Geometry of weak-bitangent lines to quartic curves and sections on certain rational elliptic surfaces

Ryosuke Masuya
(Received November 6, 2021)
(Revised September 7, 2023)

Abstract

It is well known that a smooth quartic curve has twenty-eight bitangent lines. For a reduced, possibly singular quartic curve, we introduce the notion of weakbitangent line. This can be considered as a generalization of bitangent lines. In this article, we consider weak-bitangent lines for certain reduced quartic curves from the viewpoint of rational elliptic surfaces. We utilize Mumford representations of semireduced divisors in order to deal with equations of weak-bitangent lines for certain reduced quartic curves. As a result, we can give new proofs for some classical results on singular quartic curves and their bitangent lines.

1. Introduction

Bitangent lines to a smooth quartic curve have been studied by various mathematicians (see [6, Chapter 6] for details). For a reduced, possibly singular quartic curve, we can consider a generalization of bitangent lines as follows:

Definition 1.1. Let 2 be a reduced quartic curve. A line L is said to be a weak-bitangent line if for any $p \in \mathscr{Q} \cap L$, the intersection multiplicity of \mathscr{Q} and L at p is even.

In this article, we study weak-bitangent lines for certain reduced quartic curves in $\mathbb{P}^{2}=\mathbb{P}^{2}(\mathbb{C})$ (\mathbb{C} denotes the field of complex numbers). As we will explain later, for a reduced quartic curve $\mathscr{2}$ which is not the union of four concurrent lines and a smooth point z_{o} on $\mathscr{2}$, we can construct a rational elliptic surface in a canonical way. In [18], Shioda studied a smooth quartic curve and its twenty-eight bitangent lines from the viewpoint of the MordellWeil lattice of type E_{7}^{*}. Also, in [2, 3, 4], Bannai and Tokunaga studied the embedded topology of plane curve arrangements of a certain singular quartic curve, its weak-bitangent lines and conics by using a rational elliptic surface. In this article, we study weak-bitangent lines of a reduced quartic curve \mathcal{Q}

[^0]along similar lines to $[2,3,4,18]$ in the case when 2 satisfies the following condition (\dagger):
(\dagger) $\mathscr{2}$ is irreducible or is the union of smooth conics $\mathscr{C}_{1}+\mathscr{C}_{2}$, where \mathscr{C}_{1} and \mathscr{C}_{2} meet transversely.
Before we go on to explain our results in detail, we briefly summarize our construction of a rational surface. (See Section 2.3 for a detailed description of our construction.)

Let $\mathcal{2}$ be a reduced quartic curve which is not the union of four concurrent lines and let z_{o} be a smooth point on 2 . Let S_{2} be the minimal resolution of the double cover of \mathbb{P}^{2} branched along 2 . The pencil of lines passing through z_{o} induces a pencil of genus 1 curves $\Lambda_{z_{o}}$ on S_{2}, which has a unique base point of multiplicity 2 . We resolve the indeterminacy for the rational map induced by $\Lambda_{z_{o}}$ and obtain an elliptic fibration $\varphi_{2, z_{o}}: S_{2, z_{o}} \rightarrow \mathbb{P}^{1}$ with a section O arising from z_{o}. We denote the canonical map from $S_{\mathscr{2}, z_{o}}$ to \mathbb{P}^{2} by $\tilde{f}_{2, z_{o}}: S_{2, z_{o}} \rightarrow \mathbb{P}^{2}$.

$$
\mathbb{P}^{2} \leftarrow S_{2} \leftarrow S_{2, z_{o}} .
$$

For a section $s(\neq O), \tilde{f}_{2, z_{o}}(s)$ becomes a curve in \mathbb{P}^{2}.
Let $E_{Q, z_{o}}$ be the generic fiber of $\varphi_{2, z_{o}}$. It is well known that the group of sections of $\varphi_{2, z_{o}}$ can be canonically identified with the group of $\mathbb{C}(t)$ rational points of $E_{\mathcal{Q}, z_{o}}$. For a rational point P, we denote the corresponding section by s_{P}. For a section s, we denote the corresponding rational point by P_{s}.

Definition 1.2. (i) A section s of $S_{\mathscr{Q}_{2}, z_{o}}$ is said to be a line-section if $\tilde{f}_{2, z_{o}}(s)$ is a line in \mathbb{P}^{2}. (ii) A $\mathbb{C}(t)$-rational point P is said to be a line-point if s_{P} is a line-section.

As it is shown in Section 2.4, a weak-bitangent line gives rise to two linesections of $S_{2, z_{o}}$ and vice-versa, if 2 and z_{o} satisfy (\dagger) and the following condition (\ddagger):
(\ddagger) The tangent line at z_{o} meets 2 at two distinct points other than z_{o}. Then the pull-back of a weak-bitangent line L contains two sections s_{L}^{+}and s_{L}^{-} of $S_{Q_{, 2}}$. In particular, a weak-bitangent line gives rise to two rational points $P_{s_{L}^{+}}$and $P_{s_{L}^{-}}=[-1] P_{s_{L}^{+}}$.

Under these settings, we obtain the following result:
Theorem 1.3. Let 2 be a reduced quartic curve satisfying (\dagger) and let z_{o} be a smooth point on $\mathscr{2}$ satisfying (\ddagger). For three distinct weak-bitangent lines L_{1}, L_{2} and L_{3}, let $P_{i}(i=1,2,3)$ be line-points such that $L_{i}=\tilde{f}_{2, z_{o}}\left(s_{P_{i}}\right)$. If $P_{4}=P_{1} \dot{+} P_{2} \dot{+} P_{3}$ is a line-point, then all intersection points of $\mathscr{2}$ and $L_{1}+L_{2}+L_{3}+L_{4}$ lie on a conic, where L_{4} is the line $\tilde{f}_{2, z_{o}}\left(s_{P_{4}}\right)$.

In the proof of Theorem 1.3, we utilize Mumford representations in order to describe divisor classes on elliptic curves. (See Section 3 for the definition and details of Mumford representations.) Mumford representations were first considered in [14] in order to describe the Jacobian of hyperelliptic curves explicitly. They have played important roles in hyperelliptic curve cryptography (see [7]).

Remark 1.4.
(i) For each $L_{i}(i=1,2,3)$ in Theorem 1.3, there are two choices of P_{i} up to $[\pm 1]$ since $L_{i}=\tilde{f}_{2, z_{o}}\left(s_{P_{i}}\right)=\tilde{f}_{2, z_{o}}\left(s_{[-1] P_{i}}\right)$ holds. Hence, there are eight possibilities for P_{4}. Therefore, since $\tilde{f}_{2, z_{o}}\left(s_{P_{4}}\right)=\tilde{f}_{2, z_{o}}\left(s_{[-1] P_{4}}\right)$, there are four curves induced by the candidates of P_{4}. When one of the candidates of P_{4} is a line-point, the assertion of Theorem 1.3 holds for its corresponding weak-bitangent line.
(ii) Let L_{1}, L_{2} and L_{3} be distinct bitangent lines of a smooth quartic curve 2. A triad $\left(L_{1}, L_{2}, L_{3}\right)$ is said to be a syzygetic triad if the six intersection points of 2 and $L_{1}+L_{2}+L_{3}$ lie on a conic C. (It is well-known that the remaining two points in $2 \cap C$ give rise to a bitangent line.) If we can choose rational points P_{1}, P_{2}, and P_{3} such that (i) $L_{i}=\tilde{f}_{2, z_{o}}\left(s_{P_{i}}\right)$ and (ii) $P_{1}+P_{2}+P_{3}$ is a line-point, then $\left(L_{1}, L_{2}, L_{3}\right)$ becomes a syzygetic triad by Theorem 1.3. This means that the existence of such line-points gives a sufficient condition for $\left(L_{1}, L_{2}, L_{3}\right)$ to be a syzygetic triad.

Furthermore, we also give a classification (Theorem 5.6) of weak-bitangent lines of singular quartic curves satisfying (\dagger) by using a result of Oguiso-Shioda ([15]) which gives a classification of Mordell-Weil lattices of rational elliptic surfaces. By Theorems 1.3 and 5.6, we have the following classical results:

Corollary 1.5 ([8, §3], [6, Ch. 2], [16, p. 345]). Let $C_{1}, C_{2} \subset \mathbb{P}^{2}$ be smooth conics meeting transversely and let L_{1}, \ldots, L_{4} be their four common tangent lines. Then the eight points of tangency lie on a conic.

Corollary $1.6([8, \S 3])$. If $\mathscr{Q} \subset \mathbb{P}^{2}$ is an irreducible quartic with three nodes, then the eight points of contact of 2 with its four bitangent lines all lie on a conic.

Corollary 1.7 ([8, §3]). An irreducible quartic with an ordinary triple point has four bitangent lines, whose eight points of contact all lie on a conic.

The organization of this article is as follows: In Section 2, we give a brief summary on concepts and results from the theory of elliptic surfaces necessary for our argument. In Section 3, we explain the Mumford representations
of semi-reduced divisors on hyperelliptic curves, which are key tools to prove Theorem 1.3. In Section 4, we prove Theorem 1.3. In Section 5, we classify weak-bitangent lines of certain singular quartic curves under the condition (\dagger). In Section 6, we prove Corollaries 1.5, 1.6 and 1.7.

2. Elliptic surfaces

Throughout this article, all surfaces and curves are defined over \mathbb{C}, unless otherwise stated.
2.1. Notation and terminology on elliptic surfaces. We here define some notation and terminology on elliptic surfaces. For general references, we refer to $[10,12,17]$.

Let $\varphi: S \rightarrow C$ be an elliptic surface over a smooth projective curve C satisfying the following conditions ($*$):

- φ is relatively minimal.
- φ has a distinguished section $O: C \rightarrow S$.
- φ has at least one singular fiber.

Throughout this article, we always assume that an elliptic surface satisfies the conditions (*).

Let E_{S} be the generic fiber of $\varphi . \quad E_{S}$ can be regarded as a curve of genus 1 defined over the field $\mathbb{C}(C)$ of rational functions of C, and we denote the set of $\mathbb{C}(C)$-rational points of E_{S} by $E_{S}(\mathbb{C}(C))$. In our setting, S is known as the Kodaira-Néron model of E_{S}. Let $\operatorname{MW}(S)$ be the set of sections of φ. For any $s \in \operatorname{MW}(S)$, the restriction of s to E_{S} gives a $\mathbb{C}(C)$-rational point of E_{S}. Here, we identify a section $s: C \rightarrow S$ with its image and we can identify $\operatorname{MW}(S)$ with $E_{S}(\mathbb{C}(C))$ through this correspondence. For $P \in E_{S}(\mathbb{C}(C))$, we denote the corresponding section by s_{P} and for $s \in \operatorname{MW}(S)$ we denote the corresponding rational point by P_{s}. By abuse of notation, we identify the section O with its restriction to E_{S}. We can regard E_{S} as an elliptic curve $\left(E_{S}(\mathbb{C}(C)), O\right)$ having a group structure with O being the identity. We denote the addition with respect to this group structure by $\dot{+}$. Note that, for $P, Q \in E_{S}, P+Q$ denotes the sum as divisors on E_{S}, while $P+Q$ denotes the sum of points in E_{S} with respect to the group structure. For $P \in E_{S}$, we denote the inverse of P with respect to $\dot{+}$ by $\dot{-} P$. For $m \in \mathbb{Z}$ and $P \in E_{S}$, we let

$$
[m] P=\overbrace{P \dot{+} \cdot+P,}^{m \text { terms if } m>0} \quad[m] P=\overbrace{-P-\cdots \dot{-P} P}^{|m| \text { terms if } m<0} \quad \text { and } \quad[0] P=O .
$$

Definition 2.1. A section $s \in \operatorname{MW}(S)$ is said to be an integral section if the intersection number $s \cdot O=0$.

For $v \in C$, we denote the corresponding fiber over v by $F_{v}=\varphi^{-1}(v)$. We define two finite subsets, $\operatorname{Sing}(\varphi)$ and $\operatorname{Red}(\varphi)$, of C concerning singular fibers as follows:

$$
\begin{aligned}
& \operatorname{Sing}(\varphi):=\left\{v \in C \mid F_{v} \text { is singular }\right\}, \\
& \operatorname{Red}(\varphi):=\left\{v \in \operatorname{Sing}(\varphi) \mid F_{v} \text { is reducible }\right\} .
\end{aligned}
$$

For $v \in \operatorname{Red}(\varphi)$, the irreducible decomposition of F_{v} is denoted by

$$
F_{v}=\Theta_{v, 0}+\sum_{i=1}^{m_{v}-1} a_{v, i} \boldsymbol{\Theta}_{v, i}
$$

where $\Theta_{v, 0}$ is the unique component with $\Theta_{v, 0} \cdot O=1$. We call $\Theta_{v, 0}$ the identity component of F_{v}. In order to describe the types of singular fibers, we use Kodaira's notation ([10]). Also, irreducible components of singular fibers are labeled as in [21]. For $v \in \operatorname{Red}(\varphi)$, we define

$$
\begin{aligned}
\boldsymbol{c}(v, D) & :=\left[\begin{array}{c}
D \cdot \Theta_{v, 1} \\
\vdots \\
D \cdot \Theta_{v, m_{v}-1}
\end{array}\right] \in \mathbb{Z}^{\oplus\left(m_{v}-1\right)}, \\
A_{v} & :=\left[\Theta_{v, i} \cdot \Theta_{v, j}\right]_{1 \leq i, j \leq m_{v}-1}, \\
\mathbb{F}_{v} & :=\left[\Theta_{v, 1}, \ldots, \Theta_{v, m_{v}-1}\right],
\end{aligned}
$$

where D is a divisor on S, and $D \cdot D^{\prime}$ denotes the intersection number of divisors D and D^{\prime} on S.
2.2. Mordell-Weill lattices. Let $\varphi: S \rightarrow C$ be an elliptic surface as before. We denote the Néron-Severi group of S by $\mathrm{NS}(S)$, and the Euler characteristic of its structure sheaf \mathcal{O}_{S} by $\chi\left(\mathcal{O}_{S}\right)$. We denote a general fiber of φ by F. The following theorems are fundamental.

Theorem 2.2 ([17, Theorem 1.2]). Under our setting, $\mathrm{NS}(S)$ is finitely generated and torsion-free.

Theorem 2.3 ([17, Theorem 1.3]). Let T_{φ} be the subgroup of $\mathrm{NS}(S)$ generated by O and the irreducible components of fibers. Then, there is a natural isomorphism

$$
\bar{\psi}: E_{S}(\mathbb{C}(C)) \rightarrow \mathrm{NS}(S) / T_{\varphi}
$$

which maps $P \in E_{S}(\mathbb{C}(C))$ to $s_{P} \bmod T_{\varphi}$.
Given a divisor D on S, we denote $\bar{\psi}^{-1}\left(D \bmod T_{\varphi}\right)$ by P_{D}.

Lemma 2.4 ([17, Lemma 5.1]). For $D \in \operatorname{Div}(S)$, there exists a unique section $s(D)$ such that

$$
D \approx s(D)+(d-1) O+n F+\sum_{v \in \operatorname{Red}(\varphi)} \mathbb{F}_{v} A_{v}^{-1} c(v, D-s(D)),
$$

where \approx denotes the algebraic equivalence between divisors, and integers d and n are defined as follows:

$$
d=D \cdot F \quad \text { and } \quad n=(d-1) \chi\left(\theta_{S}\right)+O \cdot(D-s(D)) .
$$

Remark 2.5. (i) By Lemma 2.4, for $D \in \operatorname{Div}(S)$, we have $s(D)=s_{P_{D}}$. (ii) Also, we have $A_{v}^{-1} \boldsymbol{c}(v, D-s(D)) \in \mathbb{Z}^{\oplus\left(m_{v}-1\right)}$, while entries of A_{v}^{-1} are not necessarily integers.

Lemma 2.6 ([1, Lemma 2.1]). If F_{v} is a singular fiber of type I_{2}, $\boldsymbol{c}(v, D)-\boldsymbol{c}(v, s(D))$ is even (Note that $\boldsymbol{c}(v, D)$ becomes an integer in this case).

By (i) in Remark 2.5 and Lemma 2.6, we also have
Corollary 2.7. Let F_{v} be a singular fiber of type \mathbf{I}_{2}. Let P_{1}, \ldots, P_{n} be elements of $E_{S}(\mathbb{C}(C))$ and let c_{1}, \ldots, c_{n} be integers. Put $Q=\left[c_{1}\right] P_{1}+\cdots \dot{+}$ $\left[c_{n}\right] P_{n}$ and $D=c_{1} s_{P_{1}}+\cdots+c_{n} s_{P_{n}}$. Then, we have

$$
s_{Q} \cdot \Theta_{v, 1}= \begin{cases}1 & \text { if } D \cdot \Theta_{v, 1} \text { is odd } \\ 0 & \text { otherwise }\end{cases}
$$

Let us explain the height pairing on $E_{S}(\mathbb{C}(t))$ introduced in [17]. Let $\phi: E_{S}(\mathbb{C}(C)) \rightarrow \mathrm{NS}(S) \otimes \mathbb{Q}$ be the homomorphism given in [17, Lemma 8.1] as follows:

$$
\phi(P)=s_{P}-O-\left(s_{P} \cdot O+\chi\left(\mathcal{O}_{S}\right)\right) F+\sum_{v \in \operatorname{Red}(\varphi)} \mathbb{F}_{v}\left(-A_{v}^{-1}\right) \boldsymbol{c}\left(v, s_{P}\right) .
$$

In [17], by using ϕ, the height pairing $\langle-,-\rangle$ on $E_{S}(\mathbb{C}(C))$ is defined as follows:

$$
\langle P, Q\rangle=-\phi(P) \cdot \phi(Q)
$$

The intersection pairing on $\operatorname{NS}(S)$ induces a pairing on $\mathrm{NS}(S) \otimes \mathbb{Q}$ and $\langle P, Q\rangle$ is explicitly given as follows:

Theorem 2.8 ([17, Theorem 8.6]). For $P, Q \in E_{S}(\mathbb{C}(C))$ we have

$$
\langle P, Q\rangle=\chi\left(\mathcal{O}_{S}\right)+s_{P} \cdot O+s_{Q} \cdot O-s_{P} \cdot s_{Q}-\sum_{v \in \operatorname{Red}(\varphi)} \operatorname{contr}_{v}\left(s_{P}, s_{Q}\right),
$$

where, for divisors D_{1} and D_{2} on S, contr ${ }_{v}\left(D_{1}, D_{2}\right)$ is given by

$$
\operatorname{contr}_{v}\left(D_{1}, D_{2}\right)={ }^{t} \boldsymbol{c}\left(v, D_{1}\right)\left(-A_{v}\right)^{-1} \boldsymbol{c}\left(v, D_{2}\right)
$$

Note that, for $s_{1}, s_{2} \in \operatorname{MW}(S)$, we have

$$
\left\langle P_{s_{1}}, P_{s_{2}}\right\rangle=\chi\left(\mathcal{O}_{S}\right)+s_{1} \cdot O+s_{2} \cdot O-s_{1} \cdot s_{2}-\sum_{v \in \operatorname{Red}(\varphi)} \operatorname{contr}_{v}\left(s_{1}, s_{2}\right) .
$$

2.3. A rational elliptic surface associated to a reduced quartic curve and a smooth point on the quartic curve. Let us first explain how we obtain a rational elliptic surface from a quartic curve and a smooth point on the quartic curve.

Let $\mathscr{2}$ be a reduced quartic curve in \mathbb{P}^{2} which is not the union of four concurrent lines and let z_{o} be a smooth point on 2 . We can associate a rational elliptic surface $S_{\mathscr{Q}_{,} z_{o}}$ (see [2, 2.2.2], [21, Section 4], [1, Section 1]) from 2 and z_{o} as follows:
(1) Let $f_{2}^{\prime}: S_{2}^{\prime} \rightarrow \mathbb{P}^{2}$ be the double cover of \mathbb{P}^{2} with branch locus 2.
(2) Let $\mu: S_{\mathscr{Q}} \rightarrow S_{\mathscr{Q}}^{\prime}$ be the canonical resolution of $S_{\mathscr{Q}}^{\prime}$ (see [9] for the canonical resolution).
(3) Let $\Lambda_{z_{o}}$ be the pencil of genus 1 curves on S_{2} induced from the pencil of lines through z_{o}. The pencil $\Lambda_{z_{o}}$ has a unique base point $\left(f_{2}^{\prime} \circ \mu\right)^{-1}\left(z_{o}\right)$ with multiplicity 2 .
(4) Let $v_{z_{o}}: S_{2, z_{o}} \rightarrow S_{2}$ be the resolution of the indeterminacy for the rational map induced by $\Lambda_{z_{o}}$. The induced morphism $\varphi_{2, z_{o}}: S_{2, z_{o}} \rightarrow$ \mathbb{P}^{1} is an elliptic fibration. The map $v_{z_{o}}$ is a composition of two blowing-ups and the exceptional curve for the second blowing-up is a section of $\varphi_{2, z_{o}}$, which we regard as O. Thus we have a rational elliptic surface $S_{2, z_{o}}$ and the diagram below:

where q is a composition of a finite number of blowing-ups so that the branch locus becomes smooth and $q_{z_{o}}$ is the composition of two blowing-ups corresponding to $v_{z_{o}}$. The map $f_{Q, z_{o}}$ is the double cover induced by the involution $[-1]_{2, z_{o}}$ on $S_{2, z_{o}}$, which is given by the inversion with respect to the group law on the generic fiber.

Remark 2.9. The above construction is also found in [11] and [18].

Let $\operatorname{Sing}(\mathscr{2})$ be the set of singularities of 2. For $x \in \operatorname{Sing}(2)$, a line through x and z_{o} induces a singular fiber of $S_{2, z_{o}}$, which we denote by $F_{v(x)}$.

Put $\tilde{f}_{2, z_{o}}=f_{2}^{\prime} \circ \mu \circ v_{z_{o}}$.
Remark 2.10. For a section $s(\neq O)$ and $x \in \operatorname{Sing}(\mathbb{Q})$, the curve $\tilde{f}_{\mathcal{Q}, z_{o}}(s)$ passes through x if and only if $\boldsymbol{c}(v(x), s) \neq \mathbf{0}$.

Let $l_{z_{o}}$ be the tangent line of \mathscr{Q} at z_{o}. The fiber corresponding to $l_{z_{o}}$ becomes a singular fiber, which we denote by F_{∞}. By our construction of $S_{2, z_{o}}$, any reducible singular fiber is F_{∞} or of the form $F_{v(x)}$. If z_{o} satisfies (\ddagger), then F_{∞} is a singular fiber of type I_{2}. We denote its irreducible decomposition by $F_{\infty}=\Theta_{\infty, 0}+\Theta_{\infty, 1}$, where $\Theta_{\infty, 0}$ is the identity component.

In the remaining of this subsection, we assume that (i) $\mathscr{2}$ is singular and satisfies (\dagger) and (ii) z_{o} satisfies (\ddagger). Let us introduce $\operatorname{Sing}(\mathbb{2})$ and $R_{2, z_{o}}$ as follows:
 types of singularities, we refer to [5, p. 81].

- $R_{\mathscr{Q}, z_{o}}$: the subgroup of $\operatorname{NS}\left(S_{2, z_{o}}\right)$ generated by $\Theta_{v, i}\left(v \in \operatorname{Red}\left(\varphi_{Q_{2}, z_{o}}\right)\right.$, $i=1, \ldots, m_{v}-1$). We have

$$
R_{\mathscr{2}, z_{o}}=\mathbb{Z} \Theta_{\infty, 1} \oplus \bigoplus_{x \in \operatorname{Sing}(\mathscr{2})} \mathbb{Z} \Theta_{v(x), 1} \oplus \cdots \oplus \mathbb{Z} \Theta_{v(x), m_{v(x)}-1}
$$

Here is a table for $\operatorname{Sing}(2), R_{2, z_{o}}$ and $E_{2, z_{o}}(\mathbb{C}(t))$ after Oguiso-Shioda [15]. We omit cases which do not occur under the assumptions (\dagger) and (\ddagger).

Table 1

Oguiso-Shioda classification	$\underline{\operatorname{Sing}(2)}$	$R_{2, z_{o}}$	$E_{\mathfrak{Q}_{2} z_{o}}(\mathbb{C}(t))$
No. 4	$\left(x, A_{1}\right)$	$A_{1}^{\oplus 2}$	D_{6}^{*}
No. 6	$\left(x, A_{2}\right)$	$A_{2} \oplus A_{1}$	A_{5}^{*}
No. 7	$\left(x, A_{1}\right)$ $\left(y, A_{1}\right)$	$A_{1}^{\oplus 3}$	$D_{4}^{*} \oplus A_{1}^{*}$
No. 10	$\left(x, A_{3}\right)$	$A_{3} \oplus A_{1}$	$A_{3}^{*} \oplus A_{1}^{*}$
No. 12	$\left(x, A_{2}\right)$ $\left(y, A_{1}\right)$	$A_{2} \oplus A_{1}^{\oplus 2}$	$\frac{1}{6}\left[\begin{array}{cccc}2 & 1 & 0 & -1 \\ 1 & 5 & 3 & 1 \\ 0 & 3 & 6 & 3 \\ -1 & 1 & 3 & 5\end{array}\right]$
No. 14	$\left(x, A_{1}\right)$ $\left(y, A_{1}\right)$ $\left(z, A_{1}\right)$	$A_{1}^{\oplus 4}$	$\left(A_{1}^{*}\right)^{\oplus 4}$

Table 1 (cont.)

Oguiso-Shioda classification	$\underline{\operatorname{Sing}(2)}$	$R_{2, z_{o}}$	$E_{2, z_{o}}(\mathbb{C}(t))$
No. 17	(x, A_{4})	$A_{4} \oplus A_{1}$	$\frac{1}{10}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 7 & 3 \\ -1 & 3 & 7\end{array}\right]$
No. 18	$\left(x, D_{4}\right)$	$D_{4} \oplus A_{1}$	$\left(A_{1}^{*}\right)^{\oplus 3}$
No. 20	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	$A_{2}^{\oplus 2} \oplus A_{1}$	$A_{2}^{*} \oplus\langle 1 / 6\rangle$
No. 22	$\begin{aligned} & \left(x, A_{3}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$A_{3} \oplus A_{1}^{\oplus 2}$	$\left(A_{1}^{*}\right)^{\oplus 2} \oplus\langle 1 / 4\rangle$
No. 23	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \end{aligned}$	$A_{2} \oplus A_{1}^{\oplus 3}$	$A_{1}^{*} \oplus \frac{1}{6}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
No. 24	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \\ & \left(w, A_{1}\right) \end{aligned}$	$A_{1}^{\oplus 5}$	$\left(A_{1}^{*}\right)^{\oplus 3} \oplus \mathbb{Z} / 2 \mathbb{Z}$
No. 29	(x, A_{5})	$A_{5} \oplus A_{1}$	$A_{1}^{*} \oplus\langle 1 / 6\rangle$
No. 30	$\left(x, D_{5}\right)$	$D_{5} \oplus A_{1}$	$A_{1}^{*} \oplus\langle 1 / 4\rangle$
No. 33	$\begin{aligned} & \left(x, A_{4}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$A_{4} \oplus A_{1}^{\oplus 2}$	$\frac{1}{10}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$
No. 37	$\begin{aligned} & \left(x, A_{3}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	$A_{3} \oplus A_{2} \oplus A_{1}$	$A_{1}^{*} \oplus\langle 1 / 12\rangle$
No. 40	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{2}\right) \\ & \left(z, A_{1}\right) \end{aligned}$	$A_{2}^{\oplus 2} \oplus A_{1}^{\oplus 2}$	$\langle 1 / 6\rangle^{\oplus 2}$
No. 47	(x, A_{6})	$A_{6} \oplus A_{1}$	<1/14>
No. 49	$\left(x, E_{6}\right)$	$E_{6} \oplus A_{1}$	<1/6>
No. 56	$\begin{aligned} & \left(x, A_{4}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	$A_{4} \oplus A_{2} \oplus A_{1}$	$\langle 1 / 30\rangle$
No. 61	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{2}\right) \\ & \left(z, A_{2}\right) \end{aligned}$	$A_{2}^{\oplus 3} \oplus A_{1}$	$\langle 1 / 6\rangle \oplus \mathbb{Z} / 3 \mathbb{Z}$

We use the notation in [15] in order to describe the structure of $E_{2, z_{o}}(\mathbb{C}(t))$. Also, the Gram matrices of A_{n}^{*} and $D_{m}^{*}(n \geq 1, m \geq 4)$ are given by the inverses of the following square matrices of sizes n and m, respectively:
2.4. Sections arising from lines and conics. Let $\mathscr{2}$ be a quartic curve satisfying (\dagger) and let z_{o} be a smooth point on 2 satisfying (\ddagger).

The following lemma gives a characterization of line-sections.
Lemma 2.11 ([3, Lemma 9]). Let $s \in \operatorname{MW}\left(S_{2_{2}, z_{o}}\right)$ be an integral section with $s \cdot \Theta_{\infty, 1}=1$. Then $\tilde{f}_{2, z_{o}}(s)$ is a line L_{s} such that
(i) $I_{x}\left(\mathscr{2}, L_{s}\right)$ is even for all $x \in \mathscr{Q}$, and
(ii) $z_{o} \notin L_{s}$.

Conversely, any line L satisfying the two conditions (i) and (ii) as above gives rise to line-sections $s_{i}(i=1,2)$ such that $s_{i} \cdot O=0, s_{i} \cdot \Theta_{\infty, 1}=1$ and $\tilde{f}_{\mathcal{Q}, z_{o}}\left(s_{i}\right)=L$.

By the choice of z_{o}, weak-bitangent lines do not pass through z_{o}. Therefore, by Lemma 2.11, weak-bitangent lines give rise to line-sections of $S_{2, z_{o}}$ and vice-versa. Under these settings, for a line L, whether L gives a linesection or not can be determined by how L and $\mathscr{2}$ intersect. Table 2 shows ten possibilities for how L and $\mathscr{2}$ intersect.

When we need to describe the type of a weak-bitangent line L and the singularities of $\mathscr{2}$ on L, we use the following notation:

The type of L	$\operatorname{Sing}(2) \cap L$
$L i(x)(i=3,5,6,7,8,9,10)$	x
$L 4(x, y)$	x, y

As for an integral section s with $s \cdot \Theta_{\infty, 0}=1$, we have:
Lemma 2.12. Let $s \in \operatorname{MW}\left(S_{\mathscr{Q}, z_{o}}\right)$ be an integral section with $s \cdot \Theta_{\infty, 0}=1$. Then its image $\tilde{f}_{\mathcal{D}_{2} o}(s)$ in \mathbb{P}^{2} is a smooth conic such that either

Table 2

Type	L and 2	L How L and 2 intersect
$L 3$		
smooth points.		

Table 2 (cont.)

Type	L and 2	How L and \mathscr{Q} intersect
L8	L	L is a tangent line to the smooth branch at a D_{5}-singularity.
L9		L is a tangent line to the singular branch at a D_{5}-singularity.
L10		L is a tangent line at an E_{6} singularity.

(i) $\tilde{f}_{2, z_{o}}(s)$ is an irreducible component of 2 through z_{o}, or
(ii) $\tilde{f}_{2, z_{o}}(s)$ is tangent to \mathscr{Q} at z_{o} and $I_{x}\left(\tilde{f}_{2, z_{o}}(s), \mathscr{Q}\right)$ is even for every $x \in \tilde{f}_{\mathscr{Q}, z_{o}}(s) \cap \mathbb{2}$.
Proof. For simplicity, we put $C_{s}=\tilde{f}_{2, z_{o}}(s)$. Since $\tilde{f}_{2, z_{o}}\left(\Theta_{\infty, 0} \cup O\right)=z_{o}$ and $s \cdot \Theta_{\infty, 0}=1, z_{o} \in C_{s}$. This means that any line through z_{o} meets C_{s} at z_{o} and another point. As C_{s} is irreducible, C_{s} is a smooth conic.

If C_{s} is an irreducible component of $\mathscr{2}$, then C_{s} satisfies the condition (i) in the statement. In the following, we may assume that C_{s} is not any irreducible component of 2. By our construction of $\tilde{f}_{2, z_{o}}: S_{\mathscr{Q}} \rightarrow \mathbb{P}^{2}, C_{s}$ is tangent to $\mathscr{2}$ at z_{o}. Choose $x \in C_{s} \cap \mathscr{Q}$ arbitrary. If $I_{x}\left(C_{s}, \mathscr{Q}\right)$ is odd, the restriction of $\tilde{f}_{\mathscr{2}, z_{o}}$ to C_{s} gives rise to a ramified cover of C_{s}. This means that $\tilde{f}_{2, z_{o}}^{*}\left(C_{s}\right)$ contains a unique irreducible component \tilde{C}_{s} such that $\tilde{f}_{2, z_{o}} \mid \tilde{C}_{s}: \tilde{C}_{s} \rightarrow C_{s}$ is a double cover. On the other hand, $\tilde{f}_{2, z_{o}}^{*}\left(C_{s}\right)$ contains two integral sections s and $[-1]_{2, z_{o}}^{*} s$ as its irreducible components. As $\tilde{f}_{2, z_{o}}(s)=\tilde{f}_{2, z_{o}}\left([-1]_{Q_{2}, z_{o}}^{*} s\right)=C_{s}$, this leads us to a contradiction.

Table 3 lists some cases of conics described in Lemma 2.12 which are necessary for our later argument.

When we need to describe the type of C and the singularities of 2 on C, similarly to lines we use the following notation:

Table 3
Type

Table 3 (cont.)

Type	C and 2	How C and $\mathscr{2}$ intersect
$C 7$	C is tangent to $\mathscr{2}$ at a double point	
with multiplicity 6 and a smooth point.		

The type of C	$\operatorname{Sing}(\mathscr{2}) \cap C$
$C j(x)(j=2,5,7)$	x
$C j(x, y)(j=3,6)$	x, y
$C 4(x, y, z)$	x, y, z

3. The Mumford representations of semi-reduced divisors

In this section, we describe the Mumford representations of semi-reduced divisors on a hyperelliptic curve which are key tools to prove Theorem 1.3.

For terminology and notation for curves and divisors, we refer to [19]. As for details on Mumford representations, we refer to [7, 20]. Let K be a perfect field of $\operatorname{char}(K) \neq 2$ and let \bar{K} be its algebraic closure.
3.1. Mumford representations. Let \mathscr{C} be a hyperelliptic curve of genus g defined over K given by an affine equation

$$
y^{2}=f(x), \quad f(x)=x^{2 g+1}+c_{1} x^{2 g}+\cdots+c_{2 g+1} \quad\left(c_{i} \in K, i=1, \ldots, 2 g+1\right) .
$$

We denote the point of C at infinity by O and the hyperelliptic involution by $l:(x, y) \mapsto(x,-y)$. For a divisor $\mathfrak{D}=\sum_{P \in \mathscr{C}} n_{P} P \in \operatorname{Div}(\mathscr{C})$ on \mathscr{C}, we denote the subset $\left\{P \in \mathscr{C} \mid n_{P} \neq 0\right\}$ of \mathscr{C} by $\operatorname{Supp}(\mathfrak{D})$.

Definition 3.1. Let $\mathfrak{D}=\sum_{P \in \mathscr{C}} n_{P} P \in \operatorname{Div}(\mathscr{C})$ be an effective divisor on \mathscr{C} such that $O \notin \operatorname{Supp}(\mathbb{D})$. We call D a semi-reduced divisor if it satisfies the following conditions:

- if $P \in \operatorname{Supp}(\mathcal{D})$ and $P \neq l(P)$, then $l(P) \notin \operatorname{Supp}(\mathfrak{D})$, and
- if $P \in \operatorname{Supp}(\mathbb{D})$ and $P=l(P)$, then $n_{P}=1$.

We denote the coordinate ring $\bar{K}[x, y] /\left\langle y^{2}-f\right\rangle$ of \mathscr{C} by $\bar{K}[\mathscr{C}]$ and the image of $g \in \bar{K}[x, y]$ in $\bar{K}[\mathscr{C}]$ by $[g]$. For $P \in \mathscr{C}$, we denote the local ring at P by \mathcal{O}_{P} and its discrete valuation by ord_{P}. Let $\mathfrak{D}=\sum_{P \in \mathscr{C}} n_{P} P$ be a semireduced divisor on \mathscr{C}. We define ideals $I(\mathfrak{D}) \subset \bar{K}[\mathscr{C}]$ and $\overline{I(D)} \subset \bar{K}[x, y]$ as follows:

$$
\begin{aligned}
I(\mathfrak{D}) & :=\left\{\xi \in \bar{K}[\mathscr{C}] \mid \operatorname{ord}_{P}(\xi) \geq n_{P}, \forall P \in \operatorname{Supp}(\mathfrak{D})\right\} \\
\widetilde{I(\mathfrak{D})} & :=\left\{g \in \bar{K}[x, y] \mid \operatorname{ord}_{P}([g]) \geq n_{P}, \forall P \in \operatorname{Supp}(\mathfrak{D})\right\} .
\end{aligned}
$$

Proposition 3.2 ([20, Proposition 2.1]). Let D be a semi-reduced divisor and let $>_{p}$ be the pure lexicographical order with $y>_{p} x$ in $\bar{K}[x, y]$. Then the reduced Gröbner basis of $\overline{I(\mathcal{D})}$ with respect to $>_{p}$ is of the form $\{a(x), y-b(x)\}$, where $a(x), b(x) \in \bar{K}[x]$ and they satisfy $b(x)^{2}-f \in\langle a(x)\rangle$.

Definition 3.3. Let \mathbb{D} be a semi-reduced divisor on \mathscr{C} and let $\{a(x), y-b(x)\}$ be as in Proposition 3.2. Then we call the pair (a, b) the Mumford representation of D .

Mumford representations are characterized as follows:
Lemma 3.4. Let $\mathfrak{D}=\sum_{P \in \mathscr{C}} n_{P} P$ be a semi-reduced divisor and we put $P=\left(x_{P}, y_{P}\right)$. Then the pair $(a, b) \in(\bar{K}[x])^{2}$ is the Mumford representation of D^{D} if and only if (a, b) satisfies
(i) $a=\prod_{P \in \operatorname{Supp}(\mathrm{D})}\left(x-x_{P}\right)^{n_{P}}$,
(ii) $\operatorname{deg} b<\operatorname{deg} a, \operatorname{ord}_{P}([y-b]) \geq n_{P}$, and
(iii) $a \mid b^{2}-f$.

For a proof, see [20, Proposition 2.1].
Remark 3.5. Let d be a semi-reduced divisor. In [7, 20], the Mumford representation of \mathfrak{D} is defined by the pair (a, b) satisfying the three conditions in Lemma 3.4.

A divisor \mathfrak{D} is said to be defined over K if $\mathfrak{D}^{\sigma}=\mathfrak{D}$ for all $\sigma \in \operatorname{Gal}(\bar{K} / K)$.
Remark 3.6. Let $\mathfrak{D}=\sum_{i} n_{i} P_{i}$ be a semi-reduced divisor defined over K. Then the Mumford representation (a, b) of \mathfrak{D} belongs to $(K[x])^{2}$, while the points P_{i} are not necessarily K-rational points.
3.2. Semi-reduced divisors of degree $\mathbf{3}$ on elliptic curves. We refer to [1] for the proof of the lemmas in this section. Let E be an elliptic curve defined over K given by a Weierstrass equation

$$
y^{2}=f(x), \quad f(x)=x^{3}+c_{1} x^{2}+c_{2} x+c_{3} \quad\left(c_{i} \in K, i=1,2,3\right) .
$$

Let $\mathfrak{D}=P_{1}+P_{2}+P_{3}$ be a semi-reduced divisor of degree 3. We put $P_{\mathfrak{D}}=$ $P_{1}+P_{2}+P_{3}$.

Lemma 3.7 ([1, Lemma 6.2]). Assume that $P_{\mathrm{D}} \neq O$ and let (a, b) be the Mumford representation of D . Then we have
(i) $\quad P_{\mathrm{D}} \neq P_{i}(i=1,2,3)$.
(ii) $\operatorname{deg} b=2$.

Lemma 3.8 ([1, Lemma 6.3]). We keep the notation of the previous lemma. Assume that \mathfrak{D} is defined over K. Put $P_{\mathfrak{D}}:=\left(x_{\mathfrak{D}}, y_{\mathfrak{D}}\right)$. Then we have the following:
(i) The point $P_{\mathfrak{D}}$ is a K-rational point of E, i.e., $x_{\mathfrak{D}}, y_{\mathfrak{D}} \in K$.
(ii) The two polynomials a, b satisfy $a, b \in K[x]$. In particular, b is of the form

$$
b_{0}\left(x-x_{\mathfrak{D}}\right)\left(x-b_{1}\right)-y_{\mathfrak{D}} \quad\left(b_{0}, b_{1} \in K\right)
$$

4. Proof of Theorem 1.3

Before we prove Theorem 1.3, we prepare two lemmas. Let $[T, X, Z]$ be homogeneous coordinates of \mathbb{P}^{2} and let $(t, x)=(T / Z, X / Z)$ be affine coordinates for $\mathbb{C}^{2}=\mathbb{P}^{2} \backslash\{Z=0\}$.

Lemma 4.1. Let 2 be a reduced quartic curve that is not the union of four lines and let z_{o} be a smooth point on 2 satisfying (\ddagger). By choosing suitable homogeneous coordinates $[T, X, Z]$, we may assume that $z_{o}=[0,1,0]$ and $\mathscr{2}$ is given by an equation of the form

$$
F_{\mathscr{2}}(T, X, Z)=X^{3} Z+A_{\mathscr{2}, 2}(T, Z) X^{2}+A_{\mathscr{Q}, 3}(T, Z) X+A_{\mathfrak{Q}, 4}(T, Z),
$$

where $A_{2, i}$ is a binary form of degree i in T and Z such that

$$
\operatorname{deg} A_{2, i}(t, 1)=i \quad(i=2,3), \quad \text { and } \quad \operatorname{deg} A_{2,4}(t, 1) \leq 3 .
$$

Proof. Our statement is immediate if we choose homogeneous coordinates $[T, X, Z]$ such that (i) $z_{o}=[0,1,0]$, (ii) the tangent line $l_{z_{o}}$ at z_{o} is given by $Z=0$ and (iii) $[1,0,0] \in \mathscr{Q}$.

Let E be an elliptic curve given by the Weierstrass equation $y^{2}=$ $F_{2}(t, x, 1)$. Let $\mathfrak{D}=P_{1}+P_{2}+P_{3} \in \operatorname{Div}(E)$ be a semi-reduced divisor defined over $\mathbb{C}(t)$ whose Mumford representation is given by (a, b). We put $P_{\mathfrak{D}}=$ $P_{1}+P_{2}+P_{3}$ and assume that $P_{\mathrm{D}} \neq O$. Then we can write $P_{\mathrm{D}}=\left(x_{\mathrm{D}}, y_{\mathrm{D}}\right)$. By Lemmas 3.4, 3.7 and 3.8, a, b are given as follows:

$$
\begin{aligned}
& a=x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \quad\left(a_{i} \in \mathbb{C}(t), i=1,2,3\right) \quad \text { and } \\
& b=b_{0}\left(x-x_{\mathfrak{D}}\right)\left(x-b_{1}\right)-y_{\mathfrak{0}} \quad\left(b_{0} \in \mathbb{C}(t)^{\times}, b_{1} \in \mathbb{C}(t)\right),
\end{aligned}
$$

where the solutions of $a(x)=0$ are the x-coordinates of the points P_{i}. Also, a and b satisfy the following relation

$$
\begin{equation*}
b^{2}-F_{2}(t, x, 1)=b_{0}^{2}\left(x-x_{\mathfrak{D}}\right) a . \tag{1}
\end{equation*}
$$

Under these circumstances, we have the next lemma.
Lemma 4.2. If $x_{\mathfrak{D}} \in \mathbb{C}[t]$ with $\operatorname{deg} x_{\mathfrak{D}} \leq 1, a \in \mathbb{C}[t, x]$ and the total degree of a is 3 , then $b_{0} \in \mathbb{C}^{\times}, b_{1} \in \mathbb{C}[t]$ and $\operatorname{deg} b_{1} \leq 1$.

Proof. We first prove that b_{0} is of the form $1 / c, c \in \mathbb{C}[t]$. Put $b_{0}=c_{1} / c_{2}$, where c_{1} and c_{2} are coprime polynomials. By the relation (1), we have the following two relations:

$$
\begin{aligned}
\left\{\left(x-x_{\mathfrak{D}}\right)\left(x-b_{1}\right)-y_{\mathfrak{D}} / b_{0}\right\}^{2}-F_{\mathfrak{V}} / b_{0}^{2} & =\left(x-x_{\mathfrak{D}}\right) a, \\
\left\{c_{1}\left(x-x_{\mathfrak{D}}\right)\left(x-b_{1}\right)-c_{2} y_{\mathfrak{D}}\right\}^{2} & =c_{1}^{2}\left(x-x_{\mathfrak{D}}\right) a-c_{2}^{2} F_{\mathfrak{V}} .
\end{aligned}
$$

Since the right hand sides of both relations are in $\mathbb{C}[t, x]$, so are the left hand sides. In particular, the coefficient of $x^{3},-2\left(x_{\mathrm{D}}+b_{1}\right)-1 / b_{0}{ }^{2}$, in the left hand side of the first relation and that of $x, c_{1}\left(x_{\mathfrak{b}}+b_{1}\right)$, in the left hand side of the second are polynomials.

Since $-2\left(x_{\mathrm{D}}+b_{1}\right)-1 / b_{0}{ }^{2}$ and $c_{1}\left(x_{\mathfrak{D}}+b_{1}\right) \in \mathbb{C}[t]$, we have $c_{2}{ }^{2} / c_{1} \in \mathbb{C}[t]$. Since c_{1} and c_{2} are coprime to each other, $c_{1} \in \mathbb{C}^{\times}$. Hence, $1 / b_{0}=c_{2} / c_{1} \in \mathbb{C}[t]$ and we have $b_{1} \in \mathbb{C}[t]$ as $c_{1}\left(x_{\mathrm{D}}+b_{1}\right) \in \mathbb{C}[t]$.

Putting $c=1 / b_{0}$, we have

$$
\left\{\left(x-x_{\mathfrak{D}}\right)\left(x-b_{1}\right)-c y_{\mathfrak{D}}\right\}^{2}-c^{2} F_{2}=\left(x-x_{\mathfrak{D}}\right) a .
$$

By comparing coefficients of polynomials in $\mathbb{C}[t][x]$, we have the assertion.

We are now in a position to prove Theorem 1.3.

- Proof of Theorem 1.3. Let us assume that $\mathscr{2}$ and z_{o} satisfy (\dagger) and (\ddagger). We may assume that $\mathscr{2}$ is given by an equation described in Lemma 4.1 and $z_{o}=[0,1,0]$. The generic fiber of $\varphi_{2, z_{o}}$ is an elliptic curve given by $y^{2}=$ $F_{2}(t, x, 1)$ and $L_{i}(i=1,2,3,4)$ are given by $x-x_{i}(t)=0$. As $L_{i}(i=1,2,3)$ are distinct, $P_{i} \neq[-1] P_{j}(i \neq j, i, j=1,2,3)$. Hence $P_{1}+P_{2}+P_{3}$ is a semireduced divisor defined over $\mathbb{C}(t)$. We denote its Mumford representation by (a, b). Note that a and b satisfy the relation:

$$
b^{2}-F_{2}(t, x, 1)=b_{0}^{2}\left(x-x_{4}\right) a \quad\left(b_{0} \in \mathbb{C}(t)^{\times}\right),
$$

where $b=b_{0}\left(x-x_{4}\right)\left(x-b_{1}\right)-y_{4}\left(b_{1} \in \mathbb{C}(t)\right)$. A polynomial $a=\prod_{i=1}^{3}\left(x-x_{i}\right)$ is of total degree 3. By Lemma 4.2, we have $b_{0} \in \mathbb{C}^{\times}, b_{1} \in \mathbb{C}[t]$ and
$\operatorname{deg} b_{1} \leq 1$. Hence, the total degree of b is equal to $\max \left\{2, \operatorname{deg} y_{4}\right\}$. On the other hand, $y_{4}{ }^{2}=F_{2}\left(t, x_{4}, 1\right)$. By our choice of F_{2}, we find $\operatorname{deg} y_{4}{ }^{2}=$ $\operatorname{deg} F_{2}\left(t, x_{4}, 1\right) \leq 4$. Therefore $b(t, x)=0$ gives rise to the desired conic C.

5. A classification of weak-bitangent lines

Our goal in this section is to give a list of weak-bitangent lines in terms of Mordell-Weil lattices. Throughout this section, we assume that \mathscr{Q} is a singular quartic curve satisfying (\dagger) and z_{o} is a smooth point on $\mathscr{2}$ satisfying (\ddagger), unless otherwise stated.
5.1. Preparations for a classification of weak-bitangent lines. Let us start with the following lemma.

Lemma 5.1. Choose $s \in \operatorname{MW}\left(S_{2, z_{o}}\right)$. If $\left\langle P_{s}, P_{s}\right\rangle<3 / 2$ then s is an integral section. Moreover, in the cases of Table 1 other than No. 24 and 61, if $\left\langle P_{s}, P_{s}\right\rangle=3 / 2$ then s is also an integral section.

Proof. By Theorem 2.8, we have

$$
\left\langle P_{s}, P_{s}\right\rangle=2+2 s \cdot O-\sum_{v \in \operatorname{Red}\left(\varphi_{2, z o}\right)} \operatorname{contr}_{v}(s, s) .
$$

In our setting, the contribution term is of the form

$$
\sum_{x \in \operatorname{Sing}(2)} \operatorname{contr}_{v(x)}(s, s)+\operatorname{contr}_{\infty}(s, s)
$$

By straightforward computation with Table 1, we see that the above value is less than or equal to $5 / 2$. Hence we have

$$
\left\langle P_{s}, P_{s}\right\rangle \geq 2+2 s \cdot O-5 / 2=2 s \cdot O-1 / 2 .
$$

Hence if $\left\langle P_{s}, P_{s}\right\rangle\langle 3 / 2, s \cdot O=0$.
In the cases other than No. 24 and 61, we see that the contribution term is less than $5 / 2$. In a similar way to the above case, we infer that if $\left\langle P_{s}, P_{s}\right\rangle \leq 3 / 2, s \cdot O=0$.

Choose P_{1}, \ldots, P_{n} and $P_{\tau} \in E_{2, z_{o}}(\mathbb{C}(t))$ such that
(i) $\left\{P_{1}, \ldots, P_{n}\right\}$ is a basis of the free part of $E_{2_{2}, z_{o}}(\mathbb{C}(t))$,
(ii) $P_{\tau}=O$ if there exists no torsion in $E_{\mathscr{Q}, z_{o}}(\mathbb{C}(t))$, while $E_{2, z_{o}}(\mathbb{C}(t))_{\text {tor }}=$ $\left\langle P_{\tau}\right\rangle$ if $E_{2_{2} z_{o}}(\mathbb{C}(t))_{\text {tor }} \neq\{O\}$ and
(iii) the Gram matrix $\left[\left\langle P_{i}, P_{j}\right\rangle\right]_{1 \leq i, j \leq n}$ coincides with the one given in Table 1.
In the following, we give descriptions for line-points through the above P_{1}, \ldots, P_{n} and P_{τ}.

Lemma 5.2. Let $s_{i}(1 \leq i \leq n)$ be the sections corresponding to P_{i} $(1 \leq i \leq n)$ and let s_{τ} be the section corresponding to P_{τ}. By relabeling P_{1}, \ldots, P_{n}, for each case in Table 1, $\tilde{f}_{2, z_{o}}\left(s_{i}\right)(1 \leq i \leq n)$ and $\tilde{f}_{2, z_{o}}\left(s_{\tau}\right)$ are described as in Table 4.

Table 4

Oguiso-Shioda classification	$\underline{\operatorname{Sing}(2)}$	Types of $\left(\tilde{f}_{2, z_{o}}\left(s_{1}\right), \ldots, \tilde{f}_{2, z_{o}}\left(s_{n}\right), \tilde{f}_{2, z_{o}}\left(s_{\tau}\right)\right)$
No. 4	$\left(x, A_{1}\right)$	See the below ${ }^{* 1}$
No. 6	$\left(x, A_{2}\right)$	(L3, C2, L1, C2, L3)
No. 7	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$(L 3(x), C 1, L 3(y), C 3, L 4)$
No. 10	$\left(x, A_{3}\right)$	(L3, C5, L3, L6)
No. 12	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$\begin{aligned} & (L 4, L 3(x), L 3(y), L 3(x)) \\ & \text { or } \\ & (L 4, C 3, L 3(y), C 3) \end{aligned}$
No. 14	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \end{aligned}$	$(L 4(x, y), L 4(y, z), L 4(x, z), C 4)$
No. 17	(x, A_{4})	($L 6, L 3, L 3$)
No. 18	$\left(x, D_{4}\right)$	(L7, L7, L7)
No. 20	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	(C3, C3, L4)
No. 22	$\begin{aligned} & \left(x, A_{3}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	($C 6(x, y), L 6, L 4){ }^{* 2}$
No. 23	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \end{aligned}$	$\begin{aligned} & (L 4(y, z), L 4(x, y), L 4(x, z)) \\ & \text { or } \\ & (L 4(y, z), L 4(x, z), C 4) \end{aligned}$
No. 24	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \\ & \left(w, A_{1}\right) \end{aligned}$	$\begin{aligned} & (L 4(x, y), L 4(y, z), L 4(x, z), C 8)^{*_{3}} \\ & \text { or } \\ & (L 4(x, w), L 4(y, w), L 4(z, w), C 8)^{*_{3}} \end{aligned}$

Table 4 (cont.)

Oguiso-Shioda classification	$\underline{\text { Sing }(2)}$	Types of $\left(\tilde{f}_{2, z_{o}}\left(s_{1}\right), \ldots, \tilde{f}_{2, z_{o}}\left(s_{n}\right), \tilde{f}_{2_{2}, z_{o}}\left(s_{\tau}\right)\right)$
No. 29	$\left(x, A_{5}\right)$	$(C 7, L 6)$
No. 30	$\left(x, D_{5}\right)$	$(L 8, L 9)$
No. 33	$\left(x, A_{4}\right)$ $\left(y, A_{1}\right)$	$(L 4, L 6)$ or $(L 4, C 6(x, y))^{* 4}$
No. 37	$\left(x, A_{3}\right)$ $\left(y, A_{2}\right)$	$(L 6(x), L 4)$
No. 40	$\left(x, A_{2}\right)$ $\left(y, A_{2}\right)$ $\left(z, A_{1}\right)$	$(L 4(x, y), C 4)$
No. 47	$\left(x, A_{6}\right)$	$L 6$
No. 49	$\left(x, E_{6}\right)$	$L 10$
No. 56	$\left(x, A_{4}\right)$ $\left(y, A_{2}\right)$	$L 4$
No. 61	$\left(x, A_{2}\right)$ $\left(y, A_{2}\right)$ $\left(z, A_{2}\right)$	$(L 4(x, y), C 4)^{* 5}$

${ }^{{ }^{*}} \mid$ In the case of No. 4, the type of $\left(\tilde{f}_{2, z_{o}}\left(s_{1}\right), \tilde{f}_{2, z_{o}}\left(s_{2}\right), \tilde{f}_{2, z_{o}}\left(s_{5}\right), \tilde{f}_{2, z_{o}}\left(s_{6}\right)\right)$ is (L3,C1,L1,C2). On the other hand, s_{3} and s_{4} satisfy

$$
s_{i} \cdot O=1 \quad(i=3,4) \quad \text { and } \quad \boldsymbol{c}\left(v(x), s_{i}\right)=\boldsymbol{c}\left(\infty, s_{i}\right)=\left\{\begin{array}{ll}
1 & i=3 \\
0 & i=4
\end{array} .\right.
$$

${ }^{*_{2}}$ In the case of No. 22, if $\tilde{\mathcal{f}}_{2, z_{o}}\left(s_{i}\right)$ is of type $C 6(x, y), I_{x}\left(\tilde{f}_{\tilde{Q}_{2}, z_{o}}\left(s_{i}\right), \mathscr{Q}\right)=4$ and $I_{y}\left(\tilde{f}_{\mathcal{Q}, z_{o}}\left(s_{i}\right), \mathscr{2}\right)=2$.
${ }^{* 3}$ In the case of No. 24, we only consider the cases when (i) three weak-bitangent lines of type $L 4$ are concurrent at w and (ii) three weak-bitangent lines of type L4 do not pass through w. We omit other cases to avoid redundancy in Table 4.
${ }^{*_{4}}$ In the case of No. 33, $I_{x}\left(\tilde{f}_{2, z_{o}}\left(s_{2}\right), \mathscr{2}\right)=4$ and $I_{y}\left(\tilde{f}_{2, z_{o}}\left(s_{2}\right), \mathscr{Q}\right)=2$.
${ }^{*}$ In the case of No. 61, we omit weak-bitangent lines of type L4 except for $L 4(x, y)$.

Here $\operatorname{Li}(1 \leq i \leq 10)$ are the types of lines in Table 2 and $C j(1 \leq j \leq 8)$ are the types of conics in Table 3. When $P_{\tau}=O$, we describe types of $f_{2, z_{o}}\left(s_{i}\right)$ $(1 \leq i \leq n)$ only.

Proof. We give a proof for the case of No. 4 only as the other cases can be proven similarly. In order to determine types of $\tilde{f}_{2, z_{o}}\left(s_{i}\right)$, we need to find $s \cdot O, \boldsymbol{c}\left(v(x), s_{i}\right)$ and $\boldsymbol{c}\left(\infty, s_{i}\right)$. First, we have

$$
\left[\left\langle P_{i}, P_{j}\right\rangle\right]_{1 \leq i, j \leq 6}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 / 2 & 1 / 2 \\
1 & 2 & 2 & 2 & 1 & 1 \\
1 & 2 & 3 & 3 & 3 / 2 & 3 / 2 \\
1 & 2 & 3 & 4 & 2 & 2 \\
1 / 2 & 1 & 3 / 2 & 2 & 3 / 2 & 1 \\
1 / 2 & 1 & 3 / 2 & 2 & 1 & 3 / 2
\end{array}\right] .
$$

By Lemma 5.1, the sections s_{1}, s_{5} and s_{6} are integral sections. Since the configuration of reducible fibers is either III, I_{2} or $2 \mathrm{I}_{2}$, we have

$$
\begin{aligned}
& \left\langle P_{i}, P_{i}\right\rangle=2-\frac{\alpha_{i}+\beta_{i}}{2} \quad(i=1,5,6), \\
& \left\langle P_{j}, P_{j}\right\rangle=2+2 s_{j} \cdot O-\frac{\alpha_{j}+\beta_{j}}{2} \quad(j=2,3,4),
\end{aligned}
$$

where $\left(\alpha_{i}, \beta_{i}\right)=\left(\boldsymbol{c}\left(v(x), s_{i}\right), \boldsymbol{c}\left(\infty, s_{i}\right)\right)\left(=\left(s_{i} \cdot \Theta_{v(x), 1}, s_{i} \cdot \Theta_{\infty, 1}\right)\right)$. From the matrix $\left[\left\langle P_{i}, P_{j}\right\rangle\right]_{1 \leq i, j \leq 6}$, we infer the following:

s_{i}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
$s_{i} \cdot O$	0	0	1	1	0	0
$\alpha_{i}+\beta_{i}$	2	0	2	0	1	1.

Hence, $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ and s_{6} satisfy

$$
\left(\alpha_{i}, \beta_{i}\right)= \begin{cases}(1,1) & \text { for } i=1,3 \\ (0,0) & \text { for } i=2,4 \\ (0,1) \text { or }(1,0) & \text { for } i=5,6\end{cases}
$$

By Lemmas 2.11 and 2.12, $\tilde{f}_{2, z_{o}}\left(s_{1}\right)$ is a line and $\tilde{f}_{2, z_{o}}\left(s_{2}\right)$ is a smooth conic. In particular, their types are $L 3$ and $C 1$.

Claim: $\quad\left(\alpha_{5}, \beta_{5}\right) \neq\left(\alpha_{6}, \beta_{6}\right)$.
Proof of Claim. Assume that $\left(\alpha_{5}, \beta_{5}\right)=\left(\alpha_{6}, \beta_{6}\right)$. By Theorem 2.8, we have $\left\langle P_{5}, P_{6}\right\rangle=3 / 2-s_{5} \cdot s_{6}$. This is impossible as $\left\langle P_{5}, P_{6}\right\rangle=1$.

Therefore, for s_{5} and s_{6}, the following conditions hold:

- $\tilde{f}_{2, z_{o}}\left(s_{i}\right)$ is of type $L 1$ if $\left(\boldsymbol{c}\left(v(x), s_{i}\right), \boldsymbol{c}\left(\infty, s_{i}\right)\right)=(0,1)$.
- $\tilde{f}_{2, z_{o}}\left(s_{i}\right)$ is of type $C 2$ if $\left(\boldsymbol{c}\left(v(x), s_{i}\right), \boldsymbol{c}\left(\infty, s_{i}\right)\right)=(1,0)$. Hence, the type of $\left(\tilde{f}_{2, z_{o}}\left(s_{1}\right), \tilde{f}_{2, z_{o}}\left(s_{2}\right), \tilde{f}_{2, z_{o}}\left(s_{5}\right), \tilde{f}_{2, z_{o}}\left(s_{6}\right)\right)$ is

$$
(L 3, C 1, L 1, C 2) \text { or }(L 3, C 1, C 2, L 1) .
$$

By relabeling s_{5} and s_{6} if necessary, we may assume that they are as in Table 4. As for s_{3} and s_{4}, we have

$$
s_{i} \cdot O=1 \quad(i=3,4) \quad \text { and } \quad \boldsymbol{c}\left(v(x), s_{i}\right)=\boldsymbol{c}\left(\infty, s_{i}\right)= \begin{cases}1 & i=3 \\ 0 & i=4\end{cases}
$$

In the other cases except for No. 40, for weak-bitangent lines of types $L 4$ and $L i(6 \leq i \leq 10)$, we see that all possible cases are classified by Lemma 5.2. In the case of No. 40, weak-bitangent lines of types $L 4$ and $L i(6 \leq i \leq 10)$ are also classified below.

Lemma 5.3. In the case of No. 40, let P_{1}, P_{2} be a basis such that types of $\tilde{f}_{\mathcal{D}_{2} o}\left(s_{P_{i}}\right)$ are those indicated in No. 40 in Table 4. Put $Q_{1}=P_{1}+P_{2}$ and $Q_{2}=P_{1}-P_{2}$. Then $\tilde{f}_{2, z_{o}}\left(s_{Q_{i}}\right)$ are of types $L 4(x, z)$ and $L 4(y, z)$.

Proof. Before we prove our statement, we start with the following claim.
Claim: If $\left\langle P_{s}, P_{s}\right\rangle=1 / 3$ and $s \cdot \Theta_{\infty, 1}=1$ then $\tilde{f}_{2, z_{o}}(s)$ is a line of type $L 4$ and passes through a cusp and the node z.

Proof of Claim. If $\operatorname{contr}_{v}(s, s) \neq 0$, we have

$$
\operatorname{contr} \cdot(s, s)=2 / 3 \quad(\bullet=x, y) \quad \text { and } \quad \operatorname{contr}_{z}(s, s)=1 / 2
$$

By Lemma 5.1, s is integral. Hence, s is a line-section and we have

$$
1 / 3=3 / 2-\left(\operatorname{contr}_{v(x)}(s, s)+\operatorname{contr}_{v(y)}(s, s)+\operatorname{contr}_{v(z)}(s, s)\right) .
$$

Hence the possibilities for $\operatorname{contr}_{v(\bullet)}(s, s)$ are as follows:

$$
\begin{aligned}
\left(\operatorname{contr}_{v(x)}(s, s), \operatorname{contr}_{v(y)}(s, s)\right) & =(2 / 3,0) \text { or }(0,2 / 3) \\
\operatorname{contr}_{v(z)}(s, s) & =1 / 2
\end{aligned}
$$

A line $\tilde{f}_{2, z_{o}}(s)$ passes through a cusp and the node z in both the cases of $\left(\operatorname{contr}_{v(x)}(s, s), \operatorname{contr}_{v(y)}(s, s)\right)=(2 / 3,0),(0,2 / 3)$.

Now we go back to prove our statement. As $\left(s_{P_{1}}+s_{P_{2}}\right) \cdot \Theta_{\infty, 1}=1$, we have $s \cdot \Theta_{\infty, 1}=1$ by Corollary 2.7. Since $s_{Q_{i}} \cdot \Theta_{\infty, 1}=1$ and $\left\langle Q_{i}, Q_{i}\right\rangle=1 / 3$, any $\tilde{f}_{2, z_{o}}\left(s_{Q_{i}}\right)$ is of type $L 4$ through a cusp and z. Also, as $Q_{1} \neq \pm Q_{2}$, the $\tilde{f}_{2, z_{o}}\left(s_{Q_{i}}\right)$ are distinct lines. Hence, we obtain lines of types $L 4(x, z)$ and $L 4(y, z)$.

In the next section, for our classification of weak-bitangent lines, we consider weak-bitangent lines of types $L 1, L 2, L 3$ and $L 5$.
5.2. A classification of weak-bitangent lines via Mordell-Weil lattices. We next consider characterizations of weak-bitangent lines via Mordell-Weil lattices. Let us start with the following proposition.

Proposition 5.4. Let 2 be an irreducible quartic curve with double points only. For $s \in \operatorname{MW}\left(S_{2, z_{o}}\right)$, the following conditions (i) and (ii) are equivalent:
(i) $\tilde{f}_{2, z_{o}}(s)$ is a weak-bitangent line of type L3 or L5.
(ii) $s \cdot \Theta_{\infty, 1}=1$ and there exists a positive integer n_{s} such that $\left\langle P_{s}, P_{s}\right\rangle=$ $3 / 2-n_{s} /\left(n_{s}+1\right)$.

Proof. In the case when 2 has three cusps, there exists no weakbitangent line of type $L 3$. In fact, if such a line exists, it gives rise to a section s with $\left\langle P_{s}, P_{s}\right\rangle=5 / 6$. On the other hand, as $E_{2, z_{o}}(\mathbb{C}(t)) \simeq\langle 1 / 6\rangle \oplus$ $\mathbb{Z} / 3 \mathbb{Z}$, there exists no $\mathbb{C}(t)$-rational point such that its height pairing equals $5 / 6$. This leads us to a contradiction. Therefore, we omit the case of No. 61.

By our choice of $z_{o}, \varphi_{2, z_{o}}$ has a singular fiber F_{∞} of type I_{2}. By [13, Table 6.2], the other reduced fibers of $\varphi_{2, z_{o}}$ are of types III, IV and $\mathrm{I}_{b}(b \geq 2)$. For each case, if $\operatorname{contr}_{v(x)}(s, s) \neq 0$, it is as follows:

Type of $F_{v(x)}$	$\operatorname{contr}_{v(x)}(s, s)$
III	$1 / 2$
IV	$2 / 3$
I $_{b}$	$k(b-k) / b$ (if $\left.s \cdot \Theta_{v(x), k}=1\right)$

Assume that $\tilde{f}_{2, z_{o}}(s)$ is a weak-bitangent line of type $L 3$ or $L 5$. Then $s \cdot \Theta_{\infty, 1}=1$ and there exists a unique $x_{0} \in \operatorname{Sing}(\mathscr{2}) \cap \tilde{f}_{\mathcal{Q}, z_{o}}(s)$. Then by our construction of $S_{2, z_{o}}$, we have

$$
\operatorname{contr}_{v\left(x_{0}\right)}(s, s)= \begin{cases}1 / 2 & \text { if } F_{v\left(x_{0}\right)} \text { is of type III, } \\ 2 / 3 & \text { if } F_{v\left(x_{0}\right)} \text { is of type IV, } \\ k(b-k) / b & \text { if } F_{v\left(x_{0}\right)} \text { is of type } \mathrm{I}_{b}(b \geq 2) \text { and } \\ & s \cdot \Theta_{v\left(x_{0}\right), k}=1 .\end{cases}
$$

For weak-bitangent lines of types $L 3$ and $L 5$, the following conditions hold:

- $s \cdot \Theta_{v\left(x_{0}\right), 1}=1$ if $F_{v\left(x_{0}\right)}$ is of type III,
- $s \cdot \Theta_{v\left(x_{0}\right), 1}=1$ or $s \cdot \Theta_{v\left(x_{0}\right), 2}=1$ if $F_{v\left(x_{0}\right)}$ is of type IV, and
- $s \cdot \Theta_{v\left(x_{0}\right), 1}=1$ or $s \cdot \Theta_{v\left(x_{0}\right), b-1}=1$ if $F_{v\left(x_{0}\right)}$ is of type I_{b}.

Hence $n_{s}=1,2$ or $b-1$ if $F_{v\left(x_{0}\right)}$ is of type III, IV or I_{b}, respectively.
Conversely, assume that the condition (ii) in the statement holds. Then as $s \cdot \Theta_{\infty, 1}=1, s$ is an integral section by Lemma 5.1. Hence we have

$$
\left\langle P_{s}, P_{s}\right\rangle=3 / 2-n_{s} /\left(n_{s}+1\right)=3 / 2-\sum_{x \in \operatorname{Sing}(2)} n_{x} /\left(n_{x}+1\right) .
$$

Hence, $\quad \sum_{x \in \operatorname{Sing}(2)} n_{x} /\left(n_{x}+1\right)=n_{s} /\left(n_{s}+1\right)<1$. From the above possible values of $\operatorname{contr}_{v(x)}(s, s)$, there exists a unique $x_{0} \in \operatorname{Sing}(\mathcal{Q}) \cap \tilde{f}_{\mathcal{Q}, z_{o}}(s)$. Also $s \cdot \Theta_{v\left(x_{0}\right), 1}=1$ or $s \cdot \Theta_{v\left(x_{0}\right), b-1}=1$ if $F_{v(x)}$ is of type I_{b}. By our construction of $S_{2, z_{o}}, \tilde{f}_{\mathcal{2}, z_{o}}(s)$ is of type $L 5$, if x_{0} is a node and $\tilde{f}_{2, z_{o}}(s)$ is an inflectional tangent to one of the branches, while $\tilde{f}_{2, z_{o}}(s)$ is of type $L 3$ for the remaining cases.

Similarly, we obtain the following proposition.

Proposition 5.5. Let 2 be a singular quartic curve satisfying (\dagger). For $s \in \operatorname{MW}\left(S_{\tilde{2}_{o}, z_{o}}\right)$, the following conditions (i) and (ii) are equivalent:
(i) $\tilde{f}_{2, z_{o}}(s)$ is a weak-bitangent line of type $L 1$ or $L 2$.
(ii) $s \cdot \Theta_{\infty, 1}=1,\left\langle P_{s}, P_{s}\right\rangle=3 / 2$ and $s \cdot O=0$.

Moreover, in the cases other than No. 24 and 61, (i) is equivalent to the following condition (ii)':
(ii) $\quad s \cdot \Theta_{\infty, 1}=1$ and $\left\langle P_{s}, P_{s}\right\rangle=3 / 2$.

We next classify weak-bitangent lines of types $L 1, L 2, L 3$ and $L 5$.
Let P_{1}, \ldots, P_{n} and P_{τ} be generators of $E_{2, z_{o}}(\mathbb{C}(t))$ described just after Lemma 5.1. For $Q \in E_{Q_{,} z_{o}}(\mathbb{C}(t))$, we put

$$
Q=\left[c_{1}\right] P_{1} \dot{+} \cdots \dot{+}\left[c_{n}\right] P_{n} \dot{+}\left[c_{\tau}\right] P_{\tau},
$$

where $c_{i}(1 \leq i \leq n), c_{\tau} \in \mathbb{Z}$. Note that $c_{\tau}=0$ if $P_{\tau}=O$. We classify weakbitangent lines of types $L 1$ and $L 2$ by vectors ${ }^{t}\left[c_{1}, \ldots, c_{n}\right]$ if $P_{\tau}=O$ and ${ }^{t}\left[c_{1}, \ldots, c_{n}, c_{\tau}\right]$ if $P_{\tau} \neq O$. Similarly, ${ }^{t}\left[c_{1}, \ldots, c_{n}\right]_{x}$ and ${ }^{t}\left[c_{1}, \ldots, c_{n}, c_{\tau}\right]_{x}$ denote weak-bitangent lines of types $L 3(x)$ and $L 5(x)$.

Theorem 5.6. If $\tilde{f}_{\mathcal{Q}_{2}, z_{o}}\left(s_{Q}\right)$ is of type $L 1, L 2, L 3$ or $L 5$, then ${ }^{t}\left[c_{1}, \ldots, c_{n}\right]$, ${ }^{t}\left[c_{1}, \ldots, c_{n}, c_{\tau}\right],{ }^{t}\left[c_{1}, \ldots, c_{n}\right]_{x}$ and ${ }^{t}\left[c_{1}, \ldots, c_{n}, c_{\tau}\right]_{x}$ are given as in Table 5.

Table 5

No.	Sing(2)	$L 1$ or L2	$L 3$ or L5
		$\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 0\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]_{x}\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]_{x}$
No. 4	(x, A_{1})	$\left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}\right]\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}\right]\left[\begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{array}\right]\left[\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}\right]$	$\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 1\end{array}\right]_{x}\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1\end{array}\right]_{x}$
		$\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}0 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ -1\end{array}\right]\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1\end{array}\right]$	$\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]_{x}\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0\end{array}\right]_{x}$

Table 5 (cont.)

No.	$\underline{\operatorname{Sing}(2)}$	$L 1$ or L2	$L 3$ or L5
No. 6	$\left(x, A_{2}\right)$	$\begin{aligned} & {\left[\begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \end{array}\right]\left[\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \\ -1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{array}\right]\left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \\ -1 \end{array}\right]\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ 0 \end{array}\right]} \\ & {\left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{array}\right]\left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}\right]\left[\begin{array}{c} 0 \\ -1 \\ 1 \\ -1 \\ 0 \end{array}\right]\left[\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \\ 1 \end{array}\right]\left[\begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \\ 1 \end{array}\right]} \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right]_{x}\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array}\right]_{x}} \\ & {\left[\begin{array}{c} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{array}\right]_{x}\left[\begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{array}\right]_{x}} \\ & {\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}\right]_{x}\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{array}\right]_{x}} \end{aligned}$
No. 7	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \pm 1 \\ 1\end{array}\right]\left[\begin{array}{c}0 \\ -1 \\ 0 \\ 1 \\ \pm 1\end{array}\right]\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0 \\ \pm 1\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0 \\ \pm 1\end{array}\right]$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]_{x}\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 1 \\ 0\end{array}\right]_{x}$ $\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 1 \\ 0\end{array}\right]_{x}\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]_{x}$ $\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]_{y}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]_{y}$ $\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1 \\ 0\end{array}\right]_{y}\left[\begin{array}{c} \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right]_{y}$

Table 5 (cont.)

No.	$\underline{\text { Sing (2) }}$	$L 1$ or L2	$L 3$ or L5
No. 10	(x, A_{3})	$\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \pm 1\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 1 \\ \pm 1\end{array}\right]\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ \pm 1\end{array}\right]$	$\begin{aligned} & {\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \end{array}\right]_{x}\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right]_{x}} \\ & {\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \end{array}\right]_{x}\left[\begin{array}{c} 0 \\ -1 \\ 1 \\ 0 \end{array}\right]_{x}} \end{aligned}$
No. 12	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}-1 \\ 0 \\ -1 \\ 1\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 0\end{array}\right]\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$	$\begin{gathered} {\left[\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right]_{x}\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \end{array}\right]_{x}} \\ {\left[\begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \end{array}\right]_{x}\left[\begin{array}{c} -1 \\ 1 \\ -1 \\ 0 \end{array}\right]_{x}} \\ {\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right]\left[\begin{array}{c} 0 \\ 1 \\ -1 \\ 1 \end{array}\right]_{y}} \\ {\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \end{array}\right]} \end{gathered}$
No. 14	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \end{aligned}$	$\left[\begin{array}{c} \pm 1 \\ 1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c} \pm 1 \\ -1 \\ 1 \\ 0\end{array}\right]$	$\begin{aligned} & {\left[\begin{array}{l} 1 \\ 0 \\ 0 \\ 1 \end{array}\right]_{z}\left[\begin{array}{c} 1 \\ 0 \\ 0 \\ -1 \end{array}\right]_{z}} \\ & {\left[\begin{array}{l} 0 \\ 1 \\ 0 \\ 1 \end{array}\right]_{x}\left[\begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \end{array}\right]_{x}} \\ & {\left[\begin{array}{l} 0 \\ 0 \\ 1 \\ 1 \end{array}\right]_{y}\left[\begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \end{array}\right]_{y}} \end{aligned}$

Table 5 (cont.)

No.	$\underline{\text { Sing (2) }}$	$L 1$ or L2	$L 3$ or L5
No. 17	$\left(x, A_{4}\right)$	$\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$	$\begin{aligned} & {\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right]_{x}\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right]_{x}} \\ & {\left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right]_{x}} \end{aligned}$
No. 18	$\left(x, D_{4}\right)$	$\left[\begin{array}{c} \pm 1 \\ 1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c} \pm 1 \\ -1 \\ 1 \\ 0\end{array}\right]$	N/A
No. 20	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	$\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$	$\begin{aligned} & {\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right]_{x}\left[\begin{array}{c} 0 \\ 1 \\ -1 \end{array}\right]_{x}} \\ & {\left[\begin{array}{c} 1 \\ -1 \\ -1 \end{array}\right]_{x}\left[\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right]_{y}} \\ & {\left[\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right]_{y}\left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right]_{y}} \end{aligned}$
No. 22	$\begin{aligned} & \left(x, A_{3}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$\left[\begin{array}{c}0 \\ \pm 1 \\ 2\end{array}\right]$	$\begin{aligned} & {\left[\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right]_{x}\left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right]_{x}} \\ & {\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right]_{y}\left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right]_{y}} \end{aligned}$
No. 23	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \end{aligned}$	$\left[\begin{array}{c} \pm 1 \\ 1 \\ 1\end{array}\right]$	$\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]_{x}\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]_{x}$ $\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right]_{y}\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]_{z}$
No. 24	$\begin{aligned} & \left(x, A_{1}\right) \\ & \left(y, A_{1}\right) \\ & \left(z, A_{1}\right) \\ & \left(w, A_{1}\right) \end{aligned}$	$\left[\begin{array}{c} \pm 1 \\ 1 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c} \pm 1 \\ -1 \\ 1 \\ 0\end{array}\right]$	N/A
No. 29	$\left(x, A_{5}\right)$	$\left[\begin{array}{l}0 \\ 3\end{array}\right]$	$\left[\begin{array}{l}1 \\ 1\end{array}\right]_{x}\left[\begin{array}{c}-1 \\ 1\end{array}\right]_{x}$

Table 5 (cont.)

No.	Sing(2)	$L 1$ or L2	$L 3$ or L5
No. 30	(x, D_{5})	$\left[\begin{array}{c}1 \\ \pm 2\end{array}\right]$	N/A
No. 33	$\begin{aligned} & \left(x, A_{4}\right) \\ & \left(y, A_{1}\right) \end{aligned}$	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$	$\left[\begin{array}{c}-2 \\ 1\end{array}\right]_{x}\left[\begin{array}{c}-1 \\ 2\end{array}\right]_{y}$
No. 37	$\begin{aligned} & \left(x, A_{3}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	N/A	$\begin{gathered} {\left[\begin{array}{l} 0 \\ 3 \end{array}\right]_{x}\left[\begin{array}{l} 1 \\ 2 \end{array}\right]_{y}} \\ {\left[\begin{array}{c} -1 \\ 2 \end{array}\right]_{y}} \end{gathered}$
No. 40	$\begin{gathered} \left(x, A_{2}\right) \\ \left(y, A_{2}\right) \\ \left(z, A_{1}\right) \end{gathered}$	$\left[\begin{array}{l}3 \\ 0\end{array}\right]$	$\left[\begin{array}{c}-1 \\ 2\end{array}\right]_{x}\left[\begin{array}{l}1 \\ 2\end{array}\right]_{y}$
No. 47	$\left(x, A_{6}\right)$	N/A	${ }_{[3]}{ }_{x}$
No. 49	$\left(x, E_{6}\right)$	[3]	N/A
No. 56	$\begin{aligned} & \left(x, A_{4}\right) \\ & \left(y, A_{2}\right) \end{aligned}$	N/A	$[5] y$
No. 61	$\begin{aligned} & \left(x, A_{2}\right) \\ & \left(y, A_{2}\right) \\ & \left(z, A_{2}\right) \end{aligned}$	$\left[\begin{array}{l}3 \\ 0\end{array}\right]$	N/A

(We give either ${ }^{t}\left[c_{1}, \ldots, c_{n}\right]$ or ${ }^{t}\left[-c_{1}, \ldots,-c_{n}\right]$ since they give the same line $\tilde{f}_{Q_{2} z_{o}}\left(s_{Q}\right)$.) Here, P_{1}, \ldots, P_{n} and P_{τ} are chosen in the following manner:

- For No. 12, 23, 24 and 33, types of $\tilde{f}_{2, z_{o}}\left(s_{i}\right)$ are the first types indicated in the corresponding no. in Table 4.
- For the other remaining cases, the types of $\tilde{f}_{2, z_{o}}\left(s_{i}\right)$ are those indicated in the corresponding no. in Table 4.

Proof. The case No. 4. Let G be the Gram matrix $\left[\left\langle P_{i}, P_{j}\right\rangle\right]_{1 \leq i, j \leq 6}$ and let $\boldsymbol{c}={ }^{t}\left[c_{1}, \ldots, c_{6}\right]$. As for $\boldsymbol{c}\left(\infty, s_{i}\right)$, the following holds:

$$
\begin{array}{ccccccc}
s_{i} & s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} \\
\hline \boldsymbol{c}\left(\infty, s_{i}\right) & 1 & 0 & 1 & 0 & 1 & 0 .
\end{array}
$$

We remark that $s_{Q} \cdot \Theta_{\infty, 1}=1$ if and only if $\sum_{i=1}^{6} c_{i} \boldsymbol{c}\left(\infty, s_{i}\right)=c_{1}+c_{3}+c_{5}$ is odd by Corollary 2.7.
a) The case when $\tilde{f}_{\mathcal{D}_{2} o}\left(s_{Q}\right)$ is of type $L 1$ or $L 2$:

In this case, by Proposition 5.5, $c_{1}+c_{3}+c_{5}$ is odd and $c_{i} \in \mathbb{Z}(i=1, \ldots, 6)$ satisfy the following equality:

$$
\begin{align*}
3 / 2= & { }^{t} \boldsymbol{c} G \boldsymbol{c} \\
= & \left(c_{1}+c_{2}+c_{3}+c_{4}+\frac{c_{5}+c_{6}}{2}\right)^{2}+\left(c_{2}+c_{3}+c_{4}+\frac{c_{5}+c_{6}}{2}\right)^{2} \\
& +2\left(\frac{c_{3}}{2}+c_{4}+\frac{c_{5}+c_{6}}{2}\right)^{2}+\frac{c_{3}^{2}}{2}+\frac{c_{5}{ }^{2}}{2}+\frac{c_{6}{ }^{2}}{2} . \tag{2}
\end{align*}
$$

From the above equality, we see that $\left|c_{i}\right| \leq 1 \quad(i=3,5,6)$.
Claim: $\left|c_{5}\right| \neq\left|c_{6}\right|$.
Proof of Claim. If $\left|c_{5}\right|=\left|c_{6}\right|$, we see that both $\left(c_{5}+c_{6}\right) / 2$ and $\left(c_{5}^{2}+c_{6}{ }^{2}\right) / 2$ are integers. Hence, the right hand side of (2) becomes an integer but this is impossible. Therefore, $\left|c_{5}\right| \neq\left|c_{6}\right|$.

- The case $\left(c_{3}, c_{5}, c_{6}\right)=(1,1,0)$. In this case, the equality (2) becomes

$$
\frac{1}{2}=\left(c_{1}+c_{2}+c_{4}+\frac{3}{2}\right)^{2}+\left(c_{2}+c_{4}+\frac{3}{2}\right)^{2}+2\left(c_{4}+1\right)^{2}
$$

Hence, we have $c_{4}=-1$ and

$$
\frac{1}{2}=\left(c_{1}+c_{2}+\frac{1}{2}\right)^{2}+\left(c_{2}+\frac{1}{2}\right)^{2}
$$

This implies that the possibilities for $\left(c_{1}, c_{2}\right)$ are

$$
(0,0),(-1,0),(0,-1),(1,-1) .
$$

Since $c_{1}+c_{3}+c_{5}$ is odd, $\boldsymbol{c}={ }^{t}[-1,0,1,-1,1,0],{ }^{t}[1,-1,1,-1,1,0]$ in this case.

- The case $\left(c_{3}, c_{5}, c_{6}\right)=(0,1,0)$. In this case, we have

$$
1=\left(c_{1}+c_{2}+c_{4}+\frac{1}{2}\right)^{2}+\left(c_{2}+c_{4}+\frac{1}{2}\right)^{2}+2\left(c_{4}+\frac{1}{2}\right)^{2}
$$

Hence c_{4} must be 0 or -1 and we have

c_{4}	$\left(c_{1}, c_{2}\right)$
0	$(0,0),(-1,0),(0,-1),(1,-1)$
-1	$(1,0),(0,0),(0,1),(-1,1)$.

Since $\quad c_{1}+c_{3}+c_{5} \quad$ is odd, $\quad \boldsymbol{c}={ }^{t}[0,0,0,0,1,0], \quad{ }^{t}[0,-1,0,0,1,0]$, ${ }^{t}[0,0,0,-1,1,0],{ }^{t}[0,1,0,-1,1,0]$ in this case.

- The case $\left(c_{3}, c_{5}, c_{6}\right)=(-1,1,0)$. In this case, we have

$$
\frac{1}{2}=\left(c_{1}+c_{2}+c_{4}-\frac{1}{2}\right)^{2}+\left(c_{2}+c_{4}-\frac{1}{2}\right)^{2}+2 c_{4}^{2}
$$

Hence $c_{4}=0$ and $\left(c_{1}, c_{2}\right)=(0,0),(1,0),(0,1),(-1,1)$. As $c_{1}+c_{3}+c_{5}$ is odd, $\boldsymbol{c}={ }^{t}[1,0,-1,0,1,0],{ }^{t}[-1,1,-1,0,1,0]$. For the cases $c_{5}=0$ and -1 , we can compute \boldsymbol{c} similarly and we have the list for No. $4, L 1$ and $L 2$.
b) The case when $\tilde{f}_{\mathcal{D}_{2}, z_{o}}\left(s_{Q}\right)$ is of type $L 3$ or $L 5$:

In this case, such a line passes through the A_{1}-singularity x. By Proposition 5.4 and its proof, $\tilde{f}_{2, z_{o}}\left(s_{Q}\right)$ is of type $L 3$ or $L 5$ if and only if c_{i} $(i=1, \ldots, 6)$ satisfy the following equality and $c_{1}+c_{3}+c_{5}$ is odd:

$$
\begin{aligned}
1= & \left(c_{1}+c_{2}+c_{3}+c_{4}+\frac{c_{5}+c_{6}}{2}\right)^{2}+\left(c_{2}+c_{3}+c_{4}+\frac{c_{5}+c_{6}}{2}\right)^{2} \\
& +2\left(\frac{c_{3}}{2}+c_{4}+\frac{c_{5}+c_{6}}{2}\right)^{2}+\frac{c_{3}^{2}}{2}+\frac{c_{5}^{2}}{2}+\frac{c_{6}^{2}}{2} .
\end{aligned}
$$

By a similar argument to the above case for $L 1$ and $L 2$, we have the list for No. 4, L3 and $L 5$. Note that the assertion in other cases except for No. 24 and 61 can be proven similarly. See Remark 5.7 below.

The case No. 24. There exists no weak-bitangent line of type $L 3$ or $L 5$. Therefore, in this case, we only need to consider the case when $\tilde{f}_{2, z_{o}}\left(s_{Q}\right)$ is of type $L 1$ or $L 2$. Let $\boldsymbol{c}={ }^{t}\left[c_{1}, c_{2}, c_{3}, c_{\tau}\right]$ and put $a_{v}=s_{Q} \cdot \Theta_{v, 1}$. By Proposition $5.5, s_{Q}$ is a line-section for a line of type $L 1$ or $L 2$ if and only if Q satisfies the following conditions:
(i) $\langle Q, Q\rangle=3 / 2$,
(ii) $s_{Q} \cdot O=0 \quad$ and
(iii) $a_{\infty}=1$.

Claim 1: $\langle Q, Q\rangle=3 / 2$ if and only if $\left|c_{i}\right|=1 \quad(i=1,2,3)$.
Proof of Claim. Since $\langle Q, Q\rangle=\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right) / 2$, our claim follows.
Claim 2: If $\langle Q, Q\rangle=3 / 2$, then $a_{v(\bullet)}=0(\bullet=x, y, z, w)$ if and only if Q satisfies (ii) and (iii).

Proof of Claim. Recall

$$
\langle Q, Q\rangle=2+2 s_{Q} \cdot O-\frac{1}{2}\left(a_{v(x)}+a_{v(y)}+a_{v(z)}+a_{v(w)}+a_{\infty}\right) .
$$

Since $\langle Q, Q\rangle=3 / 2$, the above equality becomes

$$
-\frac{1}{2}=2 s_{Q} \cdot O-\frac{1}{2}\left(a_{v(x)}+a_{v(y)}+a_{v(z)}+a_{v(w)}+a_{\infty}\right) .
$$

As $a_{v}=0$ or 1 , possibilities for $\left(s_{Q} \cdot O, a_{v(x)}, a_{v(y)}, a_{v(z)}, a_{v(w)}, a_{\infty}\right)$ are

$$
\begin{aligned}
& (0,1,0,0,0,0),(0,0,1,0,0,0),(0,0,0,1,0,0) \\
& (0,0,0,0,1,0),(0,0,0,0,0,1),(1,1,1,1,1,1)
\end{aligned}
$$

Hence, $s_{Q} \cdot O=0$ and $a_{\infty}=1$ if and only if $\left(a_{v(x)}, a_{v(y)}, a_{v(z)}, a_{v(w)}\right)=$ $(0,0,0,0)$.

By Claims 1 and 2, $\tilde{f}_{2, z_{o}}\left(s_{Q}\right)$ is of type $L 1$ or $L 2$ if and only if $\left|c_{i}\right|=1$ $(i=1,2,3)$ and $a_{v(\bullet)}=0(\bullet=x, y, z, w)$. In the following, consider a condition for c_{i} to satisfy $a_{v(\bullet)}=0(\bullet=x, y, z, w)$ under $\left|c_{i}\right|=1(i=1,2,3)$. As for $\boldsymbol{c}\left(v, s_{i}\right)$, we have the following table:

	$\boldsymbol{c}\left(v(x), s_{i}\right)$	$\boldsymbol{c}\left(v(y), s_{i}\right)$	$\boldsymbol{c}\left(v(z), s_{i}\right)$	$\boldsymbol{c}\left(v(w), s_{i}\right)$	$\boldsymbol{c}\left(\infty, s_{i}\right)$
s_{1}	1	1	0	0	1
s_{2}	0	1	1	0	1
s_{3}	1	0	1	0	1
s_{τ}	1	1	1	1	0

By our construction of $S_{2, z_{o}}$, singular fibers of $\varphi_{2, z_{o}}$ are of type I_{2} or III. Hence, by Corollary 2.7, we have

- $a_{v(x)}=0$ if and only if $c_{1}+c_{3}+c_{\tau}$ is even,
- $a_{v(y)}=0$ if and only if $c_{1}+c_{2}+c_{\tau}$ is even,
- $a_{v(z)}=0$ if and only if $c_{2}+c_{3}+c_{\tau}$ is even, and
- $a_{v(w)}=0$ if and only if c_{τ} is even.

By Claim 1, $\left(a_{v(x)}, a_{v(y)}, a_{v(z)}, a_{v(w)}\right)=(0,0,0,0)$ if and only if c_{τ} is even. Therefore, $\left|c_{i}\right|=1 \quad(i=1,2,3)$ and c_{τ} is even if and only if $\tilde{f}_{2, z_{o}}\left(s_{Q}\right)$ is of type $L 1$ or $L 2$. Since $P_{\tau}=O$ is a 2-torsion, we may assume $c_{\tau}=0$. Hence, $\tilde{f}_{Q_{, ~} z_{o}}\left(s_{Q}\right)$ depends on c_{1}, c_{2} and c_{3} only. Therefore, line-points for weakbitangent lines of type $L 1$ or $L 2$ are given by $\pm^{t}[1,1,1,0], \pm^{t}[1,-1,1,0]$ and $\pm{ }^{t}[1,1,-1,0]$.

We omit our proof for the case of No. 61 as we can prove it similarly.

Remark 5.7. Except for the cases No. 24 and 61, our proof is based on the following form of ${ }^{t} \boldsymbol{c} G \boldsymbol{c}$ (we omit those cases of rank ≤ 2, and some obvious cases):

No. $4\left(c_{1}+c_{2}+c_{3}+c_{4}+\frac{c_{5}}{2}+\frac{c_{6}}{2}\right)^{2}+\left(c_{2}+c_{3}+c_{4}+\frac{c_{5}}{2}+\frac{c_{6}}{2}\right)^{2}$

$$
+2\left(\frac{c_{3}}{2}+c_{4}+\frac{c_{5}}{2}+\frac{c_{6}}{2}\right)^{2}+\frac{c_{3}^{2}}{2}+\frac{c_{5}^{2}}{2}+\frac{c_{6}^{2}}{2}
$$

No. $6 \quad \frac{4}{3}\left(\frac{c_{1}}{2}+c_{2}+\frac{3}{4} c_{3}+\frac{c_{4}}{2}+\frac{c_{5}}{4}\right)^{2}+\frac{c_{1}{ }^{2}}{2}+\left(\frac{c_{3}}{2}+c_{4}+\frac{c_{5}}{2}\right)^{2}+\frac{c_{3}{ }^{2}}{2}+\frac{c_{5}{ }^{2}}{2}$
No. $7 \quad\left(c_{1}+c_{2}+\frac{c_{3}}{2}+\frac{c_{4}}{2}\right)^{2}+\left(c_{2}+\frac{c_{3}}{2}+\frac{c_{4}}{2}\right)^{2}+\frac{c_{3}^{2}}{2}+\frac{c_{4}{ }^{2}}{2}+\frac{c_{5}^{2}}{2}$
No. $10\left(\frac{c_{1}}{2}+c_{2}+\frac{c_{3}}{2}\right)^{2}+\frac{c_{1}{ }^{2}}{2}+\frac{c_{3}{ }^{2}}{2}+\frac{c_{4}{ }^{2}}{2}$
No. $12 \frac{1}{3}\left(c_{1}+\frac{c_{2}}{2}-\frac{c_{4}}{2}\right)^{2}+\left(\frac{c_{2}}{2}+c_{3}+\frac{c_{4}}{2}\right)^{2}+\frac{c_{2}^{2}}{2}+\frac{c_{4}{ }^{2}}{2}$
No. $17 \frac{3}{10}\left(c_{1}+\frac{c_{2}}{3}-\frac{c_{3}}{3}\right)^{2}+\frac{2}{3}\left(c_{2}+\frac{c_{3}}{2}\right)^{2}+\frac{c_{3}{ }^{2}}{2}$
No. $20 \quad \frac{2}{3}\left(c_{1}+\frac{c_{2}}{2}\right)^{2}+\frac{c_{2}{ }^{2}}{2}+\frac{c_{3}{ }^{2}}{6}$
No. $23 \frac{c_{1}^{2}}{2}+\frac{1}{3}\left(c_{2}+\frac{c_{3}}{2}\right)^{2}+\frac{c_{3}^{2}}{4}$.

Remark 5.8. From Table 5, we see that there are many examples that satisfy the assumption of Theorem 1.3.

6. Applications of Theorems 1.3 and $\mathbf{5 . 6}$

6.1. Proof of Corollary 1.5. We may assume that $C_{1}+C_{2}$ is given by an equation described in Lemma 4.1, and let $z_{o}=[0,1,0]$. Then the structure of $E_{C_{1}+C_{2}, z_{o}}(\mathbb{C}(t))$ corresponds to that of No. 24 in Table 1. Choose a basis, $\left\{P_{1}, P_{2}, P_{3}\right\}$, of the free part of $E_{C_{1}+C_{2}, z_{o}}(\mathbb{C}(t))$ such that $\tilde{f}_{C_{1}+C_{2}, z_{o}}\left(s_{P_{i}}\right)$ are the first types indicated in No. 24 in Table 4. Define

$$
\begin{array}{ll}
Q_{1}:=[-1] P_{1}+P_{2}+P_{3}, & Q_{2}:=P_{1}+[-1] P_{2}+P_{3}, \\
Q_{3}:=P_{1}+P_{2}+[-1] P_{3}, & Q_{4}:=P_{1}+P_{2}+P_{3} .
\end{array}
$$

Then, from Theorem 5.6, $\tilde{f}_{C_{1}+C_{2}, z_{o}}\left(s_{Q_{i}}\right)(i=1,2,3,4)$ are distinct bitangent lines of $C_{1}+C_{2}$. On the other hand, $Q_{4}=Q_{1}+Q_{2}+Q_{3}$ holds. By Theorem 1.3, the eight points of $\left(C_{1}+C_{2}\right) \cap\left(\bigcup_{i=1}^{4} \tilde{f}_{C_{1}+C_{2}, z_{o}}\left(s_{Q_{i}}\right)\right)$ lie on a conic C. Hence our statement follows.

Remark 6.1. Corollary 1.5 is well-known as Salmon's theorem. Its history and references to this well-known result can be found in [6, Chapter 2].
6.2. Proofs of Corollaries 1.6 and 1.7. We may assume that the quartic curves are given by equations described in Lemma 4.1. Let $z_{o}=[0,1,0]$. We choose bases of $E_{\mathscr{Q}, z_{o}}(\mathbb{C}(t))$ as follows:

Corollary 1.6: The structure of $E_{2, z_{o}}(\mathbb{C}(t))$ corresponds to that of No. 14. By Lemma 5.2, we can choose a basis $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ as follows:

$$
\begin{array}{lcc}
& E_{2, z_{o}}(\mathbb{C}(t)) & \left(\tilde{f}_{2, z_{o}}\left(s_{P_{1}}\right), \tilde{f}_{2, z_{o}}\left(s_{P_{2}}\right), \tilde{f}_{2, z_{o}}\left(s_{P_{3}}\right), \tilde{f}_{2, z_{o}}\left(s_{P_{4}}\right)\right) \\
\hline \text { No. } 14 & \left(A_{1}^{*}\right)^{\oplus 4} & (L 4(x, y), L 4(y, z), L 4(x, z), C 4)
\end{array}
$$

Corollary 1.7: The structure of $E_{Q_{,} z_{o}}(\mathbb{C}(t))$ corresponds to that of No. 18. Choose its basis as in Table 4. By abuse of notation, we denote it by $\left\{P_{1}, P_{2}, P_{3}\right\}$.

For each case, we define

$$
\begin{array}{ll}
Q_{1}:=[-1] P_{1}+P_{2}+P_{3}, & Q_{2}:=P_{1}+[-1] P_{2}+P_{3}, \\
Q_{3}:=P_{1}+P_{2}+[-1] P_{3}, & Q_{4}:=P_{1}+P_{2}+P_{3} .
\end{array}
$$

By a similar argument to the previous section, our statements follow.
6.3. Another application. We give another application.

Corollary 6.2. Let 2 be an irreducible quartic curve with exactly two singularities x and y such that x is a simple cusp and y is a node. Then
(i) there exist four weak-bitangent lines L_{1}, L_{2}, L_{3} and L_{4} of type $L 3(x)$, and there exist three weak-bitangent lines M_{1}, M_{2} and M_{3} of type L3 (y) or L5.
(ii) If $M_{i}(i=1,2,3)$ are of type $L 3$, then for each pair $\left(L_{i}, L_{j}\right)(1 \leq i<$ $j \leq 4)$, there exists a unique pair $\left(M_{a_{i j}}, M_{b_{i j}}\right)\left(1 \leq a_{i j}<b_{i j} \leq 3\right)$ such that
(*) the six points in $\mathscr{Q} \cap\left(L_{i}+L_{j}+M_{a_{i j}}+M_{b_{i j}}\right)$ all lie on a conic.
Proof. (i) We may assume that \mathcal{Q} is given by an equation described in Lemma 4.1. Let $z_{o}=[0,1,0]$. Then the structure of $E_{2, z_{o}}(\mathbb{C}(t))$ corresponds to that of No. 12 in Table 1. By Lemma 5.2, we choose a basis, $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$, of $E_{Q_{2}, z_{o}}(\mathbb{C}(t))$ such that the type of $\left(\tilde{f}_{2, z_{o}}\left(s_{P_{1}}\right), \tilde{f}_{2, z_{o}}\left(s_{P_{2}}\right)\right.$, $\left.\tilde{f}_{2, z_{o}}\left(s_{P_{3}}\right), \tilde{f}_{2, z_{o}}\left(s_{P_{4}}\right)\right)$ is the first type indicated in No. 12 in Table 4. Define $Q_{1}:=P_{2}, \quad Q_{2}:=P_{4}, \quad Q_{3}:=P_{1}+[-1] P_{3}+P_{4}, \quad Q_{4}:=[-1] P_{1}+P_{2}+[-1] P_{3}$, $R_{1}:=P_{3}, R_{2}:=P_{2}+[-1] P_{3}+P_{4}$ and $R_{3}:=P_{1}+[-1] P_{2}+P_{4}$. From Theorem 5.6, we have

- $\tilde{f}_{2, z_{o}}\left(s_{Q_{l}}\right)(l=1,2,3,4)$ are of type $L 3(x)$,
- $\tilde{f}_{2, z_{o}}\left(s_{R_{m}}\right)(m=1,2,3)$ are of type $L 3(y)$ or $L 5$, and
- the seven lines are distinct.

Put $L_{l}=\tilde{f}_{\mathcal{Q}_{2}}\left(s_{Q_{l}}\right)$ and $M_{m}=\tilde{f}_{\mathcal{Q}_{2} o}\left(s_{R_{m}}\right)(l=1,2,3,4, m=1,2,3)$.
(ii) Suppose that $M_{i}(i=1,2,3)$ are of type $L 3$.

Claim 1: For $\left(L_{i}, L_{j}\right)(1 \leq i<j \leq 4)$, there exists $\left(M_{a_{i j}}, M_{b_{i j}}\right)\left(1 \leq a_{i j}<\right.$ $\left.b_{i j} \leq 3\right)$ satisfying (\star).

Proof of Claim. Let us only consider the case when $i=1$ and $j=2$, since the other cases follow similarly. We have $R_{2}=Q_{1}+Q_{2} \dot{+}[-1] R_{1}$. By Theorem 1.3, the six points of $\mathscr{2} \cap\left(L_{1}+L_{2}+M_{1}+M_{2}\right)$ lie on a conic. Hence, $\left(M_{1}, M_{2}\right)$ satisfies (\star) for $\left(L_{1}, L_{2}\right)$.

Claim 2: For $\left(L_{i}, L_{j}\right)$, there exists a unique pair satisfying $(*)$.
Proof of Claim. Suppose that there exist two pairs as in Claim 1. Since there exist three lines of type $L 3(y)$, two pairs of weak-bitangent lines of type $L 3(y)$ have at least one common line. Hence we may assume that two pairs satisfying (\star) for $\left(L_{i}, L_{j}\right)$ are either $\left(M_{a_{i j}}, M_{b_{i j}}\right)$ or $\left(M_{a_{i j}}, M_{c_{i j}}\right)$. Let $C_{i j}$ and $C_{i j}^{\prime}$ be two conics such that

$$
\left(L_{i}+L_{j}+M_{a_{i j}}+M_{b_{i j}}\right) \cap \mathscr{Q} \subset C_{i j} \quad \text { and } \quad\left(L_{i}+L_{j}+M_{a_{i j}}+M_{c_{i j}}\right) \cap \mathscr{Q} \subset C_{i j}^{\prime} .
$$

Putting $\left\{x, p_{i}, p_{j}\right\}=\mathscr{2} \cap\left(L_{i}+L_{j}\right),\left\{y, q_{a_{i j}}\right\}=\mathscr{Q} \cap M_{a_{i j}},\left\{y, q_{b_{i j}}\right\}=\mathscr{Q} \cap M_{b_{i j}}$ and $\left\{y, q_{c_{i j}}\right\}=\mathscr{2} \cap M_{c_{i j}}$, we have

$$
\begin{aligned}
& \left.C_{i j}\right|_{\mathscr{Q}}=2 x+2 y+p_{i}+p_{j}+q_{a_{i j}}+q_{b_{i j}} \quad \text { and } \\
& \left.C_{i j}^{\prime}\right|_{2}=2 x+2 y+p_{i}+p_{j}+q_{a_{i j}}+q_{c_{i j}}
\end{aligned}
$$

where $\left.C\right|_{2}$ denotes the divisor on a curve C cut out by 2. Then $C_{i j}$ and $C_{i j}^{\prime}$ pass through the five points x, y, p_{i}, p_{j} and $q_{a_{i j}}$. Since there are no four colinear points among the above five points, we have $C_{i j}=C_{i j}^{\prime}$. Therefore $q_{b_{i j}}=q_{c_{i j}}$ and $M_{b_{i j}}=M_{c_{i j}}$.

Remark 6.3. The referee informed the author that Corollary 6.2 is more obvious than Corollaries 1.5, 1.6 and 1.7. In fact, we find this theorem from the application of a standard qudratic transformation, centered at the two singularities and a smooth point, and the group law on the resulting smooth cubic.

Acknowledgement

The author would like to thank the referee for many helpful comments on the previous version of this article, especially the idea of the proof in Remark 6.3. The author would also like to thank Professor S. Bannai for his valuable advice.

References

[1] S. Bannai, N. Kawana, R. Masuya and H. Tokunaga. Trisections on certain rational elliptic surfaces and families of Zariski pairs degenerating to the same conic-line arrangement. Geom. Dedicata, 216:8, 2022.
[2] S. Bannai and H.-o. Tokunaga. Geometry of bisections of elliptic surfaces and Zariski N-plets for conic arrangements. Geom. Dedicata, 178:219-237, 2015.
[3] S. Bannai and H.-o. Tokunaga. Geometry of bisections of elliptic surfaces and Zariski N-plets II. Topology Appl., 231:10-25, 2017.
[4] S. Bannai and H.-o. Tokunaga. Elliptic surfaces of rank one and the topology of cubic-line arrangements. J. Number Theory, 221:174-189, 2021.
[5] W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, second edition, 2004.
[6] I. V. Dolgachev. Classical Algebraic Geometry: a modern view. Cambridge University Press, Cambridge, 2012.
[7] S. D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, Cambridge, 2012.
[8] J. Harris. Theta-characteristics on algebraic curves. Trans. Amer. Math. Soc., 271(2):611638, 1982.
[9] E. Horikawa. On deformations of quintic surfaces. Invent. Math., 31(1):43-85, 1975.
[10] K. Kodaira. On compact analytic surfaces. II, III. Ann. of Math. (2), 77:563-626, 1963; ibid., 78:1-40, 1963.
[11] M. Kuwata. Twenty-eight double tangent lines of a plane quartile curve with an involution and the Mordell-Weil lattices. Comment. Math. Univ. St. Paul., 54:17-32, 2005.
[12] R. Miranda. The basic theory of elliptic surfaces. Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research]. ETS Editrice, Pisa, 1989.
[13] R. Miranda and U. Persson. On extremal rational elliptic surfaces. Mathematische Zeitschrift, 193(4):537-558, 1986.
[14] D. Mumford. Tata lectures on theta. II. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2007. Jacobian theta functions and differential equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura, Reprint of the 1984 original.
[15] K. Oguiso and T. Shioda. The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Paul., 40(1):83-99, 1991.
[16] G. Salmon. A treatise on conic sections-containing an account of some of the most important modern algebraic and geometric methods. Chelsea Publishing Co., New York, sixth edition, 1954.
[17] T. Shioda. On the Mordell-Weil lattices. Comment. Math. Univ. St. Paul., 39(2):211-240, 1990.
[18] T. Shioda. Plane quartics and Mordell-Weil lattices of type E_{7}. Comment. Math. Univ. St. Paul., 42(1):61-79, 1993.
[19] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
[20] A. Takahashi and H. Tokunaga. Representations of divisors on hyperelliptic curves and plane curves with quasi-toric relations. Comment. Math. Univ. St. Paul., 70(1):11-27, 2022.
[21] H.-o. Tokunaga. Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers. J. Math. Soc. Japan, 66(2):613-640, 2014.

Ryosuke Masuya
Department of Mathematical Sciences
Graduate School of Science
Tokyo Metropolitan University
1-1 Minami-Ohsawa, Hachiohji 192-0397 JAPAN
E-mail: masuya-ryosuke@ed.tmu.ac.jp

[^0]: 2020 Mathematics Subject Classification. 14J27, 14Q05, 14H50.
 Key words and phrases. Elliptic surfaces, Mordell-Weil lattice, quartic curves.

