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Abstract. In this article, the testing equality of the standardized generalized variance

(SGV) of k multivariate normal distributions with possibly unequal dimensions is

studied. The conventional likelihood-ratio test statistic reveals a serious bias with an

increase in dimensions. Therefore, we present a new test statistic that eliminates this

bias, and propose an asymptotic approximation-based test. Our proposed test is valid

not only in high-dimensional settings but also in large sample settings. Additionally,

we obtain the asymptotic non-null distribution of the proposed test and the approx-

imate confidence interval of the SGV under high-dimensional and large sample settings.

Finally, we investigate the finite sample and dimension behavior of this test using Monte

Carlo simulations.

1. Introduction

For a p� p covariance matrix S, its determinant, jSj, is known as a

generalized variance and is a measure of variability for multivariate data (Wilks

[12]). In a multivariate setting, a more suitable measure for comparing the

variability in the distributions of di¤erent dimensions is one which takes into

account the dimensions of the distributions (see, for example, SenGupta [8]

and [9]). In this regard, assuming that x is a p-dimensional random vector

with covariance matrix S, SenGupta [8] introduced the concept of the stand-

ardized generalized variance (SGV) of x, which is defined as jSj1=p, as a

measure for comparing the variability across populations of di¤erent dimen-

sions. This measure scales down the values across these populations of dif-

ferent dimensions so as to render them comparable with the univariate case

(SenGupta [9]). Thus, it can be stated that while jSj is used as a measure

of multidimensional variability, jSj1=p can serve the same purpose, while it

can also be used for comparing the variability in di¤erent dimensions. Pena

and Rodriguez [6] revisited the concept of the SGV under the label ‘‘e¤ective
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variance’’. Meanwhile, using the SGV concept, Pena and Linde [5] suggested

specific dimensionless descriptive measures of multivariate variability and

dependence. Comparing the overall variability for populations of di¤erent

dimensions could be useful for portfolio analysis with di¤erent numbers of

entries, additional or missing information on components of the same item

produced by di¤erent factories, the risk of various investment portfolios in

financial analysis, the precision in statistical quality control, the homogeneity in

cluster analysis, and comparing body size measurements among di¤erent species

of living organisms (SenGupta [9]).

For i A f1; 2; . . . ; kg ðkb 2Þ, let xi1; xi2; . . . ; xiNi
be pi-dimensional random

vectors from the i-th multivariate normal population. We can denote the i-th

population mean vector by mi, the i-th population covariance matrix by Si, and

the i-th multivariate normal population by Npiðmi;SiÞ, respectively. Let xij for

j A f1; 2; . . . ;Nig, i A f1; 2; . . . ; kg be distributed as Npiðmi;SiÞ, and the random

vectors x11; x12; . . . ; xkNk
be mutually independent. Our primary interest is to

test the following hypothesis:

H : jS1j1=p1 ¼ jS2j1=p2 ¼ � � � ¼ jSkj1=pk vs: A : sH: ð1:1Þ

The most classical approach for the testing problem (1.1) is the log-likelihood

ratio test (LRT). The LRT for testing H versus A was investigated by Sen-

Gupta [8]. Based on Bartlett’s test for the homogeneity of variances, Sen-

Gupta [9] modified the LRT statistic for testing H against A and obtained

the exact null distribution of this modified statistic for pi ¼ 1; 2 and mentioned

that for pi > 2, the exact null distribution of the this statistic is complicated

and computationally expensive (see, SenGupta [9]). According to the general

theory of the LRT, the asymptotic null distribution of the log-likelihood ratio

statistic is a chi-square distribution with k � 1 degrees of freedom; minfN1;

N2; . . . ;Nkg ! y. However, it is held that this limit distribution does not act

as an approximate distribution in high-dimensional settings. Najarzadeh [3]

proposed two modifications of the LRT (1.1) based on two well-known distri-

bution approximation methods. While it was confirmed that these methods

are good approximations if each dimension is di¤erent but almost equal in

high-dimensional settings according to numerical simulations, these methods are

impractical because they involve complicated moment calculations for moment

matching, and there is no theoretical justification when the dimensions are

di¤erent.

Recently, Sugiyama et al. [11] proposed an e¤ective approximate test

for (1.1) when p1 ¼ p2 ¼ � � � ¼ pk based on the high-dimensional asymptotic

theory. In this paper, by improving this approximate test such that it can be

applied even if the dimensions of each population are di¤erent, we derive a new

test for (1.1) that guarantees approximation accuracy not only in large sample
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settings but also in high-dimensional settings by making appropriate modifi-

cations to the LRT. Moreover, our asymptotic approximation is valid in so-

called boundary conditions such as pi=ni ! 1 as ni ! y and pi ! y, where

ni ¼ Ni � 1.

The remainder of the paper is organized as follows. Section 2 presents the

new test statistic, its asymptotic null and non-null distributions, the asymptotic

approximation-based test and the approximate confidence interval of the SGV.

Section 3 then presents an empirical analysis of the null and non-null distri-

bution of the proposed test statistic before. Section 4 concludes the paper.

2. Main result

2.1. Jensen’s inequality-based criteria and its estimation. In this section, we

define Jensen’s inequality-based criteria for the rational discrimination be-

tween the null hypothesis H and the alternative hypothesis A and propose

an estimator of the criterion that has consistency under both high-dimensional

settings and large sample settings.

When pi aminfn1; n2; . . . ; nkg, SenGupta [8] derived the LRT statistic for

the testing problem (1.1) which can be defined as follow:

TL ¼ m ln
Xk
i¼1

Ni pi

m
jðni=NiÞSij1=pi

 !
�
Xk
i¼1

Ni pi

m

lnjðni=NiÞSij
pi

( )
;

where

m ¼
Xk
j¼1

Njpj; xi ¼
1

Ni

XNi

j¼1

xij ; Si ¼
1

ni

XNi

j¼1

ðxij � xiÞðxij � xiÞ>:

Here, ni ¼ Ni � 1 for i A f1; 2; . . . ; kg. According to the general theory of the

LRT, an approximate test of size a using TL is

TL > w2k�1ðaÞ , reject H; ð2:1Þ

where w2k�1ðaÞ is the upper 100� a percentile of the chi-square distribution with

k � 1 degrees of freedom.

First, we introduced the relationship between a specific criterion related to

Jensen’s inequality and the LRT statistic and defined Jensen’s inequality-based

criteria. In the large sample framework, the LRT statistic TL is a naive

estimator of the following criteria:

LL ¼ m ln
Xk
i¼1

Ni pi

m
expðaiÞ

( )
�
Xk
i¼1

Ni pi

m
lnfexpðaiÞg

" #
;
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where

ai ¼
lnjSij
pi

for i A f1; 2; . . . ; kg. It should be noted that LL is a special case of Jensen’s

inequality-based criteria that is obtained using the following definition:

Definition 2.1. For any c ¼ ðc1; c2; . . . ; ckÞ>, such that ci > 0 for i A
f1; 2; . . . ; kg and c>1k ¼ 1, we can define

LðcÞ ¼ m ln
Xk
i¼1

ci expðaiÞ
( )

�
Xk
i¼1

ci lnfexpðaiÞg
" #

:

It should be noted that if c¼ ðN1 p1=m;N2 p2=m; . . . ;Nk pk=mÞ>, then LðcÞ ¼ LL.

Furthermore, from Jensen’s inequality, LðcÞb 0 and LðcÞ ¼ 0 holds if and only

if H holds. Therefore, it can be held that LðcÞ is reasonable for classifying

both the null hypothesis and the alternative hypothesis.

Next, we proposed an estimator of LðcÞ that is consistent not only

under large sample settings but also under high-dimensional settings. Using

the naive estimator ai to estimate lnjSij=pi results in a significant bias in high-

dimensional settings. Therefore, we used an exact unbiased estimator of ai,

given by

âai ¼
lnjSij
pi

� 1

pi

Xpi
l¼1

c
ni � lþ 1

2

� �
� ln

ni

2

� �� �
;

where cðxÞ ¼ q
qz

ln GðzÞjz¼x is the digamma function with the gamma func-

tion GðzÞ. Using this estimator, we constructed an estimator of LðcÞ as

follows:

LHðcÞ ¼ m ln
Xk
i¼1

ci expðâaiÞ
( )

�
Xk
i¼1

ciâai

" #

and used LHðcÞ as a test statistic for the testing problem (1.1).

Finally, we investigated the asymptotic properties of LHðcÞ and LðcÞ under
the following three asymptotic frameworks.

(A0) The dimensions p1; p2; . . . ; pk are fixed and each ni ¼ niðnÞ grows

as a function of n, such that ni also tends to infinity. Further-

more, niðnÞ=n ! r�i for some 0 < r�i < 1.

(A1) Each ni ¼ niðnÞ grows as a function of n, such that ni also tends

to infinity and limn!y niðnÞ=n ¼ r�i for some 0 < r�i < 1. For i A
f1; 2; . . . ; kg, pi ¼ piðnÞ grows as a function of n as long as piðnÞ <
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niðnÞ, such that pi also tends to infinity and limn!y piðnÞ=niðnÞ ¼
q�
i for some 0a q�

i < 1.

(A1 0) Each ni ¼ niðnÞ grows as a function of n, such that ni also tends

to infinity and limn!y niðnÞ=n ¼ r�i for some 0 < r�i < 1. For i A
f1; 2; . . . ; kg, pi ¼ niðnÞ.

The condition (A0) represents a large sample framework, while conditions (A1)

and (A1 0) represent a high-dimensional framework. When assuming a high-

dimensional frameworks (A1) or (A1 0), the following condition should also be

assumed.

(A2) Each ai ¼ lnjSij=pi grows as a function of pi, such that limpi!y ai
¼ a�

i for some 0a a�
i < y.

We could then obtain the following theorem to obtain the asymptotic property

of LHðcÞ.

Theorem 2.1. Here, we could assume any one of the conditions (A0), (A1),

and (A1 0). When (A1) or (A1 0) is assumed, we can also assume (A2). For any

constant vector c ¼ ðc1; c2; . . . ; ckÞ>, such that ci > 0 for i A f1; 2; . . . ; kg and

c>1k ¼ 1, LHðcÞ=m is a consistent estimator of LðcÞ=m, that is,

LHðcÞ
m

¼ LðcÞ
m

þ opð1Þ:

Proof. The expected value and the variance of the estimator âai can be

given as follows:

EðâaiÞ ¼ ai; varðâaiÞ ¼
1

p2i

Xpi
l¼1

c 0 ni � lþ 1

2

� �
:

In addition, for each assumption, the variance of the estimator âai was evaluated

as follows:

varðâaiÞ ¼
Oðn�1

i Þ under ðA0Þ;
Oðp�2

i Þ under ðA1Þ;
Oðp�2

i ln niÞ under ðA1 0Þ;

8><
>: ð2:2Þ

(see, e.g., Sugiyama et al. [11]). From (2.2),

âai ¼ ai þ opð1Þ; ð2:3Þ

as n ! y. We obtain Theorem 2.1 directly from the continuous mapping

theorem (see, e.g., Theorem 1.10 (ii) in Shao [10]) and (2.3).

2.2. Approximate test. In this section, we determine an appropriate c in

LHðcÞ and propose an approximate size a test that is valid in both high-
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dimensional and large sample settings. We also explain how the proposed test

statistic is asymptotically equivalent to the LRT statistic under large sample

settings. In addition, we obtain the asymptotic distribution of the non-null

distribution of the proposed test statistic.

First, we prepared the following lemma, given by Cai et al. [1], to derive

the asymptotic distribution of LHðcÞ.

Lemma 2.1 (Cai et al. [1]). Let Wi @Wpiðni;SiÞ, Si ¼ Wi=ni, ai ¼
lnjSij=pi, and

âai ¼
lnjSij
pi

� 1

pi

Xpi
l¼1

c
ni � lþ 1

2

� �
� ln

ni

2

� �� �
:

Here, we could assume any one of the conditions (A0), (A1), and (A1 0).

Then,

piðâai � aiÞ
vi

ˆ Nð0; 1Þ;

as n ! y. Here, ‘‘ˆ’’ denotes convergence in distribution, and

vi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXpi
l¼1

c 0 ni � lþ 1

2

� �vuut :

Proof. See, Cai et al. [1].

We can now discuss the selection of c and propose a new test statistic.

From Lemma 2.1, we could choose c such that the null asymptotic distribution

of the statistic LHðcÞ multiplied by an appropriate constant is a chi-square

distribution with k � 1 degrees of freedom. This result can be summarized

according to the following theorem:

Theorem 2.2. Here, we could assume any one of the conditions (A0), (A1),

and (A1 0). Let us now define

TH ¼
2
Pk

j¼1 p
2
j =v

2
j

m
LHðcHÞ;

where

cH ¼ 1Pk
i¼1 p

2
i =v

2
i

p21
v21

;
p22
v22

; . . . ;
p2k
v2k

� �>
:

Under H, TH ˆ w2k�1 as n ! y.
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Proof. Let ~zzi ¼ piðâai � aiÞ=vi and dðcÞ ¼
Pk

i¼1 civ
2
i =ð2p2i Þ. Under H,

LHðcÞ is expanded as follows:

LHðcÞ
dðcÞm ¼

Xk
i¼1

civ
2
i

2p2i dðcÞ
~zz2i �

Xk
i¼1

civiffiffiffiffiffiffiffiffiffiffiffi
2dðcÞ

p
pi
~zzi

 !2
þ opð1Þ

as n ! y. If we choose c ¼ cH ,

LHðcÞ
dðcÞm ¼ TH ¼ ~zz>ðIk � bb>Þ~zzþ opð1Þ ð2:4Þ

as n ! y, where

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1 p

2
i =v

2
i

q p1

v1
;
p2

v2
; . . . ;

pk

vk

� �>
:

From the mutual independence of ~zz1;~zz2; . . . ;~zzk and Lemma 2.1, if we

assume any one of the conditions (A0), (A1), and (A1 0), then,

~zz ¼ ð~zz1;~zz2; . . . ;~zzkÞ> ˆ Nkð0; IkÞ

as n ! y. Since k-dimensional random vectors ~zz converge in distribution to a

multivariate normal random variable z, according to the continuous mapping

theorem (see, e.g., Theorem 1.10 (iii) in Shao [10]), the sequence of random

variables gðzÞ converges in distribution to gð~zzÞ if g : Rk ! R is continuous. It

should be noted that gðxÞ ¼ x>ðIk � bb>Þx is a continuous function of x A Rk.

Thus, ~zz>ðIk � bb>Þ~zz ˆ z>ðIk � bb>Þz. Meanwhile, Ik � bb> is an idempotent

matrix and rankðIk � bb>Þ ¼ k � 1. From Cochran’s theorem, z>ðIk � bb>Þz
@ w2k�1. Hence,

~zz>ðIk � bb>Þ~zz ˆ w2k�1: ð2:5Þ

From (2.4) and (2.5), under H, TH ˆ w2k�1.

Finally, we can propose a new approximation test for the testing problem

(1.1). From Theorem 2.2, the asymptotic null distribution of TH is invariant

even under large sample settings (A0); that is, the proposed method is also valid

under such settings. Thus, we propose an approximate test of size a by using

TH as follows:

TH > w2k�1ðaÞ , reject H: ð2:6Þ

The following remark summarizes the relationship between the proposed test

statistic TH which is given in Theorem 2.2, and the log-likelihood-ratio test

statistic under large sample settings.
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Remark 2.1. Under (A0),

TH

m
¼ TL

m
þ opð1Þ;

that is, TH=m is asymptotically equivalent to the LRT statistic divided by m

under the large sample framework.

Finally, we could obtain the asymptotic non-null distribution of test

statistic TH by applying Lemma 1.

Theorem 2.3. Here, we could assume any one of the conditions (A0), (A1),

and (A1 0), while also assuming the following condition:

Di ¼
2pi
vi

expða�
i Þ
Pk

j¼1 p
2
j =v

2
jPk

j¼1 p
2
j =v

2
j expða�

j Þ
� 1

 !
¼ D�

i þ oð1Þ: ð2:7Þ

Let z be a random vector according to the multivariate normal distribution

Nkð0; IkÞ, and let

D� ¼ diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða�

1 Þ
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða�

2 Þ
q

; . . . ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða�

kÞ
q

Þ; ðd�Þi ¼ D�
i

ðb�Þi ¼ lim
n!y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða�

i ÞPk
j¼1 p

2
j v

2
i =ðp2i v2j Þ expða�

j Þ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða �

i
ÞPk

j¼1
pjr

�
j
=ð pir�i Þ expða �

j
Þ

r
under ðA0Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða�

i
ÞPk

j¼1
q �
j
2r �

j
2=ðq �

i
2r �

i
2Þ lnð1�q �

i
Þ=lnð1�q �

j
Þ expða �

j
Þ

r
under ðA1Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða �

i
ÞPk

j¼1
q �
j
2r �

j
2=ðq �

i
2r �

i
2Þ expða �

j
Þ

r
under ðA1 0Þ;

8>>>>>>>><
>>>>>>>>:

c� ¼ lim
n!y

Pk
j¼1 p

2
j =v

2
jPk

j¼1 p
2
j =v

2
j expðaiÞ

¼

P
j¼1

pjr
�
jP

j¼1
pjr

�
j
expðaiÞ

under ðA0Þ;P
j¼1

q �
j
2r�j

2=lnð1�q�
j ÞP

j¼1
q �
j
2r �

j
2=lnð1�q �

j
Þ expðaiÞ

under ðA1Þ;P
j¼1

q �
j
2r�j

2P
j¼1

q �
j
2r �

j
2 expðaiÞ

under ðA1 0Þ:

8>>>>>>>><
>>>>>>>>:

Then,

TH �
2
Pk

j¼1 p
2
j =v

2
j

m
LHðcHÞ ˆ d�>zþ c�z>D�ðIk � b�b�>ÞD�z

as n ! y.
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Proof. Let ~zzi ¼ piðâai � aiÞ=vi. By using z, under (A1) and (A2), LHðc�HÞ
is expanded as follows:

TH ¼
2
Pk

j¼1 p
2
j =v

2
j

m
LHðc�HÞ

þ
Xk
i¼1

2pi
vi

expða�
i Þ
Pk

j¼1 p
2
j =p

2
i v

2
j =v

2
iPk

j¼1 p
2
j =p

2
i v

2
j =v

2
i expða�

j Þ
� 1

 !
~zzi

þ
Pk

j¼1 p
2
j =v

2
jPk

j¼1 p
2
j =v

2
j expðajÞ

Xk
i¼1

expðaiÞ~zz2i

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1 p

2
j =v

2
j

q
Pk

j¼1 p
2
j =v

2
j expðajÞ

Xk
i¼1

pi expðaiÞ
vi

~zzi

0
@

1
A
2

þ opð1Þ:

Thus, if we assume any one of the conditions (A0), (A1), and (A1 0), then,

TH ¼ d�>~zzþ c�~zz>D�ðIk � b�b�>ÞD�~zzþ opð1Þ: ð2:8Þ

From the mutual independence of ~zz1;~zz2; . . . ;~zzk and Lemma 1, if we assume any

one of the conditions (A0), (A1), and (A1 0), then,

~zz ¼ ð~zz1;~zz2; . . . ;~zzkÞ> ˆ Nkð0; IkÞ

as n ! y. Since the k-dimensional random vector ~zz converges in distribu-

tion to a multivariate normal random variable z, according to the continuous

mapping theorem (see, e.g., Theorem 1.10 (iii) in Shao [10]), the sequence of

random variables gð~zzÞ converges in distribution to gðzÞ if g : Rk ! R is con-

tinuous. It should be noted that gðxÞ ¼ d�>xþ c�x>D�ðIk � b�b�>ÞD�x is a

continuous function of x A Rk. Thus, from the continuous mapping theorem,

d�>~zzþ c�~zz>D�ðIk � b�b�>ÞD�~zz ˆ d�>zþ c�z>D�ðIk � b�b�>ÞD�z: ð2:9Þ

In combining (2.8) and (2.9), we can prove Theorem 2.3.

2.3. Interval estimation of jSij1=pi . In this section, we apply Lemma 2.1 to

propose an approximate confidence interval for the SGV jSij1=pi .

Theorem 2.4. Here, we could assume any one of the conditions (A0), (A1),

and (A1 0). Then,

pifexpðâaiÞ � jSij1=pig
expðâaiÞvi

ˆ Nð0; 1Þ;

as n ! y.
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Proof. From Lemma 2.1 and the delta method, we could obtain the

following:

pifexpðâaiÞ � jSij1=pig
expðaiÞvi

ˆ Nð0; 1Þ:

In combining this result with (2.3) and Slutsky’s theorem, we could prove

Theorem 2.4.

By applying Theorem 2.4, we could propose an approximate 1� a con-

fidence interval of jSij1=pi as

expðâaiÞ �
expðâaiÞvi

pi
z

a

2

� �
; expðâaiÞ þ

expðâaiÞvi
pi

z
a

2

� �� �
; ð2:10Þ

where zða=2Þ is the upper 100� ða=2Þ percentile of the standard normal

distribution.

3. Simulation studies and applications

3.1. Simulation studies. First, we compared the proposed test (2.6) with the

approximate LRT test (2.1). In this simulation study, we make the following

assumptions: all the mean vectors m1; m2; . . . ; mk are all equal to 0, the cova-

riance matrix Si is Si ¼ i dIpi where d A f0:0; 0:1; 0:2; 0:3g, the nominal signif-

icance level a is a ¼ 0:05, and the number of populations k is k A f4; 6g. The

settings for dimension p ¼ ðp1; p2; . . . ; pkÞ and sample size N ¼ ðN1;N2; . . . ;

NkÞ are summarized in Table 1.

For any combination of ðpi;N ijÞ and d A f0:0; 0:1; 0:2; 0:3g, we can use the

following steps to calculate the empirical type-I error or power of each test

method.

1 We set Si ¼ i dIpi where d A f0:0; 0:1; 0:2; 0:3g.
2 We generated an independent sample x

ðbÞ
i1 ; x

ðbÞ
i2 ; . . . ; x

ðbÞ
iNi

drawn from the

multivariate normal distribution Npið0;SiÞ for i A f1; 2; 3; 4g.
3 For the sample x

ðbÞ
11 ; x

ðbÞ
12 ; . . . ; x

ðbÞ
kNk

, we calculated the realized value of

TH , which is denoted as t
ðbÞ
H and the realized value of TL, denoted

as t
ðbÞ
L .

4 We computed the estimated probability of method M A fH;Lg as

PMðdÞ ¼ 1

100; 000

X100;000
b¼1

IðtðbÞH > w20:05Þ;

respectively, where Ið�Þ is the indicator function. Meanwhile, PMð0Þ
represents an empirical type-I error and PðdÞ for d A f0:1; 0:2; 0:3g rep-

resents an empirical power.

226 Hiroki Watanabe et al.



The empirical sizes and the empirical powers calculated using 105 repli-

cations are listed in Table 2 and Table 3 for k ¼ 4 and k ¼ 6, respectively.

Here, it was confirmed that the power tended to increase as d increased, while

the power tended to increase as the dimension p and number of groups k

increased. These trends can be regarded as natural.

Next, we investigated the accuracy of the approximation of the non-null

distributions. Here, we could generate Monte Carlo samples t
ð1Þ
H ; t

ð2Þ
H ; . . . ; t

ðBÞ
H

of test statistic TH by repeating the following procedure B times.

1 We generated an independent sample x
ðbÞ
i1 ; x

ðbÞ
i2 ; . . . ; x

ðbÞ
iNi

drawn from the

multivariate normal distribution Npið0;SiÞ for i A f1; 2; 3; 4g.
2 For the sample x

ðbÞ
11 ; x

ðbÞ
12 ; . . . ; x

ðbÞ
kNk

, we calculated the realized value of

TH , which is denoted as t
ðbÞ
H .

Using the probability expression given in Theorem 2.3, the distribution of TH

can be approximated according to the distribution of ~TTH , given by

~TTH ¼
2
Pk

j¼1 p
2
j =v

2
j

m
LHðcHÞ þ d>zþ cz>DðIk � bb>ÞDz;

where z is a random vector distributed as Nkð0; IkÞ and

Table 1. The dimension p and sample size N settings

p ¼ ðp1; p2; . . . ; pkÞ N ¼ ðN1;N2; . . . ;NkÞ

p1 ¼ ð5; 6; 7; 8Þ N11 ¼ ð25; 26; 27; 28Þ
p1 ¼ ð5; 6; 7; 8Þ N12 ¼ ð25; 36; 47; 58Þ

p2 ¼ ð10; 15; 20; 25Þ N21 ¼ ð30; 35; 40; 45Þ
p2 ¼ ð10; 15; 20; 25Þ N22 ¼ ð30; 45; 60; 75Þ

p3 ¼ ð50; 60; 70; 80Þ N31 ¼ ð70; 80; 90; 100Þ
p3 ¼ ð50; 60; 70; 80Þ N32 ¼ ð70; 90; 110; 130Þ

p4 ¼ ð100; 120; 140; 160Þ N41 ¼ ð120; 140; 160; 180Þ
p4 ¼ ð100; 120; 140; 160Þ N42 ¼ ð120; 150; 180; 210Þ

p5 ¼ ð3; 4; 5; 6; 7; 8Þ N51 ¼ ð23; 24; 25; 26; 27; 28Þ
p5 ¼ ð3; 4; 5; 6; 7; 8Þ N52 ¼ ð23; 34; 45; 56; 67; 78Þ

p6 ¼ ð5; 10; 15; 20; 25; 30Þ N61 ¼ ð25; 30; 35; 40; 45; 50Þ
p6 ¼ ð5; 10; 15; 20; 25; 30Þ N62 ¼ ð25; 40; 55; 70; 85; 100Þ

p7 ¼ ð30; 40; 50; 60; 70; 80Þ N71 ¼ ð50; 60; 70; 80; 90; 100Þ
p7 ¼ ð30; 40; 50; 60; 70; 80Þ N72 ¼ ð50; 70; 90; 110; 130; 150Þ

p8 ¼ ð100; 120; 140; 160; 180; 200Þ N81 ¼ ð120; 140; 160; 180; 200; 220Þ
p8 ¼ ð100; 120; 140; 160; 180; 200Þ N82 ¼ ð120; 150; 180; 210; 240; 270Þ
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D ¼ diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða1Þ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expða2Þ

p
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðakÞ

p
Þ;

ðdÞi ¼
2pi
vi

expðaiÞ
Pk

j¼1 p
2
j =v

2
jPk

j¼1 p
2
j =v

2
j expðajÞ

� 1

 !
;

ðbÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expðaiÞPk
j¼1 p

2
j v

2
i =ðp2i v2j Þ expðajÞ

s
; c ¼

Pk
j¼1 p

2
j =v

2
jPk

j¼1 p
2
j =v

2
j expðaiÞ

:

We could then generate Monte Carlo samples of ~TTH as ~tt
ð1Þ
H ; ~tt

ð2Þ
H ; . . . ; ~tt

ðBÞ
H by

repeating the following procedure B times.

1 We generated an independent sample zðbÞ drawn from Nkð0; IkÞ.
2 For the sample zb, we calculated

~tt
ðbÞ
H ¼

2
Pk

j¼1 p
2
j =v

2
j

m
LHðcHÞ þ d>zþ cz>DðIk � bb>ÞDz:

In all simulations, we set B ¼ 105, while we implemented the procedure

described above using specific parameter settings. Meanwhile, in all of the

simulations, without any loss of generality, we supposed that mi ¼ 0 for i A

Table 2. When k ¼ 4, the empirical probabilities PTH
ðdÞ and PTL

ðdÞ can be calculated for any

combination of ðpi;N ijÞ and d A f0:0; 0:1; 0:2; 0:3g. Here, PMð0Þ represents an empirical type-I

error and PðdÞ for M A fTH ;TLg, d A f0:1; 0:2; 0:3g represents an empirical power.

p N ij d PTH
ðdÞ PTL

ðdÞ p N ij d PTH
ðdÞ PTL

ðdÞ

p1 N11 0.0 0.047 0.099 p3 N31 0.0 0.050 0.822

0.1 0.089 0.116 0.1 0.877 0.463

0.2 0.240 0.261 0.2 1.000 0.999

0.3 0.511 0.526 0.3 1.000 1.000

N12 0.0 0.049 0.095 N32 0.0 0.051 0.946

0.1 0.101 0.256 0.1 0.935 1.000

0.2 0.309 0.574 0.2 1.000 1.000

0.3 0.648 0.863 0.3 1.000 1.000

p2 N21 0.0 0.050 0.400 p4 N41 0.0 0.050 1.000

0.1 0.174 0.145 0.1 1.000 1.000

0.2 0.610 0.287 0.2 1.000 1.000

0.3 0.945 0.726 0.3 1.000 1.000

N22 0.0 0.049 0.117 N42 0.0 0.050 1.000

0.1 0.216 0.468 0.1 1.000 1.000

0.2 0.729 0.913 0.2 1.000 1.000

0.3 0.983 0.998 0.3 1.000 1.000
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f1; 2; . . . ; kg. We set the covariance structure as Si ¼ i dIpi where d A f0:1; 0:2;
0:3g, each sample size as Ni ¼ pi þ 20 for i A f1; 2; 3; 4g, and the dimensions as

p1 ¼ ð5; 6; 7; 8Þ>, p2 ¼ ð20; 30; 40; 50Þ> and p3 ¼ ð100; 120; 140; 160Þ>.
As Figure 1 shows, for any combination of p and d A f0:1; 0:2; 0:3g, we

compared the smoothed histogram of t
ð1Þ
H ; t

ð2Þ
H ; . . . ; t

ðBÞ
H with one of ~tt

ð1Þ
H ; ~tt

ð2Þ
H ; . . . ;

~tt
ðBÞ
H . In all of the figures, the ~tt

ðbÞ
H histogram is very close to the t

ðbÞ
H histogram.

These behaviors are consistent with Theorem 2.3. In Addition, the ~tt
ðbÞ
H histo-

gram and the t
ðbÞ
H histogram deviated from the chi-square distribution with

k � 1 degrees of freedom as d increased, that is, the power of the proposed

test increased as d became larger. The ~tt
ðbÞ
H histogram and the t

ðbÞ
H histo-

gram also deviated from the chi-square distribution with k � 1 degrees of

freedom as the number of populations k and dimension p increased. From

these results, the natural behavior of the power of the proposed test could

be confirmed.

3.2. Applications. The data related to the Leptograpsus crab (Campbell and

Mahon [2]) are available in the MASS package (Ripley et al. [7]) for R.

This data set consists of 200 subjects: 100 of species orange (50 male and

50 female) and 100 of species blue (50 male and 50 female). For each subject,

Table 3. When k ¼ 6, the empirical probabilities PTH
ðdÞ and PTL

ðdÞ can be calculated for any

combination of ðpi;N ijÞ and d A f0:0; 0:1; 0:2; 0:3g. Here, PMð0Þ represents an empirical type-I

error and PðdÞ for M A fTH ;TLg, d A f0:1; 0:2; 0:3g represents an empirical power.

p N ij d PTH
ðdÞ PTL

ðdÞ p N ij d PTH
ðdÞ PTL

ðdÞ

p5 N51 0.0 0.048 0.119 p7 N71 0.0 0.050 0.997

0.1 0.088 0.113 0.1 0.903 0.372

0.2 0.251 0.243 0.2 1.000 0.961

0.3 0.566 0.527 0.3 1.000 1.000

N52 0.0 0.049 0.079 N72 0.0 0.050 0.636

0.1 0.110 0.233 0.1 0.972 1.000

0.2 0.389 0.608 0.2 1.000 1.000

0.3 0.787 0.919 0.3 1.000 1.000

p6 N61 0.0 0.050 0.711 p8 N81 0.0 0.050 0.721

0.1 0.181 0.258 0.1 1.000 0.979

0.2 0.672 0.197 0.2 1.000 1.000

0.3 0.975 0.571 0.3 1.000 1.000

N62 0.0 0.050 0.103 N82 0.0 0.050 1.000

0.1 0.266 0.362 0.1 1.000 1.000

0.2 0.877 0.921 0.2 1.000 1.000

0.3 0.999 0.999 0.3 1.000 1.000
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five measurements, x1 ¼ frontal lobe size (mm), x2 ¼ rear width (mm), x3 ¼
carapace length (mm), x4 ¼ carapace width (mm), and x5 ¼ body depth (mm)

were recorded. In the following sections, the blue male, blue female, orange

male, and orange female crabs are denoted by 1, 2, 3, and 4, respectively.

We could then consider the power set of fx1; x2; x3; x4g which is denoted

by P. For each set of variables belonging to P, we verified whether or not

the SGVs in the four groups were all equal with the results summarized in

Table 4.

4. Conclusion

In this study, we proposed an asymptotic approximation-based test for

the equality of the SGVs of k multivariate normal populations in both high-

dimensional and large sample settings. SenGupta [8] and [9] investigated a

LRT statistic for this testing problem and proposed a reasonable approxima-

tion test for a large sample setting. Our test presents an improvement to the

LRT statistic that is valid in high-dimensional settings. Using the asymptotic

Fig. 1. For any combination of p A fp1; p2; p3g and d A f0:1; 0:2; 0:3g, the smoothed histogram of

t
ð1Þ
H ; t

ð2Þ
H ; . . . ; t

ðBÞ
H is represented by the dashed lines, the smoothed histogram of ~tt

ð1Þ
H ; ~tt

ð2Þ
H ; . . . ; ~tt

ðBÞ
H by

the solid lines and the chi-squared density function by the dotted lines.
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results reported by Cai et al. [1], we obtained the null and non-null asymptotic

distributions of the proposed test statistic. The features of the proposed test

statistic are valid not only for high-dimensional and large sample settings but

also for large sample settings. Furthermore, using various parameter settings,

we investigated the finite sample and dimension behavior of our test statistic

using Monte Carlo simulations. The simulation results confirmed that our

asymptotic results work well as approximations in term of a finite sample and

finite dimensions. Overall, we demonstrated that the proposed test is unique

in that it has the capacity to work within a wider range than the conventional

method.
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Table 4. For the results presented in this table, the SGV equivalence test was performed on the

corresponding set of variables. The p-value of proposed statistic TH is denoted as PTH
, while the

p-value of proposed statistic TL is denoted as PTL
. P-values of less than 0.05 are presented in

boldface.

p variables PTH
PTL

1 x1

x2

x3

x4

x5

0.233

0.750

0.138

0.175

0.227

0.217

0.738

0.125

0.160

0.211

2 x1x2

x1x3

x1x4

x1x5

x2x3

x2x4

x2x5

x3x4

x3x5

x4x5

0.184

0.065

0.021

0.510

0.267

0.265

0.267

0.575

0.735

0.759

0.165

0.054

0.017

0.487

0.245

0.243

0.245

0.554

0.719

0.744

p variables PTH
PTL

3 x1x2x3

x1x2x4

x1x2x5

x1x3x4

x1x3x5

x1x4x5

x2x3x4

x2x3x5

x2x4x5

x3x4x5

0.039

0.028

0.019

0.022

0.239

0.078

0.137

0.111

0.078

0.506

0.030

0.021

0.014

0.016

0.213

0.065

0.117

0.094

0.064

0.478

4 x1x2x3x4

x1x2x3x5

x1x2x4x5

x1x3x4x5

x2x3x4x5

0.007

0.028

0.009

0.035

0.053

0.004

0.021

0.006

0.026

0.041

5 x1x2x3x4x5 0.004 0.002
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