Unitary convolution for arithmetical functions in several variables

Emre Alkan, Alexandru Zaharescu and Mohammad Zaki (Received May 19, 2005)

ABSTRACT. In this paper we investigate the ring $A_r(R)$ of arithmetical functions in r variables over an integral domain R with respect to the unitary convolution. We study a class of norms, and a class of derivations on $A_r(R)$. We also show that the resulting metric structure is complete.

1. Introduction

The ring A of complex valued arithmetical functions has a natural structure of commutative C-algebra with addition and multiplication by scalars, and with the Dirichlet convolution

$$(f * g)(n) = \sum_{d|n} f(d)g(n/d).$$

In [1], Cashwell and Everett proved that $(A, +, \cdot)$ is a unique factorization domain. Yokom [5] investigated the prime factorization of arithmetical functions in a certain subring of the regular convolution ring. He determined a discrete valuation subring of the unitary ring of arithmetical functions. Schwab and Silberberg [3] constructed an extension of $(A, +, \cdot)$ which is a discrete valuation ring. In [4], they showed that A is a quasi-noetherian ring. In the present paper we study the ring of arithmetical functions in several variables with respect to the unitary convolution over an arbitrary integral domain. Let R be an integral domain with identity 1_R . Let $r \ge 1$ be an integer number, and denote $A_r(R) = \{f : \mathbf{N}^r \to R\}$. Given $f, g \in A_r(R)$, let us define the unitary convolution $f \oplus g$ of f and g by

$$(f \oplus g)(n_1, \dots, n_r) = \sum_{\substack{d_1e_1 = n_1 \\ (d_1, e_1) = 1}} \dots \sum_{\substack{d_re_r = n_r \\ (d_r, e_r) = 1}} f(d_1, \dots, d_r)g(e_1, \dots, e_r).$$

Note that R has a natural embedding in the ring $A_r(R)$, and $A_r(R)$ with addition and unitary convolution defined above becomes an R-algebra. We define and study a family of norms on $A_r(R)$. Then we show that $A_r(R)$ endowed with any of the above norms is complete. A class of derivations on $A_r(R)$ is then constructed and examined. We also study the logarithmic derivatives of multiplicative arithmetical functions with respect to these derivations.

2. Norms

Let U(R) denote the group of units of R. Let $U(A_r(R))$ be the group of units of $A_r(R)$. Thus, $U(A_r(R)) = \{f \in A_r(R) : f(1, \ldots, 1) \in U(R)\}$. In this section R will denote an integral domain. We start by defining a norm on $A_r(R)$. Fix $\underline{t} = (t_1, \ldots, t_r) \in \mathbb{R}^r$ with t_1, \ldots, t_r linearly independent over \mathbb{Q} , and $t_i > 0$, $(i = 1, 2, \ldots, r)$. Given $n \in \mathbb{N}$, we define $\Omega(n)$ to be the total number of prime factors of n counting multiplicities, i.e., if $n = p_1^{\alpha_1} \ldots p_k^{\alpha_k}$, then $\Omega(n) = \alpha_1 + \cdots + \alpha_k$. We now define $\Omega_r : \mathbb{N}^r \to \mathbb{N}^r$ by

$$\Omega_r(n_1,\ldots,n_r)=(\Omega(n_1),\ldots,\Omega(n_r)).$$

Given $\underline{n} = (n_1, \dots, n_r)$ and $\underline{m} = (m_1, \dots, m_r)$ in \mathbf{N}^r , we denote $\underline{n} \cdot \underline{m} = n_1 m_1 + \dots + n_r m_r$. For $f \in A_r(R)$, we define the support of f, $supp(f) = \{\underline{n} \in \mathbf{N}^r \mid f(\underline{n}) \neq 0\}$. We also define for $f \in A_r(R)$,

$$V_{\underline{t}}(f) = \begin{cases} \infty & \text{if } f = 0; \\ \min_{n \in supp(f)} \underline{t} \cdot \Omega_r(\underline{n}) & \text{if } f \neq 0. \end{cases}$$

Note that if $f \neq 0$ then $V_t(f) = \underline{t} \cdot \Omega_r(\underline{n})$ for some $\underline{n} \in supp(f)$.

PROPOSITION 1. (i) For any $f, g \in A_r(R)$, we have

$$V_t(f+g) \ge \min\{V_t(f), V_t(g)\}.$$

(ii) For any $f, g \in A_r(R)$, we have

$$V_t(f \oplus g) \ge V_t(f) + V_t(g)$$
.

PROOF. (i) Let $f,g \in A_r(R)$. If f+g=0, then clearly $V_{\underline{t}}(f+g) \geq \min\{V_{\underline{t}}(f),V_{\underline{t}}(g)\}$. Suppose $f+g \neq 0$. Let $\underline{n} \in supp(f+g)$. Then either $\underline{n} \in supp(f)$, or $\underline{n} \in supp(g)$. If $\underline{n} \in supp(f)$, then $\underline{t} \cdot \Omega_r(\underline{n}) \geq V_{\underline{t}}(f)$, and if $\underline{n} \in supp(g)$, then $\underline{t} \cdot \Omega_r(\underline{n}) \geq V_{\underline{t}}(g)$. It follows that for all $\underline{n} \in supp(f+g)$, $\underline{t} \cdot \Omega_r(\underline{n}) \geq \min\{V_{\underline{t}}(f),V_{\underline{t}}(g)\}$. Hence,

$$V_t(f+g) \ge \min\{V_t(f), V_t(g)\}.$$

(ii) Again let $f, g \in A_r(R)$. If $f \oplus g = 0$, then the inequality holds trivially. So assume that $f \oplus g \neq 0$, and let a_1, \ldots, a_r be positive integers such that $(a_1, \ldots, a_r) \in supp(f \oplus g)$ and $V_t(f \oplus g) = t_1\Omega(a_1) + \cdots + t_r\Omega(a_r)$. Then

$$0 \neq (f \oplus g)(a_1, \dots, a_r) = \sum_{\substack{d_1e_1 = a_1 \\ (d_1, e_1) = 1}} \dots \sum_{\substack{d_re_r = a_r \\ (d_r, e_r) = 1}} f(d_1, \dots, d_r)g(e_1, \dots, e_r).$$

Therefore $f(d_1, \ldots, d_r) \neq 0$ and $g(e_1, \ldots, e_r) \neq 0$ for some d_i , e_i with $d_i e_i = a_i$, $(d_i, e_i) = 1, (i = 1, \ldots, r)$. It follows that

$$V_{\underline{t}}(f) + V_{\underline{t}}(g) \le t_1 \Omega(d_1) + \dots + t_r \Omega(d_r) + t_1 \Omega(e_1) + \dots + t_r \Omega(e_r)$$

$$= t_1 \Omega(a_1) + \dots + t_r \Omega(a_r)$$

$$= V_t(f \oplus g).$$

This completes the proof of the proposition.

Next, we define a family of norms on $A_r(R)$. Fix a \underline{t} as above and a number $\rho \in (0,1)$. Then define a norm $\|.\| = \|.\|_t : A_r(R) \to \mathbb{R}$ by

$$\|x\|_{\underline{t}} = \rho^{\overline{V_{\underline{t}}}(x)}$$
 if $x \neq 0$, and $\|x\|_{\underline{t}} = 0$ if $x = 0$.

By the above proposition it follows that $||x + y|| \le \max\{||x||, ||y||\}$, and $||x \oplus y|| \le ||x|| ||y||$ for all $x, y \in A_r(R)$. Associated with the norm ||.|| we have a distance d on $A_r(R)$ defined by $d(x, y) = ||x - y||_t$, for all $x, y \in A_r(R)$.

THEOREM 1. Let R be an integral domain, and let r be a positive integer. Then $A_r(R)$ is complete with respect to each of the norms $\|.\|_r$

PROOF. Let $(f_n)_{n\geq 0}$ be a Cauchy sequence in $A_r(R)$. Then for each $\varepsilon>0$, there exists an $N\in \mathbb{N}$ depending on ε such that $\|f_m-f_n\|<\varepsilon$ for all $m,n\geq N$. For each $k\in \mathbb{N}$, taking $\varepsilon=\rho^k$, there exists $N_k\in \mathbb{N}$ such that $\|f_m-f_n\|<\rho^k$ for all $m,n\geq N_k$. Equivalently, $V_{\underline{t}}(f_m-f_n)>k$ for all $m,n\geq N_k$, i.e., we have that for all $m,n\geq N_k$,

$$f_m(l_1,\ldots,l_r)=f_n(l_1,\ldots,l_r)$$

whenever $t_1\Omega(l_1) + \cdots + t_r\Omega(l_r) \le k$, $l_1, \ldots, l_r \in \mathbb{N}$. We choose inductively for each $k \in \mathbb{N}$, the smallest natural number N_k with the above property such that

$$N_1 < N_2 < \cdots < N_k < N_{k+1} < \cdots$$

Let us define $f: \mathbf{N}^r \to R$ as follows. Given $\underline{l} = (l_1, \dots, l_r) \in \mathbf{N}^r$, let k be the smallest positive integer such that $k < t_1 \Omega(l_1) + \dots + t_r \Omega(l_r) \le k+1$. We set $f(\underline{l}) = f_{N_{k+1}}(\underline{l})$. Then we will have $f(\underline{l}) = f_n(\underline{l})$, for all $n \ge N_{k+1}$. Since this will hold for all \underline{l} and k as above, it follows that the sequence $(f_n)_{n \ge 0}$ converges to f. This completes the proof of Theorem 1.

3. Derivations

We use the same notation as in the previous section.

DEFINITION 1. We call an arithmetical function $f \in A_r(R)$ multiplicative provided that f is not identically zero and

$$f(n_1m_1,...,n_rm_r) = f(n_1,...,n_r)f(m_1,...,m_r)$$

for any $n_1, \ldots, n_r, m_1, \ldots, m_r \in \mathbb{N}$ satisfying $(n_1, m_1) = \cdots = (n_r, m_r) = 1$. We say that an $f \in A_r(R)$ is additive provided that

$$f(n_1m_1,...,n_rm_r) = f(n_1,...,n_r) + f(m_1,...,m_r)$$

for any $n_1, \ldots, n_r, m_1, \ldots, m_r \in \mathbb{N}$ satisfying $(n_1, m_1) = \cdots = (n_r, m_r) = 1$.

Note that if f is multiplicative then f(1,...,1)=1, while if f is additive then f(1,...,1)=0. We now proceed to define a derivation on $A_r(R)$. For any additive function $\psi \in A_r(R)$, define $D_{\psi}: A_r(R) \to A_r(R)$ by

$$D_{\psi}(f)(\underline{n}) = f(\underline{n})\psi(\underline{n}),$$

for all $f \in A_r(R)$ and $\underline{n} \in \mathbf{N}^r$. For $\underline{n} = (n_1, \dots, n_r)$, and $\underline{m} = (m_1, \dots, m_r)$ in \mathbf{N}^r , we write $\underline{nm} = (n_1m_1, \dots, n_rm_r)$. We state some basic properties of the map D_{ψ} in the next proposition.

PROPOSITION 2. Let R be an integral domain, and let r be a positive integer. Let $\psi \in A_r(R)$ be additive. Then for all $f,g \in A_r(R)$ and $c \in R$,

- (a) $D_{\psi}(f+g) = D_{\psi}(f) + D_{\psi}(g)$,
- (b) $D_{\psi}(f \oplus g) = f \oplus D_{\psi}(g) + g \oplus D_{\psi}(f),$
- (c) $D_{\psi}(cf) = cD_{\psi}(f)$.

Consequently, we see that D_{ψ} is a derivation on $A_r(R)$ over R.

PROOF. Let $\underline{n} = (n_1, \dots, n_r) \in \mathbf{N}^r$. First, from the definition of D_{ψ} we see that

$$D_{\psi}(f+g)(\underline{n}) = (f+g)(\underline{n})\psi(\underline{n})$$
$$= f(\underline{n})\psi(\underline{n}) + g(\underline{n})\psi(\underline{n})$$
$$= D_{\psi}(f) + D_{\psi}(g).$$

Thus, (a) holds. Also from the definition of D_{ψ} we have that

$$D_{\psi}(f \oplus g)(\underline{n}) = (f \oplus g)(\underline{n})\psi(\underline{n}).$$

So,

$$D_{\psi}(f \oplus g)(\underline{n}) = \psi(\underline{n}) \sum_{\substack{d_1e_1 = n_1 \\ (d_1, e_1) = 1}} \dots \sum_{\substack{d_re_r = n_r \\ (d_r, e_r) = 1}} f(d_1, \dots, d_r) g(e_1, \dots, e_r)$$

$$= \sum_{\substack{d_1e_1 = n_1 \\ (d_1, e_1) = 1}} \dots \sum_{\substack{d_re_r = n_r \\ (d_r, e_r) = 1}} f(d_1, \dots, d_r) g(e_1, \dots, e_r) \psi(\underline{n})$$

$$= \sum_{\substack{d_1e_1 = n_1 \\ (d_1, e_1) = 1}} \dots \sum_{\substack{d_re_r = n_r \\ (d_1, e_r) = 1}} f(d_1, \dots, d_r) g(e_1, \dots, e_r)$$

$$\times (\psi(d_{1}, \dots, d_{r}) + \psi(e_{1}, \dots, e_{r}))$$

$$= \sum_{\substack{d_{1}e_{1} = n_{1} \\ (d_{1}, e_{1}) = 1}} \dots \sum_{\substack{d_{r}e_{r} = n_{r} \\ (d_{r}, e_{r}) = 1}} f(d_{1}, \dots, d_{r}) \psi(d_{1}, \dots, d_{r}) g(e_{1}, \dots, e_{r})$$

$$+ \sum_{\substack{d_{1}e_{1} = n_{1} \\ (d_{1}, e_{1}) = 1}} \dots \sum_{\substack{d_{r}e_{r} = n_{r} \\ (d_{r}, e_{r}) = 1}} f(d_{1}, \dots, d_{r}) \psi(e_{1}, \dots, e_{r}) g(e_{1}, \dots, e_{r})$$

$$= f \oplus D_{\psi}(g) + g \oplus D_{\psi}(f).$$

Therefore (b) holds. Also, it is clear that (c) holds, and this proves the proposition.

LEMMA 1. Let $f, g \in A_1(R)$. Let p be a prime, and let M_p be the monoid $\{1, p, p^2, \ldots\}$ under multiplication. Suppose that $supp(f), supp(g) \subseteq M_p$. If f(1) = 0, and g(1) = 1, then $f = f \oplus g$.

PROOF. We have that $supp(f \oplus g) \subseteq M_p$ since $supp(f), supp(g) \subseteq M_p$. Thus both f and $f \oplus g$ vanish outside the monoid M_p . Let now n be a positive integer. Then

$$(f \oplus g)(p^n) = \sum_{\substack{d = p^n \\ (d,e)=1}} f(d)g(e)$$
$$= f(1)g(p^n) + f(p^n)g(1)$$
$$= f(p^n).$$

Thus, $f = f \oplus g$.

LEMMA 2. Let $f \in A_1(R)$ be multiplicative and $\psi \in A_1(R)$ be additive. Let p be a prime, and let M_p be the monoid $\{1, p, p^2, \ldots\}$ under multiplication as in Lemma 1. Suppose that $supp(f) \subseteq M_p$. Then $\frac{D_{\psi}(f)}{f} = D_{\psi}(f)$, where the division on the left side is taken with respect to the unitary convolution.

PROOF. Note first that since f is supported on M_p , both $D_{\psi}(f)$ and f^{-1} will be supported on M_p . We have moreover that $f^{-1}(1)=1$ because f is multiplicative. Also since ψ is additive, $\psi(1)=0$. Applying Lemma 1, we conclude that $\frac{D_{\psi}(f)}{f}=D_{\psi}(f)$.

THEOREM 2. Let $f \in A_1(R)$ be multiplicative and $\psi \in A_1(R)$ be additive. Let n be a positive integer, and let \mathcal{P}_n be the set of all prime divisors of n. For each prime p, let M_p be as in Lemma 1, and let $f_p = f|_{M_n}$, i.e.,

$$f_p(m) = \begin{cases} f(m) & \text{if } m = p^k, k \ge 1\\ 0 & \text{else.} \end{cases}$$

Then

$$\frac{D_{\psi}(f)}{f}(n) = \sum_{p \in \mathscr{P}_n} D_{\psi}(f_p)(n) = \begin{cases} \psi(n)f(n) & \text{if } n = p^k \text{ for some } p \text{ prime} \\ & \text{and } k \ge 1, \\ 0 & \text{else.} \end{cases}$$

PROOF. Fix an n and let $n = p_1^{s_1} \dots p_t^{s_t}$ be the prime factorization of n. Let \mathfrak{M} be the set of all $m \in \mathbb{N}$ such that whenever p is a prime and p divides m, p also divides n. Note that \mathfrak{M} is a monoid under multiplication, generated by the primes p_1, \dots, p_t . Let $g = f|_{\mathfrak{M}}$, i.e., for any $m \in \mathbb{N}$,

$$g(m) = \begin{cases} f(m) & \text{if } m \in \mathfrak{M} \\ 0 & \text{else.} \end{cases}$$

Suppose that m, k are in \mathbb{N} , and (m,k)=1. If $m \notin \mathfrak{M}$, or $k \notin \mathfrak{M}$, then $f|_{\mathfrak{M}}(m)=0$, or $f|_{\mathfrak{M}}(k)=0$, and so, $g(m)g(k)=f|_{\mathfrak{M}}(m)f|_{\mathfrak{M}}(k)=0=f|_{\mathfrak{M}}(mn)=g(mn)$ since $mn \notin \mathfrak{M}$ whenever one of m, or n does not belong to \mathfrak{M} . If m, n are relatively prime and $m,n \in \mathfrak{M}$ then $mn \in \mathfrak{M}$ and $g(mn)=f|_{\mathfrak{M}}(mn)=f(mn)=f(m)f(n)=f|_{\mathfrak{M}}(m)f|_{\mathfrak{M}}(n)=g(m)g(n)$. Thus g is multiplicative. We claim that

$$g = \prod_{p \in \mathscr{P}_n} f_p.$$

Indeed, let us first observe that if $h_1, h_2 \in A_1(R)$ are such that $supp(h_1)$, $supp(h_2)$ are contained in \mathfrak{M} , then $supp(h_1 \oplus h_2) \subseteq \mathfrak{M}$. To see this, let $m \notin \mathfrak{M}$. Then there exists a prime p such that p|m, but p does not divide n. Now

$$(h_1 \oplus h_2)(m) = \sum_{\substack{de=m \ (d,e)=1}} h_1(d)h_2(e).$$

Since either p|d, or p|e whenever m=de, every term in this sum is 0 because $supp(h_i) \subseteq \mathfrak{M}$ (i=1,2). Thus, $(h_1 \oplus h_2)(m) = 0$ for any $m \notin \mathfrak{M}$. Hence $supp(h_1 \oplus h_2) \subseteq \mathfrak{M}$. Using the above observation and induction, it follows that $supp(\prod_{p \in \mathscr{P}_n} f_p) \subseteq \mathfrak{M}$. Since g is also supported on \mathfrak{M} , it follows that in order to prove the above claim it is enough to show that g equals $\prod_{p \in \mathscr{P}_n} f_p$ on \mathfrak{M} . Let $m \in \mathfrak{M}$ with

$$m=p_1^{a_1}\dots p_t^{a_t},$$

where all a_i are nonnegative integers for i = 1, ..., t. We have that

$$\prod_{p \in \mathscr{P}_n} f_p(m) = \sum_{\substack{d_1 \dots d_t = m \\ (d_i, d_j) = 1, \ (i \neq j)}} f_{p_1}(d_1) \dots f_{p_t}(d_t)
= \sum_{\substack{b_1, \dots, b_t \\ p_1^{b_1} \dots p_t^{b_t} = m}} f_{p_1}(p_1^{b_1}) \dots f_{p_t}(p_t^{b_t})
= f_{p_1}(p_1^{a_1}) \dots f_{p_t}(p_t^{a_t})
= f(m)
= q(m),$$

where in the above computation b_1, \ldots, b_t are forced to have unique values equal to a_1, \ldots, a_t respectively. Hence $g = \prod_{p \in \mathscr{P}_n} f_p$, as claimed. Next, we claim that

$$\frac{D_{\psi}(f)}{f}\bigg|_{\mathfrak{M}} = D_{\psi}(g) \oplus g^{-1}.$$

In order to prove this, we first show that

$$|f^{-1}|_{\mathfrak{M}} = g^{-1}$$

Note that by the previous claim we know that

$$g^{-1} = \left(\prod_{p \in \mathscr{P}_n} f_p\right)^{-1} = \prod_{p \in \mathscr{P}_n} f_p^{-1},$$

and as a consequence g^{-1} is supported on \mathfrak{M} . We now proceed by induction. First, since f(1)=g(1)=1, it follows immediately that $f^{-1}|_{\mathfrak{M}}(1)=g^{-1}(1)=1$. Next, let m>1, and assume that for all k< m, $g^{-1}(k)=f^{-1}|_{\mathfrak{M}}(k)$. If $m\notin \mathfrak{M}$, then $f^{-1}|_{\mathfrak{M}}(m)=0=g^{-1}(m)$. Now suppose that $m\in \mathfrak{M}$. Then, using the equalities $(f\oplus f^{-1})(m)=0=(g\oplus g^{-1})(m)$ in combination with the induction hypothesis we derive

$$\begin{split} f^{-1}|_{\mathfrak{M}}(m) &= f^{-1}(m) \\ &= \frac{-1}{f(1)} \sum_{\substack{de=m \\ (d,e)=1 \\ e < m}} f(d) f^{-1}(e) \\ &= \frac{-1}{g(1)} \sum_{\substack{de=m \\ (d,e)=1 \\ e < m}} g(d) g^{-1}(e) \\ &= g^{-1}(m). \end{split}$$

Thus,

$$|f^{-1}|_{\mathfrak{M}} = g^{-1}.$$

Further, it is clear that

$$|D_{\psi}(f)|_{\mathfrak{M}} = D_{\psi}(f|_{\mathfrak{M}}) = D_{\psi}(g).$$

By the above two relations we conclude that

$$D_{\psi}(g) \oplus g^{-1} = D_{\psi}(f)|_{\mathfrak{M}} \oplus f^{-1}|_{\mathfrak{M}}.$$

Therefore in order to prove the claim it remains to show that

$$\frac{D_{\psi}(f)}{f}\bigg|_{\mathfrak{M}} = D_{\psi}(f)|_{\mathfrak{M}} \oplus f^{-1}|_{\mathfrak{M}}.$$

Here the left side is supported on \mathfrak{M} , while the right side is the unitary convolution of two arithmetical functions supported on \mathfrak{M} , so it is also supported on \mathfrak{M} . So we only need to check the desired equality at an arbitrary point $m \in \mathfrak{M}$. For such an m, any representation of m as a product m = de forces both d, e to belong to \mathfrak{M} . Thus

$$\left(\frac{D_{\psi}(f)}{f}\Big|_{\mathfrak{M}}\right)(m) = \frac{D_{\psi}(f)}{f}(m) = \sum_{\substack{de=m\\(d,e)=1}} D_{\psi}(f)(d)f^{-1}(e)
= \sum_{\substack{de=m\\(d,e)=1}} D_{\psi}(f)|_{\mathfrak{M}}(d)f^{-1}|_{\mathfrak{M}}(e) = (D_{\psi}(f)|_{\mathfrak{M}} \oplus f^{-1}|_{\mathfrak{M}})(m).$$

We conclude that $\frac{D_{\psi}(f)}{f}\Big|_{\mathfrak{M}}=D_{\psi}(f)|_{\mathfrak{M}}\oplus f^{-1}|_{\mathfrak{M}},$ and hence

$$\left. \frac{D_{\psi}(f)}{f} \right|_{\mathfrak{M}} = D_{\psi}(g) \oplus g^{-1},$$

as claimed. On the other hand, by applying Proposition 2 (b) repeatedly, we obtain

$$D_{\psi}(g) \oplus g^{-1} = \frac{D_{\psi}(\prod_{p \in \mathscr{P}_n} f_p)}{\prod_{p \in \mathscr{P}_n} f_p} = \sum_{p \in \mathscr{P}_n} \frac{D_{\psi}(f_p)}{f_p}.$$

By the above two relations we deduce that

$$\frac{D_{\psi}(f)}{f}\bigg|_{\mathfrak{M}} = \sum_{p \in \mathscr{P}_{p}} \frac{D_{\psi}(f_{p})}{f_{p}} .$$

But by Lemma 2, $\sum_{p \in \mathscr{P}_n} \frac{D_{\psi}(f_p)}{f_p}$ equals $\sum_{p \in \mathscr{P}_n} D_{\psi}(f_p)$. Therefore, we have that

$$\frac{D_{\psi}(f)}{f}\bigg|_{\mathfrak{M}} = \sum_{p \in \mathscr{P}_p} D_{\psi}(f_p).$$

Since n is in \mathfrak{M} , it follows in particular that

$$\frac{D_{\psi}(f)}{f}(n) = \sum_{n \in \mathscr{D}_n} D_{\psi}(f_p)(n).$$

This completes the proof of the theorem.

We now proceed to generalize this theorem to the case of arithmetical functions of several variables.

LEMMA 3. Let $f \in A_r(R)$ be multiplicative and consider the monoids

$$M_1 = \{(k, 1, \dots, 1) \in \mathbf{N}^r : k \in \mathbf{N}\}, \dots, M_r = \{(1, \dots, 1, k) \in \mathbf{N}^r : k \in \mathbf{N}\}.$$

Let $f_1 = f|_{M_1}, \dots, f_r = f|_{M_r}$. Then

$$f = \prod_{i=1}^{r} f_i = f_1 \oplus \cdots \oplus f_r.$$

PROOF. Let $\underline{m} = (m_1, m_2, \dots, m_r) \in \mathbb{N}^r$. We have that

$$\left(\prod_{i=1}^{r} f_{i}\right)(\underline{m}) = \sum_{\substack{d_{11} \dots d_{1r} = m_{1} \\ (d_{1i}, d_{1j}) = 1, \ (i \neq j)}} \dots \sum_{\substack{d_{11} \dots d_{1r} = m_{1} \\ (d_{1i}, d_{1j}) = 1, \ (i \neq j)}} \prod_{i=1}^{r} f_{i}(d_{1i}, \dots, d_{ri})$$

$$= \prod_{i=1}^{r} f_{i}(1, \dots, 1, m_{i}, 1, \dots, 1)$$

$$= \prod_{i=1}^{r} f(1, \dots, 1, m_{i}, 1, \dots, 1)$$

$$= f(m_{1}, \dots, m_{r})$$

Hence, $f = \prod_{i=1}^{r} f_i$, and the lemma is proved.

THEOREM 3. Let R be an integral domain, and let r be a positive integer. Then, for any multiplicative function $f \in A_r(R)$, any additive function $\psi \in A_r(R)$, and any $\underline{n} = (n_1, \dots, n_r) \in \mathbb{N}^r$, we have

$$\frac{D_{\psi}(f)}{f}(\underline{n}) = \begin{cases} \psi(\underline{n})f(\underline{n}) & \text{if } n_1 = \dots = n_{i-1} = n_{i+1} = \dots = n_r = 1 \text{ and } n_i = p^k \\ & \text{for some } p \text{ prime}, \ k \ge 1, \ \text{and } 1 \le i \le r, \\ 0 & \text{else}, \end{cases}$$

where the division on the left side is taken with respect to the unitary convolution.

PROOF. Let f be multiplicative and consider the monoids

$$M_1 = \{(k, 1, \dots, 1) \in \mathbf{N}^r : k \in \mathbf{N}\}, \dots, M_r = \{(1, \dots, 1, k) \in \mathbf{N}^r : k \in \mathbf{N}\}$$

as in Lemma 3. Let $f_1 = f|_{M_1}, \dots, f_r = f|_{M_r}$. Then by Lemma 3, $f = \prod_{i=1}^r f_i$. Applying Proposition 2 (b) repeatedly, we get

$$\frac{D_{\psi}(f)}{f} = \frac{D_{\psi}\left(\prod\limits_{i=1}^r f_i\right)}{\prod\limits_{i=1}^r f_i} = \sum_{i=1}^r \frac{D_{\psi}(f_i)}{f_i}.$$

Therefore the desired equality from the statement of Theorem 3 will hold for f provided it holds for each function f_i . On the other hand, each of the functions f_i is supported on a one dimensional monoid isomorphic to N, so the desired equality for each function f_i follows directly from Theorem 2. This completes the proof of Theorem 3.

We remark that if f and ψ are known, then Theorem 2 and Theorem 3 can be used to compute the logarithmic derivative $\frac{D_{\psi}(f)}{f}$. We end this paper with a few very explicit examples. Take R to be the field of complex numbers and r=1. An additive arithmetical function is for instance $\psi(n)=\log n$.

1. With R, r and ψ as above, let f be the Möbius function μ , which is a multiplicative function. By its definition, $\mu(1)=1$, and if n>1, $n=p_1^{a_1}\dots p_k^{a_k}$, then

$$\mu(n) = \begin{cases} (-1)^k & \text{if } a_1 = \dots = a_k = 1, \\ 0 & \text{else.} \end{cases}$$

By Theorem 2 we then have

$$\frac{D_{\psi}(\mu)}{\mu}(n) = \begin{cases} -\log p & \text{if } n = p \text{ for some prime } p, \\ 0 & \text{else.} \end{cases}$$

2. Take R, r and ψ as above and choose f to be the Euler totient function $\phi(n)$ which is multiplicative. By Theorem 2 we see that

$$\frac{D_{\psi}(\phi)}{\phi}(n) = \begin{cases} k(p^k - p^{k-1}) \log p & \text{if } n = p^k \text{ for some prime } p \text{ and } k \ge 1, \\ 0 & \text{else.} \end{cases}$$

3. With the same R, r and ψ as before, let f be the sum of divisors function σ , given by $\sigma(n) = \sum_{d|n} d$, which is also a multiplicative arithmetical function. By Theorem 2 we find that

$$\frac{D_{\psi}(\sigma)}{\sigma}(n) = \begin{cases} \frac{k(p^{k+1}-1)\log p}{p-1} & \text{if } n=p^k \text{ for some prime } p \text{ and } k \ge 1, \\ 0 & \text{else.} \end{cases}$$

One can of course consider many other interesting arithmetical functions. For instance one can take f to be the number of divisors function, or the sum of k-th powers of divisors function for some fixed k, which are multiplicative functions, or one can let f be a Dirichlet character, which is completely multiplicative. One may also take f to be the Ramanujan tau function $\tau(n)$ defined in terms of the Delta function

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) q^n = q \prod_{n=1}^{\infty} (1 - q^n)^{24}, \qquad q = e^{2\pi i z},$$

which is the unique normalized cusp form of weight 12 on $SL_2(\mathbf{Z})$. Ramanujan first studied many of the beautiful properties of this arithmetical function (see his collected works [2]). In particular he conjectured that $\tau(n)$ is multiplicative, a fact that was later proved by Mordell. One can also replace ψ by other additive functions, for instance the logarithm of any multiplicative arithmetical function is additive. Clearly applying Theorems 2 and 3 to various combinations of such examples is equivalent in some sense to providing identities for such arithmetical functions with respect to the unitary convolution.

References

- [1] E. D. Cashwell, C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975–985.
- [2] S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
- [3] E. D. Schwab, G. Silberberg, A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno), 36 (2000), 103–109.
- [4] E. D. Schwab, G. Silberberg, The Valuated ring of the Arithmetical Functions as a Power Series Ring, Arch. Math. (Brno), 37 (2001), 77–80.
- [5] K. L. Yokom, Totally multiplicative functions in regular convolution rings, Canadian Math. Bulletin 16 (1973), 119–128.

Emre Alkan

Department of Mathematics

University of Illinois at Urbana-Champaign

3 Altaeld Hall MC-382 1409 W Green Street

273 Altgeld Hall, MC-382, 1409 W. Green Street Urbana, Illinois 61801-2975, USA e-mail: alkan@math.uiuc.edu

Alexandru Zaharescu
Department of Mathematics
University of Illinois at Urbana-Champaign
273 Altgeld Hall, MC-382, 1409 W. Green Street
Urbana, Illinois 61801-2975, USA
e-mail: zaharesc@math.uiuc.edu

Mohammad Zaki
Department of Mathematics
University of Illinois at Urbana-Champaign
273 Altgeld Hall, MC-382, 1409 W. Green Street
Urbana, Illinois 61801-2975, USA
e-mail: mzaki@math.uiuc.edu