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ABSTRACT. In this paper we investigate the ring 4,(R) of arithmetical functions in r
variables over an integral domain R with respect to the unitary convolution. We study
a class of norms, and a class of derivations on 4,(R). We also show that the resulting
metric structure is complete.

1. Introduction

The ring 4 of complex valued arithmetical functions has a natural
structure of commutative C-algebra with addition and multiplication by scalars,
and with the Dirichlet convolution

(f*g)n) = f(d)g(n/d).
d|n

In [1], Cashwell and Everett proved that (4,+,-) is a unique factorization
domain. Yokom [5] investigated the prime factorization of arithmetical
functions in a certain subring of the regular convolution ring. He determined
a discrete valuation subring of the unitary ring of arithmetical functions.
Schwab and Silberberg [3] constructed an extension of (4,+,-) which is a
discrete valuation ring. In [4], they showed that 4 is a quasi-noetherian ring.
In the present paper we study the ring of arithmetical functions in several
variables with respect to the unitary convolution over an arbitrary integral
domain. Let R be an integral domain with identity 1z. Let r>1 be an
integer number, and denote 4,(R) = {f : N"— R}. Given f,g € 4,(R), let us
define the unitary convolution f @ g of f and g by

@, .com)= D .. Y [fldi,....d)gler,... e).

dyey=n; dye,=n,
(di,er)=1 (dy,er)=1

Note that R has a natural embedding in the ring 4,(R), and A4,(R) with addition
and unitary convolution defined above becomes an R-algebra. We define and
study a family of norms on A,(R). Then we show that 4,(R) endowed with
any of the above norms is complete. A class of derivations on A4,(R) is then
constructed and examined. We also study the logarithmic derivatives of
multiplicative arithmetical functions with respect to these derivations.
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2. Norms

Let U(R) denote the group of units of R. Let U(A4,(R)) be the group
of units of A4,(R). Thus, U(4,(R))={f€A,(R): f(l,...,1)e UR)}. In
this section R will denote an integral domain. We start by defining a norm on
A.(R). Fixt=(t1,...,t) e R" with #1,..., ¢, linearly independent over @, and
>0, (i=1,2,...,r). Given neN, we define Q(n) to be the total number
of prime factors of n counting multiplicities, i.e., if n = p{" ...pJ*, then Q(n) =
o +---+or. We now define Q,: N" — N" by

Q(ni,...,n) = (Q(m),...,2n,)).

Given n= (m,...,n,) and m= (my,...,m,) in N, we denote n-m=

mm; + ---+nm,. For feA(R), we define the support of f, supp(f)=
{neN"|f(n) #0}. We also define for f e 4,(R),

% if f=0;
Wﬁ{ min - Q.(n) if f#0.

nesupp(f)
Note that if f # 0 then V,(f) =1-Q,(n) for some n € supp(f).

ProposiTION 1. (i) For any f,g€ A.(R), we have

Vi(f +9) =2 min{V;(f), Vi(9)}-

(i) For any f,ge A,(R), we have

Vi @9) 2 Vi(f) + Vilg).

Proor. (i) Let f,geA,(R). If f+4+g=0, then clearly V,(f+g) >
min{V;(f), Vi(g9)}. Suppose f+g#0. Let nesupp(f+g). Then either
nesupp(f), or nesupp(g). If nesupp(f), then t-Q.(n) = V,(f), and if
nesupp(g), then t-Q.(n) > V,(g). It follows that for all nesupp(f+g),
t-Q,(n) >min{V,(f), V,(9)}. Hence,

Vi(f +9) = min{V;(f), Vi(9)}-

(i) Again let f,ge A.(R). If f@®g=0, then the inequality holds
trivially. So assume that f @ g # 0, and let ay, ..., a, be positive integers such
that (ai,...,a,) esupp(f ®¢g) and V,(f @ g) = t:12(a1) +--- + 1,Q2(a,). Then

0#(f@g)ar,....a)= > ... > [fld,....d)gler,...e).
diey=a er=ay,
(d],(lﬁ):ll (;Il/~7er>:1
Therefore f(d,...,d,) # 0 and g(ey,...,e,) # 0 for some d;, e; with die; = a;,
(di,er)=1, (i=1,...,r). It follows that
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V:f(f) + V_T(g) < ZI‘Q(dl) +e trQ<dr) + 119(81) ot trQ(er)
=1Q(ar) + -+ 4,Q2(a,)
=V(f®9).

This completes the proof of the proposition.
Next, we define a family of norms on A4,(R). Fix a ¢ as above and a
number p € (0,1). Then define a norm ||| = ||.[[,: 4,(R) — R by

Ixll, = p"™ if x#0, and  [lx|, =0 if x=0.

By the above proposition it follows that ||x + y|| < max{||x||,|»||}, and
Ix@ y|| < |Ix|| ||| for all x, y e 4,(R). Associated with the norm ||.|| we have
a distance d on A,(R) defined by d(x, y) = [|x — y[|,, for all x,y e 4,(R).

THEOREM 1. Let R be an integral domain, and let r be a positive inte-
ger. Then A,(R) is complete with respect to each of the norms |.|,

Proor. Let (f,),», be a Cauchy sequence in A,(R). Then for each
&> 0, there exists an N € N depending on ¢ such that ||f, — f,|| <& for all
m,n>N. For each keN, taking ¢=p¥, there exists Ny e N such that
I fo — full <p* for all m,n>Ny. Equivalently, V,(f— fu) >k for all
m,n > Ny, i.e., we have that for all m,n > Ny,

Sulliy oo ) = full, .01

whenever 11Q(N) +---+t2(,) <k, I,...,[, e N. We choose inductively for
each k € N, the smallest natural number N, with the above property such that

NI <Ny < - - <Np < Npygp <---.

Let us define f: N” — R as follows. Given [ = (/,...,,) e N", let k be
the smallest positive integer such that k < 11Q(/}) +---+4Q(,) <k+1. We
set f(I) = fw,.,(I). Then we will have f(/) = f,(/), for all n > Nj;;. Since
this will hold for all / and k as above, it follows that the sequence (f;)
converges to f. This completes the proof of Theorem 1.

n>0

3. Derivations
We use the same notation as in the previous section.

DeriNITION 1. We call an arithmetical function f € A,(R) multiplicative
provided that f is not identically zero and

Sfumy, ... .nom,) = f(ny,...,n.) f(my,...,m)
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for any ny,...,n,,my,...,m, e N satisfying (n;,m;)=---= (n,,m,) =1. We
say that an f € 4,(R) is additive provided that
fumy,...,nm,) = f(ny,...on) + f(my, ... my)

for any ny,...,n.,my,...,m, €N satisfying (ny,m)=---= (n,,m,) = 1.

Note that if f is multiplicative then f(1,...,1) =1, while if f is additive
then f(1,...,1)=0. We now proceed to define a derivation on A4,(R). For
any additive function ¥ € 4,(R), define Dy : A,(R) — A,(R) by

Dy(f)(n) = f(n)y(n),

for all fe A,(R) and neN". For n= (n,...,n,), and m= (my,...,m,) in
N’, we write nm = (nymy,...,n,m,). We state some basic properties of the
map Dy in the next proposition.

PrOPOSITION 2. Let R be an integral domain, and let r be a positive
integer. Let € A,(R) be additive. Then for all f,ge A,(R) and c€ R,
(@) Dy(f +9g) =Dy(f)+ Dy(9),
(b) Dy(f @9)=/®Dy(g)+9@®Dy(f),
(©) Dy(cf) = cDy(f).

Consequently, we see that Dy is a derivation on A4,(R) over R.

Proor. Letn = (ny,...,n)eN'". First, from the definition of D, we see
that

Dy(f +9)(n) = (f +9)(n)y(n)
= [(n)¥(n) + g(n)y(n)
= Dy(f) + Dy(9)-
Thus, (a) holds. Also from the definition of D, we have that

Dy(f @ g)(n) = (f ®g)m)y(n).
So,

D\//(f@g)(ﬂ):‘p(ﬂ) Z Z f(dla'"7d)‘)g(ela"'aer)

diej=n; dee,=n,
()=l (dre)=1

= Z Z f(d],-~~,dr)g(elv~"7el‘)lp(ll)

dyey=n; dye,=n,
(dr,e)=1 (dryer)=1

- Z Z fdy,....d)g(er, ... e)

dyey=n, d.e,=n,
(di,er)=1 (dy,e,)=1
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X (Y(dy,....dy)+y(er,....e))
fldy,...,d)W(dy,...,d)gler,... e)

diej=n; de, =n,

(dr,en)=1  (dr,e)=1

Y Y S d)er, . eglen, . er)

diey=n; dye,=n,
(dy,e1)=1 (dy,er)=1

=f@®Dy(g)+9®Dy(f).

Therefore (b) holds. Also, it is clear that (c) holds, and this proves the
proposition.

Lemma 1. Let f,ge€ Ai(R). Let p be a prime, and let M, be the monoid
{1,p,p%,...} under multiplication. Suppose that supp(f),supp(g) < M,. If
f(1)=0, and g(1) =1, then f=fDg.

Proor. We have that supp(f @ g) = M, since supp(f),supp(g) S M,.
Thus both f and f@®g vanish outside the monoid M,. Let now n be a
positive integer. Then

(f®9)(p Z fld

de=p"
(d,e)=1

= f(Myg(p") + f(p")g(1)
= f(p").
Thus, f=f@g.

LemMA 2. Let f € A\ (R) be multiplicative and 1// € A1 (R) be additive. Let
p be a prime, and let M, be the monoid {1,p, p* - } under multiplication
as in Lemma 1. Suppose that supp(f) = M,. Then ) = Dy(f), where the
division on the left side is taken with respect to the umtary convolution.

Proor. Note first that since f is supported on M,, both Dy (f) and f~!
will be supported on M,. We have moreover that f~!(1) =1 because f is
multiplicative. Also since y is additive, (1) =0. Applying Lemma 1, we
conclude that D”Tm = Dy(f).

THEOREM 2. Let f € A(R) be multiplicative and € A1(R) be additive.
Let n be a positive integer, and let 2, be the set of all prime divisors of n.  For
each prime p, let M, be as in Lemma 1, and let f, = f|M,,: ie.,
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];(m):{f(m) if m=p* k>1

0 else.
Then
() f(n) if n= pk for some p prime
2 ) = 3 Dy - { and k> 1
P 0 else.

Proor. Fix an n and let n= py' ... p;" be the prime factorization of n.
Let M be the set of all m € N such that whenever p is a prime and p divides m,
p also divides n. Note that 9t is a monoid under multiplication, generated by

the primes pi,...,p,. Let g = flg, ie., for any meN,
g(m){f(m) if meM
0 else.

Suppose that m, k are in N, and (mk)=1. If m¢MM, or k¢M,
then fly(m) =0, or fly(k) =0, and so, g(m)g(k) = fly(m)f|m(k) =0=
Slan(mn) = g(mn) since mn ¢ M whenever one of m, or n does not belong to
M. If m, n are relatively prime and m,ne M then mn eI and g(mn) =
flop(mn) = f(mn) = f(m)f (n) = flyg(m)flgp(n) = g(m)g(n). Thus g is multi-
plicative. We claim that

g= 11 5
PED,

Indeed, let us first observe that if /i, 5y € A1(R) are such that supp(h),
supp(hy) are contained in M, then supp(h @ hy) <. To see this, let
m ¢ M. Then there exists a prime p such that p|m, but p does not divide n.
Now

(hl @hz)(m) = Z hl(d)h2(e).
o

Since either p|d, or ple whenever m = de, every term in this sum is 0
because supp(h;) =M (i=1,2). Thus, (h ®Mm)(m)=0 for any m ¢ M.
Hence supp(hy @ hy) < M. Using the above observation and induction, it
follows that supp([],c,, f,) =M. Since g is also supported on N, it follows
that in order to prove the above claim it is enough to show that g equals
[l,cr, fp on M. Let me M with

_ ap a,
m= p, D

where all ¢; are nonnegative integers for i =1,...,¢. We have that
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1A= > fd).. f(d)

pPEP, dy...di=m
(di,dj)=1, (i#])
b ‘
= Z fm(P]])-'-fp,(sz)
brby
pll.“p,h’:m
= fo(21") - Jo (D)
= f(m)
= g(m),
where in the above computation by,...,b, are forced to have unique values
equal to ap,...,a, respectively. Hence ¢g = H Jp, as claimed. Next, we
claim that PEZn
Dy(f _
2if) =Dy(g) @y ".
VAP
In order to prove this, we first show that
SMw=97"

Note that by the previous claim we know that

g ( 11 f,,)1 = 115"

pPEP, pPEP,

and as a consequence g~ ! is supported on M. We now proceed by induction.

First, since /(1) = g(1) = 1, it follows immediately that f~!|g,(1) =g~ !(1) = 1.
Next, let m > 1, and assume that for all k < m, g~ (k) = f~gu(k). If m ¢ M,
then f~!g(m)=0=g"'(m). Now suppose that me 9. Then, using the
equalities (f @ f~')(m) =0= (g ® g~ ')(m) in combination with the induction
hypothesis we derive

S an(m) = £ (m)

- J% S S
(5,85":71

- 3 @
S

e<m

=g '(m).
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Thus,
[Mw=9""
Further, it is clear that
Dy (f)lgn = Dy (flam) = Dy(9)-
By the above two relations we conclude that
Dy(9) @9 =Dy(Nln @ f -

Therefore in order to prove the claim it remains to show that

Dy(f)
A

Here the left side is supported on i, while the right side is the unitary
convolution of two arithmetical functions supported on 9k, so it is also
supported on M. So we only need to check the desired equality at an ar-
bitrary point m € 9%. For such an m, any representation of m as a product
m = de forces both d, e to belong to 9. Thus

=Dy(Nlw ® /-

)(m)-D“/}f Jm) = 3" Dy )
Mm de=m

(d,e)=1

= Z Dy(Nlw(d) S lan(e) = (Dy (o @ ' |a) (m).

de=m
(d,e)=1

We conclude that DV’TU)‘W =Dy (/)| ® f"|on, and hence

Dl//(f)
/

as claimed. On the other hand, by applying Proposition 2 (b) repeatedly, we
obtain

=Dylg) Dy,
M

Hpe:’/’n fp pPEP, fP

Dl//(g) (‘B g71 _ Dl/’(Hpe?/",l f]’) DI// (ﬁ))

By the above two relations we deduce that

DY) _ = Dulhy)
7

M per, I
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But by Lemma 2, >_ _, '/’ ) equals >, , Dy(fy). Therefore, we have that
71 = 2 Del):
M per,

Since n is in I, it follows in particular that

=Y Dy(fy)(n).

PP,

This completes the proof of the theorem.
We now proceed to generalize this theorem to the case of arithmetical
functions of several variables.

LemMmA 3. Let f € A,(R) be multiplicative and consider the monoids
My ={(k,1,...,1)eN":keN}...,M, ={(1, ,k)eN": keN}.

Let fi = flys--->fr =Sy, Then
r=1lfi=fi®e--af
i=1

Proor. Let m = (mj,my,...,m,) e N". We have that

<f[ﬁ>(m)_ oY ﬁfi(d“,...,d,,i)
i=1 i=1

6{'11,.1{1,:)‘)1] d”...dl,.:ml
(dvi,dy)=1, (i#))  (dii,dy)=1, (i#))

=[[s0..... Lm0, 1)
i=1

=[Ira,.. 1m0
i=1

:f(mlv"'vmr)
Hence, f =[] f;, and the lemma is proved.
i=1
THEOREM 3. Let R be an integral domain, and let r be a positive integer.
Then, for any multiplicative function f € A,(R), any additive function W € A,(R),
and any n= (m,...,n,) eN', we have
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Dy(/f) Y fm) if m=-=ny=nyp=--=n=1and n=p*
‘//f (n) = for some p prime, k>1, and 1 <i<r,
0 else,

where the division on the left side is taken with respect to the unmitary con-
volution.

ProoF. Let f be multiplicative and consider the monoids
My ={(k,1,...,1)eN":keN},..., M, ={(1,...,1,k) e N : ke N}
as in Lemma 3. Let fi=f]y,...,fr = fly. Then by Lemma 3, f=

I1 /- Applying Proposition 2 (b) repeatedly, we get

i=1

— l

< > ZDw (i)
1
Therefore the desired equality from the statement of Theorem 3 will hold for
f provided it holds for each function f;. On the other hand, each of the
functions f; is supported on a one dimensional monoid isomorphic to N, so the
desired equality for each function f; follows directly from Theorem 2. This
completes the proof of Theorem 3.

We remark that if f and y are known, then Theorem 2 and Theorem
3 can be used to compute the logarithmic derivative D”Tm We end this
paper with a few very explicit examples. Take R to be the field of com-
plex numbers and r=1. An additive arithmetical function is for instance
Y(n) = log n.

1. With R, r and ¢ as above, let f be the Mobius function x, which
is a multiplicative function. By its definition, (1) =1, and if n> 1, n=
pi'...p.~, then

k 1 —_— h . — —
,u(n) — { (_1) if ay = dj 1;
0 else.

By Theorem 2 we then have

Dy (p) (n) = {log p if n=p for some prime p,
u 0 else.

2. Take R, r and y as above and choose f to be the Euler totient
function ¢(n) which is multiplicative. By Theorem 2 we see that
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Dy(¢) (n) = {k(pk —p¥Ylog p if n= p* for some prime p and k > 1,
0 else.

3. With the same R, r and y as before, let f be the sum of divisors
function o, given by a(n) = > d, which is also a multiplicative arithmetical
dln
function. By Theorem 2 we find that

Dy (o) (n) = {W if n = p* for some prime p and k > 1,

0 else.

One can of course consider many other interesting arithmetical functions.
For instance one can take f to be the number of divisors function, or the sum
of k-th powers of divisors function for some fixed &, which are multiplicative
functions, or one can let f be a Dirichlet character, which is completely
multiplicative. One may also take f to be the Ramanujan tau function z(n)
defined in terms of the Delta function

o0

A=) =3 tmg" =q[[(1-a"*  g=e",
n=1

n=1

which is the unique normalized cusp form of weight 12 on SL,(Z). Ram-
anujan first studied many of the beautiful properties of this arithmetical
function (see his collected works [2]). In particular he conjectured that t(n) is
multiplicative, a fact that was later proved by Mordell. One can also replace
Y by other additive functions, for instance the logarithm of any multiplicative
arithmetical function is additive. Clearly applying Theorems 2 and 3 to
various combinations of such examples is equivalent in some sense to providing
identities for such arithmetical functions with respect to the unitary convo-
lution.
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