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Abstract. In this paper we investigate the ring ArðRÞ of arithmetical functions in r

variables over an integral domain R with respect to the unitary convolution. We study

a class of norms, and a class of derivations on ArðRÞ. We also show that the resulting

metric structure is complete.

1. Introduction

The ring A of complex valued arithmetical functions has a natural

structure of commutative C-algebra with addition and multiplication by scalars,

and with the Dirichlet convolution

ð f � gÞðnÞ ¼
X
djn

f ðdÞgðn=dÞ:

In [1], Cashwell and Everett proved that ðA;þ; �Þ is a unique factorization

domain. Yokom [5] investigated the prime factorization of arithmetical

functions in a certain subring of the regular convolution ring. He determined

a discrete valuation subring of the unitary ring of arithmetical functions.

Schwab and Silberberg [3] constructed an extension of ðA;þ; �Þ which is a

discrete valuation ring. In [4], they showed that A is a quasi-noetherian ring.

In the present paper we study the ring of arithmetical functions in several

variables with respect to the unitary convolution over an arbitrary integral

domain. Let R be an integral domain with identity 1R. Let rb 1 be an

integer number, and denote ArðRÞ ¼ f f : Nr ! Rg. Given f ; g A ArðRÞ, let us
define the unitary convolution f l g of f and g by

ð f l gÞðn1; . . . ; nrÞ ¼
X

d1e1¼n1
ðd1; e1Þ¼1

. . .
X

drer¼nr
ðdr; erÞ¼1

f ðd1; . . . ; drÞgðe1; . . . ; erÞ:

Note that R has a natural embedding in the ring ArðRÞ, and ArðRÞ with addition

and unitary convolution defined above becomes an R-algebra. We define and

study a family of norms on ArðRÞ. Then we show that ArðRÞ endowed with

any of the above norms is complete. A class of derivations on ArðRÞ is then

constructed and examined. We also study the logarithmic derivatives of

multiplicative arithmetical functions with respect to these derivations.



2. Norms

Let U(R) denote the group of units of R. Let U(ArðRÞ) be the group

of units of ArðRÞ. Thus, UðArðRÞÞ ¼ f f A ArðRÞ : f ð1; . . . ; 1Þ A UðRÞg. In

this section R will denote an integral domain. We start by defining a norm on

ArðRÞ. Fix t ¼ ðt1; . . . ; trÞ A Rr with t1; . . . ; tr linearly independent over Q, and

ti > 0, ði ¼ 1; 2; . . . ; rÞ. Given n A N, we define WðnÞ to be the total number

of prime factors of n counting multiplicities, i.e., if n ¼ pa1
1 . . . pak

k , then WðnÞ ¼
a1 þ � � � þ ak. We now define Wr : N

r ! Nr by

Wrðn1; . . . ; nrÞ ¼ ðWðn1Þ; . . . ;WðnrÞÞ:

Given n ¼ ðn1; . . . ; nrÞ and m ¼ ðm1; . . . ;mrÞ in Nr, we denote n �m ¼
n1m1 þ � � � þ nrmr. For f A ArðRÞ, we define the support of f , suppð f Þ ¼
fn A Nr j f ðnÞ0 0g. We also define for f A ArðRÞ,

Vtð f Þ ¼
y if f ¼ 0;

min
n A suppð f Þ

t �WrðnÞ if f 0 0.

(

Note that if f 0 0 then Vtð f Þ ¼ t �WrðnÞ for some n A suppð f Þ.

Proposition 1. (i) For any f ; g A ArðRÞ, we have

Vtð f þ gÞbminfVtð f Þ;VtðgÞg:

(ii) For any f ; g A ArðRÞ, we have

Vtð f l gÞbVtð f Þ þ VtðgÞ:

Proof. (i) Let f ; g A ArðRÞ. If f þ g ¼ 0, then clearly Vtð f þ gÞb
minfVtð f Þ;VtðgÞg. Suppose f þ g0 0. Let n A suppð f þ gÞ. Then either

n A suppð f Þ, or n A suppðgÞ. If n A suppð f Þ, then t �WrðnÞbVtð f Þ, and if

n A suppðgÞ, then t �WrðnÞbVtðgÞ. It follows that for all n A suppð f þ gÞ,
t �WrðnÞbminfVtð f Þ;VtðgÞg. Hence,

Vtð f þ gÞbminfVtð f Þ;VtðgÞg:

(ii) Again let f ; g A ArðRÞ. If f l g ¼ 0, then the inequality holds

trivially. So assume that f l g0 0, and let a1; . . . ; ar be positive integers such

that ða1; . . . ; arÞ A suppð f l gÞ and Vtð f l gÞ ¼ t1Wða1Þ þ � � � þ trWðarÞ. Then

00 ð f l gÞða1; . . . ; arÞ ¼
X

d1e1¼a1
ðd1; e1Þ¼1

. . .
X

drer¼ar
ðdr; erÞ¼1

f ðd1; . . . ; drÞgðe1; . . . ; erÞ:

Therefore f ðd1; . . . ; drÞ0 0 and gðe1; . . . ; erÞ0 0 for some di, ei with diei ¼ ai,

ðdi; eiÞ ¼ 1, ði ¼ 1; . . . ; rÞ. It follows that
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Vtð f Þ þ VtðgÞa t1Wðd1Þ þ � � � þ trWðdrÞ þ t1Wðe1Þ þ � � � þ trWðerÞ

¼ t1Wða1Þ þ � � � þ trWðarÞ

¼ Vtð f l gÞ:

This completes the proof of the proposition.

Next, we define a family of norms on ArðRÞ. Fix a t as above and a

number r A ð0; 1Þ. Then define a norm k:k ¼ k:kt : ArðRÞ ! R by

kxkt ¼ rVtðxÞ if x0 0; and kxkt ¼ 0 if x ¼ 0:

By the above proposition it follows that kxþ ykamaxfkxk; kykg, and

kxl yka kxk kyk for all x; y A ArðRÞ. Associated with the norm k:k we have

a distance d on ArðRÞ defined by dðx; yÞ ¼ kx� ykt, for all x; y A ArðRÞ:

Theorem 1. Let R be an integral domain, and let r be a positive inte-

ger. Then ArðRÞ is complete with respect to each of the norms k:kt.

Proof. Let ð fnÞnb0 be a Cauchy sequence in ArðRÞ. Then for each

e > 0, there exists an N A N depending on e such that k fm � fnk < e for all

m; nbN. For each k A N, taking e ¼ rk, there exists Nk A N such that

k fm � fnk < rk for all m; nbNk. Equivalently, Vtð fm � fnÞ > k for all

m; nbNk, i.e., we have that for all m; nbNk,

fmðl1; . . . ; lrÞ ¼ fnðl1; . . . ; lrÞ

whenever t1Wðl1Þ þ � � � þ trWðlrÞa k, l1; . . . ; lr A N. We choose inductively for

each k A N, the smallest natural number Nk with the above property such that

N1 < N2 < � � � < Nk < Nkþ1 < � � � :

Let us define f : Nr ! R as follows. Given l ¼ ðl1; . . . ; lrÞ A Nr, let k be

the smallest positive integer such that k < t1Wðl1Þ þ � � � þ trWðlrÞa k þ 1. We

set f ðlÞ ¼ fNkþ1
ðlÞ. Then we will have f ðlÞ ¼ fnðlÞ, for all nbNkþ1. Since

this will hold for all l and k as above, it follows that the sequence ð fnÞnb0

converges to f . This completes the proof of Theorem 1.

3. Derivations

We use the same notation as in the previous section.

Definition 1. We call an arithmetical function f A ArðRÞ multiplicative

provided that f is not identically zero and

f ðn1m1; . . . ; nrmrÞ ¼ f ðn1; . . . ; nrÞ f ðm1; . . . ;mrÞ
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for any n1; . . . ; nr;m1; . . . ;mr A N satisfying ðn1;m1Þ ¼ � � � ¼ ðnr;mrÞ ¼ 1. We

say that an f A ArðRÞ is additive provided that

f ðn1m1; . . . ; nrmrÞ ¼ f ðn1; . . . ; nrÞ þ f ðm1; . . . ;mrÞ

for any n1; . . . ; nr;m1; . . . ;mr A N satisfying ðn1;m1Þ ¼ � � � ¼ ðnr;mrÞ ¼ 1.

Note that if f is multiplicative then f ð1; . . . ; 1Þ ¼ 1, while if f is additive

then f ð1; . . . ; 1Þ ¼ 0. We now proceed to define a derivation on ArðRÞ. For

any additive function c A ArðRÞ, define Dc : ArðRÞ ! ArðRÞ by

Dcð f ÞðnÞ ¼ f ðnÞcðnÞ;

for all f A ArðRÞ and n A Nr. For n ¼ ðn1; . . . ; nrÞ, and m ¼ ðm1; . . . ;mrÞ in

Nr, we write nm ¼ ðn1m1; . . . ; nrmrÞ. We state some basic properties of the

map Dc in the next proposition.

Proposition 2. Let R be an integral domain, and let r be a positive

integer. Let c A ArðRÞ be additive. Then for all f ; g A ArðRÞ and c A R,

(a) Dcð f þ gÞ ¼ Dcð f Þ þDcðgÞ,
(b) Dcð f l gÞ ¼ f lDcðgÞ þ glDcð f Þ,
(c) Dcðcf Þ ¼ cDcð f Þ.

Consequently, we see that Dc is a derivation on ArðRÞ over R.

Proof. Let n ¼ ðn1; . . . ; nrÞ A Nr. First, from the definition of Dc we see

that

Dcð f þ gÞðnÞ ¼ ð f þ gÞðnÞcðnÞ

¼ f ðnÞcðnÞ þ gðnÞcðnÞ

¼ Dcð f Þ þDcðgÞ:

Thus, (a) holds. Also from the definition of Dc we have that

Dcð f l gÞðnÞ ¼ ð f l gÞðnÞcðnÞ:

So,

Dcð f l gÞðnÞ ¼ cðnÞ
X

d1e1¼n1
ðd1; e1Þ¼1

. . .
X

drer¼nr
ðdr; erÞ¼1

f ðd1; . . . ; drÞgðe1; . . . ; erÞ

¼
X

d1e1¼n1
ðd1; e1Þ¼1

. . .
X

drer¼nr
ðdr; erÞ¼1

f ðd1; . . . ; drÞgðe1; . . . ; erÞcðnÞ

¼
X

d1e1¼n1
ðd1; e1Þ¼1

. . .
X

drer¼nr
ðdr; erÞ¼1

f ðd1; . . . ; drÞgðe1; . . . ; erÞ
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� ðcðd1; . . . ; drÞ þ cðe1; . . . ; erÞÞ

¼
X

d1e1¼n1
ðd1; e1Þ¼1

. . .
X

drer¼nr
ðdr; erÞ¼1

f ðd1; . . . ; drÞcðd1; . . . ; drÞgðe1; . . . ; erÞ

þ
X

d1e1¼n1
ðd1; e1Þ¼1

. . .
X

drer¼nr
ðdr; erÞ¼1

f ðd1; . . . ; drÞcðe1; . . . ; erÞgðe1; . . . ; erÞ

¼ f lDcðgÞ þ glDcð f Þ:

Therefore (b) holds. Also, it is clear that (c) holds, and this proves the

proposition.

Lemma 1. Let f ; g A A1ðRÞ. Let p be a prime, and let Mp be the monoid

f1; p; p2; . . .g under multiplication. Suppose that suppð f Þ; suppðgÞJMp. If

f ð1Þ ¼ 0, and gð1Þ ¼ 1, then f ¼ f l g.

Proof. We have that suppð f l gÞJMp since suppð f Þ; suppðgÞJMp.

Thus both f and f l g vanish outside the monoid Mp. Let now n be a

positive integer. Then

ð f l gÞðpnÞ ¼
X
de¼pn

ðd; eÞ¼1

f ðdÞgðeÞ

¼ f ð1ÞgðpnÞ þ f ðpnÞgð1Þ

¼ f ðpnÞ:

Thus, f ¼ f l g.

Lemma 2. Let f A A1ðRÞ be multiplicative and c A A1ðRÞ be additive. Let

p be a prime, and let Mp be the monoid f1; p; p2; . . .g under multiplication

as in Lemma 1. Suppose that suppð f ÞJMp. Then
Dcð f Þ

f
¼ Dcð f Þ, where the

division on the left side is taken with respect to the unitary convolution.

Proof. Note first that since f is supported on Mp, both Dcð f Þ and f �1

will be supported on Mp. We have moreover that f �1ð1Þ ¼ 1 because f is

multiplicative. Also since c is additive, cð1Þ ¼ 0. Applying Lemma 1, we

conclude that
Dcð f Þ

f
¼ Dcð f Þ.

Theorem 2. Let f A A1ðRÞ be multiplicative and c A A1ðRÞ be additive.

Let n be a positive integer, and let Pn be the set of all prime divisors of n. For

each prime p, let Mp be as in Lemma 1, and let fp ¼ f jMp
, i.e.,
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fpðmÞ ¼ f ðmÞ if m ¼ pk; kb 1

0 else:

�

Then

Dcð f Þ
f

ðnÞ ¼
X
p APn

Dcð fpÞðnÞ ¼
cðnÞ f ðnÞ if n ¼ pk for some p prime

and kb 1;

0 else:

8<
:

Proof. Fix an n and let n ¼ ps1
1 . . . pst

t be the prime factorization of n.

Let M be the set of all m A N such that whenever p is a prime and p divides m,

p also divides n. Note that M is a monoid under multiplication, generated by

the primes p1; . . . ; pt. Let g ¼ f jM, i.e., for any m A N,

gðmÞ ¼ f ðmÞ if m A M

0 else:

�

Suppose that m, k are in N, and ðm; kÞ ¼ 1. If m B M, or k B M,

then f jMðmÞ ¼ 0, or f jMðkÞ ¼ 0, and so, gðmÞgðkÞ ¼ f jMðmÞ f jMðkÞ ¼ 0 ¼
f jMðmnÞ ¼ gðmnÞ since mn B M whenever one of m, or n does not belong to

M. If m, n are relatively prime and m; n A M then mn A M and gðmnÞ ¼
f jMðmnÞ ¼ f ðmnÞ ¼ f ðmÞf ðnÞ ¼ f jMðmÞf jMðnÞ ¼ gðmÞgðnÞ. Thus g is multi-

plicative. We claim that

g ¼
Y
p APn

fp:

Indeed, let us first observe that if h1; h2 A A1ðRÞ are such that suppðh1Þ,
suppðh2Þ are contained in M, then suppðh1 l h2ÞJM. To see this, let

m B M. Then there exists a prime p such that pjm, but p does not divide n.

Now

ðh1 l h2ÞðmÞ ¼
X
de¼m
ðd; eÞ¼1

h1ðdÞh2ðeÞ:

Since either pjd, or pje whenever m ¼ de, every term in this sum is 0

because suppðhiÞJM ði ¼ 1; 2Þ. Thus, ðh1 l h2ÞðmÞ ¼ 0 for any m B M.

Hence suppðh1 l h2ÞJM. Using the above observation and induction, it

follows that suppð
Q

p APn
fpÞJM. Since g is also supported on M, it follows

that in order to prove the above claim it is enough to show that g equalsQ
p APn

fp on M. Let m A M with

m ¼ pa1
1 . . . pat

t ;

where all ai are nonnegative integers for i ¼ 1; . . . ; t. We have that
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Y
p APn

fpðmÞ ¼
X

d1...dt¼m
ðdi ;djÞ¼1; ði0jÞ

fp1ðd1Þ . . . fptðdtÞ

¼
X

b1;...;bt

p
b1
1
...p

bt
t ¼m

fp1ðpb1
1 Þ . . . fptðpbt

t Þ

¼ fp1ðpa1
1 Þ . . . fptðpat

t Þ

¼ f ðmÞ

¼ gðmÞ;

where in the above computation b1; . . . ; bt are forced to have unique values

equal to a1; . . . ; at respectively. Hence g ¼
Q

p APn

fp, as claimed. Next, we

claim that

Dcð f Þ
f

����
M

¼ DcðgÞl g�1:

In order to prove this, we first show that

f �1jM ¼ g�1:

Note that by the previous claim we know that

g�1 ¼
Y
p APn

fp

 !�1

¼
Y
p APn

f �1
p ;

and as a consequence g�1 is supported on M. We now proceed by induction.

First, since f ð1Þ ¼ gð1Þ ¼ 1, it follows immediately that f �1jMð1Þ ¼ g�1ð1Þ ¼ 1.

Next, let m > 1, and assume that for all k < m, g�1ðkÞ ¼ f �1jMðkÞ. If m B M,

then f �1jMðmÞ ¼ 0 ¼ g�1ðmÞ. Now suppose that m A M. Then, using the

equalities ð f l f �1ÞðmÞ ¼ 0 ¼ ðgl g�1ÞðmÞ in combination with the induction

hypothesis we derive

f �1jMðmÞ ¼ f �1ðmÞ

¼ �1

f ð1Þ
X
de¼m
ðd; eÞ¼1
e<m

f ðdÞ f �1ðeÞ

¼ �1

gð1Þ
X
de¼m
ðd; eÞ¼1
e<m

gðdÞg�1ðeÞ

¼ g�1ðmÞ:
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Thus,

f �1jM ¼ g�1:

Further, it is clear that

Dcð f ÞjM ¼ Dcð f jMÞ ¼ DcðgÞ:

By the above two relations we conclude that

DcðgÞl g�1 ¼ Dcð f ÞjM l f �1jM:

Therefore in order to prove the claim it remains to show that

Dcð f Þ
f

����
M

¼ Dcð f ÞjM l f �1jM:

Here the left side is supported on M, while the right side is the unitary

convolution of two arithmetical functions supported on M, so it is also

supported on M. So we only need to check the desired equality at an ar-

bitrary point m A M. For such an m, any representation of m as a product

m ¼ de forces both d, e to belong to M. Thus

Dcð f Þ
f

����
M

� �
ðmÞ ¼ Dcð f Þ

f
ðmÞ ¼

X
de¼m
ðd; eÞ¼1

Dcð f ÞðdÞ f �1ðeÞ

¼
X
de¼m
ðd; eÞ¼1

Dcð f ÞjMðdÞ f �1jMðeÞ ¼ ðDcð f ÞjM l f �1jMÞðmÞ:

We conclude that
Dcð f Þ

f

���
M

¼ Dcð f ÞjM l f �1jM, and hence

Dcð f Þ
f

����
M

¼ DcðgÞl g�1;

as claimed. On the other hand, by applying Proposition 2 (b) repeatedly, we

obtain

DcðgÞl g�1 ¼
Dcð

Q
p APn

fpÞQ
p APn

fp
¼
X
p APn

Dc fp
� �
fp

:

By the above two relations we deduce that

Dcð f Þ
f

����
M

¼
X
p APn

Dcð fpÞ
fp

:
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But by Lemma 2,
P

p APn

Dcð fpÞ
fp

equals
P

p APn
Dcð fpÞ. Therefore, we have that

Dcð f Þ
f

����
M

¼
X
p APn

Dcð fpÞ:

Since n is in M, it follows in particular that

Dcð f Þ
f

ðnÞ ¼
X
p APn

Dcð fpÞðnÞ:

This completes the proof of the theorem.

We now proceed to generalize this theorem to the case of arithmetical

functions of several variables.

Lemma 3. Let f A ArðRÞ be multiplicative and consider the monoids

M1 ¼ fðk; 1; . . . ; 1Þ A Nr : k A Ng; . . . ;Mr ¼ fð1; . . . ; 1; kÞ A Nr : k A Ng:

Let f1 ¼ f jM1
; . . . ; fr ¼ f jMr

. Then

f ¼
Yr
i¼1

fi ¼ f1 l � � �l fr:

Proof. Let m ¼ ðm1;m2; . . . ;mrÞ A Nr. We have that

Yr
i¼1

fi

 !
ðmÞ ¼

X
d11...d1r¼m1

ðd1i ;d1jÞ¼1; ði0jÞ

. . .
X

d11...d1r¼m1

ðd1i ;d1jÞ¼1; ði0jÞ

Yr
i¼1

fiðd1i; . . . ; driÞ

¼
Yr
i¼1

fið1; . . . ; 1;mi; 1; . . . ; 1Þ

¼
Yr
i¼1

f ð1; . . . ; 1;mi; 1; . . . ; 1Þ

¼ f ðm1; . . . ;mrÞ

Hence, f ¼
Qr
i¼1

fi, and the lemma is proved.

Theorem 3. Let R be an integral domain, and let r be a positive integer.

Then, for any multiplicative function f A ArðRÞ, any additive function c A ArðRÞ,
and any n ¼ ðn1; . . . ; nrÞ A Nr, we have
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Dcð f Þ
f

ðnÞ ¼
cðnÞ f ðnÞ if n1 ¼ � � � ¼ ni�1 ¼ niþ1 ¼ � � � ¼ nr ¼ 1 and ni ¼ pk

for some p prime; kb 1; and 1a ia r;

0 else;

8<
:

where the division on the left side is taken with respect to the unitary con-

volution.

Proof. Let f be multiplicative and consider the monoids

M1 ¼ fðk; 1; . . . ; 1Þ A Nr : k A Ng; . . . ;Mr ¼ fð1; . . . ; 1; kÞ A Nr : k A Ng

as in Lemma 3. Let f1 ¼ f jM1
; . . . ; fr ¼ f jMr

. Then by Lemma 3, f ¼Qr
i¼1

fi. Applying Proposition 2 (b) repeatedly, we get

Dcð f Þ
f

¼
Dc

Qr
i¼1

fi

� �
Qr
i¼1

fi

¼
Xr
i¼1

Dcð fiÞ
fi

:

Therefore the desired equality from the statement of Theorem 3 will hold for

f provided it holds for each function fi. On the other hand, each of the

functions fi is supported on a one dimensional monoid isomorphic to N, so the

desired equality for each function fi follows directly from Theorem 2. This

completes the proof of Theorem 3.

We remark that if f and c are known, then Theorem 2 and Theorem

3 can be used to compute the logarithmic derivative
Dcð f Þ

f
. We end this

paper with a few very explicit examples. Take R to be the field of com-

plex numbers and r ¼ 1. An additive arithmetical function is for instance

cðnÞ ¼ log n.

1. With R, r and c as above, let f be the Möbius function m, which

is a multiplicative function. By its definition, mð1Þ ¼ 1, and if n > 1, n ¼
pa1
1 . . . pak

k , then

mðnÞ ¼ ð�1Þk if a1 ¼ � � � ¼ ak ¼ 1;

0 else:

�

By Theorem 2 we then have

DcðmÞ
m

ðnÞ ¼ �log p if n ¼ p for some prime p;

0 else:

�

2. Take R, r and c as above and choose f to be the Euler totient

function fðnÞ which is multiplicative. By Theorem 2 we see that
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DcðfÞ
f

ðnÞ ¼ kðpk � pk�1Þ log p if n ¼ pk for some prime p and kb 1;

0 else:

�

3. With the same R, r and c as before, let f be the sum of divisors

function s, given by sðnÞ ¼
P
djn

d, which is also a multiplicative arithmetical

function. By Theorem 2 we find that

DcðsÞ
s

ðnÞ ¼
kðpkþ1�1Þ log p

p�1 if n ¼ pk for some prime p and kb 1;

0 else:

(

One can of course consider many other interesting arithmetical functions.

For instance one can take f to be the number of divisors function, or the sum

of k-th powers of divisors function for some fixed k, which are multiplicative

functions, or one can let f be a Dirichlet character, which is completely

multiplicative. One may also take f to be the Ramanujan tau function tðnÞ
defined in terms of the Delta function

DðzÞ ¼
Xy
n¼1

tðnÞqn ¼ q
Yy
n¼1

ð1� qnÞ24; q ¼ e2piz;

which is the unique normalized cusp form of weight 12 on SL2ðZÞ. Ram-

anujan first studied many of the beautiful properties of this arithmetical

function (see his collected works [2]). In particular he conjectured that tðnÞ is

multiplicative, a fact that was later proved by Mordell. One can also replace

c by other additive functions, for instance the logarithm of any multiplicative

arithmetical function is additive. Clearly applying Theorems 2 and 3 to

various combinations of such examples is equivalent in some sense to providing

identities for such arithmetical functions with respect to the unitary convo-

lution.
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