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ABSTRACT. For any positive integer n, let C, be the cyclic group of order n. We
determine all possible values of the integer group determinant of Cj x Cf, which is
the only unsolved abelian group of order 16.

1. Introduction

A circulant determinant is the determinant of a square matrix in which
each row is obtained by a cyclic shift of the previous row one step to the
right. At the meeting of the American Mathematical Society in Hayward,
California, in April 1977, Olga Taussky-Todd [16] suggested a problem that
is to determine all the possible values of an n x n circulant determinant when
all the entries are integers (see e.g., [5, 7]). The solution for the case n =2
is well known. In the cases of n = p and 2p, where p is an odd prime, the
problem was solved [3, 7]. Also, the problem was solved for the cases n =9
[6, Theorem 4], n =4 and 8 [2, Theorem 1.1], n = 12 [13, Theorem 5.3], n = 15
[8, Theorem 1.3], n =16 [20], and n =25 and 27 [5, Theorems 1.2 and 1.3].

For a finite group G, let x, be a variable for each ge G. The group
determinant of G is defined as det(xy-1), ,.6- Let C, be the cyclic group of
order n. Note that the group determinant of C, becomes an n X n circulant
determinant. The group determinant of G is called an integer group deter-
minant of G when the variables x, are all integers. Let S(G) denote the set
of all possible values of the integer group determinant of G:

S(G) = {det(xgh’l)g,heG | Xg € Z}

The problem suggested by Taussky-Todd is extended to the problem that is to
determine S(G) for any finite group G. For some groups, the problem was
solved in [1, 4, 8, 9, 12, 13, 17, 22, 21]. As a result, for every group G of
order at most 15, S(G) was determined. Also, C4 x C? is left as the only
unsolved abelian group of order 16 (the integer group determinants for the
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non-abelian groups of order 16 have also been characterized recently in [10,
Theorems 3.1 and 4.1], [11], [23], [14], [15] and [19]).
In this paper, we determine S(C4 x C3). For any reZ, let

P.:={p|p=r (mod8) is a prime number},
P :={p|p=a*+b*>=1 (mod8) is a prime number satisfying
a+b=+3 (mod8)},
A:={8k—-3)8I+3)|kleZ} T {8m—1|meZ},
B:={p@m—1)|peP meZ} C{8m—1|meZ}.
THEOREM 1.1.  We have
S(Cyx CH) ={16m+1,2"%@m + 1), 2'8m +3), 2p(2m + 1), 2%¥m |
meZ, pePs}U{2"%n|me AU B}.
Let D, denote the dihedral group of order n and let
C:={(8k—3)(8/—-3)(8n—3)8r—3)|keZ, 8 —3,8m—3,8n—3¢€ Ps,
k+1l#m+n (mod2)} C{lm—"7|meZ},
D:={8k—-3)8/—3)|k,leZ, k=] (mod2)} C {l6m—T|meZ}.

Remark that C C D holds. In [21], [22], [17, Theorem 1.5], [1, Theorem 5.3]
and [20], the following are obtained respectively:

S(CH = {16m+ 1, 2'8(4m + 1), 22 (4m + 1), 22*(8m + 3), 2%*m’, 2%°m |
meZ,m' e A},

S(CH = {16m+ 1, m', 2%p2m + 1), 2"m|me Z, m' € C, p € Ps},

S(Cs x Cy) = {16m+ 1, m', 21°2m + 1), 2" p(2m + 1), 2" ¢*(2m + 1), 212m|

meZ,m' €D, pe P'UPs, qe P},

S(Dig) = {4m +1,2"%m|m e Z},

S(Ci6) = {2m+ 1, 25p(2m + 1), 2°¢*2m + 1), 2"m|
meZ,pe P UPs, qe P3}.

Pinner and Smyth [13, p. 427] noted the following inclusion relations for every
groups of order 8: S(C3) C S(Cy4 x C) € S(Qg) & S(Dg) & S(Cg), where Qg
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denotes the generalized quaternion group of order 8. From the above results,
we have S(C3) C S(Cy x C3) € S(C2) € S(Cg x C3) € S(Dyg) S S(Cg).

2. Preliminaries

For any 7e C, with r€ {0,1,...,n— 1}, we denote the variable x; by x,,
and let D, (xo,X1,...,Xp—1) i= det(xghq)g_’hecn. For any (7,5) € C4 x C, with
re{0,1,2,3} and se{0,1}, we denote the variable y; by y;, where j:=
r+4s, and let Dao(yo, yi,--.,37) :=det(yg1), pec,xc,- For any (7,5,7)€
Cy x C% with r € {0,1,2,3} and 5,7 € {0, 1}, we denote the variable Z(.51) BY Zj,
where ji=r+4s+8t, and lieti D4X2><2(Z(),Zl, - ,215) = det(zghq)g’heqxcg.
From the G=C4 and H = {0,2} case of [17, Theorem 1.1], we have the
following corollary.

CorOLLARY 2.1. We have
Dy(x0,x1,x2,x3) = Da(x0 + X2, X1 + x3)D2(x0 — X2, \/j(xl —x3))

= {(x0 +x2)* = (1 +x3) H(x0 — x2)* + (31 — x3)°}.
REMARK 2.2. From Corollary 2.1, we have

Dy (x0, x1,%2,x3) = —Dy(x1, X2, X3, X0).

LemMma 2.3. The following hold:

(1) Daxa(y0,---5¥7) = Da(yo + yas y1 + ys, y2 + Y6, ¥3 + y7)Da(yo — s,
V1= Y5, 02— Y6, ¥3 — 1))

(2)  Daxax2(20s---,215) = Daxa(zo + z8, z1 + 29,...,27 + z15)Daxa(z0 — zs,
21 —Z9y...,27 — Z15).

Proor. Theorem 1.1 of [18] describes a formula for S(H x K) when H
and K are finite abelian groups. Part (1) follows from this by taking H = Cy4
and K = C,, and (2) by choosing H =C4 x C; and K = C,. O

Throughout this paper, we assume that ag,a,...,a15 € Z, and for any
0<i<3 let

bi = (a; + aiys) + (aips + aiz12), ¢i = (a; + ai3) — (Aiya + aiy12),
di := (a; — aiy8) + (Aips — aiz12), e = (a; — aj3) — (Aiya — Aiy12).
Also, let a:= (ap,a,...,a;s) and let
b := (bo,b1,b2,b3), ¢ := (co,c1,02,03),
d = (dy,d,dr,ds), e:= (ep,e1,e,e3).
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Then, from Lemma 2.3, we have
Dyxax2(a) = Da(b)D4(c)Ds(d)Ds(e). (%)

REMARK 2.4. For any 0 <i <3, the following hold:
(1) bi=c;=d; =e (mod2),
(2) bl‘ —+ ¢ + di + e = 0 (mod 4)

LemMmA 2.5. We have
Dyyrx2(a) = Da(b) = Ds(c) = Dy(d) = Dy(e) (mod 2).
Proor. From Corollary 2.1, for any xp,x;,x2,X3 € Z,
Dy (x0,x1,X2,X3) = X0 + X1 +x2 +x3 (mod 2).
Therefore, we have
Dy(b) = D4(c) = Dy(d) = Dy(e) (mod 2)
from Remark 2.4 (1). O

3. Impossible odd numbers

In this section, we consider impossible odd numbers. Let Z,qq be the set
of all odd numbers.

LemMA 3.1. We have S(Cy x C3)NZoga C {16m+ 1|me Z}.
To prove Lemma 3.1, we use the following lemma.

Lemma 3.2 ([17, Lemmas 4.6 and 4.7]). For any k,l,mneZ, the fol-
lowing hold:

(1) D42k +1,21,2m,2n) = 8m+ 1 (mod 16);

(2) Da(2k,21+1,2m+1,2n+1) =8(k+1+mn)—3 (mod 16).

ProoF (Proof of Lemma 3.1). Let
Dy4yrx2(a) = Da(b)D4(c)Dy(d)Ds(e) € Zoaq.

Then D4(b) € Zogqq- From this and Corollary 2.1, we have by + by % by + b3
(mod 2). Therefore, one of the following cases holds:

(i) exactly three of by, b1, by, b3 are even;

(i) exactly one of by, by, by, b3 is even.
First, we consider the case (i). From Remarks 2.2 and 2.4 (1), we may assume
without loss of generality that b=c=d =¢=(1,0,0,0) (mod2). From
Remark 2.4, there exist m; € Z satisfying by = 2my, ¢ =2my, dy = 2my,
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e, =2mj3 and 21'3:0 m; =0 (mod 2). Therefore, from Lemma 3.2 (1),

3 3
Dyrr(a) = [[Bmi+1) =148 mi=1 (mod 16).
i=0 i=0
Next, we consider the case (ii). From Remarks 2.2 and 2.4 (1), we may
assume without loss of generality that b=c=d=e¢=(0,1,1,1) (mod 2).
From Remark 2.4, there exist k;,[;,n; € Z satisfying

(bo,b],bz) = (2/((),210 + 1,2”0 + 1), (C(),C],C3) = (2k1,2[1 =+ 1,21’11 =+ 1),
(do,dy,d3) = (2kz, 2L+ 1,2ny + 1), (eo,e1,3) = (2k3, 2534+ 1,2n3 + 1)
and ) k=30 hi= Y0 =0 (mod2). Therefore, from Lemma 3.2

(2), we have

3
Dyxrxo(a) = H{g(ki + 1 +mn)—3}

i=0

3
=148 (ki+h+n)=1 (mod 16). O
i=0

4. Impossible even numbers

With Ps, P/, A, B as in Section 1, in this section we aim to establish
three statements regarding necessary conditions for even members of
S(Cyq x C3).

LemMA 4.1. We have S(Cy x C3)N2Z C 2'°Z.
LEMMA 4.2. We have
S(Cy x C3)N2Y%Zo4q {2 (dm +1),2'(8m +3),2'%n' |me Z, m" e AU B}.
LEMMA 4.3. We have
S(Cy x CHN2"Zoga € {2Vp(2m +1)| pe Ps, me Z}.

Lemma 4.1 is immediately obtained from Equation (%), Lemma 2.5 and
Kaiblinger’s [2, Theorem 1.1] result S(C4) = Zoga U2*Z. To prove Lemma
4.2, we use the following six lemmas.

Lemma 44 ([22, Lemma 3.2]). For any k,l,mneZ, the following
hold:

(1) Da(2k.20,2m. 20) € {24lodd, k+m#I1+n (mod2),

287, k+m=1I+n (mod2);
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(2) D42k +1,20+1,2m+1,2n+1)

2 Zoaa; (k+m)(l+n)=—-1 (mod4),

24Z0qa, k+m#Il+n (mod2),
€
2°7, otherwise;

(3) Da(2k,20+1,2m,2n+ 1)

20Z0qq, k=m (mod2), (2k+2+1)2m+2n+1) =43 (mod 8),

2SZOdd, k—-m=Il-n=1 (mod 2),
€
27, otherwise;
(4) D4(2k,21,2m+1,2n+ 1)

3 (mod38),

{24zodd, 2k +2m+1)21+2n+1) =
1 (mod 8).

T
2°Z, k+2m+1)21+2n+1) =+

LemMaA  4.5. Suppose that (xo,x1,X2,x3) = (0,0,1,1) (mod2) and
(x0 + x2)(x1 + x3) = £3 (mod 8) hold. Then the following hold:

(1) if xo=x; (mod4), then (xo—x2)> + (x1 — x3)> € {2(8k — 3) |k € Z};

(2) if xo #x1 (mod4), then (xo—x2)* + (x1 — x3)* € {2(8k + 1) | k e Z}.

Proor. We prove (1). If xp =x; (mod4), then

(Xo — XZ)(XI — X3) = (X() + XQ)(XI + X3) — 2X0X3 — 2X2X1
= ()C() + Xz)(xl + X3) — 2)60()63 + )C2)
=+3 (mod 8).

Thus, (xo—x2)”>+ (x —x3)> = —6 (mod 16) holds. We prove (2). If
X0 # x1 (mod 4), then

(x0 — x2)(x1 — x3) = (x0 4+ x2) (X1 + x3) — 2x0x3 — 2X2X]
= (x0 + x2)(x1 + x3) — 2x0x3 — 2x2(x0 + 2)
= (xo + x2) (%1 + x3) — 2x0(x3 + x2) — 4x2
=+1 (mod 8).
Thus, (xo —x2)> 4 (x1 — x3)> =2 (mod 16) holds. O

LEMMA 4.6. Suppose that (xo+ x2)* — (x1 4+ x3)> has no prime factor of
the form 8k + 3. Then the following hold:
(1) ifxo+x2 =43, x; +x3 = +1 (mod 8), then (xo + x2)* — (x1 + x3)° €
{88k + 1) |k eZ};
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(2) if xo+x3=+1, x; +x3 =43 (mod 8), then (xg —i—xz)2 — (x +X3)2 €
{8(8k —1)|keZ}.

Proor. We prove (1). First, we consider the case of (x¢ + x2,x] + x3)
= (3,1) (mod 8). Then (x¢+ x2,x1 +x3) = (3,1),(3,-7),(=5,1) or (=5,-7)
mod 16). From

(161 +3)* — (16m +1)* = (16] + 3 + 16m + 1)(16/ + 3 — 16m — 1)
=84l +4m+1)(8/ — 8m+ 1),

(161 +3)* — (16m — 7)* = (161 + 3 + 16m — 7)(16/ + 3 — 16m + 7)

= 8(41 +4m — 1)(8] — 8m + 5),

(161 — 5)* — (16m + 1)* = (16] — 5 + 16m + 1)(16] — 5 — 16m — 1)
= 8(4 + 4m — 1)(8] — 8m — 3),

(161 — 5)* — (16m — 7)* = (16] — 5 + 16m — 7)(16] — 5 — 16m + 7)
= 8(4] +4m — 3)(8] — 8m + 1),

we find that if (xo+ x2,x1 +x3)=(3,—-7) or (=5,1) (mod 16), then
(X0 4+ x2)* — (x1 + x3)® has at least one prime factor of the form 8k + 3.
Also, if (x4 x2,x1 +x3) = (3,1) or (=5,—7) (mod 16), then (xq+ x)* —
(x1 +x3)? is of the form 8(8k 4+ 1) or has at least one prime factor of the
form 8k + 3. In the same way, we can prove for the cases (xy + x2,x] + X3)
= (3,-1),(=3,1) and (—3,—1) (mod 8). Replacing (xo, x1, x2,x3) with (x1, x2,
x3,X0) in (1), we obtain (2). O

LeMMA 4.7. Suppose that (xo — x2)* + (x1 — x3)* has no prime factor of
the form 8k + 3 and xo — x, = £3, x; — x3 = +3 (mod 8) hold. Then

(xo—x2)* + (x1 —x3)2 e {2pm|meZ, p=a*+b*>=1 (mod 8),
a+b=+3 (mod8)}.

Proor. From the assumption, there exist primes p; =1, ¢; = —1 (mod 8)
and integers k;, ;> 0 satisfying (xo — x2)% + (x1 — x3)> = 2pFt .. pheg2h .. g2,
We prove by contradiction. If p; = a? + b? with ¢; + b; = +1 (mod 8) for any
1 <i<vr then xg —x2,x1 —x3 € {8k + 1|k eZ} hold from [20, Lemma 4.8].

This is a contradiction. Ol

LemMa 4.8. Suppose that by + by = by + b3 =0 (mod 2) and Dyxrx2(a) €
218Zo4q.  Then we have Dyypya(a) € {2'%(4m + 1) |m e Z}.
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Proor. From Equation (*), Remarks 2.2 and 2.4 (1) and Lemma 4.4, one
of the following cases holds:
(1) bgp=by =by=b3;=0 (mod2) and Dg4(b), Ds(c), Ds(d), Ds(e) €
247 oaa;
(11) b() = bl = bz = b3 =1 (mod 2) and D4(b), D4(C), D4(d), D4(e) €
24Zodd-
First, we consider the case (i). From Remark 2.4, there exist k;,/;,m;,n; € Z
satisfying

b= (2](0,2]0,21’}’!0,2]/[0), Cc = (2k1,211,2m1,2n1),
d= (2](2,2]2,2]’}’!2,27[2)7 e = (2k3,2]3,2]’ﬂ3,2]’l3)

and 22 k= Y0 L= omi= Y} n; =0 (mod2). Here, from Lemma
44, ki+m; # 1+ n; (mod 2) holds for any 0 <i < 3. Thus by Corollary 2.1
we have

274Dy (2k;, 201, 2my, 2n) = { (ki + my)? — (I + n) 2 H{ (ki — m)* + (I — n))*}

(=)™ (mod 4).

Therefore,

3
27 Dyrua(a) = 27" T | Da(2ks, 2, 2m;, 2m)
i=0

3
= H(_l)lanz

i=0

(-1) l+-h b+l (-1) oAy s
=1 (mod4).
In the same way, we can prove for the case (ii). O
LemMa 4.9. Let b+ by =b+b3=1 (mod2). If
Dyrxa(a) € {2'%m|m = —1 (mod 8)},
then Dyxaxa(a) € {2'%m|me AU B}.

PrROOF. Let Duyaxa(a) = Da(b)Ds(c)D4(d)Dy(e) = 2%m  with m= -1
(mod 8). From Remarks 2.2 and 2.4 (1), we may assume without loss of
generality that b=c=d =¢=(0,0,1,1) (mod 2). We prove that if m ¢ 4,
then m e B. Suppose that m¢ A and let
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0 = {(x0,x1,x2,x3) € Z*| (x0, X1, X2, x3) = (0,0,1,1) (mod 2),
(x0 + x2)(x1 + x3) = £3 (mod 8), xp # x; (mod 4)},

= {(x0,X1,X2,X3) € Q| x0+ x2 = £3, x; + x3 = +1 (mod 8)},

= {(x0, X1,X2,X3) € Q| X0+ x2 = +1, x; + x3 = +£3 (mod 8)},

O = {(x0,x1,X2,x3) € Q1| X0 =0, x; =2 (mod 4)},

05 = {(x0,x1,x2,x3) € Q2 | xo =2, x; =0 (mod 4)}.

Since m ¢ A, D4(b)D4(c)D4(d)D4(e) has no prime factor of the form 8k + 3.
Thus, from Lemmas 4.4 (4) and 4.5, we have b,c,d,e e Q. Moreover, from

m = —1 (mod 8) and Lemmas 4.5 and 4.6, either one of the following cases
holds:
(i) one of b, ¢, d, e is an element of Q1 and the other three are elements
of QQ;
(i) one of b, ¢, d, e is an element of Q, and the other three are elements
of Q].

Since by + ¢ + do + e =0 (mod 4) from Remark 2.4 (2), we find that in both
cases (i) and (ii), at least one of b, ¢, d, e is an element of O{ U Q). On the
other hand, for any x = (xo, x1, X2, x3) € Qf, we have —xp + x2 = Xp + X2 = 13,
—x1+x3 =x;+x3 —4=43 (mod8). Thus, it follows from Lemma 4.7 that
for any x € Q1, if D4(x) has no prime factor of the form 8k + 3, then D4(x) has
at least one prime factor of the form p = a?> +b?> =1 (mod 8) with a + b = +3
(mod 8). In the same way, we can obtain the same conclusion for any x € Q.
From the above, we have m € B. O

ProoF (Proof of Lemma 4.2). Suppose that
Dasaxa(a) = Da(b)Da(c)Dy(d)Dy(e) € 2" Zouq.

From Corollary 2.1 and Lemma 2.5, we have by + b, = b + b3 (mod 2).
Therefore, we have

Dasaxa(a) € {2'dm + 1), 21(8m + 3), 21’ |me Z, m' e AU B}
from Lemmas 4.8 and 4.9. O
To prove Lemma 4.3, we use the following lemma.

Lemma  4.10. Suppose  that x = (xo,x1,x2,x3) = (0,0,1,1) (mod 2),
(x0 + x2)(x1 +x3) = +1 (mod 8) and xy # x; (mod 4). Then D4(x) has at
least one prime factor of the form 8k — 3.
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ProoOF. From

(x0 — x2)(x1 — x3) = (x0 + x2) (%1 + x3) — 2x0x3 — 2X2X]
= (x0 + x2) (1 + x3) — 2x0x3 — 2x2(x0 + 2)
= (xo + x2)(x1 + x3) — 2x0(x3 + x2) — 4x2
=+3 (mod 8),

we have (xo—x2)> 4 (x1 —x3)> = —6 (mod 16). This completes the proof.
O

Proor (Proof of Lemma 4.3). Suppose that
D4><2><2(a) = D4(b)D4(C)D4(d)D4(e) € 217lodd-

Then, from Corollary 2.1 and Lemma 2.5, we have by + b, = b; + b3 (mod 2).
Therefore, from Remarks 2.2 and 2.4 (1) and Lemma 4.4, we have by + b,
b+ b3 =1 (mod?2). We may assume without loss of generality that b =c¢ =
d=e=(0,0,1,1) (mod?2). Let

i~

05 := {(x0,x1, X2, x3) € Z*| (x0, X1, %2,x3) = (0,0,1,1) (mod 2),
X0 + x2)(x1 + x3) = +£3 (mod 8)},

Q4 = {(x0, X1, x2,X3) ez’ | (x0, X1, x2,x3) = (0,0,1,1) (mod 2),

(

(

(

(x0 + x2)(x1 + x3) = +1 (mod 8)},

03 := {(x0,x1,x2,x3) € Q3 xo = x1 (mod 4)},
(

0} = {(x0,x1,x2,x3) € Q4| x0 # x1 (mod 4)}.

From Lemma 4.4, three of b, ¢, d, e are elements of Q3 and the other one is an
element of Q4. Moreover, since (bg — b)) + (co — ¢1) + (do — dy) + (eg — €1) =
0 (mod 4) from Remark 2.4 (2), we find that at least one of b, ¢, d, e is an
element of Q5U Q4. On the other hand, it follows from Lemmas 4.5 and 4.10
that for any x e Q;U Q}, D4(x) has at least one prime factor of the form
8k —3. From the above, there exist p € Ps and m € Z satisfying Duxox2(a) =
27p(2m + 1). O

5. Possible numbers

In this section, we determine all possible numbers. Lemmas 3.1 and 4.1-
4.3 imply that S(C4 x C?) does not include every integer that is not mentioned
in the following Lemmas 5.1-5.3.
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LEMMA 5.1. For any meZ, the following are elements of S(C4 X Cg)
(1) l6m+1;
(2) 2'%(4m+1);
(3) 2'%(4m+1)(8n+3),
4) 2%@2m+1);
(5) 2'%(2m).
LEMMA 5.2. For any pe P and me Z, we have
21p(4m — 1) € S(C4 x C3).
LeMMmA 5.3. For any pe Ps and m e Z, we have

2p(2m + 1) € S(Cy4 x C3).

REMARK 5.4. From Lemma 5.1 (3), we have 2'%m e S(Cy4 x C3) for any
me A.  Also, from Lemma 5.2, we have 2'%m e S(Cy x C3) for any m e B.

ProoF (Proof of Lemma 5.1). We obtain (1) from
Dysrsa(m+ 1,m,....m) = Dy(4m + 1,4m,4m, 4m)D4(1,0,0,0)*
= (8m+1)* — (8m)*
=16m+ 1.
We obtain (2) from
Daysrsom+1,m+1,m+2.m,...,m)=Ds(dm+ 1,4m + 1,4m + 2, 4m)
x Dy4(1,1,2,0)°

= 2{(8m+3)> — (8m + 1)2}(2%)°

=2832m +8)
=2"%4m+1).
We obtain (3) from
4 4
D4x2x2(m+n+l,---,m+l’l+l,m,

mtn+lm+nm+n+lm+n—1lm—n—1,m—nm—nm-—n)
=Dy(dm+ 1,4m+ 1,4m + 2,4m)Dy4(4n + 3,4n + 1,4n + 2,4n)
x Dy(1,1,0,2)D4(—1,1,0,2)
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=2{(8m+3)> = (8m+ 1)*}2{(8n + 5)> — (8n + 1)*}(=2*)(-2%
=2'9(32m + 8)(64n + 24)
=2'%(4m + 1)(8n + 3).
We obtain (4) from
Dysrr(m~+2,mm~+2,m+ 1,mm,m,m,
m+1,m+1,mm+1,mm,m,m)
= Dy(4m +3,4m + 1,4m + 2,4m + 2)D4(3,1,2,2)D4(1,—1,2,0)*
=2{(8m + 5)* — (8m + 3)?}2°(2%)?
=2802m+1).
We obtain (5) from
Dysrso(m+1,mm+1,mmm—1,m,m,
mm+1mm+1,mm—1m—1m—1)
= Dy(4m + 1,4m — 1,4m,4m)D4(1,3,2,2)D4(1,—1,2,0)D4(1,—1,0,-2)
=2{(8m+ 1)* — (8m — 1)*}(—2%)2%(—2%
=2802m).
This completes the proof. O

ProoF (Proof of Lemma 5.2). For any pe P’, there exist r,s € Z with
r#s (mod?2) satisfying p = (4r)> + (4s+1)>. Let k:="5t and /:=r=5-1,
Then we have

2p = (4r+4s+1)> + (4r —4s— 1) = (8k — 3)> + (81 + 3)°.
Therefore, from
Dysrsr(k—ml—m+1,—k—m+1, -l —mk+ml+m+1,
—k4+m+1,-l+mk—-—ml—-m+1,—-k—m+1,-1—m,
k+m—-11+m—k+m—1-14+m)
= Dy(4k — 1,41+ 3,2 — 4k, —41)Ds(1 — 4m, 1 — 4m,2 — 4m, —4m)
x Dy(1,1,2,0)Dg(—1,—1,-2,0)
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= —23{(8k — 3)% + (81 + 3)*}2{(3 — 8m)* — (1 — 8m)*}2%2*
= —212{(8k — 3)> + (8] + 3)*}(—32m + 8)

= 215{(8k —3)* + (81 +3)*}(4m — 1),

we have 2'%p(4m — 1) e S(C4 x C3). O

r=s (mod 2) satisfying p = (4r—|—2)2+(4s+ 1)2. Let k:=5* and /:=5*.

PrOOF (Proof of Lemma 5.3). For any p e Ps, there exist r,s € Z with

2

Then we have

2p = (4r+ds+3) 4+ (4r —4s+1)° = (8k +3)° + (8/+ 1),

Therefore, from

Dyosom+1+1m+k+1m—I1+1m—km+I1+1,m+k+1,
m—Il+1m—bkm+I+1,m+k+1,m—-I1+1,m—k,
m+lm+km—1—1m—k)
= Dy(4m + 41+ 3,4m + 4k + 3,4m — 41 + 2, 4m — 4k)

x Dy4(1,1,2,0)%Dg(—1,—1,-2,0)
={(8m+5)% — (8m + 3)}{(8] + 1)* + (8k + 3)*} (24 %2*
=2"2(32m + 16){(8k + 3)* + (81 + 1)*}

=2190(8k +3)> + (81 + 1)*}(2m + 1),

we have 2'7p(2m + 1) e S(C4 x C3). O

[1]

(2]

(3]

(4]

From Lemmas 3.1, 4.1-4.3 and 5.1-5.3, Theorem 1.1 is proved.
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