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ABSTRACT. Extensions of the closed-form expressions for the series represented as a
product of sine and logarithmic functions mentioned in reference [7] have been refor-
mulated utilizing the Hurwitz zeta function and its first derivative. Furthermore, anal-
ogous closed-form expressions have been derived for these series that involve the cosine
function instead.

1. Introduction and preliminaries

In [7, p. 748], the entries 24-26 are closed-form formulas for the series
over the product of the sine and logarithmic functions. Here, we give gen-
eralizations of these formulas. In addition, we consider the same series, but
instead of the sine, we include the cosine function.

For o >0, by setting a=1, b=0, s=1, f =cos in the general sum-
mation formula for the trigonometric series we derived in [9], one obtains the
formula

isinnx: X! N e {(o— 2k — )xzk+l7 (1)
— * I'(a) sin fo = 2k—|—1)
where { is Riemann’s zeta function defined by
“1
{s)=>» —, Res>1, (1.2)
— k.\

which can be analytically extended to the whole complex plane except for
s =1, where it has a pole [6]. Similarly, fora=1, =0, s=1, f =cos in
[9], we have

1

z“:cosnx: X +2°°: oc—2k)x2k7 (1.3)

n* 2F( cos o £~
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where 0 < x < 2z. If we place oo =2m —1 (m is a positive integer) in (1.1),
we get

“sinnx (—1)" ax2m2wl( {2m =2k —=2) 54y
= 1.4
Z pn2m—1 2 2m — 2 + ; 2k T 1) X ) ( )

n=1
and taking o =2m in (1.3) yields

yheosmr_ ()Tl (=D)%Cm=2k) o (1.5)

nm 22m—1)! (2k)!

+

k=0

Formulas (1.4) and (1.5) arise because the { function takes the value zero at
negative even integers, which results from setting s =2m + 1 (m is a positive
integer) in the functional equation for Riemann’s zeta function [1]

(27)*¢(1 —5) = 2{(s)I"(s) cos %S
In the sequel, the set of positive integers will be denoted by IN.

However, we cannot replace o immediately with 2m in (1.1) nor with
2m —1 in (1.3), since we encounter singularities both in denominators of the
first terms and in the term for k =m — 1 of the formulas (1.1) and (1.3), but
dealing with this problem, relying on the Hurwitz zeta function initially defined
by

= 1
= R 1 <1, 1.
kE:o(k‘H’)“ es>1,0<a (1.6)

we deduced in [8] the following closed-form formulas

s MR (ama - 2) o2 )) )

n=1

and

I~ COS nX (-)™'er)* 2/, X , X
Zn2mfl - (2m—2)' <C (2_2’%’1 _E>+C (2_2m7E>) (18)

n=1

Note that {'(s,a) in (1.7) and (1.8) and further on in the text denotes the first
derivative of Hurwitz’s zeta function with respect to s.
The functional equation of {(s,a) [1] written in the equivalent form

{1 —s,a) = 2(;(;5) Y % cos(zs— 2n7za> (1.9)
1

n—=
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provides the analytic continuation of {(s,a) in the whole complex plane except
for a simple pole at s = 1, because the values I'(1 — s) are defined for Re s < 1,
where the I' function is introduced by Euler as the integral [3]

I'(s)= J e *x*1dx, Re s > 0. (1.10)
0

Hence, we deduce the equality

0 © (—1)" 1 o0
I(s) :J x e dx:z( ) J xSt dx—l—J ¥ le ™ dx

0 =0 ntJo 1
Z (-D" 1 “ ’
— ( ) + J xs—le—,x dx,
“~ nl s+n 1

from which the I' function is analytically extended to all the complex values
of s except for negative integers and zero, where it has simple poles.

Integration by parts of the integral (1.10) gives rise to the basic
relation

I'(s+1)=sI(s),
and it can be easily shown that, for arbitrary n € N, there holds
I'is+n)=(+n—1)(s+n—2)---sI'(s),
and that formula we use to express the Pochhammer symbol (s),, i.e.

F(s—&—n).

), =s(s+1)(s+2)---(s+n—-1) = )

(1.11)

2. Main results

Initially, the following lemma establishes a connection between the two
zeta functions, Hurwitz’s and Riemann’s.

LemMmA 2.1. The Hurwitz zeta function {(s,a) for s=2—2m, and a =
x/2n (m e N) presents a polynomial in x of the degree 2m — 1 with coefficients
containing values of Riemann zeta at positive even integers, i.e. there holds

X
C<2—2m,g>

L\ (=)™ em =22 (=) em -2k —2) 45,
2(271) M ,; 2k+1) 2D
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Proor. Replacing s and a with 2m — 1 and x/27n, respectively, in (1.9),
we obtain

C<2—2m 1) 2r2m—1) icos Z(2m — 1) — nx)

’27.[ 27T 2m—1 — n2m71
2(=1)"" 2m — 2)! S sin nx
= E . 2.2
(27_[)2)11—1 — n2mfl ( )

Employing the formula (1.4), we find (2.1). O

LEmMMA 2.2.  The Hurwitz zeta function {(s,a) for s =1 —2m and a = x/2=n
(m € N) presents a polynomial in x of the degree 2m with coefficients containing
values of Riemann zeta at positive even integers, i.e. there holds

X
C(l —2m,ﬂ>

L\ (=D @m = DIRR (- 2m 2%) o,
E<Z‘[> + 22m— 17-[2111 ]Z X7 (23)

Proor. Replacing s and a with 2m and x/27, respectively, in (1.9), we
obtain

0 J—
C(lZM,x) 2 (2m) ZCOS 2m nx)

2 277: 2m gt
(=D)"(2m — 1)! S cos nx
= 22m—172m Z n2m (24)

n=1
Employing the formula (1.5), we find (2.3). O
Relying on them here we shall deduce closed-form formulas.

THEOREM 2.3. For 0 < x < 27 and m € N, the closed form of the sine series
involving logarithmic function is

“_ sin nx (=1)"(2m)*!

T logn =S (2(log 2 — y(2m — 1))g<2 - Zm%)

! X !/ X
¢ (2—2m,1—ﬂ)—§ (2—2m,%)>. (2.5)

ProOF. Putting @ = x/27 in (1.9), then taking the first derivative on both
sides with respect to s yields

n=1
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Y (1 s %) =229 (5) - tog 27 X;C“(Zi_x)

_20(s i cos(% — nx)

nS

() gsin(s = ).
nS

logn — il
(2m)* 4=

After replacing then s with 2m — 1, we find

1 m—1 2m — ) . sin
5(2 2m,2> = )(2n)(2mnf] ) <2(10g 2 — (2m — 1));%

sin nx COS nx
+ZZ logn—l—nz 2m1>

Based on the formulas (1.8) and (2.2), we have
1, X X
EC <2 - 2m,E> = (log 2 — Yy (2m — 1)){(2 — 2m,ﬁ)

+2

(=)™ ' 2m - 2)! Zsmnx

(277:) et n=1

1, x

After a rearrangement, we arrive at (2.5). [
REMARK 2.4. The formula (2.5) comprises the entry 24 in [7, p. 748].
To show that, we put m =1 in (2.5), knowing that for n =1 from
H,_1 =y(n) +y, neN, (2.6)

there implies (1) = —y, where y is Euler-Mascheroni’s constant, H, is the nth
harmonic number given by

=

x| =

Hn =
k=1

Hy=0, (2.7)

and  is the function (also known as the digamma function) defined as the
logarithmic derivative of the gamma function [2]

4 log I'(s) =

W) =5 (2.8)
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Thus, we have
o0

sin nx n X , X , X

n=1

For s=0 in (1.9), we evaluate

0 sin 2nna 1 0 e2nm‘a 0 e—Zmzia
Z n 27i Z n Z n

n=1 n=1

0 ) 0 ) i l_eZnia 1
= ZJEZnnla da+ Zjeiznma da :% IOg m :E—Cl.

n=1

Using this and the identity [2]
, 1
'(0,a) =log I'(a) — 3 log 27,

we obtain

o0

sin nx i1 x 1 X X
Z p logﬂ§(2(10g2n+y)<%§>10gF<1§>+logF(%)>.

n=1

Applying Euler’s reflection formula [5]

(1 —2)I() = Sin”nz, Z¢Z, (2.9)

the preceding left-hand side series becomes
0

sin nx x mw\ = T n X
log n = (log 2 S L AL I of
>, logn=(log ””)(2 2)+2 ®T)sny 2 ¢ <2n>

n=1

X

7 1 . X
(10g27r+y)(x77z)+§ log - sin 2+nlogf(%),

NI =

which is exactly the entry 24 in [7, p. 748] for a = 1.
We note that it is easy to deduce the formula for a # 1 (entry 24 in
[7, p.- 748]) by rewriting its left-hand side as follows

© o0

sin nx = sin nx sin nx
1 =1 1
Z . og na ogaz " +Z " ogn,

n=1 n=1 n=1

then we apply formulas (1.4) and (2.5) for m = 1.
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Employing a similar method, we can deduce a summation formula for the
cosine function, which is missing in [7].

THEOREM 2.5. For 0 < x <27 and me N, the closed form of the cosine
series involving logarithmic function is

i cos nx | (=)™ 2n)*m

X
P n2m ogn= m (2(10g 2m — xﬁ(2m))§<1 — 2m’%)

—C'(l—2m,l—%)—C’(l—Zm,%)). (2.10)

PrOOF. Applying again the first derivative with respective to s to (1.9),
where a = x/2n, we have

e (1 s %) _ gn()) (W(s) — log 27) le

After replacing then s with 2m, we find

, x -D"2m —1)! X nx
¢ (1 _ 2m,£) - % (2(10g 27 — Yy (2m)) Z&

2m
n=1 n
o0 o0
2 COS nx | Sin nx
+ Z—Zm ogn—m ol
n n
n=1 n=1

Based on the formulas (1.7) and (2.4), we have

| X\ X
5{ (1 - 2m,ﬁ) = (log 27 — lﬁ(Zm))C(l - 2m,ﬁ>

(=) (2m — 1)! S cos nx

1
(27_[)2111 g n2m71 ogn

| X

After a rearrangement, we arrive at (2.10). [

+2

We can find the summation formulas and closed forms of alternating series
by relying on prior results.
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THEOREM 2.6. For —n < x <m and me N, the closed form of the alter-
nating sine series involving logarithmic function is

I’L

! sin nx
nz:; nZ’" ; log n
B (_l)m—lnzm,]
= T omo2 C(Z 2m, ) log 2
+(log 21— p(zm— ) (224 (2 - 2m ) —¢ (2~ 2m. ) )

1 2m—2 ¢/ X 2m—2 ¢/ X
+§<2 C(22m,lﬂ>2 C(22m,§>
—5’(2—2m,1—f)+c’<2—2m,f)>>. (2.11)
T T

Proor. Using representation as follows

}’l—

e sin nx
Z log n

n=1

sin nx . sin 2nx
-2 —— log 2
Z g n ; ) og 2n

sin nx _log 2 osin 2nx sin 2nx
Z 2a—1 - n« 2c< 12 IOg 1,
n=1 n=
where the second row suggests taking 2x instead of x in the corresponding
formulas, then replacing here o« with 2m — 1, according to Theorem 2.3 and

(2.2), after a rearrangement, we arrive at (2.11).

REMARK 2.7. By an immediate check, one ascertains misprints in the entry
25 of [7, p. 748], and, in keeping with the notation, p. 792, it should go like

this
L. (—1)" sin kx L X a
B log ak = 3 x ) log2+ 5 y — log o

k=1
. {x/n, - x/Zn]

+2 10
& x/2n,1 — x/z|’

2

which one obtains for m =1 from (2.11).
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THEOREM 2.8. For —n < x <m and me N, the closed form of the alter-
nating cosine series involving logarithmic function is

zoo:(—l)"f1 cos nx

n 2m

B (—l)m_lﬂ?zm X

= 7(2’% m— (C(l — 2m7E) log 2
+ (log 27 — y/(2m)) (22’"1@(1 - 2m%> - C(l - 2m%>)
- % (22"“5' <1 —2m,1 — 2’;) 4 22m=1y <1 - 2m2’;)

_§/<1_Qm’l_z)—g(l—zmi))). (2.12)

Proor. Similarly, as in the case of the preceding proof, we have

log n

n=1

z:(—l)”_l COS nx

logn
nx

COS nx “. cos 2nx
:Z PP 10gn—2;w 10g2n,

n=1

no 10g n— 20&1 no
n=1

~. cOs nx log 2Ecos 2nx 1 E~cos 2nx
= Z T -l Z ne log 1.
n=1 n=1
Replacing here o with 2m, according to (2.4) and Theorem 2.5, after a rear-

rangement, we arrive at (2.12). [J

Relying on the proofs of the last two theorem, we easily find the
representations

ZSI?Z(EH__I)QX log(2n — 1)
n=1

= sin nx log 2 Gsin 2nx 1 sin 2nx
—Z e log n — 2 Z o _ﬁz " log n, (2.13)

n=1 n=1 n=1

and
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- 2n—1
log(2n — 1
S los(an =)

~. cos nx log 2 & cos 2nx 1 Ecos 2nx
= 1 — - — 1 . 2.14
Z nu Og n 20: ; no: Zv; not Og n ( )

THEOREM 2.9. For 0 < x < m and m € N, the closed form of the sine series
involving logarithmic function over odd positive integers is

= sin(2
10 2n—1
; - 2m - log( )

:% (2 log 25(2 2m, )

+ 2(log 21— y(2m — 1)) (22m-1c(2 - 2m%) - c(z - 2m,%)>
2m—1 ¢/ X 2m—1 ¢/ X
) g(zzm,12n>2 g(zzm,zn>

—C’(Z—Zm,l—%)4—5/(2—2?14,%)). (2.15)

Proor. Using (2.13), replacing o with 2m — 1, we have

=\ sin(2n — 1)x
log(2n — 1
; on— 2m 1 ( )

sin nx | log 2 sin 2nx sin 2nx
- Z n2m—1 22m 1 n2m—-1 22m 1 Z n2m—-1

Applying (2.2) and (2.5), after a rearrangement, we arrive at (2.15). [J

REMARK 2.10. There is a misprint in the entry 26, [7, p. 748], and in
keeping with the notation there on page 7192, for a=1, it should go like
this

1 (m+x)/2n
(log 2——y+logtg 2 210gf[m]>.

It can be obtained from the formula (2.15) for m = 1.

THEOREM 2.11. For 0 < x <7 and me N, the closed form of the cosine
series involving logarithmic function over odd positive integers is



Trigonometric series involving logarithmic function 311

Z 2m og(2n -1

B (71)’”712111 x
_m (2 log 2((1 —2m,;>
+2(log 27 — Y(2m)) (2%(1 - 2m%> - C(l - 2m£>>
2m ! X 2m st X
4 22mg <12m,12ﬂ)2 ¢ <12m,2n)
—§’< —m, 1——) ¢ ( 2m£>> (2.16)

Proor. Using (2.14), replacing « with 2m, we have

icos@n —1)x log(2n — 1)

n=1 (2n - 1)2"1
COS nx log 2 Z~cos 2nx cos 2nx
- Z n2m 22m—1 n2m 22m Z n2m

n=1
Applying (2.4) and (2.10), after a rearrangement, we arrive at (2.16). []

Alternating series related to the series over odd positive integers can be
expressed as a power series involving Dirichlet’s beta function. Their summa-
tion formulas deduced in [9] are

= ) -x & —2k
Z 2s1n1n Z 2]: )x2k+l’
1 n= =0 +1
- )"eos(2n—1)x & rx—?_k) % T T
—= = 2.1
; B 1) kz:; X%, S<x<3, (217)

where f(s) is Dirichlet’s beta function (also known as Catalan’s beta function),
defined by

o0 _1 n
ﬂ(s);(Z(n—i—)l)s’ Res >0,

and it is related to Hurwitz’s zeta function

B 2 (4ni T i (4n ; DR (5<Si) - 5(S§>) (2.18)

n= n=!
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The function f is analytical functions for Res > 0, but by means of their
functional equations

Bl —s) = (%) sin 2 (s)B(s) (2.19)

f is extended to the whole complex plane. By virtue of Euler’s reflection
formula (2.9), the identity (2.19) can be rewritten as follows

7\’

s—1 s
B(s) = (5) B =9)I(1=s) cos =, (2.20)

whence we find f(—2n+1)=0, neN.

By placing o =2m in the first and « =2m — 1 in the second one, the
following closed-form formulas are easily obtained because of vanishing
Dirichlet’s beta function for negative odd integers

(=) sin@n— Dx = (=D p2m — 2k —
Z( ! _ Z )x2k+17
n=1 2n—1)™ k=0 Zk +1)!
(2.21)
- )" teos(2n—1)x & 2m 2k—1) ok
Z Zm 1 Z X
n=1 k=0

However, apart from these, there are other representations of theirs that we
shall use in the sequel.

LEmMMA 2.12.  Both series in (2.21) can be represented over values of the
Hurwitz zeta function.

Proor. We replace a with }—4 and 3 — 5 successively in (1.9), then
making subtraction, obtain

1 x 3 X
(1-s-3) (13-

_20(s iCOS@S — "+ nx) — cos(3s — 4% + nx)
— — .

We transform the right-hand side further by applying the cosine sum-to-product
identity

1 x 300x\ _Ar(s) & (—1)""" sin 2 sin(% + nx)
C(I_S’Z_E)_CQ_S’Z_E)_ ) 2= p -
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Since for even running indices terms are zero, we pick only odd running
indices. Thus, we have

1 x 3 x
(1-sgm5)<(1-25-5)

I(s) & (—1)" " sin(Z+ (21— 1)x)
2n)* nz:; (2n—1)° ' (222)

Hence, by choosing s = 2m, we have

“ (=1)""sin(2n — 1)x
2 (2n — 1)

M <£<1 2m,i2);) C(l 2m,32);>>, (2.23)

or by setting s =2m — 1, we get

n=1

n

= Y cos(2n — 1)x
Z 2m 1

n=1
_ (—{4)(”;}; (37;))2!'"1 (g <2 ~om g 2’;) - g(z ~om - 2’;) ) (2.24)

whereby we complete the proof. []

Except for (2.21), there exist other types of closed-form formulas for the
trigonometric series in (2.17).

THEOREM 2.13.  The closed form of the second series in (2.17) ensuing by
setting o =2m is

- )" eos2n—1)x  (~1)"'2rn)* '/, 1 x
; ) T 20m—1)! (C (1 _2'”’1_%>
, 3 |
C(l m, 2>+C( 2m,4+2>

_g( _gmi+2 )) (2.25)

Proor. Upon placing o =2m in the second right-hand side series of
(2.17), and using (2.20) for s =0, i.e.

pO)=2 sin 2 r(1)(1) =
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the first step on a path to deduce (2.25) consists of splitting that series in three
as follows

I () pem =2

1)
7 R A 6]

(2.26)

By shifting the summation index, k = m + j, and making use of (2.20) again,
but for s = —2j, then applying the connection of the Gamma function Poch-
hammer’s symbol (1.11), after reverting to the letter k instead of j, the last
series becomes

0 1 k 2 — 2 2 1 2% 2k+1
( ) ﬁ( m k)x2k: m 2m 12 k + ( ) )
Pt (2k)! 2k +1 v
Relying on (2.18), we further change the right-hand side series to
- 12 L2k +1,8) = ((2k+1,3) [ x ! (2.27)
2k +1),, 2n ’ '

That means we are dealing with two series over the Hurwitz zeta functions.
To obtain the first one we set n =2m — 1, t = 3~ and a = § in the formula (1.10)
of [4, p. 419], considering, apart from ¢, the same formula for —¢ as well, and
make addition of these cases. We repeat this procedure for the second series
but with @ =3 instead.

Afterwards, we subtract these equalities. As a result, on the left-hand
side, we obtain (2.27). The right-hand side consists of three parts. In the first
one, four derivatives of the Hurwitz zeta function are grouped

(_I)M71(2n)2n171 , B 1 1 i
2am -1y \“ (T2 2e) (1 2mg o
, 3 x 3
¢ (1 2m,4 o (1 -2m, 4+2
in the sequel, there are two sums

(—1)m(2ﬂ)2’7171 m—1 x 2k m— 1
W; <27Z'> ( 2%k >(H2m—2 - HZm—Zk—l)ﬁ(Zk —2m =+ 1)

(—1)m(2n’)2m71 m—1 X 2k m— 1 o ,
e ) (T )R-y, e
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and finally

() o) 2 -t

The last equality, we obtained by setting n =1 in the relation

sl (571 () v (), oo

which in turn we get form (2.18) by relying on the expression of the nth deriva-
tive of the y function [2]

Y (a) = (=1)""'nl(n+1,a).

For k=1,...,m—1 the expressions 2k —2m + 1 present negative odd
integers, which means f(2k —2m+1) =0, so the first sum in (2.28) equals
zero.

Differentiating the relation (2.20) at z =2k —2m+1, for 1 <k <m—1,
yields

- 2k—2m+1
B2k —2m+1)=— <§> (D) ™ (2m — 2k)B(2m — 2k),

whereby the second sum in (2.28) becomes

= /32 2k
z; (m )_

So, summing up these three parts, taking account of (2.26) gives rise to (2.25).
O

THEOREM 2.14. If o is replaced with 2m — 1 in the first formula of (2.17),
the following closed form is obtained

n

i "sin(2n - D)x  (=1)"'(2n)*" (22 1 x
- 2,1,1 w1 202m—2)! "4 o
X , 1 x
¢ (2 2m,— 27z> 4 (2 2m,4+2n>

3
4
+¢ (2 2mf1 2")). (2.29)

PrROOF. Acting in the same manner as in deducing the formula (2.25), we
come to the formula (2.29). [
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THEOREM 2.15. The closed-form formula for the alternating sine series in-
volving logarithmic function over positive odd integers is

< (—1)""sin(2n — 1)x
; (2n—1)*"

_(_l)m(zn)Zm ) 1 N / ; N
/ AW 3
éV( 2m’4+2>+5< 2m,4+2)

+2(x//(2m)—10g2n)<4(1 2’”411 2x>

—C(l—2m,i—2);>>). (230)

Proor. Differentiating (2.22) with respect to s, then taking s = 2m, we
obtain

<< mia) el

I1—

log(2n — 1)

sin(2n — 1)x

i (2n —1)*"

log(2n — 1)

%© n—1 -
+ (¥ (2m) — log 27) Z (=1 (2n51n§;1m_ 1)x
n=1 —

)

whence we have

i (=1)"'sin(2n — 1)x

log(2n — 1
2 oy g = 1)

I\JIPI

zoo: )y cos(2n —1)x

) 2m

© n—1 .
+ (Y (2m) — log 2n) Z (-1 5 smi?;qm_ l)x.
n=1 n—

Substituting (2.25) and (2.23) for the first and second right-hand series, respec-
tively, after rearrangement, we obtain (2.30). []
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THEOREM 2.16. The closed-form formula for the alternating cosine series
involving logarithmic function over positive odd integers is

i( D™ ( — Dx log(2n — 1)
n=1 ( )

( )m 1( )2m1 . 1 X
T 82m-2)! (C (2 mamg - E)
c(z - 2>+c<2 2m,i+2) c’<zzm,i+2’;)

- 2(tog 20— yi2m - 1) (¢(2-2m 3 - 1)

((2 2m,i 2x>>) (2.31)

Proor. Differentiating (2.22) with respect to s, then taking s=2m — 1,
we obtain

R )<l

11— i’l—

T sin(2n — )x & cos(2n — 1)x
EZ 2}’1 _ 1 2m—1 Z 2m 1 10g(2n - 1)

n=1

o0 n—1
+(W2m—1)—log2m) <_1)(2n Cols)(ffj l)x,
n=1 -

whence we have

0 n 1
cos(2n —1
Z (2m ; )X log(2n — 1)

n=1
o0 nl
T sm(2n—1)
52 2ml
LD @ )2m1 2o i\l am o X
42m —1)! 4 2nm 4 2m
)"~ cos(2n — 1)x
— (log 2m — y(2m — 1)) Z Ex )X
n=1

Substituting (2.29) and (2.24) for the first and second right-hand series, respec-
tively, after rearrangement, we obtain (2.31). []
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