation

ðjy 00ðtÞja sgn y 00ðtÞÞ00 þ t�ljyðtgÞjb sgn yðtgÞ ¼ 0;ð3:36Þ

where a; b; g are fixed positive constants and l is a varying parameter.

It is easy to check that, written for (3.36),

(2.7) is equivalent to l > 1þ 2þ 1

a

� �
bg;

(2.13) is equivalent to l > 2þ 2bg;

(2.18) is equivalent to l > 2þ aþ bg;

(2.23) is equivalent to l > 2þ 2a,

so that from Theorems 2.1–2.4 we see that

(3.36) has a type-I1 solution if and only if l > 1þ 2þ 1

a

� �
bg;

(3.36) has a type-I3 solution if and only if l > 2þ 2bg;

(3.36) has a type-II1 solution if and only if l > 2þ aþ bg;

(3.36) has a type-II3 solution if and only if l > 2þ 2a.
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It follows that (3.36) has solutions of all types I1; I3; II1 and II3 if either

aa bg and l > 1þ 2þ 1

a

� �
bg

or

a > bg and l > 2þ 2a:

It is easy to see that for (3.36) the conditions fð2:28Þ; ð2:29Þg and fð2:34Þ; ð2:35Þg
guaranteeing the existence of solutions of ‘‘intermediate’’ types I2 and II2 may

be realized only when a > bg. The conclusions which follow from Theorems

2.5 and 2.6 are:

(i) (3.36) has a type-I2 solution if

a > bg and 1þ 2þ 1

a

� �
bg < la 2þ 2bg:ð3:37Þ

(ii) (3.36) has a type-II2 solution if

a > bg and 2þ aþ bg < la 2þ 2a:ð3:38Þ

We note that if (3.37) holds, then (3.36) has no solutions of types I3; II1
and II3, and that if (3.38) holds, then (3.36) has no solution of type II3.

We now want oscillation criteria for (3.36).

Suppose that ab 1 > b. If ga 1, then from Theorem 3.2 we conclude

that all solutions of (3.36) are oscillatory if and only if

la 1þ 2þ 1

a

� �
bg:

If g > 1, then, applying Theorem 3.1, we see that all solutions of (3.36) are

oscillatory if

la 1þ 2þ 1

a

� �
b:

Suppose that aa 1 < b. Then, Theorem 3.3 applies to (3.36) with gb 1

and leads to the conclusion that all of its solutions are oscillatory if and only if

la 2þ 2a:
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