# Unitary convolution for arithmetical functions in several variables 

Emre Alkan, Alexandru Zaharescu and Mohammad Zaki

(Received May 19, 2005)


#### Abstract

In this paper we investigate the ring $A_{r}(R)$ of arithmetical functions in $r$ variables over an integral domain $R$ with respect to the unitary convolution. We study a class of norms, and a class of derivations on $A_{r}(R)$. We also show that the resulting metric structure is complete.


## 1. Introduction

The ring $A$ of complex valued arithmetical functions has a natural structure of commutative $\mathbf{C}$-algebra with addition and multiplication by scalars, and with the Dirichlet convolution

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d) .
$$

In [1], Cashwell and Everett proved that $(A,+, \cdot)$ is a unique factorization domain. Yokom [5] investigated the prime factorization of arithmetical functions in a certain subring of the regular convolution ring. He determined a discrete valuation subring of the unitary ring of arithmetical functions. Schwab and Silberberg [3] constructed an extension of $(A,+, \cdot)$ which is a discrete valuation ring. In [4], they showed that $A$ is a quasi-noetherian ring. In the present paper we study the ring of arithmetical functions in several variables with respect to the unitary convolution over an arbitrary integral domain. Let $R$ be an integral domain with identity $1_{R}$. Let $r \geq 1$ be an integer number, and denote $A_{r}(R)=\left\{f: \mathbf{N}^{r} \rightarrow R\right\}$. Given $f, g \in A_{r}(R)$, let us define the unitary convolution $f \oplus g$ of $f$ and $g$ by

$$
(f \oplus g)\left(n_{1}, \ldots, n_{r}\right)=\sum_{\substack{d_{1} e_{1}=n_{1} \\\left(d_{1}, e_{1}\right)=1}} \ldots \sum_{\substack{d_{r_{2}} e_{2}=n_{r} \\\left(d_{r}, e_{r}\right)=1}} f\left(d_{1}, \ldots, d_{r}\right) g\left(e_{1}, \ldots, e_{r}\right) .
$$

Note that $R$ has a natural embedding in the ring $A_{r}(R)$, and $A_{r}(R)$ with addition and unitary convolution defined above becomes an $R$-algebra. We define and study a family of norms on $A_{r}(R)$. Then we show that $A_{r}(R)$ endowed with any of the above norms is complete. A class of derivations on $A_{r}(R)$ is then constructed and examined. We also study the logarithmic derivatives of multiplicative arithmetical functions with respect to these derivations.

## 2. Norms

Let $U(R)$ denote the group of units of $R$. Let $U\left(A_{r}(R)\right)$ be the group of units of $A_{r}(R)$. Thus, $U\left(A_{r}(R)\right)=\left\{f \in A_{r}(R): f(1, \ldots, 1) \in U(R)\right\}$. In this section $R$ will denote an integral domain. We start by defining a norm on $A_{r}(R)$. Fix $\underline{t}=\left(t_{1}, \ldots, t_{r}\right) \in \mathbb{R}^{r}$ with $t_{1}, \ldots, t_{r}$ linearly independent over $\mathbb{Q}$, and $t_{i}>0,(i=1,2, \ldots, r)$. Given $n \in \mathbf{N}$, we define $\Omega(n)$ to be the total number of prime factors of $n$ counting multiplicities, i.e., if $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$, then $\Omega(n)=$ $\alpha_{1}+\cdots+\alpha_{k}$. We now define $\Omega_{r}: \mathbf{N}^{r} \rightarrow \mathbf{N}^{r}$ by

$$
\Omega_{r}\left(n_{1}, \ldots, n_{r}\right)=\left(\Omega\left(n_{1}\right), \ldots, \Omega\left(n_{r}\right)\right) .
$$

Given $\underline{n}=\left(n_{1}, \ldots, n_{r}\right)$ and $\underline{m}=\left(m_{1}, \ldots, m_{r}\right)$ in $\mathbf{N}^{r}$, we denote $\underline{n} \cdot \underline{m}=$ $n_{1} m_{1}+\cdots+n_{r} m_{r}$. For $f \in A_{r}(R)$, we define the support of $f, \operatorname{supp}(f)=$ $\left\{\underline{n} \in \mathbf{N}^{r} \mid f(\underline{n}) \neq 0\right\}$. We also define for $f \in A_{r}(R)$,

$$
V_{\underline{t}}(f)= \begin{cases}\infty & \text { if } f=0 \\ \min _{\underline{n} \in \operatorname{supp}(f)} \underline{t} \cdot \Omega_{r}(\underline{n}) & \text { if } f \neq 0 .\end{cases}
$$

Note that if $f \neq 0$ then $V_{\underline{t}}(f)=\underline{t} \cdot \Omega_{r}(\underline{n})$ for some $\underline{n} \in \operatorname{supp}(f)$.
Proposition 1. (i) For any $f, g \in A_{r}(R)$, we have

$$
V_{\underline{t}}(f+g) \geq \min \left\{V_{\underline{t}}(f), V_{\underline{t}}(g)\right\} .
$$

(ii) For any $f, g \in A_{r}(R)$, we have

$$
V_{\underline{t}}(f \oplus g) \geq V_{\underline{t}}(f)+V_{\underline{t}}(g) .
$$

Proof. (i) Let $f, g \in A_{r}(R)$. If $f+g=0$, then clearly $V_{t}(f+g) \geq$ $\min \left\{V_{\underline{t}}(f), V_{\underline{t}}(g)\right\}$. Suppose $f+g \neq 0$. Let $\underline{n} \in \operatorname{supp}(f+g)$. Then either $\underline{n} \in \operatorname{supp}(f)$, or $\underline{n} \in \operatorname{supp}(g)$. If $\underline{n} \in \operatorname{supp}(f)$, then $\underline{t} \cdot \Omega_{r}(\underline{n}) \geq V_{\underline{t}}(f)$, and if $\underline{n} \in \operatorname{supp}(g)$, then $\underline{t} \cdot \Omega_{r}(\underline{n}) \geq V_{\underline{t}}(g)$. It follows that for all $\underline{n} \in \operatorname{supp}(f+g)$, $\underline{t} \cdot \Omega_{r}(\underline{n}) \geq \min \left\{V_{\underline{t}}(f), V_{\underline{t}}(g)\right\}$. Hence,

$$
V_{\underline{t}}(f+g) \geq \min \left\{V_{\underline{t}}(f), V_{\underline{t}}(g)\right\} .
$$

(ii) Again let $f, g \in A_{r}(R)$. If $f \oplus g=0$, then the inequality holds trivially. So assume that $f \oplus g \neq 0$, and let $a_{1}, \ldots, a_{r}$ be positive integers such that $\left(a_{1}, \ldots, a_{r}\right) \in \operatorname{supp}(f \oplus g)$ and $V_{\underline{t}}(f \oplus g)=t_{1} \Omega\left(a_{1}\right)+\cdots+t_{r} \Omega\left(a_{r}\right)$. Then

$$
0 \neq(f \oplus g)\left(a_{1}, \ldots, a_{r}\right)=\sum_{\substack{d_{1} e_{1}=a_{1} \\\left(d_{1}, e_{1}\right)=1}} \ldots \sum_{\substack{d_{r} e_{r}=a_{r} \\\left(d_{r}, e_{r}\right)=1}} f\left(d_{1}, \ldots, d_{r}\right) g\left(e_{1}, \ldots, e_{r}\right)
$$

Therefore $f\left(d_{1}, \ldots, d_{r}\right) \neq 0$ and $g\left(e_{1}, \ldots, e_{r}\right) \neq 0$ for some $d_{i}, e_{i}$ with $d_{i} e_{i}=a_{i}$, $\left(d_{i}, e_{i}\right)=1,(i=1, \ldots, r)$. It follows that

$$
\begin{aligned}
V_{\underline{t}}(f)+V_{\underline{t}}(g) & \leq t_{1} \Omega\left(d_{1}\right)+\cdots+t_{r} \Omega\left(d_{r}\right)+t_{1} \Omega\left(e_{1}\right)+\cdots+t_{r} \Omega\left(e_{r}\right) \\
& =t_{1} \Omega\left(a_{1}\right)+\cdots+t_{r} \Omega\left(a_{r}\right) \\
& =V_{\underline{t}}(f \oplus g) .
\end{aligned}
$$

This completes the proof of the proposition.
Next, we define a family of norms on $A_{r}(R)$. Fix a $\underline{t}$ as above and a number $\rho \in(0,1)$. Then define a norm $\|\cdot\|=\|\cdot\|_{\underline{t}}: A_{r}(R) \rightarrow \mathbb{R}$ by

$$
\|x\|_{\underline{t}}=\rho^{\bar{V}_{t}(x)} \quad \text { if } x \neq 0, \quad \text { and } \quad\|x\|_{\underline{t}}=0 \quad \text { if } x=0
$$

By the above proposition it follows that $\|x+y\| \leq \max \{\|x\|,\|y\|\}$, and $\|x \oplus y\| \leq\|x\|\|y\|$ for all $x, y \in A_{r}(R)$. Associated with the norm $\|$.$\| we have$ a distance $d$ on $A_{r}(R)$ defined by $d(x, y)=\|x-y\|_{\underline{L}}$, for all $x, y \in A_{r}(R)$.

Theorem 1. Let $R$ be an integral domain, and let $r$ be a positive integer. Then $A_{r}(R)$ is complete with respect to each of the norms $\|\cdot\|_{I_{r}}$.

Proof. Let $\left(f_{n}\right)_{n \geq 0}$ be a Cauchy sequence in $A_{r}(R)$. Then for each $\varepsilon>0$, there exists an $N \in \mathbf{N}$ depending on $\varepsilon$ such that $\left\|f_{m}-f_{n}\right\|<\varepsilon$ for all $m, n \geq N$. For each $k \in \mathbf{N}$, taking $\varepsilon=\rho^{k}$, there exists $N_{k} \in \mathbf{N}$ such that $\left\|f_{m}-f_{n}\right\|<\rho^{k}$ for all $m, n \geq N_{k}$. Equivalently, $V_{t}\left(f_{m}-f_{n}\right)>k$ for all $m, n \geq N_{k}$, i.e., we have that for all $m, n \geq N_{k}$,

$$
f_{m}\left(l_{1}, \ldots, l_{r}\right)=f_{n}\left(l_{1}, \ldots, l_{r}\right)
$$

whenever $t_{1} \Omega\left(l_{1}\right)+\cdots+t_{r} \Omega\left(l_{r}\right) \leq k, l_{1}, \ldots, l_{r} \in \mathbf{N}$. We choose inductively for each $k \in \mathbf{N}$, the smallest natural number $N_{k}$ with the above property such that

$$
N_{1}<N_{2}<\cdots<N_{k}<N_{k+1}<\cdots .
$$

Let us define $f: \mathbf{N}^{r} \rightarrow R$ as follows. Given $\underline{l}=\left(l_{1}, \ldots, l_{r}\right) \in \mathbf{N}^{r}$, let $k$ be the smallest positive integer such that $k<t_{1} \Omega\left(l_{1}\right)+\cdots+t_{r} \Omega\left(l_{r}\right) \leq k+1$. We set $f(\underline{l})=f_{N_{k+1}}(\underline{l})$. Then we will have $f(\underline{l})=f_{n}(\underline{l})$, for all $n \geq N_{k+1}$. Since this will hold for all $\underline{l}$ and $k$ as above, it follows that the sequence $\left(f_{n}\right)_{n \geq 0}$ converges to $f$. This completes the proof of Theorem 1 .

## 3. Derivations

We use the same notation as in the previous section.
Definition 1. We call an arithmetical function $f \in A_{r}(R)$ multiplicative provided that $f$ is not identically zero and

$$
f\left(n_{1} m_{1}, \ldots, n_{r} m_{r}\right)=f\left(n_{1}, \ldots, n_{r}\right) f\left(m_{1}, \ldots, m_{r}\right)
$$

for any $n_{1}, \ldots, n_{r}, m_{1}, \ldots, m_{r} \in \mathbf{N}$ satisfying $\left(n_{1}, m_{1}\right)=\cdots=\left(n_{r}, m_{r}\right)=1$. We say that an $f \in A_{r}(R)$ is additive provided that

$$
f\left(n_{1} m_{1}, \ldots, n_{r} m_{r}\right)=f\left(n_{1}, \ldots, n_{r}\right)+f\left(m_{1}, \ldots, m_{r}\right)
$$

for any $n_{1}, \ldots, n_{r}, m_{1}, \ldots, m_{r} \in \mathbf{N}$ satisfying $\left(n_{1}, m_{1}\right)=\cdots=\left(n_{r}, m_{r}\right)=1$.
Note that if $f$ is multiplicative then $f(1, \ldots, 1)=1$, while if $f$ is additive then $f(1, \ldots, 1)=0$. We now proceed to define a derivation on $A_{r}(R)$. For any additive function $\psi \in A_{r}(R)$, define $D_{\psi}: A_{r}(R) \rightarrow A_{r}(R)$ by

$$
D_{\psi}(f)(\underline{n})=f(\underline{n}) \psi(\underline{n}),
$$

for all $f \in A_{r}(R)$ and $\underline{n} \in \mathbf{N}^{r}$. For $\underline{n}=\left(n_{1}, \ldots, n_{r}\right)$, and $\underline{m}=\left(m_{1}, \ldots, m_{r}\right)$ in $\mathbf{N}^{r}$, we write $\underline{n m}=\left(n_{1} m_{1}, \ldots, n_{r} m_{r}\right)$. We state some basic properties of the map $D_{\psi}$ in the next proposition.

Proposition 2. Let $R$ be an integral domain, and let $r$ be a positive integer. Let $\psi \in A_{r}(R)$ be additive. Then for all $f, g \in A_{r}(R)$ and $c \in R$,
(a) $D_{\psi}(f+g)=D_{\psi}(f)+D_{\psi}(g)$,
(b) $\quad D_{\psi}(f \oplus g)=f \oplus D_{\psi}(g)+g \oplus D_{\psi}(f)$,
(c) $\quad D_{\psi}(c f)=c D_{\psi}(f)$.

Consequently, we see that $D_{\psi}$ is a derivation on $A_{r}(R)$ over $R$.
Proof. Let $\underline{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbf{N}^{r}$. First, from the definition of $D_{\psi}$ we see that

$$
\begin{aligned}
D_{\psi}(f+g)(\underline{n}) & =(f+g)(\underline{n}) \psi(\underline{n}) \\
& =f(\underline{n}) \psi(\underline{n})+g(\underline{n}) \psi(\underline{n}) \\
& =D_{\psi}(f)+D_{\psi}(g) .
\end{aligned}
$$

Thus, (a) holds. Also from the definition of $D_{\psi}$ we have that

$$
D_{\psi}(f \oplus g)(\underline{n})=(f \oplus g)(\underline{n}) \psi(\underline{n})
$$

So,

$$
\left.\begin{array}{rl}
D_{\psi}(f \oplus g)(\underline{n}) & =\psi(\underline{n}) \sum_{\substack{d_{1} e_{1}=n_{1} \\
\left(d_{1}, e_{1}\right)=1}} \ldots \sum_{\substack{d_{d_{2}}=e_{e}=r_{r} \\
\left(d_{r} r \\
r\right.}} f=1
\end{array}\right)
$$

$$
\begin{aligned}
& \times\left(\psi\left(d_{1}, \ldots, d_{r}\right)+\psi\left(e_{1}, \ldots, e_{r}\right)\right) \\
= & \sum_{\substack{d_{1} e_{1}=n_{1} \\
\left(d_{1}, e_{1}\right)=1}} \ldots \sum_{\substack{d_{e} e_{r}=n_{r} \\
\left(d_{r}, e_{r}\right)=1}} f\left(d_{1}, \ldots, d_{r}\right) \psi\left(d_{1}, \ldots, d_{r}\right) g\left(e_{1}, \ldots, e_{r}\right) \\
& +\sum_{\substack{d_{1} e_{1}=n_{1} \\
\left(d_{1}, e_{1}\right)=1}} \ldots \sum_{\substack{d_{r}, e_{r}=n_{r} \\
\left(d_{r}, e_{r}\right)=1}} f\left(d_{1}, \ldots, d_{r}\right) \psi\left(e_{1}, \ldots, e_{r}\right) g\left(e_{1}, \ldots, e_{r}\right) \\
= & f \oplus D_{\psi}(g)+g \oplus D_{\psi}(f) .
\end{aligned}
$$

Therefore (b) holds. Also, it is clear that (c) holds, and this proves the proposition.

Lemma 1. Let $f, g \in A_{1}(R)$. Let $p$ be a prime, and let $M_{p}$ be the monoid $\left\{1, p, p^{2}, \ldots\right\}$ under multiplication. Suppose that $\operatorname{supp}(f), \operatorname{supp}(g) \subseteq M_{p}$. If $f(1)=0$, and $g(1)=1$, then $f=f \oplus g$.

Proof. We have that $\operatorname{supp}(f \oplus g) \subseteq M_{p}$ since $\operatorname{supp}(f), \operatorname{supp}(g) \subseteq M_{p}$. Thus both $f$ and $f \oplus g$ vanish outside the monoid $M_{p}$. Let now $n$ be a positive integer. Then

$$
\begin{aligned}
(f \oplus g)\left(p^{n}\right) & =\sum_{\substack{d e=p^{n} \\
(d, e)=1}} f(d) g(e) \\
& =f(1) g\left(p^{n}\right)+f\left(p^{n}\right) g(1) \\
& =f\left(p^{n}\right)
\end{aligned}
$$

Thus, $f=f \oplus g$.
Lemma 2. Let $f \in A_{1}(R)$ be multiplicative and $\psi \in A_{1}(R)$ be additive. Let $p$ be a prime, and let $M_{p}$ be the monoid $\left\{1, p, p^{2}, \ldots\right\}$ under multiplication as in Lemma 1. Suppose that $\operatorname{supp}(f) \subseteq M_{p}$. Then $\frac{D_{\psi}(f)}{f}=D_{\psi}(f)$, where the division on the left side is taken with respect to the unitary convolution.

Proof. Note first that since $f$ is supported on $M_{p}$, both $D_{\psi}(f)$ and $f^{-1}$ will be supported on $M_{p}$. We have moreover that $f^{-1}(1)=1$ because $f$ is multiplicative. Also since $\psi$ is additive, $\psi(1)=0$. Applying Lemma 1 , we conclude that $\frac{D_{\psi}(f)}{f}=D_{\psi}(f)$.

Theorem 2. Let $f \in A_{1}(R)$ be multiplicative and $\psi \in A_{1}(R)$ be additive. Let $n$ be a positive integer, and let $\mathscr{P}_{n}$ be the set of all prime divisors of $n$. For each prime $p$, let $M_{p}$ be as in Lemma 1, and let $f_{p}=\left.f\right|_{M_{p}}$, i.e.,

$$
f_{p}(m)= \begin{cases}f(m) & \text { if } m=p^{k}, k \geq 1 \\ 0 & \text { else } .\end{cases}
$$

Then

$$
\frac{D_{\psi}(f)}{f}(n)=\sum_{p \in \mathscr{P}_{n}} D_{\psi}\left(f_{p}\right)(n)= \begin{cases}\psi(n) f(n) & \text { if } n=p^{k} \text { for some } p \text { prime } \\ \text { and } k \geq 1 \\ 0 & \text { else. }\end{cases}
$$

Proof. Fix an $n$ and let $n=p_{1}^{s_{1}} \ldots p_{t}^{s_{t}}$ be the prime factorization of $n$. Let $\mathfrak{M}$ be the set of all $m \in \mathbf{N}$ such that whenever $p$ is a prime and $p$ divides $m$, $p$ also divides $n$. Note that $\mathfrak{M}$ is a monoid under multiplication, generated by the primes $p_{1}, \ldots, p_{t}$. Let $g=\left.f\right|_{\mathfrak{M}}$, i.e., for any $m \in \mathbf{N}$,

$$
g(m)= \begin{cases}f(m) & \text { if } m \in \mathfrak{M} \\ 0 & \text { else }\end{cases}
$$

Suppose that $m, k$ are in $\mathbf{N}$, and $(m, k)=1$. If $m \notin \mathfrak{M}$, or $k \notin \mathfrak{M}$, then $\left.f\right|_{\mathfrak{M}}(m)=0$, or $\left.f\right|_{\mathfrak{M}}(k)=0$, and so, $g(m) g(k)=\left.\left.f\right|_{\mathfrak{M}}(m) f\right|_{\mathfrak{M}}(k)=0=$ $\left.f\right|_{\mathfrak{M}}(m n)=g(m n)$ since $m n \notin \mathfrak{M}$ whenever one of $m$, or $n$ does not belong to $\mathfrak{M}$. If $m, n$ are relatively prime and $m, n \in \mathfrak{M}$ then $m n \in \mathfrak{M}$ and $g(m n)=$ $\left.f\right|_{\mathfrak{M}}(m n)=f(m n)=f(m) f(n)=\left.\left.f\right|_{\mathfrak{M}}(m) f\right|_{\mathfrak{M}}(n)=g(m) g(n)$. Thus $g$ is multiplicative. We claim that

$$
g=\prod_{p \in \mathscr{\mathscr { F }}_{n}} f_{p}
$$

Indeed, let us first observe that if $h_{1}, h_{2} \in A_{1}(R)$ are such that $\operatorname{supp}\left(h_{1}\right)$, $\operatorname{supp}\left(h_{2}\right)$ are contained in $\mathfrak{M}$, then $\operatorname{supp}\left(h_{1} \oplus h_{2}\right) \subseteq \mathfrak{M}$. To see this, let $m \notin \mathfrak{M}$. Then there exists a prime $p$ such that $p \mid m$, but $p$ does not divide $n$. Now

$$
\left(h_{1} \oplus h_{2}\right)(m)=\sum_{\substack{d e=m \\(d, e)=1}} h_{1}(d) h_{2}(e) .
$$

Since either $p \mid d$, or $p \mid e$ whenever $m=d e$, every term in this sum is 0 because $\operatorname{supp}\left(h_{i}\right) \subseteq \mathfrak{M}(i=1,2)$. Thus, $\left(h_{1} \oplus h_{2}\right)(m)=0$ for any $m \notin \mathfrak{M}$. Hence $\operatorname{supp}\left(h_{1} \oplus h_{2}\right) \subseteq \mathfrak{M}$. Using the above observation and induction, it follows that $\operatorname{supp}\left(\prod_{p \in \mathscr{P}_{n}} f_{p}\right) \subseteq \mathfrak{M}$. Since $g$ is also supported on $\mathfrak{M}$, it follows that in order to prove the above claim it is enough to show that $g$ equals $\prod_{p \in \mathscr{P}_{n}} f_{p}$ on $\mathfrak{M}$. Let $m \in \mathfrak{M}$ with

$$
m=p_{1}^{a_{1}} \ldots p_{t}^{a_{t}}
$$

where all $a_{i}$ are nonnegative integers for $i=1, \ldots, t$. We have that

$$
\begin{aligned}
\prod_{p \in \mathscr{P}_{n}} f_{p}(m) & =\sum_{\substack{d_{1} \ldots d_{1}=m \\
\left(d_{i}, d_{j}\right)=1,(i \neq j)}} f_{p_{1}}\left(d_{1}\right) \ldots f_{p_{t}}\left(d_{t}\right) \\
& =\sum_{\substack{b_{1}, \ldots, b_{t} \\
p_{1}^{b_{1}} \ldots p_{t}^{b_{t}}=m}} f_{p_{1}}\left(p_{1}^{b_{1}}\right) \ldots f_{p_{t}}\left(p_{t}^{b_{t}}\right) \\
& =f_{p_{1}}\left(p_{1}^{a_{1}}\right) \ldots f_{p_{t}}\left(p_{t}^{a_{t}}\right) \\
& =f(m) \\
& =g(m)
\end{aligned}
$$

where in the above computation $b_{1}, \ldots, b_{t}$ are forced to have unique values equal to $a_{1}, \ldots, a_{t}$ respectively. Hence $g=\prod_{p \in \mathscr{P}_{n}} f_{p}$, as claimed. Next, we
claim that

$$
\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}=D_{\psi}(g) \oplus g^{-1} .
$$

In order to prove this, we first show that

$$
\left.f^{-1}\right|_{\mathfrak{M}}=g^{-1}
$$

Note that by the previous claim we know that

$$
g^{-1}=\left(\prod_{p \in \mathscr{P}_{n}} f_{p}\right)^{-1}=\prod_{p \in \mathscr{P}_{n}} f_{p}^{-1}
$$

and as a consequence $g^{-1}$ is supported on $\mathfrak{M}$. We now proceed by induction. First, since $f(1)=g(1)=1$, it follows immediately that $\left.f^{-1}\right|_{\mathfrak{M}}(1)=g^{-1}(1)=1$. Next, let $m>1$, and assume that for all $k<m, g^{-1}(k)=\left.f^{-1}\right|_{\mathfrak{M}}(k)$. If $m \notin \mathfrak{M}$, then $\left.f^{-1}\right|_{\mathfrak{M}}(m)=0=g^{-1}(m)$. Now suppose that $m \in \mathfrak{M}$. Then, using the equalities $\left(f \oplus f^{-1}\right)(m)=0=\left(g \oplus g^{-1}\right)(m)$ in combination with the induction hypothesis we derive

$$
\begin{aligned}
\left.f^{-1}\right|_{\mathfrak{M}}(m) & =f^{-1}(m) \\
& =\frac{-1}{f(1)} \sum_{\substack{d e=m \\
(d, e=1 \\
e<m}} f(d) f^{-1}(e) \\
& =\frac{-1}{g(1)} \sum_{\substack{d e=m \\
(d, e)=1 \\
e<m}} g(d) g^{-1}(e) \\
& =g^{-1}(m) .
\end{aligned}
$$

Thus,

$$
\left.f^{-1}\right|_{\mathfrak{M}}=g^{-1}
$$

Further, it is clear that

$$
\left.D_{\psi}(f)\right|_{\mathfrak{M}}=D_{\psi}\left(\left.f\right|_{\mathfrak{M}}\right)=D_{\psi}(g) .
$$

By the above two relations we conclude that

$$
D_{\psi}(g) \oplus g^{-1}=\left.\left.D_{\psi}(f)\right|_{\mathfrak{M}} \oplus f^{-1}\right|_{\mathfrak{M}} .
$$

Therefore in order to prove the claim it remains to show that

$$
\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}=\left.\left.D_{\psi}(f)\right|_{\mathfrak{M}} \oplus f^{-1}\right|_{\mathfrak{M}} .
$$

Here the left side is supported on $\mathfrak{M}$, while the right side is the unitary convolution of two arithmetical functions supported on $\mathfrak{M}$, so it is also supported on $\mathfrak{M}$. So we only need to check the desired equality at an arbitrary point $m \in \mathfrak{M}$. For such an $m$, any representation of $m$ as a product $m=d e$ forces both $d, e$ to belong to $\mathfrak{M}$. Thus

$$
\begin{aligned}
\left(\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}\right)(m) & =\frac{D_{\psi}(f)}{f}(m)=\sum_{\substack{d d=m \\
(d, e)=1}} D_{\psi}(f)(d) f^{-1}(e) \\
& =\left.\left.\sum_{\substack{d e=m \\
(d, e)=1}} D_{\psi}(f)\right|_{\mathfrak{M}}(d) f^{-1}\right|_{\mathfrak{M}}(e)=\left(\left.\left.D_{\psi}(f)\right|_{\mathfrak{M}} \oplus f^{-1}\right|_{\mathfrak{M}}\right)(m) .
\end{aligned}
$$

We conclude that $\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}=\left.\left.D_{\psi}(f)\right|_{\mathfrak{M}} \oplus f^{-1}\right|_{\mathfrak{M}}$, and hence

$$
\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}=D_{\psi}(g) \oplus g^{-1}
$$

as claimed. On the other hand, by applying Proposition 2 (b) repeatedly, we obtain

$$
D_{\psi}(g) \oplus g^{-1}=\frac{D_{\psi}\left(\prod_{p \in \mathscr{P}_{n}} f_{p}\right)}{\prod_{p \in \mathscr{P}_{n}} f_{p}}=\sum_{p \in \mathscr{P}_{n}} \frac{D_{\psi}\left(f_{p}\right)}{f_{p}} .
$$

By the above two relations we deduce that

$$
\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}=\sum_{p \in \mathscr{P}_{n}} \frac{D_{\psi}\left(f_{p}\right)}{f_{p}}
$$

But by Lemma 2, $\sum_{p \in \mathscr{P}_{n}} \frac{D_{\psi}\left(f_{p}\right)}{f_{p}}$ equals $\sum_{p \in \mathscr{P}_{n}} D_{\psi}\left(f_{p}\right)$. Therefore, we have that

$$
\left.\frac{D_{\psi}(f)}{f}\right|_{\mathfrak{M}}=\sum_{p \in \mathscr{P}_{n}} D_{\psi}\left(f_{p}\right)
$$

Since $n$ is in $\mathfrak{M}$, it follows in particular that

$$
\frac{D_{\psi}(f)}{f}(n)=\sum_{p \in \mathscr{F}_{n}} D_{\psi}\left(f_{p}\right)(n) .
$$

This completes the proof of the theorem.
We now proceed to generalize this theorem to the case of arithmetical functions of several variables.

Lemma 3. Let $f \in A_{r}(R)$ be multiplicative and consider the monoids

$$
M_{1}=\left\{(k, 1, \ldots, 1) \in \mathbf{N}^{r}: k \in \mathbf{N}\right\}, \ldots, M_{r}=\left\{(1, \ldots, 1, k) \in \mathbf{N}^{r}: k \in \mathbf{N}\right\}
$$

Let $f_{1}=\left.f\right|_{M_{1}}, \ldots, f_{r}=\left.f\right|_{M_{r}} . \quad$ Then

$$
f=\prod_{i=1}^{r} f_{i}=f_{1} \oplus \cdots \oplus f_{r}
$$

Proof. Let $\underline{m}=\left(m_{1}, m_{2}, \ldots, m_{r}\right) \in \mathbf{N}^{r}$. We have that

$$
\begin{aligned}
\left(\prod_{i=1}^{r} f_{i}\right)(\underline{m}) & =\sum_{\substack{d_{11} \ldots d_{1 r}=m_{1} \\
\left(d_{1}, d_{1 j}\right)=1,(i \neq j)}} \ldots \sum_{\substack{d_{11} \ldots d_{1}=m_{1} \\
\left(d_{1}, d_{j}\right)=1,(i \neq j)}} \prod_{i=1}^{r} f_{i}\left(d_{1 i}, \ldots, d_{r i}\right) \\
& =\prod_{i=1}^{r} f_{i}\left(1, \ldots, 1, m_{i}, 1, \ldots, 1\right) \\
& =\prod_{i=1}^{r} f\left(1, \ldots, 1, m_{i}, 1, \ldots, 1\right) \\
& =f\left(m_{1}, \ldots, m_{r}\right)
\end{aligned}
$$

Hence, $f=\prod_{i=1}^{r} f_{i}$, and the lemma is proved.
Theorem 3. Let $R$ be an integral domain, and let $r$ be a positive integer. Then, for any multiplicative function $f \in A_{r}(R)$, any additive function $\psi \in A_{r}(R)$, and any $\underline{n}=\left(n_{1}, \ldots, n_{r}\right) \in \mathbf{N}^{r}$, we have
$\frac{D_{\psi}(f)}{f}(\underline{n})= \begin{cases}\psi(\underline{n}) f(\underline{n}) & \text { if } n_{1}=\cdots=n_{i-1}=n_{i+1}=\cdots=n_{r}=1 \text { and } n_{i}=p^{k} \\ 0 & \text { for some p prime, } k \geq 1, \text { and } 1 \leq i \leq r,\end{cases}$
where the division on the left side is taken with respect to the unitary convolution.

Proof. Let $f$ be multiplicative and consider the monoids

$$
M_{1}=\left\{(k, 1, \ldots, 1) \in \mathbf{N}^{r}: k \in \mathbf{N}\right\}, \ldots, M_{r}=\left\{(1, \ldots, 1, k) \in \mathbf{N}^{r}: k \in \mathbf{N}\right\}
$$

as in Lemma 3. Let $f_{1}=\left.f\right|_{M_{1}}, \ldots, f_{r}=\left.f\right|_{M_{r}}$. Then by Lemma 3, $f=$ $\prod_{i=1}^{r} f_{i}$. Applying Proposition 2 (b) repeatedly, we get

$$
\frac{D_{\psi}(f)}{f}=\frac{D_{\psi}\left(\prod_{i=1}^{r} f_{i}\right)}{\prod_{i=1}^{r} f_{i}}=\sum_{i=1}^{r} \frac{D_{\psi}\left(f_{i}\right)}{f_{i}}
$$

Therefore the desired equality from the statement of Theorem 3 will hold for $f$ provided it holds for each function $f_{i}$. On the other hand, each of the functions $f_{i}$ is supported on a one dimensional monoid isomorphic to $\mathbf{N}$, so the desired equality for each function $f_{i}$ follows directly from Theorem 2 . This completes the proof of Theorem 3.

We remark that if $f$ and $\psi$ are known, then Theorem 2 and Theorem 3 can be used to compute the logarithmic derivative $\frac{D_{\psi}(f)}{f}$. We end this paper with a few very explicit examples. Take $R$ to be the field of complex numbers and $r=1$. An additive arithmetical function is for instance $\psi(n)=\log n$.

1. With $R, r$ and $\psi$ as above, let $f$ be the Möbius function $\mu$, which is a multiplicative function. By its definition, $\mu(1)=1$, and if $n>1, n=$ $p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}$, then

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } a_{1}=\cdots=a_{k}=1 \\ 0 & \text { else }\end{cases}
$$

By Theorem 2 we then have

$$
\frac{D_{\psi}(\mu)}{\mu}(n)= \begin{cases}-\log p & \text { if } n=p \text { for some prime } p \\ 0 & \text { else }\end{cases}
$$

2. Take $R, r$ and $\psi$ as above and choose $f$ to be the Euler totient function $\phi(n)$ which is multiplicative. By Theorem 2 we see that
$\frac{D_{\psi}(\phi)}{\phi}(n)= \begin{cases}k\left(p^{k}-p^{k-1}\right) \log p & \text { if } n=p^{k} \text { for some prime } p \text { and } k \geq 1, \\ 0 & \text { else. }\end{cases}$
3. With the same $R, r$ and $\psi$ as before, let $f$ be the sum of divisors function $\sigma$, given by $\sigma(n)=\sum_{d \mid n} d$, which is also a multiplicative arithmetical function. By Theorem 2 we find that

$$
\frac{D_{\psi}(\sigma)}{\sigma}(n)= \begin{cases}\frac{k\left(p^{k+1}-1\right) \log p}{p-1} & \text { if } n=p^{k} \text { for some prime } p \text { and } k \geq 1 \\ 0 & \text { else. }\end{cases}
$$

One can of course consider many other interesting arithmetical functions. For instance one can take $f$ to be the number of divisors function, or the sum of $k$-th powers of divisors function for some fixed $k$, which are multiplicative functions, or one can let $f$ be a Dirichlet character, which is completely multiplicative. One may also take $f$ to be the Ramanujan tau function $\tau(n)$ defined in terms of the Delta function

$$
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) q^{n}=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}, \quad q=e^{2 \pi i z}
$$

which is the unique normalized cusp form of weight 12 on $S L_{2}(\mathbf{Z})$. Ramanujan first studied many of the beautiful properties of this arithmetical function (see his collected works [2]). In particular he conjectured that $\tau(n)$ is multiplicative, a fact that was later proved by Mordell. One can also replace $\psi$ by other additive functions, for instance the logarithm of any multiplicative arithmetical function is additive. Clearly applying Theorems 2 and 3 to various combinations of such examples is equivalent in some sense to providing identities for such arithmetical functions with respect to the unitary convolution.

## References

[1] E. D. Cashwell, C. J. Everett, The ring of number-theoretic functions, Pacific J. Math. 9 (1959), 975-985.
[2] S. Ramanujan, Collected Papers, Chelsea, New York, 1962.
[3] E. D. Schwab, G. Silberberg, A note on some discrete valuation rings of arithmetical functions, Arch. Math. (Brno), 36 (2000), 103-109.
[4] E. D. Schwab, G. Silberberg, The Valuated ring of the Arithmetical Functions as a Power Series Ring, Arch. Math. (Brno), 37 (2001), 77-80.
[5] K. L. Yokom, Totally multiplicative functions in regular convolution rings, Canadian Math. Bulletin 16 (1973), 119-128.

Emre Alkan
Department of Mathematics
University of Illinois at Urbana-Champaign 273 Altgeld Hall, MC-382, 1409 W. Green Street Urbana, Illinois 61801-2975, USA e-mail: alkan@math.uiuc.edu

Alexandru Zaharescu Department of Mathematics
University of Illinois at Urbana-Champaign 273 Altgeld Hall, MC-382, 1409 W. Green Street Urbana, Illinois 61801-2975, USA e-mail: zaharesc@math.uiuc.edu

Mohammad Zaki Department of Mathematics
University of Illinois at Urbana-Champaign 273 Altgeld Hall, MC-382, 1409 W. Green Street Urbana, Illinois 61801-2975, USA e-mail: mzaki@math.uiuc.edu

