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Abstract. A bridge position of a knot is said to be perturbed if there exists a

cancelling pair of bridge disks. Motivated by the examples of knots admitting un-

perturbed, strongly irreducible, non-minimal bridge positions due to Jang-Kobayashi-

Ozawa-Takao, we derive examples of unperturbed, weakly reducible, non-minimal

bridge positions. Also, a bridge version of Gordon’s Conjecture is proposed: the con-

nected sum of unperturbed bridge positions is unperturbed.

1. Introduction

Suppose that S3 is decomposed into two 3-balls by an embedded sphere S.

A knot K is in n-bridge position with respect to S if K intersects each of the

3-balls in a collection of n q-parallel arcs. The original concept of bridge

position, the bridge number, was first introduced by Schubert in 1954 [11].

Thereafter it is generalized to the notion of bridge splitting for (a 3-manifold,

link) pair.

For any n-bridge position, we can always give a perturbation to get a

perturbed ðnþ 1Þ-bridge position. Conversely, from a perturbed bridge posi-

tion we obtain a lower index bridge position. A bridge position is unperturbed

if it is not perturbed. It is a fundamental problem to detect whether a given

bridge position is unperturbed or not. The unknot has a unique 1-bridge

position and every n-bridge position ðn > 1Þ of the unknot is perturbed [6].

Non-minimal bridge positions of 2-bridge knots [7], torus knots [8] are per-

turbed. Zupan showed that if K is an mp-small knot and every non-minimal

bridge position of K is perturbed, then every non-minimal bridge position of

a ðp; qÞ-cable of K is also perturbed [14]. Concerning 2-cables, the author

showed that if every non-minimal bridge position of a knot K is perturbed,

then every non-minimal bridge position of a ð2; 2qÞ-cable link of K is per-

turbed, without the assumption of mp-smallness of K [4].

On the other hand, there exist knots admitting unperturbed non-minimal

bridge positions [3], [9]. All the examples in [3] and [9] are strongly irreducible
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bridge positions. Weakly reducible bridge positions are the opposites of more

complicated strongly irreducible ones, so simpler. For weakly reducible bridge

positions, one can ask whether unperturbed non-minimal bridge positions can

be attained. We show that there exist unperturbed, weakly reducible, non-

minimal bridge positions by taking the connected sum operation on the knots

due to Jang et al.

Theorem 1. There exist unperturbed, weakly reducible, non-minimal bridge

positions.

The unperturbedness is shown by the method of 2-fold branched covering

and Gordon’s Conjecture. Can we prove it directly without taking a 2-fold

branched covering? This raises the following conjecture.

Conjecture 1 (A bridge version of Gordon’s Conjecture). The connected

sum of two unperturbed bridge positions is unperturbed.

The presented examples of knots for Theorem 1 are composite knots. We

have the following question.

Question 1. Does there exist a prime knot admitting an unperturbed,

weakly reducible, non-minimal bridge position?

2. Bridge positions

Let B be a 3-ball. A trivial tangle is a collection of disjoint properly

embedded arcs b1; . . . ; bn in B such that each bi cobounds a disk Di with an arc

in qB satisfying Di \ bj ¼ q for all j0 i. Suppose that a 2-sphere S decom-

poses S3 into two 3-balls B and C. Let K be a knot. If B \ K and C \ K are

trivial tangles, each consisting of n arcs, then we say that K is in n-bridge

position with respect to S. Each arc of the trivial tangles B \ K and C \ K

is called a bridge. A bridge bi of the trivial tangle, say B \ K ¼ fb1; . . . ; bng,
cobounds a bridge disk Di with an arc in S such that Di \ bj ¼ q for all j0 i

by definition. By a standard cut-and-paste argument, Di’s ði ¼ 1; . . . ; nÞ can be

taken to be pairwise disjoint. A collection fD1; . . . ;Dng of n disjoint bridge

disks is called a complete bridge disk system. If K is in bridge position, we

have a decomposition of the pair ðS3;KÞ into ðB;B \ KÞ and ðC;C \ KÞ. But

when it is clear from the context, we will simply use the notation B [S C to

indicate the bridge position.

For an n-bridge position B [S C, we can perturb a small neighborhood of

a point p of K \ S so that it becomes an ðnþ 1Þ-bridge position having bridge

disks D � B and E � C with D \ E ¼ p. Such an operation is called a per-

turbation, and a bridge position isotopic to one obtained by a perturbation is
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said to be perturbed. Each of D and E is a cancelling disk and ðD;EÞ is a

cancelling pair. Conversely, a perturbation can be reversed to give a lower

index bridge position. A bridge position is unperturbed if it is not perturbed.

A disk D properly embedded in B or C with D \ K ¼ q is a compressing

disk if qD does not bound a disk in S � K . A bridge position B [S C is

weakly reducible if there exist compressing disks D � B and E � C such that

D \ E ¼ q. Otherwise, it is strongly irreducible. It is easy to see that if an

n-bridge position ðnb 3Þ is perturbed, then it is weakly reducible. Note that

a 2-bridge position of the unknot is perturbed and strongly irreducible.

The bridge number bðKÞ of a knot K is the minimum of

fn jK admits an n-bridge positiong:

For a connected sum K1aK2 of two knots K1 and K2, bðK1aK2Þ is

bðK1Þ þ bðK2Þ � 1 [11], [12]. For a ðp; qÞ-torus knot Kp;q, bðKp;qÞ ¼
minfjpj; jqjg [11], [13].

3. Heegaard splittings

In this section, we briefly review basic notions and facts about Heegaard

splittings. Connections between Heegaard splittings and bridge positions, via

2-fold branched coverings, will be discussed in the subsequent sections.

For a closed 3-manifold M, a Heegaard splitting V [F W is a decompo-

sition of M into two handlebodies V and W of the same genus. The com-

mon boundary F of V and W is called the Heegaard surface of V [F W .

A Heegaard splitting V [F W is stabilized if there exist disks D � V and

E � W such that jD \ Ej ¼ 1, and ðD;EÞ is called a cancelling pair. Other-

wise, it is unstabilized. If there exist compressing disks D � V and E � W

such that qD ¼ qE (D \ E ¼ q respectively), then the Heegaard splitting is

said to be reducible (weakly reducible respectively). A Heegaard splitting

is irreducible (strongly irreducible respectively) if it is not reducible (weakly

reducible respectively). It is immediate that a reducible Heegaard splitting is

weakly reducible, by slightly pushing one of D and E with qD ¼ qE to be apart

from the other.

Suppose that V [F W is stabilized with a cancelling pair ðD;EÞ and the

genus of F is at least two. Then we can see that V [F W is reducible, hence

weakly reducible, by band summing two copies of D along qE and band

summing two copies of E along qD. As a contrapositive, we have the

following.

Proposition 1. If a Heegaard splitting of genus gb 2 is irreducible, then

it is unstabilized.
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4. 2-Fold branched coverings

Let B [S C be an n-bridge position of a knot K . Let fD1; . . . ;Dng be

a complete bridge disk system for B \ K . Cut B along
Sn

i¼1 Di. Let B 0 be

the resulting 3-ball and let D 0
i;þ and D 0

i;� denote the two scars of Di on qB 0.

Let B 00 be a copy of B 0 and similarly let D 00
i;þ and D 00

i;� denote the two scars

of Di on qB 00. Glue B 0 and B 00 along D 0
i;G and D 00

i;H for each i. The re-

sulting manifold is a genus n� 1 handlebody V . There is an involution of V

fixing B \ K such that the quotient map induced by the involution is a 2-fold

covering p1 : V ! B branched along B \ K. Similarly, we can take a 2-fold

covering p2 : W ! C branched along C \ K , where W is a genus n� 1

handlebody. Hence we have a 2-fold branched covering map p from a genus

n� 1 Heegaard splitting V [F W to B [S C, branched along the knot K in

n-bridge position.

Suppose B [S C is perturbed, so it admits a cancelling pair ðD;EÞ. The

preimages p�1ðDÞ and p�1ðEÞ are disks in V and W respectively that intersect

at one point, so V [F W is stabilized. As a contrapositive, we have the

following.

Proposition 2. Suppose that p : V [F W ! B [S C is the 2-fold covering

branched along a knot K in bridge position with respect to S. If V [F W is

unstabilized, then B [S C is unperturbed.

The converse of Proposition 2 does not hold. There is a relevant dis-

cussion in [2, Section 1]. Let Kp;q be a ðp; qÞ-torus knot with 0 < p < q. A

p-bridge position B [S C of Kp;q is unperturbed since bðKp;qÞ ¼ p. A 2-fold

covering of S3 branched along Kp;q is a small Seifert fibered manifold M. It

is known that an irreducible Heegaard splitting of a Seifert fibered manifold

is either vertical or horizontal [5]. The genus of a vertical splitting of M is

at most two. The genus of a horizontal splitting is always an even number.

Refer to [5] for more details. The 2-fold branched covering V [F W of B [S C

is of genus p� 1. So for example, if ðp; qÞ ¼ ð4; 5Þ, then V [F W is a

reducible Heegaard splitting of M. Since M is an irreducible manifold,

V [F W is stabilized. Therefore, if ðp; qÞ ¼ ð4; 5Þ, then B [S C is unperturbed

and V [F W is stabilized.

5. Connected sums

Let B1 [S1
C1 and B2 [S2

C2 be bridge positions of knots K1 and K2,

respectively. Let pi : Vi [Fi
Wi ! Bi [Si

Ci ði ¼ 1; 2Þ be the 2-fold branched

coverings explained in Section 4. See Figure 1. The connected sum of

B1 [S1
C1 and B2 [S2

C2 is defined as follows. Take a small open ball neigh-
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borhood Ni at a point of Ki \ Si. Glue B1 �N1 and B2 �N2 along B1 \ qN1

and B2 \ qN2 so that K1 \ ðB1 \ qN1Þ is identified with K2 \ ðB2 \ qN2Þ.
Similarly, glue C1 �N1 and C2 �N2 along C1 \ qN1 and C2 \ qN2 so that

K1 \ ðC1 \ qN1Þ is identified with K2 \ ðC2 \ qN2Þ. The result is a bridge

position ðB1\B2Þ [S1aS2
ðC1\C2Þ of K1aK2.

(1) ðB1 [S1
C1ÞaðB2 [S2

C2Þ ¼ ðB1\B2Þ [S1aS2
ðC1\C2Þ:

Now we consider the connected sum of M1 ¼ V1 [F1
W1 and M2 ¼

V2 [F2
W2. Since we want the connected sum to be compatible with the

branched covering map, take p�1
1 ðN1Þ and p�1

2 ðN2Þ, which are open

3-balls. Glue V1 � p�1
1 ðN1Þ and V2 � p�1

2 ðN2Þ along V1 \ qðp�1
1 ðN1ÞÞ and

V2 \ qðp�1
2 ðN2ÞÞ. Similarly, glue W1 � p�1

1 ðN1Þ and W2 � p�1
2 ðN2Þ along

W1 \ qðp�1
1 ðN1ÞÞ and W2 \ qðp�1

2 ðN2ÞÞ. The result is a Heegaard splitting

ðV1\V2Þ [F1aF2
ðW1\W2Þ of M1aM2.

(2) ðV1 [F1
W1ÞaðV2 [F2

W2Þ ¼ ðV1\V2Þ [F1aF2
ðW1\W2Þ:

Since Vi � p�1
i ðNiÞ ði ¼ 1; 2Þ is a 2-fold branched covering of Bi �Ni,

the handlebody V1\V2 is a 2-fold branched covering of B1\B2. Similarly,

since Wi � p�1
i ðNiÞ ði ¼ 1; 2Þ is a 2-fold branched covering of Ci �Ni,

the handlebody W1\W2 is a 2-fold branched covering of C1\C2. So

ðV1\V2Þ [F1aF2
ðW1\W2Þ is a 2-fold branched covering of ðB1\B2Þ [S1aS2

ðC1\C2Þ.
See Figure 2. Then by ð1Þ and ð2Þ, we have the following lemma.

Lemma 1. There is a 2-fold branched covering p : ðV1 [F1
W1ÞaðV2 [F2

W2Þ
! ðB1 [S1

C1ÞaðB2 [S2
C2Þ.

In other words, by carefully choosing the 3-balls, a connected sum

of 2-fold branched coverings is a 2-fold branched covering of a connected

sum.

Fig. 1. 2-Fold branched coverings p1 : V1 [F1
W1 ! B1 [S1

C1 and p2 : V2 [F2
W2 ! B2 [S2

C2.
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6. Gordon’s Conjecture

Conjecture 2 (Gordon’s Conjecture). The connected sum of two un-

stabilized Heegaard splittings is unstabilized.

Gordon’s Conjecture is proved by Bachman [1] and independently by

Qiu and Scharlemann [10]. Bachman used the notion of critical surface. The

proof in [10] is constructive and combinatorial. We proposed a bridge ver-

sion of Gordon’s Conjecture in the introduction. Compared to the case of

Heegaard splittings, the presence of a knot may cause a di‰culty in the bridge

version.

7. Proof of Theorem 1

Let K1 be a knot admitting an n1-bridge position B1 [S1
C1 with

n1 > bðK1Þ whose 2-fold branched covering V1 [F1
W1 is an unstabilized

Heegaard splitting.

Claim 1. There are infinitely many examples for K1.

Fig. 2. A 2-fold branched covering p : ðV1 [F1
W1ÞaðV2 [F2

W2Þ ! ðB1 [S1
C1ÞaðB2 [S2

C2Þ.
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Proof. There are infinitely many knots in [3], each of which admits a

ð2k þ 5Þ-bridge position for any integer kb 0. Let K1 be one of them, and

B1 [S1
C1 be a ð2k þ 5Þ-bridge position of K1 with 2k þ 5 > bðK1Þ. It is shown

in [3] that the 2-fold branched covering V1 [F1
W1 of B1 [S1

C1 is strongly

irreducible. By Proposition 1, V1 [F1
W1 is unstabilized.

Let K2 be a knot admitting an n2-bridge position B2 [S2
C2 whose

2-fold branched covering V2 [F2
W2 is unstabilized. There are also in-

finitely many examples for K2. Then ðV1 [F1
W1ÞaðV2 [F2

W2Þ is unsta-

bilized by Gordon’s Conjecture. There exists a 2-fold branched covering

p : ðV1 [F1
W1ÞaðV2 [F2

W2Þ ! ðB1 [S1
C1ÞaðB2 [S2

C2Þ by Lemma 1. By

Proposition 2, ðB1 [S1
C1ÞaðB2 [S2

C2Þ is unperturbed. It is weakly reducible

because it is obtained by a connected sum. The bridge number bðK1aK2Þ is

bðK1Þ þ bðK2Þ � 1 and ðB1 [S1
C1ÞaðB2 [S2

C2Þ is an ðn1 þ n2 � 1Þ-bridge posi-

tion of K1aK2, where n1 þ n2 � 1 > bðK1Þ þ bðK2Þ � 1.
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