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ABSTRACT. We consider the weakly coupled system of reaction-diffusion equations!-?
uy = Au+ a(x)v?, v, = Av+ b(x)u,
u(x,0) = (), o(x,0) = 2Y(x),

where 0 < a(x), b(x) e C(RY), ¢(x),y(x) =0 are bounded continuous functions in
R, p,g>1, u,v>0, and 1> 0 are parameters. The existense of solutions, blow-up
conditions, and global solutions of the above equations with a(x) = |x|”", b(x) = |x|*
(0<o; <N(p—1),0< 0, < N(q—1)) are studied by Mochizuki and Huang. In this
paper, we consider an estimate of maximal existence time of blow-up solutions as 4 goes
to 0 or oo, when a(x),b(x) are more general functions.

1. Introduction and statement of results

We consider bounded, nonnegative solutions to the Cauchy problem for a
weakly coupled system

(1)

where 0 < a(x), b(x) e C(RY), 0 < ¢p(x), ¥(x) e BC(RY); here BC(RY) is the
set of bounded continuous functions on R, p,g > 1, 4,v >0, and 1 >0 are
parameters. Since the nonlinearities, a(x)v”, b(x)u?, are locally continuous in
x and locally Lipschitz in u, v, it follows from standard results that any solu-
tion u(x,?),v(x,7) >0 of the equation (1) is in fact classical; that is, u,v e
C>'(RY x (0,T))NC(RY x [0,T)) for some T >0. Thus, the comparison
theorem holds from Theorem 1 in [1]; i.e. if
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Lb < M(X, O) < fga 9o < U(X, 0) < g_()7

it follows that for xeRY, 0<r< T,

[0 <ulx,0) < f(1),  g(0) <vlx,0) <g(),

where (f(2),9(2)) and (f(z),g()) are subsolution and supersolution of (1) with
initial value (fo.90) and (fo,70)-

We let 77 > 0 be the maximal existence time. From the general theory
of evolution equation [9], it follows that there exists a unique bounded solution

u(x,t) to the equation

{u,Au+a(x)u1’ (xeRM,t>0), 2)

u(x,0) = Jp(x)  (xeRY),
which satisfies

sup |lu(?)||,, < oo for 0 < 3T < 0,
te(0,T)

where a(x) is a continuous function which satisfies that a(x)/|x|’ (¢ > —2) is
bounded when |x| is sufficiently large, and 0 < p(x) <6 exp(—y|x|*) holds. So
we define T, as follows:

o} < oo}.

If T} = oo, the solutions are global. The global existence and nonexistence are
studied by Escobedo-Herrero [2] and Mochizuki [7] in the case a(x) = b(x) =1,
and are extended in [8] to the case a(x) = |x|”', b(x) = |x|™, where 0 < g <
N(p—-1),0<0, <N(g—1).

In this paper, we shall consider a precise estimate of 7 as 4 goes to 0 or
oo. This problem is studied in Huang-Mochizuki-Mukai [5] and Mochizuki [7]
in the special case a(x) = b(x) = 1. On the other hand, Pinsky [11] studied the
life span of the single equation (2) where a(x) is some kind of function. We
shall extend the results of [5] and [7] and prove by the same methods as [11].
We put

T; = sup{T > 0; sup {||u(®)|l,, + llv()
tel0,T)

2 1 2 1
g 2etl) 5 (g+1)
pg—1 pq—1
THEOREM 1. Assume that a,b satisfy
a(x) ~ X7, b(x) ~ |xX[? as [x] = o0,

where 1,07 > =2 if N>2, g,00>—1 if N=1, and that initial data ¢,
satisfy
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0<p(x),  W(x)<dexp(—ylx|*)

for some 6,y > 0.
(i) Suppose that o+, > N (or f+ 32 > N), where

orp + 01 o1q + o2
o =——-—, 0) = ——=.
pq—1 pq—1
Then there exist Ay >0 and C > 0 such that
T; < CA7H/Et0=N) (op <CA72/PHR=NY for )< Jy.

(i) Suppose that

p<p*=1+2—~]_val, q<q*:1—|—2—;702.
Let p,v be chosen to satisfy
Ko +0; — N
v B+ N’
Then we have
T ~ J-2/(+01=N) _ 3=2v/(B+6,—N) as J— 0.

THEOREM 2. Assume that 0 <a,b,p,y € BC(RY) and that there is a
smooth bounded domain D = RY such that

inf a(x), inf b(x), inf p(x), inf Y(x) > 0.

xeD

(i) Suppose that pv > u, qu > v. Then there exist Ay > 0 and C > 0 such
that

T; < CA72% (or <C272Py  for 1> ).

(i) Let u,v be chosen to satisfy u/v=o/f. Then we have

Tffvl_zﬂ/“:/l_zv/ﬁ as A — oo.

REMARK 1. Theorems 1 and 2 are the extension of results of [11]. If we
putu=v, o=y, a=>b, p=gq, 1 =02, u=v =1 in these theorems, the same
results as Theorem 1 (i) and Theorem 3 (i) in [11] are obtained respectively.

We shall prove Theorems 1 and 2 in Sections 2 and 3, respectively. In the
sequel, we will use the notation

P(x, 1) = (4n1) N2 exp <— ﬁf) .
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We conclude this section by noting the following well-known integral repre-
sentation which holds for bounded solutions u(x,¢),v(x,t) to (1):

ey = 24 [ =iy + [ [ Pl wi = atetr. ) dvas,
l G)
v(x, 1) =24 JRN P(x— y,0)y(y)dy + Jo LN P(x — y,t — s)b(y)u(y,s)?dyds.

2. Proof of Theorem 1
We begin with the proof of the upper bounds.

LemMa 2.1, Let u(x,t),v(x,t) satisfy (1). Then for any ty e (0,T;), there
exists a ¢ > 0 such that

2
u(x, 1) = Aet™V? exp <— |xz—t> ;

2
v(x, 1) > Vet ™2 exp (— ;—L), for tet, T;),xeR".
ProOOF. We prove only the first inequality. Since ¢(x) # 0, there exists
D, = RY such that

= xl;llf;l p(x) > 0.

From the inequality |x — y|* < 2|x|* +2|y|* and (3), it follows that

u(x, 1) > l"J P(x =y, 0)p(y)dy = ey J P(x =y, 0)dy
RY D,
> /1”(47zt)7N/2c'1 J exp| — w - w dy
- D 2t 2t
> /1”(4n)7N/2clt’N/2 exp —ﬁ J exp —w dy
B 21 D, 21() ’
for t > 1. O

Let D, = {xeRY;n < |x| <2n} if N>2, and D, = {xeR";n < x < 2n}
if N=1. Let 6, >0 denote the principal eigenvalue of —A with Dirichlet
problem in D, and let w,(x) denote the corresponding positive eigenfunction,
normalized by ID” wu(x)dx = 1. Note that since D, contains an N-dimensional
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cube of length kn for an appropriate constant k € (0,1), it follows that there
exists a constant ¢ > 0 such that

0, < cn 2 4)
By assumption, there exist 7y and c¢; > 0 such that
a(x) = c|x|”,  b(x) = c1]x|7, for |x| > ny. (5)
From now on, we will always assume that n > ng. Define

F,(t) = J u(x, t)w,(x)dx,

D,

Gu(1) = J v(x, Hwy,(x)dx, for 0 <t < T;.
D,
Then it follows that F,(1) < |lu(?)||.,, G.(t) < [[v(?)|,, for all n > 0. Thus, T}
is no more than the blow up time of (F,(¢), G,(¢)). Let d/dn be the outward
normal derivative to D, at x € dD,. From Green’s formula and the fact that
w,(x) =0 and dw,/0n <0 on dD,, we obtain
Ju 0w,

JD”(Au(x, D, (x) — u(x, t) Adw,(x))dx = LDn <_ ———

ds > 0.
o )s_

From Holder’s inequality, the inequality
1/p
J v(x, D, (x)dx < (J v(x, t)pcon(x)dx>
D, Dy
holds. Using (4), (5), we obtain from (1)

Fl(1) = JD (X, ), (x)dx

- J (du(x, 1) + a(x)v(x, )" ), (x)dx

Y

J u(x, t)dw,(x)dx + ¢ J |x| " v(x, 1) o, (x)dx
D, Dy

\Y

-0, J u(x, )y (x)dx + con” J v(x, 1)’ w,(x)dx
D,

D,
> —cn2F, (1) + con® G,(1)".
Thus, we obtain the following inequalities:

Fl(t) = —en2F, (1) + con G, (1)’ (1> 0),
G)(t) = —en 2Gu(1) + con®F, (1) (1> 0).
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By Lemma 2.1, there exists a C > 0 such that u(x,n?) > Ci*n™V, v(x,n?) =
CX'nN for n < |x| < 2n, thus

Fy(n?) = CA*'nN, G, (n*) = C2'n V.

Let fy, g, € C°([0,T7))NC'((0,T;)) be the solution to the system of ordinary
differential equations

S0 = —en 21, (1) + con® g ()P (1 > 0),
9,(1) = —en2g,(1) + con™fo () (1> 0), (7)
fo(n?) = Ci*n=N,
gn(n?) = CA'n7N
Then (F,(¢),G,(¢)) is a supersolution of (7). By the scaling
f(t) = c*“/zcg/zn”‘;‘ﬂ(c*lnz(t +¢)),
(8)
g(t) = c’ﬁ/zcg/znﬁ”zgn(cilnz(t +¢)),
we obtain the simpler system of equations
{70 =10 +atir (c>0, o)
g'(t)=—9(O)+ /(" (t>0),

with the initial data
f0) = Gafn™ N g(0) = Cpa'nP TN,
where C, = Cc4/2¢{?, C, = Ce PR,
LemMA 2.2. Let (f(2),9(t)) be the solution to (9) with the initial data
JO)>1, ¢(0)=0.

If f(0) is sufficiently large, then (f(t),g(t)) blows up in finite time. Moreover,
the life span Ty of (f(t),9(t)) is estimated from above by

o0
To <t +J {C(p,q)é(p+l)(q+l)/([9+q+2) _ 25},161& 10)
£ (20)g(t0)
where
Clp,q) = M (p+1)/(p+4+2) Léﬁ‘z (g+1)/(p+q+2)
| Pl qg+1

and 0 <ty < Ty is chosen to satisfy {f(to)g(to)} 71/ (P4t 5 2,
ProoOF. See e.g., K. Mochizuki [7]. O

PrOOF OF THEOREM 1 (i). As is shown in the above lemma, there exist
Ay >0 and By > 0 such that if
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f(0)>4, or  g(0)> By, (11)

then (f(¢),g(¢)) blows up in finite time. We see that (11) will be satisfied if
n=n(l) is chosen so that

/“LV _ yn—a—bl+N,

where y > 0 is a constant which satisfies y > C; '4,. If J is sufficiently small,
n > ng, so we can apply this argument. From (8) and Lemma 2.2, there exists
a Ao > 0 such that

T; < ¢ 'n(Ty+ ¢) = CA~H#/+0=N)
for A < },0, |:|

Note that there is only one equilibrium of system (9) in Ri, say P=(1,1).
As is easily seen, P is a saddle point. One of the separatrix starts from 0 and
runs to co. Another one intersects f-axis and g-axis at 4, and By, respectively.
Moreover, every solution (f(7),g(z)) of (9) with the initial value (f(0),g(0))
lying above this separatrix runs into

0={(f.9)eRe; [P <g< f4},

and then blows up in finite time. As for these arguments, see e.g.,
Galaktionov-Kurdyumov-Samarskii [3], [4] or Qi-Levine [12].

We now turn to the proof of the lower bound. For the proof, we will
need the following two lemmas from advanced calculus which appear as
Lemmas 5 and 6 in [10].

LemMA 2.3. For each o > 0, there exists a constant ¢ > 0 such that
J P(x—y,0(1+|y))%dy <c(1+ 17> +|x"),  for xeRY,1>0.
RY

Proor. Using the inequality |a+b|” <29(|a]” + |b|”) for o >0, we
obtain

J Px— 3, 0)(1 + |3])7dy = J P(z, )(1 + |x + 2|)d-
RN RN
< 2”J P(z,t0)(1 + |x +z|%)dz
RlV
<274 zzﬂj PG, (X7 + 2] 7)dz

RY

:2a+220|x|0+220cgta/2’
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where

2
co = (4m) N/ JR 1|7 exp < %) dé. O

LemmA 2.4. For ¢ <0 and t > 0, the function

HEx) = | Py (14 1) dy

attains its maximum at x = 0.

Proor. H(x) depends only on |x|, thus it is enough to show that
(x,VH(x)) <0 for all xeRY. We have

VH() = | VPGr= 3 (14 ) dy

R

| wPe—p0 )

_ J P(x— y,0V (1 +|y))dy.

Thus,
2
(x,VH(x)) = (7(471[)7]\7/2 exp <— %) JRN exp (%) (x,¥)

2
x exp<— b )(1 + 1)y (12)

Since (x,VH(x)) depends only on |x|, it is enough to show that
J]M x,VH(x))dx <0 for all » > 0. Considering symmetry of functions, we

oo
Lon(5) e

{Lx ()20 . e O}eXp((xéty))(X,y)dx

J oo (57) e (557 f e

> (13)
for all yeRY. From (12) and (13), we obtain f\x|:r(x7 VH(x))dx <0. O
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To prove that a given number 7 > 0 provides a lower bound for T, we
will make the following argument. Define

i) =24 | POr= yi0(s)dy,

wwo=1ﬂ P(x — y, W (y)dy.

R/\
where ¢, satisfy
0<p(x),  Y(x) <OP(xK) (14)

for some J,k > 0, and

t

WMnozwuﬁ+jj P(x — y,1 — S)a(y)ualy.s)"dyds,
0 JRY

(15)

t

U1 (x, 1) = vo(x, £) + J JRN P(x — y,t —s)b(y)u(y,s)dyds,

0

for n>0. By induction, u,1(x,?) > uy(x,2), vep1(x, 1) = va(x,2). If there
exists a 77> 0 such that

sup u,(x,1),sup v,(x, ) < oo, for xeRY,1€0,7),
n>0 n>0
then
a(x, ) = lim wu,(x,1), o(x,f) = lim v,(x,1)
n—oo n—aoo

converge uniformly in x e R", t€[0,7), and it follows from the monotone
convergence theorem and (15) that i, & satisfy (3) for x e RY, 7€ (0, T); hence
Ty >T. Thus, to obtain an estimate of the form 7, > T, it is enough to
show the following lemma:
Lemma 2.5. If (14) holds,
Uy (x, 1) < 2046P(x,t + k), Un(x,8) < 2A"0P(x,t + k) (16)
holds for all n>0 in xeR", te(0,T(1)), where

T(2) = C min{ 2P 0/Nw =) H2=aen)/N@" =)y _ p
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Proor. From (14) and the relation

|, Pec= 0Pk

-N - |x\2
= (4nt) /2(47zk) N2 exp (— 4(t+k)>

J o[ _LHE| R P
e P\ Tk |V T k) )Y

_ -NJ2 |
= (4n(t+ k)™ exp j Pz k)dz
R[\/

4(t+ k)

— P(x, 1+ k),
it follows that
up(x, 1) < A"OP(x,t+ k) < 22#0P(x,t+ k),
(17)
vo(x, 1) < A'OP(x,t+ k) < 20P(x,t+ k),
for all £ >0. Hence (16) holds for n =0 when 0 < < c0.

Next, we shall assume that (16) holds for some » > 0. In the sequel C
will denote a positive constant whose value will change from term to term.
Since a(x) < C(1 + |x])”* for some C > 0 by assumption, using (15), (16), and
(17), we obtain

Up1(x,0) < AHOP(x, 1 + k)

+(2275)" JI

|, anpee =y = Ps s o7 dvas
0 JRY

< MMSP(x,t + k)

+ (s C JI

J (0 — )™ (s 1 k)2
0 JRY

2 2
x (14 [y)” exp(—'x M _pl )dyds. (18)

4(t—s5) 4(s+k)

Using the relation

o (_ x—y* oyl )
P\Ta—s) 4G+ k)

_ |y = R(s, x| PR(s, 1)|x|?
- P (‘ 4(r — 5)R(s, z)) exp (‘ A(s+k) )




System of reaction-diffusion equations 177

where R(s,7) = (s+k)/(s+k+ p(t—ys)), (18) can be rewritten as

t
i (x, £) < JPOP(x, £+ k) + (2,1"5)1’CJ

J P(R(s,t)x — y, R(s,0)(t — 5))
0 JRY

2
« (1 + |y|)0’1 (S+k)7Np/2R(S’ I)N/z exp(—%)dyds. (19)

At this stage in the proof, we must consider two cases separately. The
first case is when o > 0, and the second case is when o) < 0. We treat the
case oy >0 first. Carrying out the integration over R in (19), and using
Lemma 2.3 with ¢,x and ¢ being replaced by R(s,?)(t —s), R(s,t)x and o)
respectively, the final term on the right hand side of (19) reduces to

t
229 [ 114+ R(5.0)" (e = 9™ + R(s.)" 3]
0

X (s + k)_Np/zR(s, 1) N2 exp (— p—f((;i)]t;ﬁ) ds. (20)

Multiplying outside the integral in (20) by the factor exp(—|x|?/4(t + k)),
multiplying inside the integral by its reciprocal, and simplifying the argument in
the exponential term, (20) may be rewritten as

2 t
(24°0) C exp <_ i (|t"+| k)> J (s+ k)" R(s, )"
0

 [1+ R(s,0)"*(1 — ) + R(s, )" |x|"]

X exXp (— (p _41();1(2;)')('2) ds. (21)

We now write

R(s,)7 x|" exp ( (p~ DR(s z>|x|2>

4(t+ k)
= R(s,1)"/*z7/? exp(— E‘IE[+112)Z), (22)

where z = R(s,1)|x|*>. Differentiating this as a function of z > 0, we have
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_ -1 (p—1)z
R a/2(% _sij2-1 P 1/2 _ .
(s,1) <2 : vk )P40 rh

By the inequality p > 1, the function (22) of z attains its maximum at z =
201(t+k)/(p—1). The maximum value then is

a1 /2
R(s, 1)/ (2‘71 (t+k) k>> ! oo1/2.
p—1

From this it follows that

R(s, )™ x| exp ( (p— DRGs, r>|x|2>

4(t+k)
< CR(s,))"*(t + k) "2, (23)

for all xeR", t>0 and 0 <s <t From (23) and the fact that p > 1, it
follows that the quantity in (21) is smaller than

(2276)7 C exp ( il ) { Jt(s + k) NP2 R(s, 1)V ds
’ 4(t + k) 0 ’

+ J;(s + k)P R(s, )N TR (1 — )7 4 (14 k) ”‘/z]ds}. (24)

We now carry out the integration in (24). Recalling that p < p* =
14+ (24 61)/N, recalling that R(s,?) = (s+k)/(s+k+ p(t—ys)), and noting
that 1+ k <s+k+ p(t—s) < p(t+k) for s€]0,1], we have

t
J (s+ k)N R(s, )N ds

0
NJ2
t(erk)N(lp)/z(—tJrk > ds
t—)

_ ka/zj

t

(t+ k)’N/2J (s + k) NOI=P)/2gg
0

IA

Ct+ k)=, if p<1+2/N,
C(t+ k)™M *log(t/k +1), if p=1+2/N, (25)
Clt+k) ™2 if p>1+2/N,

IA

and
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t
J (s + k)P R(s, VP [(1 = )7 4 (14 k)7 dis
0

1

(N+a1)/2
> ds

< C(z+k)’N/2J

5+ k)(N(1P)+0|)/2< t+k
0

s+k+p(t—ys)

< C(t+k)N/2JI(S+k)<N(1p>+0_l)/2ds
0

< C(t+ k) NFNP=R2, (26)

From (20), (21), (24), (25) and (26), we conclude now that the final term on the
right hand side of (19) is smaller than

2
Ve\p —N/24+N(p*=p)/2 _ |x|
QAP C(t+k) exp( e +k)>'

Substituting this in (19), we obtain

Up+1 (X, Z)

2
< MOP(x,t+ k) + (226)C1 4 k) NNP=0)/2 exp (_ x| )

= (M + 220 C(t + k)N =PI\ P(x 1 + k), (27)
for xeRY, 1>0.

We now turn to the case o <0. It follows from Lemma 2.4 that the
inside integral,

[, POR.00x = . Rs. 0= )1+ 13",

appearing on the right hand side of (19), attains its maximum as a function of
x when x =0. Thus, the final term on the right hand side of (19) is less than
or equal to

erorc| | PouRe6=9)0+ )"

X (s + k)_N"/zR(s, f) N/2 exp (— —pf((ssi)llc);2> dyds. (28)

By the facts that [pv P(y,6)(1+|y|)”'dy <1 for t€0,1], and that
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| PO+ b < | Posobima
R[\/ R1

2
_ 101/2(47_[)7N/2J |Z|01 exp <_ %) dz for t > 1.
RY

by the assumption that oy € (=2,0] if N >2 or that o; € (—1,0] if N =1, it
follows that there exists a C > 0 such that

J Py, (1 + [y)"dy < C(1 + 1)/ (29)
RY

Applying this with ¢ being replaced by R(s,?)(z — s), it follows that the quantity
in (28) is less than or equal to

t

(21%9)7C JO[I +R(s, 0)(t — 5]

x (s+k)” Ne/2 R R(s, 1) N/2 exp <_p7§((j,+t)k);|2> ds. (30)

Since p > 1, R(s,t) <1 and pR(s,t)/(s+k)=p/(s+k+p(t—s)) =1/(t+k)
for s€[0,7], the quantity in (30) is less than or equal to

2 t
(2'6)" C exp <_ 4(|zx+| k)) L R(s, )™ V2 (1 41— )" (s 4+ k) "2ds. (31)

We now carry out the integration in (31). Recalling that p<p*=
1+ (2+01)/N, that o, €(=2,0] if N>2 or that g€ (-1,0] if N=1,
and that R(s,f) = (s+k)/(s+k+ p(t—s)), and noting that t+k <s+k+
p(t—s) <p(t+k) for s€[0,7], we have

t
J R(s, )NV (1 41— )72 (s 4+ k)P ds
0

< (14 k)" ”J( + k)NI=PF2() )72
0

t/2

C(t+ k) W2 {(z+k)”l/zj (s + k) NP2 g
0

(Z-'—k) (N(1—p +G’1)/2J (l_s)(il/st}
t/2

C(Z_Fk)—N/Z-FN(P*—P)/Z. (32)
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From (19), (28), (30), (31) and (32), we conclude that
Uny1 (x, 1) < (A4S + QA'6)"C(t + k)N =PI\ P(x, 1 + k), (33)

for xeRY, 1>0.
In the same way as (18) through (32), we conclude that

Ung1 (x, 1) < (W46 + A'0)"C(t + k)N =PI\ P(x, 1 + k),
* (34)
Vit (x, 1) < (A6 + (2240)1C (1 + k)N =D\ P(x, 1 + k)

for xe R, t>0. From (34), we find that (16) with n being replaced by n + 1
holds as long as

QIS C(t+ k)N P2 < jks (2248)IC (1 + k)NOD2 < 1.
Thus, (16) holds for all # >0 when
1 < min{((24"8) P CA*S)YN PP (2p8) 1ty N DY _ i
= C min{2CPHR/NGT=p) 2-aetn) NG =0V _ e — (). 0
ProOF OF THEOREM 1 (ii). Recall here that we have assumed
n_ot o — N
v B+d&h—N’
Then since pf — o =qou—f =2, péy — 1 = o1, q61 — 2 = 02, it follows that

—pv+u _ —v < _E>
2+ +NI—-p) 2+a+N1-p) "7

B —v ( oc—i—él—N) —y
250 +N1-p) \X BT, -N) pro—N’
—qu+v . n
240 +N(1—-¢q) a+d —N’

Thus, we obtain
T; > T()) > CA~ 2/ r0=N) — )= 2/(B+o=N)

when 4 > 0 is sufficiently small. ]

3. Proof of Theorem 2

We begin with the proof of the upper bounds. Let D = RY be a smooth
bounded domain such that

infa(x), inf b(x), inf ¢(x), inf Y(x) = ¢ > 0. (35)
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Let 0 > 0 denote the principal eigenvalue of —4 with Dirichlet problem in D,
and let w(x) denote the corresponding positive eigenfunction, normalized by
Jpw(x)dx =1. Define

G(1) = J v(x, t)o(x)dx, for 0 <t<T;.
Using (35), we obtain from (1) that

F) :J i (x, £)o(x)

= L)(Au(x7 1) + a(x)v(x, 1)")w(x)dx

> —0F (1) + cG(1)".
Thus, we obtain the following inequalities:

(1) = —0F (1) + cG(1)"  (t>0),
{ G'(t) = HG( )+ cF()? (t>0). (36)

From (35), F(0) = cA*, G(0) = cA
Let f,ge C°([0,T;))NC((0, *)) be the solution of the system of ordi-
nary differential equations

= —0g(1) +cf ()7 (1> 0), (37)

Then (F(¢),G(f)) is a supersolution of (37).
LemMmA 3.1. Define
0={(f,9) eR3; (207" < g < (20)'ef 1},

and let (f(1),9(t)) be the solution to (37). If (f(0),9(0)) e Q, then
(f(2),9(t) € Q for all te]0,T)).

Proor. We shall first show that
F() > £(0)> (20> and  g(1) > g(0) > (20cHP? (38)

hold for all e (0,7;). Since f(t),g(t) are continuous at =0 and

—01(0) + ¢g(0)” > 0f(0) > 0, —0g(0) + ¢/ (0)7 > 0g(0) >0,  (39)
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there exists an ¢ > 0 such that
S'(0) = =01 () + cg()” > 0,
g'(t) = =0g(t) + cf (1) > 0, for 0 <1 <e.

So (38) holds for 0 <t <¢. Assume contrary that there exists a ¢ € (0, T)
such that (38) holds for 0 < ¢t < #; and f(t;) = f(0). From (37), it follows that

e"f(1)) = e"f'(1) + 0e”f (1) = cey(1)".

Integrating the both sides of this equality from 0 to ¢, we obtain

n

e f(0) = £(0) = CJO ePg(s)’ds > cg(0)707 (e —1).

Since e’ > 1, it follows that 0f(0) > ¢g(0)”. This leads to a contradiction to
(39), so we obtain f(¢) > f(0) for all e (0,7;). In the same way, we also
obtain ¢(t) > ¢g(0) for all 7€ (0, T)).

Next, we shall show that (f(¢),g(f)) e Q for all t€[0,7;). Since
f(#),9(¢) are continuous at ¢ = 0, there exists an & > 0 such that (f(z),g(?)) €
O for 0 <t <e&. Assume contrarily that there exists a , € (0, 7;) such that
(f(2),9(1)) € Q for 0 <t < t, and 20f (1) = cg(12)”. Since it follows from (38)
that

(20)"ef (12)" = g(2) = {((20) ') " g(02)"""" — 1}g(12) > 0,
we obtain
cpg(t2)""'g'(12) = 201" (12)
= pg(1)" (ef (12)" = Og(12)) — 20(cg(t2)" — 6f (12))
> 0{cpg(12)" = 20f (12)} = cO(p — 1)g(12)" > 0.
Considering the continuity of f”(1),g'(), there exists an &> 0 such that
epg()P'g' (1) = 20f"(1) > 0,  for h—e<t<t.

Integrating the left hand side of this inequality from ¢ satisfying , —e <t < f»
to 1, it follows that

B

0< chng(s)plg’(s)ds — ZQJ Sf'(s)ds

= cglta)” — cgl0) — 20/ (12) + 20f (1)
= 20/ (1) — cg(1)".
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This leads to a contradiction, so we obtain 20f(r) < cg(z)” for all 1€ [0,T;).
In the same way, we also obtain 20g(r) < ¢f(¢)? for all 1€0,7;). ]

ProOF OF THEOREM 2 (i). Choosing A9 >0 to satisfy Af"* >20c?,
A" >20c79, we easily see from the inequalities pv>pu, qu>v that
(f(0),¢9(0)) € Q holds if 2> 49. Then we can apply Lemma 3.1 to obtain
(f(2),9(t)) € Q for all te[0,7T;). From now on, we will always assume that
A > Ao. It follows from (37) that

J'(0) = =0f (1) + erg(1)"

> —%clg(t)" +C1g(f)p=%‘flg(’)p (40)

g'(t) > %sz(l)q for 1€ (0,T;).

Let us consider the system of ordinary differential equations

x'=(1/2)ey?, y' = (1/2)ex?t (1> 0), (1)
x(0) = cA”, y(0) = cA".

Then (f(¢),g(t)) is a supersolution of (41). From equation (41), it follows that
x9x" = yPy’. Integrate the both sides from 0 to ¢. Then we have

(O = x0Ty -y @)
g+1 p+1

If (g+1)"'x(0)7" > (p+1)"'y(0)""", it follows from (42) that

1/(g+1)
g+1 (p+1)(g+1)
x(t) = t .
(1) <p 1) y(1)

Substitute this in the second equation of (41). Then we have

Ci(p, 9)y(?) q(p+1)/(g+1)

)

N =

V(1) =

where C; (p7q) = c((q+ ])/(p < 1))51/(11+1)' Multiplying y(t)*q(pﬁLl)/(qul) and
integrating the both sides from 0 to 7, we obtain

L0 @) 2 S
@)

B(0) P < B(eat)y P — Ci(p.g)t.
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Since the right hand side of the second equation of (43) equals 0 when
t=pCi(p,q) " (),
it follows that y(¢#) must blow up by the above 7. This gives the upper bound
T; <Ci?F for 3C > 0.

In the case when (¢ + 1) 'x(0)™ < (p+1)"'p(0)"™, we obtain by the same
method

T; < CA 2% for 3C > 0. O

We now turn to the proof the lower bound. We will use an idea of the
same type as that used to prove the lower bound in Theorem 1. Define

i) =24 | POr= yi0(3)dy,

mwozxﬂ P(x — y, W (y)dy.

R N

where ¢, satisfy

for some 6 > 0, and

t

U1 (x, 1) = up(x, 1) + J JRN P(x — y,t — s)a(y)va(y,s)’ dyds,

’ (45)

t

Op1(x, 1) = vo(x, 1) + J JRN P(x — y,t —s)b(y)u(y,s)dyds,

0

for n > 0. By the same argument as in Section 2, it is enough to show the
following lemma:

Lemma 3.2, If (44) holds, the inequalities
uy(x, 1) < 2249, vn(x, 1) < 21" (46)
hold for all n>0 in xeRY, te[0,T(2)), where
T(A) = C min{A PV -9,
ProoF. From (44), we easily see that
up(x, 1) < A9 < 249, vo(x, 1) < A0 <210, (47)

for all £ >0. Hence (46) holds for n =0 when 0 < ¢ < c0.
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Next, we shall assume that (46) holds for some n > 0. In the sequel C
will denote a positive constant whose value will change from term to term.
Using (45), (46), and (47), we obtain

t
Upi1(x, 1) < A0+ (2&”(5)1’]

J a(y)P(x — y,t — s)dyds
0 JRY

< IS+ (213) (48)

U1 (x, 1) < 270+ (2449)1Ct,

for xe RY, t>0. From (48), we find that (46) with n being replaced by n + 1
holds as long as

(220)P Ct < 2%, (22#9)1Ct < 2%6.
Thus, (46) holds for all n >0 when
t <min{(24"0) " CA*9, (2249) 1 C2"o}
= C min{L "™ J7HV} = T(4). O

ProOF OF THEOREM 2 (ii). Recall here that we have assumed

B
Then since pf— o =qa— f =2, it follows that

u o 2v

2
o

u o
v

Thus, we obtain
T; > T(A) > CA 2> = cip2F

when 4 > 0 is sufficiently large. O
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