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Abstract. It is well known that a smooth quartic curve has twenty-eight bitangent

lines. For a reduced, possibly singular quartic curve, we introduce the notion of weak-

bitangent line. This can be considered as a generalization of bitangent lines. In this

article, we consider weak-bitangent lines for certain reduced quartic curves from the

viewpoint of rational elliptic surfaces. We utilize Mumford representations of semi-

reduced divisors in order to deal with equations of weak-bitangent lines for certain

reduced quartic curves. As a result, we can give new proofs for some classical results

on singular quartic curves and their bitangent lines.

1. Introduction

Bitangent lines to a smooth quartic curve have been studied by various

mathematicians (see [6, Chapter 6] for details). For a reduced, possibly

singular quartic curve, we can consider a generalization of bitangent lines as

follows:

Definition 1.1. Let Q be a reduced quartic curve. A line L is said to be

a weak-bitangent line if for any p A Q \ L, the intersection multiplicity of Q and

L at p is even.

In this article, we study weak-bitangent lines for certain reduced quartic

curves in P2 ¼ P2ðCÞ (C denotes the field of complex numbers). As we will

explain later, for a reduced quartic curve Q which is not the union of four

concurrent lines and a smooth point zo on Q, we can construct a rational

elliptic surface in a canonical way. In [18], Shioda studied a smooth quartic

curve and its twenty-eight bitangent lines from the viewpoint of the Mordell-

Weil lattice of type E �7 . Also, in [2, 3, 4], Bannai and Tokunaga studied the

embedded topology of plane curve arrangements of a certain singular quartic

curve, its weak-bitangent lines and conics by using a rational elliptic surface.

In this article, we study weak-bitangent lines of a reduced quartic curve Q
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along similar lines to [2, 3, 4, 18] in the case when Q satisfies the following

condition ðyÞ:
ðyÞ Q is irreducible or is the union of smooth conics C1 þ C2, where C1

and C2 meet transversely.

Before we go on to explain our results in detail, we briefly summarize our

construction of a rational surface. (See Section 2.3 for a detailed description

of our construction.)

Let Q be a reduced quartic curve which is not the union of four concurrent

lines and let zo be a smooth point on Q. Let SQ be the minimal resolution

of the double cover of P2 branched along Q. The pencil of lines passing

through zo induces a pencil of genus 1 curves Lzo on SQ, which has a unique

base point of multiplicity 2. We resolve the indeterminacy for the rational

map induced by Lzo and obtain an elliptic fibration jQ; zo : SQ; zo ! P1 with a

section O arising from zo. We denote the canonical map from SQ; zo to P2 by
~ffQ; zo : SQ; zo ! P2.

P2  SQ  SQ; zo :

For a section s ð0OÞ, ~ffQ; zoðsÞ becomes a curve in P2.

Let EQ; zo be the generic fiber of jQ; zo . It is well known that the group

of sections of jQ; zo can be canonically identified with the group of CðtÞ-
rational points of EQ; zo . For a rational point P, we denote the correspond-

ing section by sP. For a section s, we denote the corresponding rational point

by Ps.

Definition 1.2. (i) A section s of SQ; zo is said to be a line-section if
~ffQ; zoðsÞ is a line in P2. (ii) A CðtÞ-rational point P is said to be a line-point

if sP is a line-section.

As it is shown in Section 2.4, a weak-bitangent line gives rise to two line-

sections of SQ; zo and vice-versa, if Q and zo satisfy ðyÞ and the following

condition ðzÞ:
ðzÞ The tangent line at zo meets Q at two distinct points other than zo.

Then the pull-back of a weak-bitangent line L contains two sections sþL and s�L
of SQ; zo . In particular, a weak-bitangent line gives rise to two rational points

Psþ
L

and Ps�
L
¼ ½�1�Psþ

L
.

Under these settings, we obtain the following result:

Theorem 1.3. Let Q be a reduced quartic curve satisfying ðyÞ and let

zo be a smooth point on Q satisfying ðzÞ. For three distinct weak-bitangent

lines L1, L2 and L3, let Pi ði ¼ 1; 2; 3Þ be line-points such that Li ¼ ~ffQ; zoðsPi
Þ.

If P4 ¼ P1 þ
:
P2 þ

:
P3 is a line-point, then all intersection points of Q and

L1 þ L2 þ L3 þ L4 lie on a conic, where L4 is the line ~ffQ; zoðsP4
Þ.
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In the proof of Theorem 1.3, we utilize Mumford representations in order

to describe divisor classes on elliptic curves. (See Section 3 for the definition

and details of Mumford representations.) Mumford representations were first

considered in [14] in order to describe the Jacobian of hyperelliptic curves

explicitly. They have played important roles in hyperelliptic curve cryptog-

raphy (see [7]).

Remark 1.4.

( i ) For each Li ði ¼ 1; 2; 3Þ in Theorem 1.3, there are two choices of Pi up

to ½G1� since Li ¼ ~ffQ; zoðsPi
Þ ¼ ~ffQ; zoðs½�1�Pi

Þ holds. Hence, there are

eight possibilities for P4. Therefore, since ~ffQ; zoðsP4
Þ ¼ ~ffQ; zoðs½�1�P4

Þ,
there are four curves induced by the candidates of P4. When one of

the candidates of P4 is a line-point, the assertion of Theorem 1.3 holds

for its corresponding weak-bitangent line.

(ii) Let L1, L2 and L3 be distinct bitangent lines of a smooth quartic

curve Q. A triad ðL1;L2;L3Þ is said to be a syzygetic triad if the

six intersection points of Q and L1 þ L2 þ L3 lie on a conic C. (It is

well-known that the remaining two points in Q \ C give rise to a

bitangent line.) If we can choose rational points P1, P2, and P3 such

that (i) Li ¼ ~ffQ; zoðsPi
Þ and (ii) P1 þ

:
P2 þ

:
P3 is a line-point, then

ðL1;L2;L3Þ becomes a syzygetic triad by Theorem 1.3. This means

that the existence of such line-points gives a su‰cient condition for

ðL1;L2;L3Þ to be a syzygetic triad.

Furthermore, we also give a classification (Theorem 5.6) of weak-bitangent

lines of singular quartic curves satisfying ðyÞ by using a result of Oguiso-Shioda

([15]) which gives a classification of Mordell-Weil lattices of rational elliptic

surfaces. By Theorems 1.3 and 5.6, we have the following classical results:

Corollary 1.5 ([8, §3], [6, Ch. 2], [16, p. 345]). Let C1;C2 � P2 be

smooth conics meeting transversely and let L1; . . . ;L4 be their four common

tangent lines. Then the eight points of tangency lie on a conic.

Corollary 1.6 ([8, §3]). If Q � P2 is an irreducible quartic with three

nodes, then the eight points of contact of Q with its four bitangent lines all lie

on a conic.

Corollary 1.7 ([8, §3]). An irreducible quartic with an ordinary triple

point has four bitangent lines, whose eight points of contact all lie on a conic.

The organization of this article is as follows: In Section 2, we give a brief

summary on concepts and results from the theory of elliptic surfaces necessary

for our argument. In Section 3, we explain the Mumford representations
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of semi-reduced divisors on hyperelliptic curves, which are key tools to prove

Theorem 1.3. In Section 4, we prove Theorem 1.3. In Section 5, we classify

weak-bitangent lines of certain singular quartic curves under the condition ðyÞ.
In Section 6, we prove Corollaries 1.5, 1.6 and 1.7.

2. Elliptic surfaces

Throughout this article, all surfaces and curves are defined over C, unless

otherwise stated.

2.1. Notation and terminology on elliptic surfaces. We here define some

notation and terminology on elliptic surfaces. For general references, we

refer to [10, 12, 17].

Let j : S ! C be an elliptic surface over a smooth projective curve C

satisfying the following conditions ð�Þ:
� j is relatively minimal.
� j has a distinguished section O : C ! S.
� j has at least one singular fiber.

Throughout this article, we always assume that an elliptic surface satisfies the

conditions ð�Þ.
Let ES be the generic fiber of j. ES can be regarded as a curve of genus

1 defined over the field CðCÞ of rational functions of C, and we denote the set

of CðCÞ-rational points of ES by ESðCðCÞÞ. In our setting, S is known as the

Kodaira-Néron model of ES. Let MWðSÞ be the set of sections of j. For

any s A MWðSÞ, the restriction of s to ES gives a CðCÞ-rational point of ES.

Here, we identify a section s : C ! S with its image and we can identify

MWðSÞ with ESðCðCÞÞ through this correspondence. For P A ESðCðCÞÞ, we
denote the corresponding section by sP and for s A MWðSÞ we denote the

corresponding rational point by Ps. By abuse of notation, we identify the

section O with its restriction to ES. We can regard ES as an elliptic curve

ðESðCðCÞÞ;OÞ having a group structure with O being the identity. We denote

the addition with respect to this group structure by þ
:
. Note that, for

P;Q A ES, PþQ denotes the sum as divisors on ES, while Pþ
:
Q denotes

the sum of points in ES with respect to the group structure. For P A ES,

we denote the inverse of P with respect to þ
:
by �� P. For m A Z and P A ES,

we let

½m�P ¼ Pþ
:
� � � þ

:
P;

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m terms if m>0

½m�P ¼ �� P�� � � � �� P
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{jmj terms if m<0

and ½0�P ¼ O:

Definition 2.1. A section s A MWðSÞ is said to be an integral section if

the intersection number s �O ¼ 0.
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For v A C, we denote the corresponding fiber over v by Fv ¼ j�1ðvÞ. We

define two finite subsets, SingðjÞ and RedðjÞ, of C concerning singular fibers as

follows:

SingðjÞ :¼ fv A C jFv is singularg;

RedðjÞ :¼ fv A SingðjÞ jFv is reducibleg:

For v A RedðjÞ, the irreducible decomposition of Fv is denoted by

Fv ¼ Yv;0 þ
Xmv�1

i¼1
av; iYv; i;

where Yv;0 is the unique component with Yv;0 �O ¼ 1. We call Yv;0 the

identity component of Fv. In order to describe the types of singular fibers, we

use Kodaira’s notation ([10]). Also, irreducible components of singular fibers

are labeled as in [21]. For v A RedðjÞ, we define

cðv;DÞ :¼
D �Yv;1

..

.

D �Yv;mv�1

2
664

3
775 A Zlðmv�1Þ;

Av :¼ ½Yv; i �Yv; j�1ai; jamv�1;

Fv :¼ ½Yv;1; . . . ;Yv;mv�1�;

where D is a divisor on S, and D �D 0 denotes the intersection number of

divisors D and D 0 on S.

2.2. Mordell-Weill lattices. Let j : S ! C be an elliptic surface as before.

We denote the Néron-Severi group of S by NSðSÞ, and the Euler characteristic

of its structure sheaf OS by wðOSÞ. We denote a general fiber of j by F . The

following theorems are fundamental.

Theorem 2.2 ([17, Theorem 1.2]). Under our setting, NSðSÞ is finitely

generated and torsion-free.

Theorem 2.3 ([17, Theorem 1.3]). Let Tj be the subgroup of NSðSÞ
generated by O and the irreducible components of fibers. Then, there is a

natural isomorphism

c : ESðCðCÞÞ ! NSðSÞ=Tj

which maps P A ESðCðCÞÞ to sP mod Tj.

Given a divisor D on S, we denote c
�1ðD mod TjÞ by PD.
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Lemma 2.4 ([17, Lemma 5.1]). For D A DivðSÞ, there exists a unique

section sðDÞ such that

DAsðDÞ þ ðd � 1ÞOþ nF þ
X

v ARedðjÞ
FvA

�1
v cðv;D� sðDÞÞ;

where A denotes the algebraic equivalence between divisors, and integers d and n

are defined as follows:

d ¼ D � F and n ¼ ðd � 1ÞwðOSÞ þO � ðD� sðDÞÞ:

Remark 2.5. (i) By Lemma 2.4, for D A DivðSÞ, we have sðDÞ ¼ sPD
.

(ii) Also, we have A�1v cðv;D� sðDÞÞ A Zlðmv�1Þ, while entries of A�1v are not

necessarily integers.

Lemma 2.6 ([1, Lemma 2.1]). If Fv is a singular fiber of type I2,

cðv;DÞ � cðv; sðDÞÞ is even (Note that cðv;DÞ becomes an integer in this case).

By (i) in Remark 2.5 and Lemma 2.6, we also have

Corollary 2.7. Let Fv be a singular fiber of type I2. Let P1; . . . ;Pn be

elements of ESðCðCÞÞ and let c1; . . . ; cn be integers. Put Q ¼ ½c1�P1 þ
:
� � � þ

:

½cn�Pn and D ¼ c1sP1
þ � � � þ cnsPn

. Then, we have

sQ �Yv;1 ¼
1 if D �Yv;1 is odd

0 otherwise:

�

Let us explain the height pairing on ESðCðtÞÞ introduced in [17]. Let

f : ESðCðCÞÞ ! NSðSÞnQ be the homomorphism given in [17, Lemma 8.1]

as follows:

fðPÞ ¼ sP �O� ðsP �Oþ wðOSÞÞF þ
X

v ARedðjÞ
Fvð�A�1v Þcðv; sPÞ:

In [17], by using f, the height pairing h�;�i on ESðCðCÞÞ is defined as

follows:

hP;Qi ¼ �fðPÞ � fðQÞ:

The intersection pairing on NSðSÞ induces a pairing on NSðSÞnQ and hP;Qi
is explicitly given as follows:

Theorem 2.8 ([17, Theorem 8.6]). For P;Q A ESðCðCÞÞ we have

hP;Qi ¼ wðOSÞ þ sP �Oþ sQ �O� sP � sQ �
X

v ARedðjÞ
contrvðsP; sQÞ;
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where, for divisors D1 and D2 on S, contrvðD1;D2Þ is given by

contrvðD1;D2Þ ¼ tcðv;D1Þð�AvÞ�1cðv;D2Þ:

Note that, for s1; s2 A MWðSÞ, we have

hPs1 ;Ps2i ¼ wðOSÞ þ s1 �Oþ s2 �O� s1 � s2 �
X

v ARedðjÞ
contrvðs1; s2Þ:

2.3. A rational elliptic surface associated to a reduced quartic curve and a

smooth point on the quartic curve. Let us first explain how we obtain a

rational elliptic surface from a quartic curve and a smooth point on the quartic

curve.

Let Q be a reduced quartic curve in P2 which is not the union of four

concurrent lines and let zo be a smooth point on Q. We can associate a

rational elliptic surface SQ; zo (see [2, 2.2.2], [21, Section 4], [1, Section 1]) from

Q and zo as follows:

(1) Let f 0Q : S 0Q ! P2 be the double cover of P2 with branch locus Q.

(2) Let m : SQ ! S 0Q be the canonical resolution of S 0Q (see [9] for the

canonical resolution).

(3) Let Lzo be the pencil of genus 1 curves on SQ induced from the

pencil of lines through zo. The pencil Lzo has a unique base point

ð f 0Q � mÞ
�1ðzoÞ with multiplicity 2.

(4) Let nzo : SQ; zo ! SQ be the resolution of the indeterminacy for the

rational map induced by Lzo . The induced morphism jQ; zo : SQ; zo !
P1 is an elliptic fibration. The map nzo is a composition of two

blowing-ups and the exceptional curve for the second blowing-up is a

section of jQ; zo , which we regard as O. Thus we have a rational

elliptic surface SQ; zo and the diagram below:

S 0Q  ���
m

SQ SQ; zo???y f 0
Q

???y fQ

???y fQ; zo

P2  ���
q

cP2P2  ���
qzo

dðP2ÞðP2Þzo ;

 ����
nzo

where q is a composition of a finite number of blowing-ups so that

the branch locus becomes smooth and qzo is the composition of two

blowing-ups corresponding to nzo . The map fQ; zo is the double cover

induced by the involution ½�1�Q; zo on SQ; zo , which is given by the

inversion with respect to the group law on the generic fiber.

Remark 2.9. The above construction is also found in [11] and [18].
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Let SingðQÞ be the set of singularities of Q. For x A SingðQÞ, a line through x

and zo induces a singular fiber of SQ; zo , which we denote by FvðxÞ.

Put ~ffQ; zo ¼ f 0Q � m � nzo .

Remark 2.10. For a section s ð0OÞ and x A SingðQÞ, the curve ~ffQ; zoðsÞ
passes through x if and only if cðvðxÞ; sÞ0 0.

Let lzo be the tangent line of Q at zo. The fiber corresponding to lzo
becomes a singular fiber, which we denote by Fy. By our construction of

SQ; zo , any reducible singular fiber is Fy or of the form FvðxÞ. If zo satisfies ðzÞ,
then Fy is a singular fiber of type I2. We denote its irreducible decomposition

by Fy ¼ Yy;0 þYy;1, where Yy;0 is the identity component.

In the remaining of this subsection, we assume that (i) Q is singular and

satisfies ðyÞ and (ii) zo satisfies ðzÞ. Let us introduce SingðQÞ and RQ; zo as

follows:
� SingðQÞ: the set of pairs of singularities of Q and their types. For the

types of singularities, we refer to [5, p. 81].
� RQ; zo : the subgroup of NSðSQ; zoÞ generated by Yv; i ðv A RedðjQ; zoÞ;

i ¼ 1; . . . ;mv � 1Þ. We have

RQ; zo ¼ ZYy;1 l 0
x A SingðQÞ

ZYvðxÞ;1 l � � �lZYvðxÞ;mvðxÞ�1:

Here is a table for SingðQÞ, RQ; zo and EQ; zoðCðtÞÞ after Oguiso-Shioda [15].

We omit cases which do not occur under the assumptions ðyÞ and ðzÞ.

Table 1

Oguiso-Shioda

classification
SingðQÞ RQ;zo EQ;zo ðCðtÞÞ

No. 4 ðx;A1Þ Al2
1 D�6

No. 6 ðx;A2Þ A2 lA1 A�5

No. 7
ðx;A1Þ
ðy;A1Þ

Al3
1 D�4 lA�1

No. 10 ðx;A3Þ A3 lA1 A�3 lA�1

No. 12
ðx;A2Þ
ðy;A1Þ

A2 lAl2
1

1
6

2 1 0 �1
1 5 3 1

0 3 6 3

�1 1 3 5

2
6664

3
7775

No. 14

ðx;A1Þ
ðy;A1Þ
ðz;A1Þ

Al4
1 ðA�1 Þ

l4
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Table 1 (cont.)

Oguiso-Shioda

classification
SingðQÞ RQ;zo EQ;zo ðCðtÞÞ

No. 17 ðx;A4Þ A4 lA1
1
10

3 1 �1
1 7 3

�1 3 7

2
64

3
75

No. 18 ðx;D4Þ D4 lA1 ðA�1 Þ
l3

No. 20
ðx;A2Þ
ðy;A2Þ

Al2
2 lA1 A�2 lh1=6i

No. 22
ðx;A3Þ
ðy;A1Þ

A3 lAl2
1 ðA�1 Þ

l2 lh1=4i

No. 23

ðx;A2Þ
ðy;A1Þ
ðz;A1Þ

A2 lAl3
1 A�1 l

1
6

2 1

1 2

� �

No. 24

ðx;A1Þ
ðy;A1Þ
ðz;A1Þ
ðw;A1Þ

Al5
1 ðA�1 Þ

l3 lZ=2Z

No. 29 ðx;A5Þ A5 lA1 A�1 lh1=6i

No. 30 ðx;D5Þ D5 lA1 A�1 lh1=4i

No. 33
ðx;A4Þ
ðy;A1Þ

A4 lAl2
1

1
10

2 1

1 3

� �

No. 37
ðx;A3Þ
ðy;A2Þ

A3 lA2 lA1 A�1 lh1=12i

No. 40

ðx;A2Þ
ðy;A2Þ
ðz;A1Þ

Al2
2 lAl2

1 h1=6il2

No. 47 ðx;A6Þ A6 lA1 h1=14i

No. 49 ðx;E6Þ E6 lA1 h1=6i

No. 56
ðx;A4Þ
ðy;A2Þ

A4 lA2 lA1 h1=30i

No. 61

ðx;A2Þ
ðy;A2Þ
ðz;A2Þ

Al3
2 lA1 h1=6ilZ=3Z
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We use the notation in [15] in order to describe the structure of

EQ; zoðCðtÞÞ. Also, the Gram matrices of A�n and D�m ðnb 1; mb 4Þ are

given by the inverses of the following square matrices of sizes n and m,

respectively:

2.4. Sections arising from lines and conics. Let Q be a quartic curve satisfying

ðyÞ and let zo be a smooth point on Q satisfying ðzÞ.
The following lemma gives a characterization of line-sections.

Lemma 2.11 ([3, Lemma 9]). Let s A MWðSQ; zoÞ be an integral section with

s �Yy;1 ¼ 1. Then ~ffQ; zoðsÞ is a line Ls such that

( i ) IxðQ;LsÞ is even for all x A Q, and

(ii) zo B Ls.

Conversely, any line L satisfying the two conditions (i) and (ii) as above

gives rise to line-sections si ði ¼ 1; 2Þ such that si �O ¼ 0, si �Yy;1 ¼ 1 and
~ffQ; zoðsiÞ ¼ L.

By the choice of zo, weak-bitangent lines do not pass through zo. There-

fore, by Lemma 2.11, weak-bitangent lines give rise to line-sections of SQ; zo

and vice-versa. Under these settings, for a line L, whether L gives a line-

section or not can be determined by how L and Q intersect. Table 2 shows ten

possibilities for how L and Q intersect.

When we need to describe the type of a weak-bitangent line L and the

singularities of Q on L, we use the following notation:

The type of L SingðQÞ \ L

LiðxÞ ði ¼ 3; 5; 6; 7; 8; 9; 10Þ x

L4ðx; yÞ x; y

As for an integral section s with s �Yy;0 ¼ 1, we have:

Lemma 2.12. Let s A MWðSQ; zoÞ be an integral section with s �Yy;0 ¼ 1.

Then its image ~ffQ; zoðsÞ in P2 is a smooth conic such that either
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Table 2

Type L and Q How L and Q intersect

L1
L is a bitangent line at distinct

smooth points.

L2
L is a 4-fold tangent line at a

smooth point.

L3
L is a line tangent at a smooth

point and through a double point.

L4
L is a line through distinct double

points.

L5

L is an inflectional tangent line to

one of the branches at an A1-

singularity.

L6

L is a unique tangent line to both

of the branches (resp. to the

branch) at an An-singularity if

nb 3 is odd (resp. even).

L7
L is a tangent line to one of the

branches at a D4-singularity.

11Weak-bitangent lines and sections on rational elliptic surfaces



( i ) ~ffQ; zoðsÞ is an irreducible component of Q through zo, or

(ii) ~ffQ; zoðsÞ is tangent to Q at zo and Ixð ~ffQ; zoðsÞ;QÞ is even for every

x A ~ffQ; zoðsÞ \ Q.

Proof. For simplicity, we put Cs ¼ ~ffQ; zoðsÞ. Since ~ffQ; zoðYy;0 [OÞ ¼ zo
and s �Yy;0 ¼ 1, zo A Cs. This means that any line through zo meets Cs at zo
and another point. As Cs is irreducible, Cs is a smooth conic.

If Cs is an irreducible component of Q, then Cs satisfies the condition (i) in

the statement. In the following, we may assume that Cs is not any irreducible

component of Q. By our construction of ~ffQ; zo : SQ ! P2, Cs is tangent to Q at

zo. Choose x A Cs \ Q arbitrary. If IxðCs;QÞ is odd, the restriction of ~ffQ; zo to

Cs gives rise to a ramified cover of Cs. This means that ~ff �Q; zoðCsÞ contains a

unique irreducible component ~CCs such that ~ffQ; zo j ~CCs
: ~CCs ! Cs is a double cover.

On the other hand, ~ff �Q; zoðCsÞ contains two integral sections s and ½�1��Q; zos as its
irreducible components. As ~ffQ; zoðsÞ ¼ ~ffQ; zoð½�1�

�
Q; zo

sÞ ¼ Cs, this leads us to a

contradiction. r

Table 3 lists some cases of conics described in Lemma 2.12 which are

necessary for our later argument.

When we need to describe the type of C and the singularities of Q on C,

similarly to lines we use the following notation:

Table 2 (cont.)

Type L and Q How L and Q intersect

L8
L is a tangent line to the smooth

branch at a D5-singularity.

L9
L is a tangent line to the singular

branch at a D5-singularity.

L10
L is a tangent line at an E6-

singularity.
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Table 3

Type C and Q How C and Q intersect

C1
C is tangent to Q at smooth points with

even multiplicities.

C2

C passes through a double point of Q

and is tangent to Q at smooth points

with even multiplicities.

C3

C passes through two distinct double

points of Q and is tangent to Q at

smooth points.

C4

C passes through three distinct double

points of Q and is tangent to Q at a

smooth point.

C5
C is tangent to Q at a double point and

smooth points with even multiplicities.

C6

C is tangent to Q at a double point

with multiplicity 4 and a smooth point,

and passes through another double

point.
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The type of C SingðQÞ \ C

CjðxÞ ð j ¼ 2; 5; 7Þ x

Cjðx; yÞ ð j ¼ 3; 6Þ x, y

C4ðx; y; zÞ x, y, z

3. The Mumford representations of semi-reduced divisors

In this section, we describe the Mumford representations of semi-reduced

divisors on a hyperelliptic curve which are key tools to prove Theorem 1.3.

For terminology and notation for curves and divisors, we refer to [19]. As

for details on Mumford representations, we refer to [7, 20]. Let K be a perfect

field of charðKÞ0 2 and let K be its algebraic closure.

3.1. Mumford representations. Let C be a hyperelliptic curve of genus g

defined over K given by an a‰ne equation

y2 ¼ f ðxÞ; f ðxÞ ¼ x2gþ1 þ c1x
2g þ � � � þ c2gþ1 ðci A K ; i ¼ 1; . . . ; 2gþ 1Þ:

We denote the point of C at infinity by O and the hyperelliptic involution by

i : ðx; yÞ 7! ðx;�yÞ. For a divisor d ¼
P

P AC nPP A DivðCÞ on C, we denote

the subset fP A C j nP 0 0g of C by SuppðdÞ.

Definition 3.1. Let d ¼
P

P AC nPP A DivðCÞ be an e¤ective divisor on C

such that O B SuppðdÞ. We call d a semi-reduced divisor if it satisfies the

following conditions:
� if P A SuppðdÞ and P0 iðPÞ, then iðPÞ B SuppðdÞ, and
� if P A SuppðdÞ and P ¼ iðPÞ, then nP ¼ 1.

Table 3 (cont.)

Type C and Q How C and Q intersect

C7
C is tangent to Q at a double point

with multiplicity 6 and a smooth point.

C8 C is a component of two conics.
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We denote the coordinate ring K ½x; y�=hy2 � f i of C by K ½C� and the

image of g A K ½x; y� in K ½C� by ½g�. For P A C, we denote the local ring at

P by OP and its discrete valuation by ordP. Let d ¼
P

P AC nPP be a semi-

reduced divisor on C. We define ideals IðdÞ � K ½C� and gIðdÞIðdÞ � K ½x; y� as
follows:

IðdÞ :¼ fx A K ½C� j ordPðxÞb nP; EP A SuppðdÞg;

gIðdÞIðdÞ :¼ fg A K ½x; y� j ordPð½g�Þb nP; EP A SuppðdÞg:

Proposition 3.2 ([20, Proposition 2.1]). Let d be a semi-reduced divisor

and let >p be the pure lexicographical order with y >p x in K ½x; y�. Then the

reduced Gröbner basis of gIðdÞIðdÞ with respect to >p is of the form faðxÞ; y� bðxÞg,
where aðxÞ; bðxÞ A K ½x� and they satisfy bðxÞ2 � f A haðxÞi.

Definition 3.3. Let d be a semi-reduced divisor on C and let

faðxÞ; y� bðxÞg be as in Proposition 3.2. Then we call the pair ða; bÞ the

Mumford representation of d.

Mumford representations are characterized as follows:

Lemma 3.4. Let d ¼
P

P AC nPP be a semi-reduced divisor and we put

P ¼ ðxP; yPÞ. Then the pair ða; bÞ A ðK ½x�Þ2 is the Mumford representation of

d if and only if ða; bÞ satisfies

( i ) a ¼
Q

P A SuppðdÞðx� xPÞnP ,
( ii ) deg b < deg a, ordPð½y� b�Þb nP, and

(iii) a j b2 � f .

For a proof, see [20, Proposition 2.1].

Remark 3.5. Let d be a semi-reduced divisor. In [7, 20], the Mumford

representation of d is defined by the pair ða; bÞ satisfying the three conditions in

Lemma 3.4.

A divisor d is said to be defined over K if ds ¼ d for all s A GalðK=KÞ.

Remark 3.6. Let d ¼
P

i niPi be a semi-reduced divisor defined over K.

Then the Mumford representation ða; bÞ of d belongs to ðK½x�Þ2, while the points

Pi are not necessarily K-rational points.

3.2. Semi-reduced divisors of degree 3 on elliptic curves. We refer to [1] for

the proof of the lemmas in this section. Let E be an elliptic curve defined over

K given by a Weierstrass equation

y2 ¼ f ðxÞ; f ðxÞ ¼ x3 þ c1x
2 þ c2xþ c3 ðci A K ; i ¼ 1; 2; 3Þ:
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Let d ¼ P1 þ P2 þ P3 be a semi-reduced divisor of degree 3. We put Pd ¼
P1 þ

:
P2 þ

:
P3.

Lemma 3.7 ([1, Lemma 6.2]). Assume that Pd 0O and let ða; bÞ be the

Mumford representation of d. Then we have

( i ) Pd 0Pi ði ¼ 1; 2; 3Þ.
(ii) deg b ¼ 2.

Lemma 3.8 ([1, Lemma 6.3]). We keep the notation of the previous lemma.

Assume that d is defined over K. Put Pd :¼ ðxd; ydÞ. Then we have the

following:

( i ) The point Pd is a K-rational point of E, i.e., xd; yd A K.

(ii) The two polynomials a, b satisfy a; b A K ½x�. In particular, b is of the

form

b0ðx� xdÞðx� b1Þ � yd ðb0; b1 A KÞ:

4. Proof of Theorem 1.3

Before we prove Theorem 1.3, we prepare two lemmas. Let ½T ;X ;Z� be
homogeneous coordinates of P2 and let ðt; xÞ ¼ ðT=Z;X=ZÞ be a‰ne coor-

dinates for C2 ¼ P2nfZ ¼ 0g.

Lemma 4.1. Let Q be a reduced quartic curve that is not the union of four

lines and let zo be a smooth point on Q satisfying ðzÞ. By choosing suitable

homogeneous coordinates ½T ;X ;Z�, we may assume that zo ¼ ½0; 1; 0� and Q is

given by an equation of the form

FQðT ;X ;ZÞ ¼ X 3Z þ AQ;2ðT ;ZÞX 2 þ AQ;3ðT ;ZÞX þ AQ;4ðT ;ZÞ;

where AQ; i is a binary form of degree i in T and Z such that

deg AQ; iðt; 1Þ ¼ i ði ¼ 2; 3Þ; and deg AQ;4ðt; 1Þa 3:

Proof. Our statement is immediate if we choose homogeneous coordi-

nates ½T ;X ;Z� such that (i) zo ¼ ½0; 1; 0�, (ii) the tangent line lzo at zo is given by

Z ¼ 0 and (iii) ½1; 0; 0� A Q. r

Let E be an elliptic curve given by the Weierstrass equation y2 ¼
FQðt; x; 1Þ. Let d ¼ P1 þ P2 þ P3 A DivðEÞ be a semi-reduced divisor defined

over CðtÞ whose Mumford representation is given by ða; bÞ. We put Pd ¼
P1 þ

:
P2 þ

:
P3 and assume that Pd 0O. Then we can write Pd ¼ ðxd; ydÞ. By

Lemmas 3.4, 3.7 and 3.8, a, b are given as follows:

a ¼ x3 þ a1x
2 þ a2xþ a3 ðai A CðtÞ; i ¼ 1; 2; 3Þ and

b ¼ b0ðx� xdÞðx� b1Þ � yd ðb0 A CðtÞ�; b1 A CðtÞÞ;
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where the solutions of aðxÞ ¼ 0 are the x-coordinates of the points Pi. Also, a

and b satisfy the following relation

b2 � FQðt; x; 1Þ ¼ b0
2ðx� xdÞa: ð1Þ

Under these circumstances, we have the next lemma.

Lemma 4.2. If xd A C½t� with deg xd a 1, a A C½t; x� and the total degree of

a is 3, then b0 A C�, b1 A C½t� and deg b1 a 1.

Proof. We first prove that b0 is of the form 1=c, c A C½t�. Put b0 ¼ c1=c2,

where c1 and c2 are coprime polynomials. By the relation (1), we have the

following two relations:

fðx� xdÞðx� b1Þ � yd=b0g2 � FQ=b0
2 ¼ ðx� xdÞa;

fc1ðx� xdÞðx� b1Þ � c2 ydg2 ¼ c1
2ðx� xdÞa� c2

2FQ:

Since the right hand sides of both relations are in C½t; x�, so are the left hand

sides. In particular, the coe‰cient of x3, �2ðxd þ b1Þ � 1=b0
2, in the left hand

side of the first relation and that of x, c1ðxd þ b1Þ, in the left hand side of the

second are polynomials.

Since �2ðxd þ b1Þ � 1=b0
2 and c1ðxd þ b1Þ A C½t�, we have c2

2=c1 A C½t�.
Since c1 and c2 are coprime to each other, c1 A C�. Hence, 1=b0 ¼ c2=c1 A C½t�
and we have b1 A C½t� as c1ðxd þ b1Þ A C½t�.

Putting c ¼ 1=b0, we have

fðx� xdÞðx� b1Þ � cydg2 � c2FQ ¼ ðx� xdÞa:

By comparing coe‰cients of polynomials in C½t�½x�, we have the assertion.

r

We are now in a position to prove Theorem 1.3.
� Proof of Theorem 1.3. Let us assume that Q and zo satisfy ðyÞ and

ðzÞ. We may assume that Q is given by an equation described in Lemma 4.1

and zo ¼ ½0; 1; 0�. The generic fiber of jQ; zo is an elliptic curve given by y2 ¼
FQðt; x; 1Þ and Li ði ¼ 1; 2; 3; 4Þ are given by x� xiðtÞ ¼ 0. As Li ði ¼ 1; 2; 3Þ
are distinct, Pi 0 ½�1�Pj ði0 j; i; j ¼ 1; 2; 3Þ. Hence P1 þ P2 þ P3 is a semi-

reduced divisor defined over CðtÞ. We denote its Mumford representation by

ða; bÞ. Note that a and b satisfy the relation:

b2 � FQðt; x; 1Þ ¼ b0
2ðx� x4Þa ðb0 A CðtÞ�Þ;

where b ¼ b0ðx� x4Þðx� b1Þ � y4 ðb1 A CðtÞÞ. A polynomial a ¼
Q3

i¼1ðx� xiÞ
is of total degree 3. By Lemma 4.2, we have b0 A C�, b1 A C½t� and
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deg b1 a 1. Hence, the total degree of b is equal to maxf2; deg y4g. On the

other hand, y4
2 ¼ FQðt; x4; 1Þ. By our choice of FQ, we find deg y4

2 ¼
deg FQðt; x4; 1Þa 4. Therefore bðt; xÞ ¼ 0 gives rise to the desired conic C.

r

5. A classification of weak-bitangent lines

Our goal in this section is to give a list of weak-bitangent lines in terms of

Mordell-Weil lattices. Throughout this section, we assume that Q is a singular

quartic curve satisfying ðyÞ and zo is a smooth point on Q satisfying ðzÞ, unless
otherwise stated.

5.1. Preparations for a classification of weak-bitangent lines. Let us start with

the following lemma.

Lemma 5.1. Choose s A MWðSQ; zoÞ. If hPs;Psi < 3=2 then s is an inte-

gral section. Moreover, in the cases of Table 1 other than No. 24 and 61, if

hPs;Psi ¼ 3=2 then s is also an integral section.

Proof. By Theorem 2.8, we have

hPs;Psi ¼ 2þ 2s �O�
X

v ARedðjQ; zo Þ
contrvðs; sÞ:

In our setting, the contribution term is of the form

X
x A SingðQÞ

contrvðxÞðs; sÞ þ contryðs; sÞ:

By straightforward computation with Table 1, we see that the above value is

less than or equal to 5=2. Hence we have

hPs;Psib 2þ 2s �O� 5=2 ¼ 2s �O� 1=2:

Hence if hPs;Psi < 3=2, s �O ¼ 0.

In the cases other than No. 24 and 61, we see that the contribution term

is less than 5=2. In a similar way to the above case, we infer that if

hPs;Psia 3=2, s �O ¼ 0. r

Choose P1; . . . ;Pn and Pt A EQ; zoðCðtÞÞ such that

( i ) fP1; . . . ;Png is a basis of the free part of EQ; zoðCðtÞÞ,
( ii ) Pt ¼ O if there exists no torsion in EQ; zoðCðtÞÞ, while EQ; zoðCðtÞÞtor ¼

hPti if EQ; zoðCðtÞÞtor 0 fOg and
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(iii) the Gram matrix ½hPi;Pji�1ai; jan coincides with the one given in

Table 1.

In the following, we give descriptions for line-points through the above

P1; . . . ;Pn and Pt:

Lemma 5.2. Let si ð1a ia nÞ be the sections corresponding to Pi

ð1a ia nÞ and let st be the section corresponding to Pt. By relabeling

P1; . . . ;Pn, for each case in Table 1, ~ffQ; zoðsiÞ ð1a ia nÞ and ~ffQ; zoðstÞ are

described as in Table 4.

Table 4

Oguiso-Shioda

classification
SingðQÞ Types of

ð ~ffQ; zo ðs1Þ; . . . ; ~ffQ; zo ðsnÞ; ~ffQ; zo ðstÞÞ

No. 4 ðx;A1Þ See the below�1

No. 6 ðx;A2Þ ðL3;C2;L1;C2;L3Þ

No. 7
ðx;A1Þ
ðy;A1Þ

ðL3ðxÞ;C1;L3ðyÞ;C3;L4Þ

No. 10 ðx;A3Þ ðL3;C5;L3;L6Þ

No. 12
ðx;A2Þ
ðy;A1Þ

ðL4;L3ðxÞ;L3ðyÞ;L3ðxÞÞ
or

ðL4;C3;L3ðyÞ;C3Þ

No. 14

ðx;A1Þ
ðy;A1Þ
ðz;A1Þ

ðL4ðx; yÞ;L4ðy; zÞ;L4ðx; zÞ;C4Þ

No. 17 ðx;A4Þ ðL6;L3;L3Þ

No. 18 ðx;D4Þ ðL7;L7;L7Þ

No. 20
ðx;A2Þ
ðy;A2Þ

ðC3;C3;L4Þ

No. 22
ðx;A3Þ
ðy;A1Þ

ðC6ðx; yÞ;L6;L4Þ�2

No. 23

ðx;A2Þ
ðy;A1Þ
ðz;A1Þ

ðL4ðy; zÞ;L4ðx; yÞ;L4ðx; zÞÞ
or

ðL4ðy; zÞ;L4ðx; zÞ;C4Þ

No. 24

ðx;A1Þ
ðy;A1Þ
ðz;A1Þ
ðw;A1Þ

ðL4ðx; yÞ;L4ðy; zÞ;L4ðx; zÞ;C8Þ�3
or

ðL4ðx;wÞ;L4ðy;wÞ;L4ðz;wÞ;C8Þ�3
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Here Li ð1a ia 10Þ are the types of lines in Table 2 and Cj ð1a ja 8Þ
are the types of conics in Table 3. When Pt ¼ O, we describe types of ~ffQ; zoðsiÞ
ð1a ia nÞ only.

Proof. We give a proof for the case of No. 4 only as the other cases can

be proven similarly. In order to determine types of ~ffQ; zoðsiÞ, we need to find

s �O, cðvðxÞ; siÞ and cðy; siÞ. First, we have

Table 4 (cont.)

Oguiso-Shioda

classification
SingðQÞ Types of

ð ~ffQ; zo ðs1Þ; . . . ; ~ffQ; zo ðsnÞ; ~ffQ; zo ðstÞÞ

No. 29 ðx;A5Þ ðC7;L6Þ

No. 30 ðx;D5Þ ðL8;L9Þ

No. 33
ðx;A4Þ
ðy;A1Þ

ðL4;L6Þ
or

ðL4;C6ðx; yÞÞ�4

No. 37
ðx;A3Þ
ðy;A2Þ

ðL6ðxÞ;L4Þ

No. 40

ðx;A2Þ
ðy;A2Þ
ðz;A1Þ

ðL4ðx; yÞ;C4Þ

No. 47 ðx;A6Þ L6

No. 49 ðx;E6Þ L10

No. 56
ðx;A4Þ
ðy;A2Þ

L4

No. 61

ðx;A2Þ
ðy;A2Þ
ðz;A2Þ

ðL4ðx; yÞ;C4Þ�5

�1 In the case of No. 4, the type of ð ~ffQ; zo ðs1Þ; ~ffQ; zo ðs2Þ; ~ffQ; zo ðs5Þ; ~ffQ; zo ðs6ÞÞ is ðL3;C1;L1;C2Þ. On

the other hand, s3 and s4 satisfy

si �O ¼ 1 ði ¼ 3; 4Þ and cðvðxÞ; siÞ ¼ cðy; siÞ ¼
1 i ¼ 3

0 i ¼ 4

�
:

�2 In the case of No. 22, if ~ffQ; zo ðsiÞ is of type C6ðx; yÞ, Ixð ~ffQ; zo ðsiÞ;QÞ ¼ 4 and Iyð ~ffQ; zo ðsiÞ;QÞ ¼ 2.
�3 In the case of No. 24, we only consider the cases when (i) three weak-bitangent lines of type L4 are

concurrent at w and (ii) three weak-bitangent lines of type L4 do not pass through w. We omit other

cases to avoid redundancy in Table 4.
�4 In the case of No. 33, Ixð ~ffQ; zo ðs2Þ;QÞ ¼ 4 and Iyð ~ffQ; zo ðs2Þ;QÞ ¼ 2.
�5 In the case of No. 61, we omit weak-bitangent lines of type L4 except for L4ðx; yÞ.
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½hPi;Pji�1ai; ja6 ¼

1 1 1 1 1=2 1=2

1 2 2 2 1 1

1 2 3 3 3=2 3=2

1 2 3 4 2 2

1=2 1 3=2 2 3=2 1

1=2 1 3=2 2 1 3=2

2
666666664

3
777777775
:

By Lemma 5.1, the sections s1, s5 and s6 are integral sections. Since the

configuration of reducible fibers is either III, I2 or 2I2, we have

hPi;Pii ¼ 2� ai þ bi
2

ði ¼ 1; 5; 6Þ;

hPj ;Pji ¼ 2þ 2sj �O�
aj þ bj

2
ð j ¼ 2; 3; 4Þ;

where ðai; biÞ ¼ ðcðvðxÞ; siÞ; cðy; siÞÞð¼ ðsi �YvðxÞ;1; si �Yy;1ÞÞ. From the matrix

½hPi;Pji�1ai; ja6, we infer the following:

si s1 s2 s3 s4 s5 s6

si �O 0 0 1 1 0 0

ai þ bi 2 0 2 0 1 1 .

Hence, s1, s2, s3, s4, s5 and s6 satisfy

ðai; biÞ ¼
ð1; 1Þ for i ¼ 1; 3

ð0; 0Þ for i ¼ 2; 4

ð0; 1Þ or ð1; 0Þ for i ¼ 5; 6:

8><
>:

By Lemmas 2.11 and 2.12, ~ffQ; zoðs1Þ is a line and ~ffQ; zoðs2Þ is a smooth conic.

In particular, their types are L3 and C1.

Claim: ða5; b5Þ0 ða6; b6Þ.

Proof of Claim. Assume that ða5; b5Þ ¼ ða6; b6Þ. By Theorem 2.8, we

have hP5;P6i ¼ 3=2� s5 � s6. This is impossible as hP5;P6i ¼ 1.

Therefore, for s5 and s6, the following conditions hold:
� ~ffQ; zoðsiÞ is of type L1 if ðcðvðxÞ; siÞ; cðy; siÞÞ ¼ ð0; 1Þ.
� ~ffQ; zoðsiÞ is of type C2 if ðcðvðxÞ; siÞ; cðy; siÞÞ ¼ ð1; 0Þ.

Hence, the type of ð ~ffQ; zoðs1Þ; ~ffQ; zoðs2Þ; ~ffQ; zoðs5Þ; ~ffQ; zoðs6ÞÞ is

ðL3;C1;L1;C2Þ or ðL3;C1;C2;L1Þ:

By relabeling s5 and s6 if necessary, we may assume that they are as in Table 4.

As for s3 and s4, we have

si �O ¼ 1 ði ¼ 3; 4Þ and cðvðxÞ; siÞ ¼ cðy; siÞ ¼
1 i ¼ 3

0 i ¼ 4

�
: r
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In the other cases except for No. 40, for weak-bitangent lines of types L4

and Li ð6a ia 10Þ, we see that all possible cases are classified by Lemma 5.2.

In the case of No. 40, weak-bitangent lines of types L4 and Li ð6a ia 10Þ are
also classified below.

Lemma 5.3. In the case of No. 40, let P1, P2 be a basis such that types

of ~ffQ; zoðsPi
Þ are those indicated in No. 40 in Table 4. Put Q1 ¼ P1 þ

:
P2 and

Q2 ¼ P1 �
�
P2. Then ~ffQ; zoðsQi

Þ are of types L4ðx; zÞ and L4ðy; zÞ.

Proof. Before we prove our statement, we start with the following claim.

Claim: If hPs;Psi ¼ 1=3 and s �Yy;1 ¼ 1 then ~ffQ; zoðsÞ is a line of type

L4 and passes through a cusp and the node z.

Proof of Claim. If contrvðs; sÞ0 0, we have

contr�ðs; sÞ ¼ 2=3 ð� ¼ x; yÞ and contrzðs; sÞ ¼ 1=2:

By Lemma 5.1, s is integral. Hence, s is a line-section and we have

1=3 ¼ 3=2� ðcontrvðxÞðs; sÞ þ contrvðyÞðs; sÞ þ contrvðzÞðs; sÞÞ:

Hence the possibilities for contrvð�Þðs; sÞ are as follows:

ðcontrvðxÞðs; sÞ; contrvðyÞðs; sÞÞ ¼ ð2=3; 0Þ or ð0; 2=3Þ;

contrvðzÞðs; sÞ ¼ 1=2:

A line ~ffQ; zoðsÞ passes through a cusp and the node z in both the cases of

ðcontrvðxÞðs; sÞ; contrvðyÞðs; sÞÞ ¼ ð2=3; 0Þ, ð0; 2=3Þ.
Now we go back to prove our statement. As ðsP1

þ sP2
Þ �Yy;1 ¼ 1, we

have s �Yy;1 ¼ 1 by Corollary 2.7. Since sQi
�Yy;1 ¼ 1 and hQi;Qii ¼ 1=3,

any ~ffQ; zoðsQi
Þ is of type L4 through a cusp and z. Also, as Q1 0 _GGQ2, the

~ffQ; zoðsQi
Þ are distinct lines. Hence, we obtain lines of types L4ðx; zÞ and

L4ðy; zÞ. r

In the next section, for our classification of weak-bitangent lines, we

consider weak-bitangent lines of types L1, L2, L3 and L5.

5.2. A classification of weak-bitangent lines via Mordell-Weil lattices. We

next consider characterizations of weak-bitangent lines via Mordell-Weil

lattices. Let us start with the following proposition.

Proposition 5.4. Let Q be an irreducible quartic curve with double points

only. For s A MWðSQ; zoÞ, the following conditions (i) and (ii) are equivalent:

( i ) ~ffQ; zoðsÞ is a weak-bitangent line of type L3 or L5.

(ii) s �Yy;1 ¼ 1 and there exists a positive integer ns such that hPs;Psi ¼
3=2� ns=ðns þ 1Þ.
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Proof. In the case when Q has three cusps, there exists no weak-

bitangent line of type L3. In fact, if such a line exists, it gives rise to a

section s with hPs;Psi ¼ 5=6. On the other hand, as EQ; zoðCðtÞÞF h1=6il
Z=3Z, there exists no CðtÞ-rational point such that its height pairing equals

5=6. This leads us to a contradiction. Therefore, we omit the case of No. 61.

By our choice of zo, jQ; zo has a singular fiber Fy of type I2. By [13,

Table 6.2], the other reduced fibers of jQ; zo are of types III, IV and Ib ðbb 2Þ.
For each case, if contrvðxÞðs; sÞ0 0, it is as follows:

Type of FvðxÞ contrvðxÞðs; sÞ
III 1=2

IV 2=3

Ib kðb� kÞ=b (if s �YvðxÞ;k ¼ 1)

Assume that ~ffQ; zoðsÞ is a weak-bitangent line of type L3 or L5. Then

s �Yy;1 ¼ 1 and there exists a unique x0 A SingðQÞ \ ~ffQ; zoðsÞ. Then by our

construction of SQ; zo , we have

contrvðx0Þðs; sÞ ¼

1=2 if Fvðx0Þ is of type III;

2=3 if Fvðx0Þ is of type IV;

kðb� kÞ=b if Fvðx0Þ is of type Ib ðbb 2Þ and

s �Yvðx0Þ;k ¼ 1:

8>>><
>>>:

For weak-bitangent lines of types L3 and L5, the following conditions

hold:
� s �Yvðx0Þ;1 ¼ 1 if Fvðx0Þ is of type III,
� s �Yvðx0Þ;1 ¼ 1 or s �Yvðx0Þ;2 ¼ 1 if Fvðx0Þ is of type IV, and
� s �Yvðx0Þ;1 ¼ 1 or s �Yvðx0Þ;b�1 ¼ 1 if Fvðx0Þ is of type Ib.

Hence ns ¼ 1; 2 or b� 1 if Fvðx0Þ is of type III, IV or Ib, respectively.

Conversely, assume that the condition (ii) in the statement holds. Then

as s �Yy;1 ¼ 1, s is an integral section by Lemma 5.1. Hence we have

hPs;Psi ¼ 3=2� ns=ðns þ 1Þ ¼ 3=2�
X

x A SingðQÞ
nx=ðnx þ 1Þ:

Hence,
P

x A SingðQÞ nx=ðnx þ 1Þ ¼ ns=ðns þ 1Þ < 1: From the above possible

values of contrvðxÞðs; sÞ, there exists a unique x0 A SingðQÞ \ ~ffQ; zoðsÞ. Also

s �Yvðx0Þ;1 ¼ 1 or s �Yvðx0Þ;b�1 ¼ 1 if FvðxÞ is of type Ib. By our construction

of SQ; zo ,
~ffQ; zoðsÞ is of type L5, if x0 is a node and ~ffQ; zoðsÞ is an inflectional

tangent to one of the branches, while ~ffQ; zoðsÞ is of type L3 for the remaining

cases. r

Similarly, we obtain the following proposition.
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Proposition 5.5. Let Q be a singular quartic curve satisfying ðyÞ. For

s A MWðSQ; zoÞ, the following conditions (i) and (ii) are equivalent:

( i ) ~ffQ; zoðsÞ is a weak-bitangent line of type L1 or L2.

(ii) s �Yy;1 ¼ 1, hPs;Psi ¼ 3=2 and s �O ¼ 0.

Moreover, in the cases other than No. 24 and 61, (i) is equivalent to the

following condition (ii) 0:

(ii) 0 s �Yy;1 ¼ 1 and hPs;Psi ¼ 3=2.

We next classify weak-bitangent lines of types L1, L2, L3 and L5.

Let P1; . . . ;Pn and Pt be generators of EQ; zoðCðtÞÞ described just after

Lemma 5.1. For Q A EQ; zoðCðtÞÞ, we put

Q ¼ ½c1�P1 þ
:
� � � þ

:
½cn�Pn þ

:
½ct�Pt;

where ci ð1a ia nÞ, ct A Z. Note that ct ¼ 0 if Pt ¼ O. We classify weak-

bitangent lines of types L1 and L2 by vectors t½c1; . . . ; cn� if Pt ¼ O and
t½c1; . . . ; cn; ct� if Pt 0O. Similarly, t½c1; . . . ; cn�x and t½c1; . . . ; cn; ct�x denote

weak-bitangent lines of types L3ðxÞ and L5ðxÞ.

Theorem 5.6. If ~ffQ; zoðsQÞ is of type L1, L2, L3 or L5, then t½c1; . . . ; cn�,
t½c1; . . . ; cn; ct�, t½c1; . . . ; cn�x and t½c1; . . . ; cn; ct�x are given as in Table 5.

Table 5

No. SingðQÞ L1 or L2 L3 or L5

No. 4 ðx;A1Þ

1

�1
1

�1
1

0

2
666666664

3
777777775

1

0

�1
0

1

0

2
666666664

3
777777775

1

�1
1

0

�1
0

2
666666664

3
777777775

1

0

�1
1

�1
0

2
666666664

3
777777775

1

�1
0

1

0

�1

2
666666664

3
777777775

1

0

0

�1
0

1

2
666666664

3
777777775

1

0

0

0

0

�1

2
666666664

3
777777775

1

�1
0

0

0

1

2
666666664

3
777777775

0

1

0

�1
1

0

2
666666664

3
777777775

0

�1
0

0

1

0

2
666666664

3
777777775

0

0

0

0

1

0

2
666666664

3
777777775

0

0

0

�1
1

0

2
666666664

3
777777775

0

0

1

�1
0

1

2
666666664

3
777777775

0

�1
1

�1
0

1

2
666666664

3
777777775

0

0

1

0

0

�1

2
666666664

3
777777775

0

�1
1

0

0

�1

2
666666664

3
777777775

1

0

0

0

0

0

2
666666664

3
777777775
x

1

�1
0

0

0

0

2
666666664

3
777777775
x

0

0

0

�1
1

1

2
666666664

3
777777775
x

0

0

0

0

1

�1

2
666666664

3
777777775
x

0

�1
1

0

0

0

2
666666664

3
777777775
x

0

0

1

�1
0

0

2
666666664

3
777777775
x
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Table 5 (cont.)

No. SingðQÞ L1 or L2 L3 or L5

No. 6 ðx;A2Þ

1

�1
1

�1
1

2
6666664

3
7777775

1

�1
1

0

�1

2
6666664

3
7777775

1

0

�1
0

1

2
6666664

3
7777775

1

0

�1
1

�1

2
6666664

3
7777775

1

�1
0

1

0

2
6666664

3
7777775

1

0

0

�1
0

2
6666664

3
7777775

0

0

1

0

0

2
6666664

3
7777775

0

�1
1

�1
0

2
6666664

3
7777775

0

�1
0

0

1

2
6666664

3
7777775

0

1

0

�1
1

2
6666664

3
7777775

1

0

0

0

0

2
6666664

3
7777775
x

1

�1
0

0

0

2
6666664

3
7777775
x

0

�1
1

0

0

2
6666664

3
7777775
x

0

0

1

�1
0

2
6666664

3
7777775
x

0

0

0

0

1

2
6666664

3
7777775
x

0

0

0

�1
1

2
6666664

3
7777775
x

No. 7
ðx;A1Þ
ðy;A1Þ

0

0

0

G1

1

2
6666664

3
7777775

0

�1
0

1

G1

2
6666664

3
7777775

�1
0

1

0

G1

2
6666664

3
7777775

1

�1
1

0

G1

2
6666664

3
7777775

1

0

0

0

0

2
6666664

3
7777775
x

0

�1
1

1

0

2
6666664

3
7777775
x

0

0

�1
1

0

2
6666664

3
7777775
x

�1
1

0

0

0

2
6666664

3
7777775
x

0

0

1

0

0

2
6666664

3
7777775
y

�1
0

0

1

0

2
6666664

3
7777775
y

1

�1
0

1

0

2
6666664

3
7777775
y

0

�1
1

0

0

2
6666664

3
7777775
y
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Table 5 (cont.)

No. SingðQÞ L1 or L2 L3 or L5

No. 10 ðx;A3Þ

0

1

0

G1

2
66664

3
77775

1

�1
1

G1

2
66664

3
77775
�1
0

1

G1

2
66664

3
77775

1

0

0

0

2
66664

3
77775
x

0

0

1

0

2
66664

3
77775
x

1

�1
0

0

2
66664

3
77775
x

0

�1
1

0

2
66664

3
77775
x

No. 12
ðx;A2Þ
ðy;A1Þ

2

0

0

1

2
66664

3
77775
�1
0

�1
1

2
66664

3
77775

1

1

�1
0

2
66664

3
77775
�2
1

0

0

2
66664

3
77775

0

1

0

0

2
66664

3
77775
x

0

0

0

1

2
66664

3
77775
x

1

0

�1
1

2
66664

3
77775
x

�1
1

�1
0

2
66664

3
77775
x

0

0

1

0

2
66664

3
77775
y

0

1

�1
1

2
66664

3
77775
y

1

�1
0

1

2
66664

3
77775
y

No. 14

ðx;A1Þ
ðy;A1Þ
ðz;A1Þ

G1

1

1

0

2
66664

3
77775

G1

�1
1

0

2
66664

3
77775

1

0

0

1

2
66664

3
77775
z

1

0

0

�1

2
66664

3
77775
z

0

1

0

1

2
66664

3
77775
x

0

1

0

�1

2
66664

3
77775
x

0

0

1

1

2
66664

3
77775
y

0

0

1

�1

2
66664

3
77775
y
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Table 5 (cont.)

No. SingðQÞ L1 or L2 L3 or L5

No. 17 ðx;A4Þ
�1
�1
1

2
64

3
75 2

0

1

2
64

3
75 �2

1

0

2
64

3
75

0

1

0

2
64

3
75
x

0

0

1

2
64

3
75
x

1

�1
1

2
64

3
75
x

No. 18 ðx;D4Þ

G1

1

1

0

2
6664

3
7775

G1

�1
1

0

2
6664

3
7775 N=A

No. 20
ðx;A2Þ
ðy;A2Þ

0

0

3

2
64

3
75

1

0

1

2
64

3
75
x

0

1

�1

2
64

3
75
x

1

�1
�1

2
64

3
75
x

1

0

�1

2
64

3
75
y

0

1

1

2
64

3
75
y

1

�1
1

2
64

3
75
y

No. 22
ðx;A3Þ
ðy;A1Þ

0

G1

2

2
64

3
75

1

0

1

2
64

3
75
x

�1
0

1

2
64

3
75
x

1

1

0

2
64

3
75
y

�1
1

0

2
64

3
75
y

No. 23

ðx;A2Þ
ðy;A1Þ
ðz;A1Þ

G1

1

1

2
64

3
75

1

�1
1

2
64

3
75
x

�1
�1
1

2
64

3
75
x

0

�1
2

2
64

3
75
y

0

�2
1

2
64

3
75
z

No. 24

ðx;A1Þ
ðy;A1Þ
ðz;A1Þ
ðw;A1Þ

G1

1

1

0

2
6664

3
7775

G1

�1
1

0

2
6664

3
7775 N=A

No. 29 ðx;A5Þ
0

3

� �
1

1

� �
x

�1
1

� �
x
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(We give either t½c1; . . . ; cn� or t½�c1; . . . ;�cn� since they give the same line
~ffQ; zoðsQÞ.) Here, P1; . . . ;Pn and Pt are chosen in the following manner:

� For No. 12, 23, 24 and 33, types of ~ffQ; zoðsiÞ are the first types indicated

in the corresponding no. in Table 4.
� For the other remaining cases, the types of ~ffQ; zoðsiÞ are those indicated in

the corresponding no. in Table 4.

Proof. The case No. 4. Let G be the Gram matrix ½hPi;Pji�1ai; ja6 and

let c ¼ t½c1; . . . ; c6�. As for cðy; siÞ, the following holds:

si s1 s2 s3 s4 s5 s6

cðy; siÞ 1 0 1 0 1 0 .

We remark that sQ �Yy;1 ¼ 1 if and only if
P6

i¼1 cicðy; siÞ ¼ c1 þ c3 þ c5
is odd by Corollary 2.7.

a) The case when ~ffQ; zoðsQÞ is of type L1 or L2:

In this case, by Proposition 5.5, c1 þ c3 þ c5 is odd and ci A Z ði ¼ 1; . . . ; 6Þ
satisfy the following equality:

Table 5 (cont.)

No. SingðQÞ L1 or L2 L3 or L5

No. 30 ðx;D5Þ
1

G2

� �
N=A

No. 33
ðx;A4Þ
ðy;A1Þ

2

1

� � �2
1

� �
x

�1
2

� �
y

No. 37
ðx;A3Þ
ðy;A2Þ

N=A

0

3

� �
x

1

2

� �
y

�1
2

� �
y

No. 40

ðx;A2Þ
ðy;A2Þ
ðz;A1Þ

3

0

� � �1
2

� �
x

1

2

� �
y

No. 47 ðx;A6Þ N=A ½3�x

No. 49 ðx;E6Þ ½3� N=A

No. 56
ðx;A4Þ
ðy;A2Þ

N=A ½5�y

No. 61

ðx;A2Þ
ðy;A2Þ
ðz;A2Þ

3

0

� �
N=A
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3=2 ¼ tcGc

¼ c1 þ c2 þ c3 þ c4 þ
c5 þ c6

2

� �2

þ c2 þ c3 þ c4 þ
c5 þ c6

2

� �2

þ 2
c3

2
þ c4 þ

c5 þ c6

2

� �2

þ c3
2

2
þ c5

2

2
þ c6

2

2
: ð2Þ

From the above equality, we see that jcija 1 ði ¼ 3; 5; 6Þ.
Claim: jc5j0 jc6j.

Proof of Claim. If jc5j ¼ jc6j, we see that both ðc5 þ c6Þ=2 and

ðc52 þ c6
2Þ=2 are integers. Hence, the right hand side of (2) becomes an

integer but this is impossible. Therefore, jc5j0 jc6j.
� The case ðc3; c5; c6Þ ¼ ð1; 1; 0Þ. In this case, the equality (2) becomes

1

2
¼ c1 þ c2 þ c4 þ

3

2

� �2

þ c2 þ c4 þ
3

2

� �2

þ 2ðc4 þ 1Þ2:

Hence, we have c4 ¼ �1 and

1

2
¼ c1 þ c2 þ

1

2

� �2

þ c2 þ
1

2

� �2

:

This implies that the possibilities for ðc1; c2Þ are

ð0; 0Þ; ð�1; 0Þ; ð0;�1Þ; ð1;�1Þ:

Since c1 þ c3 þ c5 is odd, c ¼ t½�1; 0; 1;�1; 1; 0�; t½1;�1; 1;�1; 1; 0� in this

case.
� The case ðc3; c5; c6Þ ¼ ð0; 1; 0Þ. In this case, we have

1 ¼ c1 þ c2 þ c4 þ
1

2

� �2

þ c2 þ c4 þ
1

2

� �2

þ 2 c4 þ
1

2

� �2

:

Hence c4 must be 0 or �1 and we have

c4 ðc1; c2Þ

0 ð0; 0Þ, ð�1; 0Þ, ð0;�1Þ, ð1;�1Þ
�1 ð1; 0Þ, ð0; 0Þ, ð0; 1Þ, ð�1; 1Þ.

Since c1 þ c3 þ c5 is odd, c ¼ t½0; 0; 0; 0; 1; 0�, t½0;�1; 0; 0; 1; 0�,
t½0; 0; 0;�1; 1; 0�, t½0; 1; 0;�1; 1; 0� in this case.

� The case ðc3; c5; c6Þ ¼ ð�1; 1; 0Þ. In this case, we have

1

2
¼ c1 þ c2 þ c4 �

1

2

� �2

þ c2 þ c4 �
1

2

� �2

þ 2c24 :
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Hence c4 ¼ 0 and ðc1; c2Þ ¼ ð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð�1; 1Þ. As c1 þ c3 þ c5 is odd,

c ¼ t½1; 0;�1; 0; 1; 0�; t½�1; 1;�1; 0; 1; 0�. For the cases c5 ¼ 0 and �1, we can

compute c similarly and we have the list for No. 4, L1 and L2.

b) The case when ~ffQ; zoðsQÞ is of type L3 or L5:

In this case, such a line passes through the A1-singularity x. By Prop-

osition 5.4 and its proof, ~ffQ; zoðsQÞ is of type L3 or L5 if and only if ci
ði ¼ 1; . . . ; 6Þ satisfy the following equality and c1 þ c3 þ c5 is odd:

1 ¼ c1 þ c2 þ c3 þ c4 þ
c5 þ c6

2

� �2

þ c2 þ c3 þ c4 þ
c5 þ c6

2

� �2

þ 2
c3

2
þ c4 þ

c5 þ c6

2

� �2

þ c3
2

2
þ c5

2

2
þ c6

2

2
:

By a similar argument to the above case for L1 and L2, we have the list for

No. 4, L3 and L5. Note that the assertion in other cases except for No. 24

and 61 can be proven similarly. See Remark 5.7 below.

The case No. 24. There exists no weak-bitangent line of type L3 or L5.

Therefore, in this case, we only need to consider the case when ~ffQ; zoðsQÞ is of

type L1 or L2. Let c ¼ t½c1; c2; c3; ct� and put av ¼ sQ �Yv;1. By Proposition

5.5, sQ is a line-section for a line of type L1 or L2 if and only if Q satisfies the

following conditions:

ðiÞ hQ;Qi ¼ 3=2; ðiiÞ sQ �O ¼ 0 and ðiiiÞ ay ¼ 1:

Claim 1: hQ;Qi ¼ 3=2 if and only if jcij ¼ 1 ði ¼ 1; 2; 3Þ.

Proof of Claim. Since hQ;Qi ¼ ðc12 þ c2
2 þ c3

2Þ=2, our claim follows.

Claim 2: If hQ;Qi ¼ 3=2, then avð�Þ ¼ 0 ð� ¼ x; y; z;wÞ if and only if Q

satisfies (ii) and (iii).

Proof of Claim. Recall

hQ;Qi ¼ 2þ 2sQ �O�
1

2
ðavðxÞ þ avðyÞ þ avðzÞ þ avðwÞ þ ayÞ:

Since hQ;Qi ¼ 3=2, the above equality becomes

� 1

2
¼ 2sQ �O�

1

2
ðavðxÞ þ avðyÞ þ avðzÞ þ avðwÞ þ ayÞ:

As av ¼ 0 or 1, possibilities for ðsQ �O; avðxÞ; avðyÞ; avðzÞ; avðwÞ; ayÞ are

ð0; 1; 0; 0; 0; 0Þ; ð0; 0; 1; 0; 0; 0Þ; ð0; 0; 0; 1; 0; 0Þ;

ð0; 0; 0; 0; 1; 0Þ; ð0; 0; 0; 0; 0; 1Þ; ð1; 1; 1; 1; 1; 1Þ:
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Hence, sQ �O ¼ 0 and ay ¼ 1 if and only if ðavðxÞ; avðyÞ; avðzÞ; avðwÞÞ ¼
ð0; 0; 0; 0Þ.

By Claims 1 and 2, ~ffQ; zoðsQÞ is of type L1 or L2 if and only if jcij ¼ 1

ði ¼ 1; 2; 3Þ and avð�Þ ¼ 0 ð� ¼ x; y; z;wÞ. In the following, consider a condi-

tion for ci to satisfy avð�Þ ¼ 0 ð� ¼ x; y; z;wÞ under jcij ¼ 1 ði ¼ 1; 2; 3Þ. As for

cðv; siÞ, we have the following table:

cðvðxÞ; siÞ cðvðyÞ; siÞ cðvðzÞ; siÞ cðvðwÞ; siÞ cðy; siÞ

s1 1 1 0 0 1

s2 0 1 1 0 1

s3 1 0 1 0 1

st 1 1 1 1 0 .

By our construction of SQ; zo , singular fibers of jQ; zo are of type I2 or III.

Hence, by Corollary 2.7, we have
� avðxÞ ¼ 0 if and only if c1 þ c3 þ ct is even,
� avðyÞ ¼ 0 if and only if c1 þ c2 þ ct is even,
� avðzÞ ¼ 0 if and only if c2 þ c3 þ ct is even, and
� avðwÞ ¼ 0 if and only if ct is even.

By Claim 1, ðavðxÞ; avðyÞ; avðzÞ; avðwÞÞ ¼ ð0; 0; 0; 0Þ if and only if ct is even.

Therefore, jcij ¼ 1 ði ¼ 1; 2; 3Þ and ct is even if and only if ~ffQ; zoðsQÞ is of

type L1 or L2. Since Pt ¼ O is a 2-torsion, we may assume ct ¼ 0. Hence,
~ffQ; zoðsQÞ depends on c1, c2 and c3 only. Therefore, line-points for weak-

bitangent lines of type L1 or L2 are given by Gt½1; 1; 1; 0�, Gt½1;�1; 1; 0� and
Gt½1; 1;�1; 0�.

We omit our proof for the case of No. 61 as we can prove it similarly.

r

Remark 5.7. Except for the cases No. 24 and 61, our proof is based on

the following form of tcGc (we omit those cases of ranka 2, and some obvious

cases):

No. 4 c1 þ c2 þ c3 þ c4 þ c5
2 þ

c6
2

� 	2 þ c2 þ c3 þ c4 þ c5
2 þ

c6
2

� 	2
þ 2 c3

2 þ c4 þ c5
2 þ

c6
2

� 	2 þ c3
2

2 þ
c5

2

2 þ
c6

2

2

No. 6 4
3

c1
2 þ c2 þ 3

4 c3 þ
c4
2 þ

c5
4

� 	2 þ c1
2

2 þ
c3
2 þ c4 þ c5

2

� 	2 þ c3
2

2 þ
c5

2

2

No. 7 c1 þ c2 þ c3
2 þ

c4
2

� 	2 þ c2 þ c3
2 þ

c4
2

� 	2 þ c3
2

2 þ
c4

2

2 þ
c5

2

2

No. 10 c1
2 þ c2 þ c3

2

� 	2 þ c1
2

2 þ
c3

2

2 þ
c4

2

2

No. 12 1
3 c1 þ c2

2 �
c4
2

� 	2 þ c2
2 þ c3 þ c4

2

� 	2 þ c2
2

2 þ
c4

2

2

No. 17 3
10 c1 þ c2

3 �
c3
3

� 	2 þ 2
3 c2 þ c3

2

� 	2 þ c3
2

2

No. 20 2
3 c1 þ c2

2

� 	2 þ c2
2

2 þ
c3

2

6

No. 23 c1
2

2 þ
1
3 c2 þ c3

2

� 	2 þ c3
2

4 .
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Remark 5.8. From Table 5, we see that there are many examples that

satisfy the assumption of Theorem 1.3.

6. Applications of Theorems 1.3 and 5.6

6.1. Proof of Corollary 1.5. We may assume that C1 þ C2 is given by an

equation described in Lemma 4.1, and let zo ¼ ½0; 1; 0�. Then the structure

of EC1þC2; zoðCðtÞÞ corresponds to that of No. 24 in Table 1. Choose a basis,

fP1;P2;P3g, of the free part of EC1þC2; zoðCðtÞÞ such that ~ffC1þC2; zo
ðsPi
Þ are the

first types indicated in No. 24 in Table 4. Define

Q1 :¼ ½�1�P1 þ
:
P2 þ

:
P3; Q2 :¼ P1 þ

:
½�1�P2 þ

:
P3;

Q3 :¼ P1 þ
:
P2 þ

:
½�1�P3; Q4 :¼ P1 þ

:
P2 þ

:
P3:

Then, from Theorem 5.6, ~ffC1þC2; zo
ðsQi
Þ ði ¼ 1; 2; 3; 4Þ are distinct bitangent lines

of C1 þ C2. On the other hand, Q4 ¼ Q1 þ
:
Q2 þ

:
Q3 holds. By Theorem 1.3,

the eight points of ðC1 þ C2Þ \ ð
S4

i¼1
~ffC1þC2; zo

ðsQi
ÞÞ lie on a conic C. Hence

our statement follows. r

Remark 6.1. Corollary 1.5 is well-known as Salmon’s theorem. Its his-

tory and references to this well-known result can be found in [6, Chapter 2].

6.2. Proofs of Corollaries 1.6 and 1.7. We may assume that the quartic

curves are given by equations described in Lemma 4.1. Let zo ¼ ½0; 1; 0�. We

choose bases of EQ; zoðCðtÞÞ as follows:

Corollary 1.6: The structure of EQ; zoðCðtÞÞ corresponds to that of No. 14.

By Lemma 5.2, we can choose a basis fP1;P2;P3;P4g as follows:

EQ; zoðCðtÞÞ ð ~ffQ; zoðsP1
Þ; ~ffQ; zoðsP2

Þ; ~ffQ; zoðsP3
Þ; ~ffQ; zoðsP4

ÞÞ

No. 14 ðA�1 Þ
l4 ðL4ðx; yÞ;L4ðy; zÞ;L4ðx; zÞ;C4Þ .

Corollary 1.7: The structure of EQ; zoðCðtÞÞ corresponds to that of No. 18.

Choose its basis as in Table 4. By abuse of notation, we denote it by

fP1;P2;P3g.
For each case, we define

Q1 :¼ ½�1�P1 þ
:
P2 þ

:
P3; Q2 :¼ P1 þ

:
½�1�P2 þ

:
P3;

Q3 :¼ P1 þ
:
P2 þ

:
½�1�P3; Q4 :¼ P1 þ

:
P2 þ

:
P3:

By a similar argument to the previous section, our statements follow. r

6.3. Another application. We give another application.
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Corollary 6.2. Let Q be an irreducible quartic curve with exactly two

singularities x and y such that x is a simple cusp and y is a node. Then

( i ) there exist four weak-bitangent lines L1, L2, L3 and L4 of type L3ðxÞ,
and there exist three weak-bitangent lines M1, M2 and M3 of type

L3ðyÞ or L5.

(ii) If Mi ði ¼ 1; 2; 3Þ are of type L3, then for each pair ðLi;LjÞ ð1a i <

ja 4Þ, there exists a unique pair ðMaij ;Mbij Þ ð1a aij < bij a 3Þ such

that

ð?Þ the six points in Q \ ðLi þ Lj þMaij þMbij Þ all lie on a conic.

Proof. (i) We may assume that Q is given by an equation described

in Lemma 4.1. Let zo ¼ ½0; 1; 0�. Then the structure of EQ; zoðCðtÞÞ corre-

sponds to that of No. 12 in Table 1. By Lemma 5.2, we choose a basis,

fP1;P2;P3;P4g, of EQ; zoðCðtÞÞ such that the type of ð ~ffQ; zoðsP1
Þ; ~ffQ; zoðsP2

Þ;
~ffQ; zoðsP3

Þ; ~ffQ; zoðsP4
ÞÞ is the first type indicated in No. 12 in Table 4. Define

Q1 :¼ P2, Q2 :¼ P4, Q3 :¼ P1 þ
:
½�1�P3 þ

:
P4, Q4 :¼ ½�1�P1 þ

:
P2 þ

:
½�1�P3,

R1 :¼ P3, R2 :¼ P2 þ
:
½�1�P3 þ

:
P4 and R3 :¼ P1 þ

:
½�1�P2 þ

:
P4. From Theo-

rem 5.6, we have
� ~ffQ; zoðsQl

Þ ðl ¼ 1; 2; 3; 4Þ are of type L3ðxÞ,
� ~ffQ; zoðsRm

Þ ðm ¼ 1; 2; 3Þ are of type L3ðyÞ or L5, and
� the seven lines are distinct.

Put Ll ¼ ~ffQ; zoðsQl
Þ and Mm ¼ ~ffQ; zoðsRm

Þ ðl ¼ 1; 2; 3; 4; m ¼ 1; 2; 3Þ.
(ii) Suppose that Mi ði ¼ 1; 2; 3Þ are of type L3.

Claim 1: For ðLi;LjÞ ð1a i < ja 4Þ, there exists ðMaij ;Mbij Þ ð1a aij <

bij a 3Þ satisfying ð?Þ.

Proof of Claim. Let us only consider the case when i ¼ 1 and j ¼ 2,

since the other cases follow similarly. We have R2 ¼ Q1 þ
:
Q2 þ

:
½�1�R1.

By Theorem 1.3, the six points of Q \ ðL1 þ L2 þM1 þM2Þ lie on a conic.

Hence, ðM1;M2Þ satisfies ð?Þ for ðL1;L2Þ.

Claim 2: For ðLi;LjÞ, there exists a unique pair satisfying ð?Þ.

Proof of Claim. Suppose that there exist two pairs as in Claim 1. Since

there exist three lines of type L3ðyÞ, two pairs of weak-bitangent lines of type

L3ðyÞ have at least one common line. Hence we may assume that two pairs

satisfying ð?Þ for ðLi;LjÞ are either ðMaij ;Mbij Þ or ðMaij ;Mcij Þ. Let Cij and C 0ij
be two conics such that

ðLi þ Lj þMaij þMbij Þ \ Q � Cij and ðLi þ Lj þMaij þMcij Þ \ Q � C 0ij:

Putting fx; pi; pjg ¼ Q \ ðLi þ LjÞ, fy; qaijg ¼ Q \Maij , fy; qbijg ¼ Q \Mbij and

fy; qcijg ¼ Q \Mcij , we have
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CijjQ ¼ 2xþ 2yþ pi þ pj þ qaij þ qbij and

C 0ijjQ ¼ 2xþ 2yþ pi þ pj þ qaij þ qcij ;

where CjQ denotes the divisor on a curve C cut out by Q. Then Cij and C 0ij
pass through the five points x, y, pi, pj and qaij . Since there are no four

colinear points among the above five points, we have Cij ¼ C 0ij. Therefore

qbij ¼ qcij and Mbij ¼Mcij . r

Remark 6.3. The referee informed the author that Corollary 6.2 is

more obvious than Corollaries 1.5, 1.6 and 1.7. In fact, we find this theorem

from the application of a standard qudratic transformation, centered at the two

singularities and a smooth point, and the group law on the resulting smooth

cubic.
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