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Nonunital decompositions of the matrix algebra of order three
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Abstract. All decompositions of M3ðCÞ into a direct vector-space sum of two sub-

algebras such that none of the subalgebras contains the identity matrix are classified.

Thus, the classification of all decompositions of M3ðCÞ into a direct vector-space sum of

two subalgebras as well as description of Rota–Baxter operators of nonzero weight on

M3ðCÞ is finished.

1. Introduction

Let R be a ring, suppose that R ¼ R1 þ R2, where R1, R2 are subrings (not

necessarily ideals) of R. In this situation, we say that R decomposes into a

sum of R1, R2. If R1 \ R2 ¼ ð0Þ, then we call such decomposition as a direct

one. The study of decompositions of associative rings and algebras started in

1963, when O. H. Kegel proved [10] that an associative algebra decomposed

into a sum of two nilpotent subalgebras is itself nilpotent.

In 1995, K. I. Beidar and A. V. Mikhalev asked [3], if a sum of two PI-

algebras is again a PI-algebra. In 2017, this problem was positively solved by

M. Kȩpczyk [11]. The famous Köthe problem (If a ring R has no nonzero nil

ideals, does it follow that R has no nonzero nil one-sided ideals?) is equivalent

to a problem concerned decompositions [4]. In [12], all decompositions of 2-

and 3-dimensional associative algebras were described.

It is natural to study decompositions involved matrix algebras. In 1999,

Y. A. Bahturin and O. H. Kegel [1] described all algebras decomposed as a

sum of two matrix algebras (it is Problem 3 from [12] posted twenty years later

in 2019).

In [5], all direct decompositions of M2ðCÞ were classified. The main goal

of the current work is to finish a classification of direct decompositions of

M3ðCÞ. In [8], all direct decompositions of M3ðCÞ such that one of the sub-

algebras contains the identity matrix were classified (71 cases, some of them
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involve one or two parameters). Thus, it remains to describe direct decom-

positions of M3ðCÞ such that none of the two subalgebras contains the identity

matrix (we call them as nonunital ones).

One of the motivations and applications of the given problem is an area

of Rota–Baxter operators. Given an algebra A and a scalar l A F , where F is

a ground field, a linear operator R : A ! A is called a Rota–Baxter operator of

weight l if the identity

RðxÞRðyÞ ¼ RðRðxÞyþ xRðyÞ þ lxyÞ

holds for all x; y A A.

Appeared in 1960 [2], such operators may be considered as an algebraic

analogue of integral operator. They have di¤erent connections to Yang–

Baxter equation, Loday algebras, double Lie algebras [6, 9]. Given an algebra

A and its direct decomposition A ¼ A1 lA2, we get the canonical example

of Rota–Baxter operator of weight �1 as the projection on one of Aj, e.g.,

Rðx1 þ x2Þ ¼ x1, here xi A Ai, i ¼ 1; 2. In some cases like when A is the

Grassmann algebra or the simple Jordan superalgebra K3, there are no other

Rota–Baxter operators of nonzero weight except such projections.

In [5], all non-projective Rota–Baxter operators of nonzero weight on

M3ðCÞ were classified. Therefore, joint with the articles [5, 8], we complete the

description of all Rota–Baxter operators of nonzero weight on M3ðCÞ.
We split the problem of classification of a nonunital decomposition

M3ðCÞ ¼ SlM, where dim M > dim S, into the following cases: dim M ¼ 6

or dim M ¼ 5. In the first case, there is the only possibility for M [7]: it is

the subalgebra of matrices with zero first column. In the second one, due to

[8], we have either M ¼ Spanfe11; e12; e13; e22; e23g or M ¼ Spanfe11; e12; e13; e23;
e33g. We actively apply automorphisms of M3ðCÞ, which preserve the sub-

algebra M, it helps us to avoid computational di‰culties.

The main results of the work are Theorems 2 and 3. In Theorem 2, we

get three decompositions, when dim M ¼ 6. In Theorem 3, we obtain nine

more decompositions, here dim M ¼ 5. Note that all twelve cases do not

involve parameters. Therefore, due to [5, 8], we have 83 nontrivial decom-

positions of M3ðCÞ and 119 nontrivial Rota–Baxter operators on M3ðCÞ.
In what follows, we will apply an automorphism Y12 of M3ðCÞ, acting

as follows, Y12ðX Þ ¼ T�1XT for T ¼ e12 þ e21 þ e33. Analogously, we define

Y13;Y23 A AutðM3ðCÞÞ.

2. (6,3)-decompositions

Let M be a six-dimensional nonunital subalgebra of M3ðCÞ. Then M

consists only of degenerate matrices, and then up to transpose M is isomorphic
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to the subalgebra having all zero elements in the first column [13]. Thus, we

fix six-dimensional subalgebra M ¼ Spanfe12; e13; e22; e23; e32; e33g.

Lemma 1 ([8]). Let j be an automorphism of M3ðCÞ preserving the sub-

algebra M ¼ Spanfe12; e13; e22; e23; e32; e33g. Then j acts as follows,

e11 !
1 b g

0 0 0

0 0 0

0
B@

1
CA; e12 !

0 k l

0 0 0

0 0 0

0
B@

1
CA; e13 !

0 m n

0 0 0

0 0 0

0
B@

1
CA;

e22 !
1

D

0 kðgm� bnÞ lðgm� bnÞ
0 kn ln

0 �km �lm

0
B@

1
CA;

e23 !
1

D

0 mðgm� bnÞ nðgm� bnÞ
0 mn n2

0 �m2 �mn

0
B@

1
CA;

e32 !
1

D

0 kðbl� gkÞ lðbl� gkÞ
0 �kl �l2

0 k2 kl

0
B@

1
CA; ð1Þ

e33 !
1

D

0 mðbl� gkÞ nðbl� gkÞ
0 �lm �ln

0 km kn

0
B@

1
CA;

e21 !
1

D

gm� bn bðgm� bnÞ gðgm� bnÞ
n bn gn

�m �bm �gm

0
B@

1
CA;

e31 !
1

D

bl� gk bðbl� gkÞ gðbl� gkÞ
�l �bl �gl

k bk gk

0
B@

1
CA;

where D ¼ kn� lm0 0.

Theorem 2. Every direct decomposition of M3ðCÞ with two subalgebras

of the dimensions 3 and 6 not containing the identity matrix, up to transpose and

up to action of AutðM3ðCÞÞ is isomorphic to only one of the following cases:

(A1) Spanfe11; e21; e31gl Spanfe12; e13; e22; e23; e32; e33g,
(A2) Spanfe11 þ e22; e21; e31gl Spanfe12; e13; e22; e23; e32; e33g,
(A3) Spanfe11 þ e22; e21 þ e22; e31gl Spanfe12; e13; e22; e23; e32; e33g.

Proof. We study a decomposition M3ðCÞ ¼ SlM, and S has a

basis
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v1 ¼
0 a b

1 c d

0 e f

0
B@

1
CA; v2 ¼

0 r s

0 t u

1 x y

0
B@

1
CA; v3 ¼

1 k l

0 m n

0 p q

0
B@

1
CA:

Note that v23 ¼ v3, since S is a subalgebra. Hence, its submatrix H ¼ m n

p q

� �

is idempotent. We may conjugate H with appropriate nondegenerate matrix T

such that J ¼ T�1HT is in the Jordan form. We have the following variants

for J A M2ðCÞ:
1) J ¼ 0,

2) J ¼ 1 0

0 0

� �
,

3) J ¼ 0 0

0 1

� �
,

4) J ¼ E.

Let us conjugate v3 with the block-diagonal matrix
1 0

0 T

� �
, such conju-

gation surely preserves M. In the case 4) involving the equality v23 ¼ v3, we

get v3 ¼ E, a contradiction.

The case 3) is conjugate to 2) under Y23. Thus, it remains to consider

cases 1) and 2).

Case 1: J ¼ 0. Hence, v3 ¼ e11 þ ke12 þ le13. Note that the automor-

phism j defined by (1) with b ¼ k and g ¼ l maps e11 to v3. So, j�1 maps

v3 to e11, and we may assume that v3 ¼ e11. Since v1e11; v2e11 A S, we get the

decomposition (A1).

Case 2: J ¼ 1 0

0 0

� �
. The condition v23 ¼ v3 implies that v3 ¼

1 0 l

0 1 0

0 0 0

0
B@

1
CA. Again, we apply j defined by (1) with b ¼ m ¼ l ¼ 0 and g ¼ l,

then jðe11 þ e22Þ ¼ v3. We may assume that v3 ¼ e11 þ e22. Since viv3; v3vi A
S for i ¼ 1; 2, we conclude that

v1 ¼
0 a 0

1 c 0

0 0 0

0
B@

1
CA; v2 ¼

0 0 0

0 0 0

1 x 0

0
B@

1
CA:

Taking j defined by (1) with l ¼ m ¼ g ¼ 0, n ¼ 1, and b ¼ x, then

jðv3Þ ¼ v3 and jðe31Þ ¼ v2. Therefore, we may assume that v2 ¼ e31.

From v2v1 A S, we get a ¼ 0. If c ¼ 0, then it is exactly the decomposition

(A2). Otherwise, consider j with l ¼ m ¼ b ¼ g ¼ 0, k ¼ c, n ¼ 1, then

jðv2Þ ¼ v2, jðv3Þ ¼ v3, and jðe21 þ e22Þ ¼ ð1=cÞv1. Hence, we arrive at the

decomposition (A3).
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Decompositions (A1) and (A2) as well as (A1) and (A3) lie in di¤erent

orbits under action (anti)automorphisms of M3ðCÞ preserving M, since the

3-dimensional subalgebra from (A2) and (A3) but not from (A1) contains an

idempotent of rank 2. Finally, decompositions (A2) and (A3) lie in di¤erent

orbits too. Indeed, the dimensions of the semisimple parts of the subalgebra

S from (A2) and (A3) do not equal.

3. (5,4)-decompositions

Let M be a nonunital 5-dimensional algebra, by [8, Lemma 5], we

may assume up to transpose and action of AutðM3ðCÞÞ that either M ¼
Spanfe11; e12; e13; e22; e23g or M ¼ Spanfe11; e12; e13; e23; e33g. Then the group

AutðM3ðCÞÞ preserving M coincides with the group of automorphisms of

AutðM3ðCÞÞ preserving the subalgebra of upper-triangular matrices. Thus, an

automorphism c A AutðM3ðCÞÞ preserving M has the form (1) considered with

m ¼ 0:

e11 !
1 b g

0 0 0

0 0 0

0
B@

1
CA; e12 !

0 d e

0 0 0

0 0 0

0
B@

1
CA; e13 !

0 0 a

0 0 0

0 0 0

0
B@

1
CA;

e21 !
1

d

�b �b2 �bg

1 b g

0 0 0

0
B@

1
CA; e22 !

0 �b �be=d

0 1 e=d

0 0 0

0
B@

1
CA; ð2Þ

e23 !
1

d

0 0 �ab

0 0 a

0 0 0

0
B@

1
CA; e31 !

1

ad

be� gd bðbe� gdÞ gðbe� gdÞ
�e �be �ge

d bd gd

0
B@

1
CA;

e32 !
1

a

0 be� gd eðbe� gdÞ=d
0 �e �e2=d

0 d e

0
B@

1
CA; e33 !

0 0 be=d� g

0 0 �e=d

0 0 1

0
B@

1
CA;

where a; d0 0.

Theorem 3. Every direct decomposition of M3ðCÞ with two subalgebras

of the dimensions 4 and 5 not containing the identity matrix, up to transpose and

up to action of AutðM3ðCÞÞ is isomorphic to only one of the following cases:

(B1) Spanfe21; e31; e32; e33gl Spanfe11; e12; e13; e22; e23g,
(B2) Spanfe11 þ e21; e31; e32; e33gl Spanfe11; e12; e13; e22; e23g,
(B3) Spanfe21; e31; e32; e22 þ e33gl Spanfe11; e12; e13; e22; e23g,
(B4) Spanfe21; e31; e32 þ e23; e22 þ e33gl Spanfe11; e12; e13; e22; e23g,
(B5) Spanfe21; e31; e32; e11 þ e33gl Spanfe11; e12; e13; e22; e23g,
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(B6) Spanfe21; e31; e32; e22gl Spanfe11; e12; e13; e23; e33g,
(B7) Spanfe21; e11 þ e31; e12 þ e32; e22gl Spanfe11; e12; e13; e23; e33g,
(B8) Spanfe21; e31; e32; e22 þ e33gl Spanfe11; e12; e13; e23; e33g,
(B9) Spanfe21; e31; e32 þ e23; e22 þ e33gl Spanfe11; e12; e13; e23; e33g.

Proof. Let us start with the case M ¼ Spanfe11; e12; e13; e22; e23g. Then

the complement subalgebra S contains a basis

v1 ¼
a b c

1 d e

0 0 0

0
B@

1
CA; v2 ¼

f g h

0 i j

1 0 0

0
B@

1
CA;

v3 ¼
k l m

0 n p

0 1 0

0
B@

1
CA; v4 ¼

x y z

0 t u

0 0 1

0
B@

1
CA:

As in the proof of Theorem 2, we have v24 ¼ v4. It is known [14] that an

upper-triangular matrix from M3ðCÞ is conjugate to its Jordan form with the

help of some upper-triangular matrix, i.e. an automorphism preserving M.

Thus, we have the following cases for the Jordan form J of v4:

1) J ¼ e33,

2) J ¼ e22 þ e33,

3) J ¼ e11 þ e33.

Case 1: v4 ¼ e33. From v4v2 ¼ v2 and v4v3 ¼ v3, we conclude that

v2 ¼ e31 and v3 ¼ e32. Also, v1v4 ¼ 0, hence, c ¼ e ¼ 0. Since v21 ¼ ðaþ dÞv1,

we get v1 ¼
a ad 0

1 d 0

0 0 0

0
B@

1
CA. If aþ d ¼ 0, then we apply c defined by (2) with

parameters g ¼ e ¼ 0, b ¼ d. So, c�1 gives us the decomposition (B1). If

aþ d0 0, then consider c defined by (2) with parameters g ¼ e ¼ 0, b ¼ d and

d ¼ aþ d0 0. It is easy to check that cðe11 þ e21Þ ¼ v1, however, Lðv2; v3; v4Þ
is c-invariant. It is the decomposition (B2).

Case 2: v4 ¼ e22 þ e33. From the equalities

v4v1 ¼ v1; v1v4 ¼ 0; v4v2 ¼ v2; v2v4 ¼ 0; v4v3 ¼ v3v4 ¼ v3;

we get v1 ¼ e21, v2 ¼ e31 and v4 ¼
0 0 0

0 n p

0 1 0

0
B@

1
CA. If pþ n2=4 ¼ 0, we take c

defined by (2) with b ¼ g ¼ 0, e=d ¼ �n=2 and get the decomposition (B3).

Otherwise, we take c with b ¼ g ¼ 0, e ¼ �n=2, d ¼ 1, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ n2=4

p
, and get

the decomposition (B4).
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Case 3: v4 ¼ e11 þ e33. From the equalities

v4v1 ¼ 0; v1v4 ¼ v1; v4v2 ¼ v2v4 ¼ v2; v4v3 ¼ v3; v3v4 ¼ 0;

we get

v1 ¼
0 0 0

1 0 e

0 0 0

0
B@

1
CA; v2 ¼

f 0 h

0 0 0

1 0 0

0
B@

1
CA; v3 ¼

0 l 0

0 0 0

0 1 0

0
B@

1
CA:

Further, the relations v1v3 ¼ 0 and v3v1 ¼ v2 þ ev4 imply l þ e ¼ eþ f � l ¼
h� el ¼ 0. Thus, l ¼ �e, f ¼ �2e, h ¼ �e2. We apply c defined by (2) with

b ¼ e ¼ 0 and g ¼ e, and get the decomposition (B5) with the help of c�1.

Now, we consider the case M ¼ Spanfe11; e12; e13; e23; e33g. The comple-

ment subalgebra S contains a basis

v1 ¼
a b c

1 0 d

0 0 e

0
B@

1
CA; v2 ¼

f g h

0 0 i

1 0 j

0
B@

1
CA;

v3 ¼
k l m

0 0 p

0 1 n

0
B@

1
CA; v4 ¼

x y z

0 1 u

0 0 t

0
B@

1
CA:

We have v24 ¼ v4, and there are the following variants of the Jordan form

J of v4:

1 0) J ¼ e22,

2 0) J ¼ e22 þ e33,

3 0) J ¼ e11 þ e22.

The case 3 0) is conjugate to the second one under Y13.

Case 1 0: v4 ¼ e22. From v2v4 ¼ v4v2 ¼ 0, v4v1 ¼ v1 and v3v4 ¼ v3 we get

v1 ¼
0 0 0

1 0 d

0 0 0

0
B@

1
CA; v2 ¼

f 0 h

0 0 0

1 0 j

0
B@

1
CA; v3 ¼

0 l 0

0 0 0

0 1 0

0
B@

1
CA:

By v3v1 ¼ v2, we express v2 ¼
l 0 dl

0 0 0

1 0 d

0
B@

1
CA. If d þ l ¼ 0, then c (2) with

parameters b ¼ e ¼ 0, g ¼ d, a ¼ d ¼ 1 acts as follows, cðe21Þ ¼ v1, cðe31Þ ¼ v2,

cðe32Þ ¼ v3, it is (B6).

If d þ l0 0, then c defined by (2) with parameters b ¼ e ¼ 0, g ¼ d, a ¼
d þ l, d ¼ 1 acts as follows, cðe21Þ ¼ v1, cðe12 þ e32Þ ¼ v2=ðd þ lÞ, cðe11 þ e31Þ
¼ v3=ðd þ lÞ, we get (B7) with the help of c�1.
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Case 2 0: v4 ¼ e22 þ e33. From the equations v1v4 ¼ v2v4 ¼ 0, v3v4 ¼ v3,

v4vi ¼ vi, i ¼ 1; 2; 3, we derive that v1 ¼ e21, v2 ¼ e31, and v3 ¼
0 0 0

0 0 p

0 1 n

0
B@

1
CA.

Analogously to the case 2), we get either decomposition (B8), when pþ n2=4 ¼
0, or (B9), otherwise.

Finally, we show that all cases (B1)–(B9) lie in di¤erent orbits under

action automorphisms or antiautomorphisms of M3ðCÞ. The group of

decompositions (B1)–(B5) and the group of decompositions (B6)–(B9) have

non-isomorphic biggest subalgebra M, thus, it is enough to show that decom-

positions lying in the same group are from di¤erent orbits. Inside the first

group, decompositions (B2) and (B4) but not others have 2-dimensional radicals

of corresponding subalgebras S. Further, the radical of S from (B4) but

not from (B2) lies in one-sided annihilator of the whole S. The rank of the

idempotent lying in S from (B1) equals 1, and the same parameter for (B3) and

(B5) equals 2. Also, there exists an idempotent in S from (B5), which acts as

unit on the square of its radical, and there are no such idempotents in S from

the decomposition (B3).

For the second group, we have SGM2ðCÞ only for (B7). The semisimple

part of S is 2-dimensional only for (B9). Finally, the ranks of the idempotents

lying in S from (B6) and (B8) are not equal.
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