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Three dimensional contact metric manifolds with Cotton solitons
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ABSTRACT. In this article we study a three dimensional contact metric manifold M3
with Cotton solitons. We mainly consider two classes of contact metric manifolds
admitting Cotton solitons. Firstly, we study a contact metric manifold with Q¢ = p¢,
where p is a smooth function on M constant along Reeb vector field & and prove that
it is Sasakian or has constant sectional curvature 0 or 1 if the potential vector field
of Cotton soliton is collinear with ¢ or is a gradient vector field. Moreover, if p is
constant we prove that such a contact metric manifold is Sasakian, flat or locally
isometric to one of the following Lie groups: SU(2) or SO(3) if it admits a Cotton
soliton with the potential vector field being orthogonal to Reeb vector field . Sec-
ondly, it is proved that a (k,u,v)-contact metric manifold admitting a Cotton soliton
with the potential vector field being Reeb vector field is Sasakian. Furthermore, if the
potential vector field is a gradient vector field, we prove that M is Sasakian, flat, a
contact metric (0, —4)-space or a contact metric (x,0)-space with ¥ < 1 and x # 0. For
the potential vector field being orthogonal to &, if v is constant we prove that M is
either Sasakian, or a (x,u)-contact metric space.

1. Introduction

A Cotton soliton is a metric defined on a three dimensional smooth mani-
fold M such that the following equation

Lyg+C—-0g=0 (1)

holds for a constant ¢ and one vector field V', called potential vector field,
where C is the (0,2)-Cotton tensor defined by
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in a local frame of M. Here ¢ is a tensor density, in an orthonormal frame
¢'? =1 and Cy is Cotton tensor. As the Ricci soliton being fixed point of
Ricci flow, Cotton solitons are fixed points of the Cotton flow up to diffeo-
morphisms and rescaling:

0
Eg(l) = Cypr),

introduced in [14], where Cy, is the (0,2)-Cotton tensor of (M,g(z)). Cotton
soliton is said to be trivial if C =0 (i.e. locally conformally flat). Using the
terminology of Ricci solitons, we call a Cotton soliton shrinking, steady and
expanding according as o is positive, zero and negative respectively. If the
potential vector field V' is a gradient field for some function, then g is called
a gradient Cotton soliton, i.e. the following equation

2 Hess f+ C=uayg (3)

is satisfied for a smooth function f on M.

For a Riemannian case, in [18] it proved that a compact Riemannian
Cotton soliton is locally conformally flat, and in the noncompact case the
existence of a nontrivial shrinking Cotton soliton on Heisenberg group # is
given. Meanwhile, for a non-Riemannian case, they gave the existence of
Lorentzian Cotton solitons. Furthermore, E. Calvifio-Louzao et al. studied
left-invariant Cotton solitons on homogeneous manifolds, see [17].

In fact, Cotton solitons are closely related to Ricci and Yamabe solitons,
which are defined respectively by

Lyg + Ric = ag and PLyg = (r—o0a)g,

where Ric and r are denoted by the Ricci tensor and scalar curvature, respec-
tively (see the examples [16, 7]). We notice that many authors studied Ricci
solitons and Yamabe solitons on contact metric manifolds, for instance, Cho
and Sharma in [5, 6] studied a contact metric manifold with a Ricci soliton
such that potential vector field V' being collinear with &, and Venkatesha-Naik
[21] proved that a contact metric manifold with a Yamabe soliton is flat or
it has constant scalar curvature under the assumption that ¢Q = Qp. More
results can refer to [10, 11, 19, 20].

The previous works motivate us to study Cotton solitons on a three
dimensional contact metric manifold. In this article, we study two classes
of contact metric 3-manifolds admitting a Cotton soliton including a contact
metric 3-manifolds with Q& = p& and a (k, i, v)-contact metric 3-manifold. In
Section 3, for a contact metric 3-manifolds with Q& = p&, we first assume that
the function p is constant along Reeb vector field . Such a class of contact
metric manifolds was studied in [2] under the hypothesis of pseudosymmetric.
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We classify such a class of contact metric manifold admitting a Cotton soliton
with potential vector field V' being collinear with ¢ or a gradient vector field.
For V being orthogonal to Reeb vector field, we need to assume that p is a
constant function. For a (x, i, v)-contact metric manifold, in Section 4 we also
consider the potential vector field of a Cotton soliton being Reeb vector field,
a gradient vector field and orthogonal to &, respectively. In order to state and
prove our conclusions, we need to give some preliminaries of contact manifolds,
which are presented in Section 2.

2. Preliminaries

A contact metric manifold is a smooth manifold M?>"*! with a global one
form # such that # A (dn)" # 0 everywhere. The one form 7 induces an almost
contact structure (¢,&,7) on M, which satisfies

P=-T+n®E  nop=0, $ol=0.

Here £ is a unique vector field (called Reeb or characteristic vector field) dual to
n and satisfying dn(&, X) =0 for all X. Tt is well-known that there exists a
Riemannian metric g such that

dn(X,Y)=g(X,9Y),  g(X,<) =n(X)

for any X, Y e X(M). We refer to (M?>"*! ¢, & 5,9) as a contact metric mani-
fold. A contact metric manifold (M ¢, & 5,g) for which Reeb vector field
¢ is Killing, ie. g =0, is called a K-contact manifold.

On a contact metric manifold, we recall a operator & = %fé(/ﬁ, which is
a self-dual operator, and / = R(-,¢)¢E. Concerning the operators the following
identities, which were given in [3], are satisfied:

he=0, ¢h=—hp, Vxi=—¢X —¢hX, ghX,Y)=g(X hY),
trace(h) = trace(¢h) =0, noh =0, 4)
trace(/) = g(Q¢&, &) = 2n — trace(h?).

If 4 = 0 then we have Z:g = 0, that means that M?>"*! is a K-contact manifold.

One can define a complex structure J on M x R by J(X, f4) = (¢X — f¢,
n(X)4) for any X € ¥(M) and f e C*(M x R). A contact metric structure
(¢,&,m,¢9) is said to be normal and M is called Sasakian if the correspond-
ing complex structure J on M X R is integrable. A Sasakian manifold is a
K-contact manifold and the converse does not hold, but if dim M = 3 then a
K-contact manifold is Sasakian.

In the following we assume that M is a 3-dimensional contact metric
manifold. Let U be the open subset where the tensor 4 # 0 and U’ be the
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open subset such that / is identically zero. U U U’ is open dense in M be-
cause % is a smooth function on M, thus a property that is satisfied in U’ U U
is also satisfied in M. For any pe U’ U U, there exists a local orthonormal
frame field & = {e; = e,e; = e, e3 = ¢} such that he = de and hge = —Age on
U, where A is a positive non-vanishing smooth function of M.

First of all, we have the following lemma:

LemMa 1 ([9]). In the open subset U, the Levi-Civita connection V is given

by
Vee = age, Vepe = —ae, Ve =0,
V.& = —(1+ A)ge, V.e = bge, Vope = —be + (1 + 1)¢,
Vel = (1 — Ae, Viethe = ce, Viee = —ce + (A — 1)¢E,

where a is a smooth function,

= 2il [pe(A) + A] with A = Ric(e, &), (5)
c= 21/1[ () + B] with B = Ric(ge, ). (6)

The components of Ricci operator Q are given by
Qe = (Ar— 142> =2al)e+ Zge + A¢,
Ope = Ze + (kr — 1 + 2% + 2a2) pe + BE, (7)
0¢ = Ae + Bge +2(1 — 2%)¢,
where Z = £(2) and the scalar curvature
r=trace(Q) = 2(1 — 2% — b* — ¢® + 2a + e(c) + pe(b)). (8)
Moreover, it follows from Lemma 1 that
le, pe] = V.pe — Vyoe = —be + cie + 2&,
[e,d] = Vel = Viee = —(a+ A+ 1)de, ©)
[ge,&] = Vgl — Viege = (a — 1+ 1)e.
Putting X =e, Y = ¢e and Z = ¢ in the Jacobi identity [[X, Y], Z] + [[Y, Z], X]
+[[Z,X],Y] =0 and using (9), we conclude
{b(a+i+1)—é(6)—¢6(1) ge(a)
cla—A+1)+E(b) +e(d) —e(a) =

PropoSITION 1. If the Reeb vector field & is an eigenvector of Q, in the
open subset U the components of (0,2)-Cotton tensor C can be expressed

O (10)
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as follows:
Ci = Cle,e) = —(1—2) Gr —3+432% - 2a/1> —&(Z)+4d*),  (11)
Cip = Cle,de) = —24&(a) — 4aZ — (1 — 1) Z + %5@), (12)
Ci3 = C(e, &) = e(Z) — dab). — pe(J* — 2al) — 2cZ — %g/)e(r), (13)
Cy = C(ge, pe) = E(Z) — 4a’h — (1 + 2) Gr — 34327+ 2a/1>, (14)

Cos = Cge,&) = e(32 + 2a2) + 2bZ — ge(Z) — dac) + %e(r), (15)

Cy3 = C(&,8) = r+4al?* — 6(1 —2%). (16)
Proor. It is well-known that the Cotton tensor is defined by
CX,Z=(VxS)(Y,Z)— (V¥yS)(X,Z) (17)
for all X, Y, Z, where

S(X,Y) = Ric(X,Y) — %g(X, Y)

is the Schouten tensor. In the frame field &, by (2) the (0,2)-Cotton tensor
is simplified as

1 .
CI] = ECnmignmj; l7] = 172737

where Cy = C(ej, ej)er. It is clear that Cy = —Cjr and Cy =0 for all
i, j, k. Thus

1

1 1 1
1 Iml 2ml 1
ECnmlg”m ==Cime "™ + 5 Coyme™ +_C3ml£3m

Cn = 2 2 2

1 1
= 5(32316231 + 3 Cae??! = Oy

Analogously, we have
Ci = Gy, Ciz = Ciay, Cy = Gspo, Coz = Cioa, Cs3 = Cias.

Since ¢ is an eigenvector of Q, by the third term of (7) we have
A=B=0. Next, making use of (17) and Lemma 1, we directly compute
the components of C as follows:
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Cu = (Vo,S)(es, e1) = (Ve S)(ea, e1) = (Ve Ric)(¢; e) — (Ve Ric)(de,e)
= —Ric(Vyel,e) — Ric(&,Vyee) — E(Z) + Ric(Vege, e) + Ric(ge,Vee)

=—(1-17) Gr N M) 20— 1)(1-2%)
—&2Z) - a(;r— 1+ 42 —M) +a<;r— 1+22 +2a/l>
— (-2 Gr 3432 M) — E(Z) + 4d%,
Ci2 = (Ve S)(er,e1) — (Ve, S)(e3, e1) = (Ve Ric)(e,e) — (Ve Ric)(E, e) —%i(r)
—¢ Gr — 1+ = 2a/1) — 2 Ric(Vze,e) + Ric(V,&, e) + Ric(&,V,e) — %é(r)
_ é(;r 1422 - 2a/1> 24z (1 H)Z—%é(r)
= —2)(a) —4aZ — (1 — M) Z + %é(r),
Cis = S)(ex,€1) — (VuS)(er, 1) = (Ve Ric) o, ) = (Ve Ric)(€) + 5 el
= e(Z) — Ric(V.pe,e) — Ric(pe,V.e) — pe Gr — 1422 2az)
+2 Ric(Vyee, e) + %(/ﬁe(r)
= e(Z) — 4ab). — pe Gr 1+ - w) —2eZ + %qﬁe(r)
= e(Z) — 4ab) — ge(2* —2a)) — 2cZ — %qﬁe(r),

Cyn = (Vo,S)(e1,e2) — (Vo S)(e3,€2) = (Ve Ric)(e, pe) — (V. Ric)(&, pe)
= &(Z) — Ric(Vee, ge) — Ric(e,Vege) + Ric(V.E, ge) + Ric(E,Vepe)

=&Z)—4a’i— (14 1) Gw 2a)v) +3(1+ 2)(1 = 2%),
Co3 = (Ve, S)(e2,€2) — (Ve, S)(e1, €2)

= (Ve Ric) e, ge) — (Ve Ric)(e,ge) — 3e(0)
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1
=e <2r R 2a/1> — 2 Ric(Vee, pe) — pe(Z) + Ric(Vyee, pe)
. 1
+ Ric(e,Vyepe) — Ze(r)

1
= e(J? +2a)) +2bZ — pe(Z) — dacl + Ze(r),

Cy3 = (Vé’l S) (827 63) - (VFZS) (61, 63) = (VE RiC) (¢ea 5) - (V¢€ RiC) (ev é)
= —Ric(Vege, &) — Ric(pe,Vo&) + Ric(Vyee, &) + Ric(e, VL)

_ (%Hza;b)u L) —6(1-22)+(1 —i)(%r—Zai)

=r+44a)* —6(1 —2%).

This completes the proof. ]

3. Contact metric 3-manifolds with Q¢ = p&

First we assume that the function p is constant along Reeb vector field &
and prove the following conclusion.

THEOREM 1. Let (M3,¢,E,5,9) be a contact metric manifold such that
Q& = p&, where p is a smooth function on M?> constant along Reeb vector field &.
If M admits a Cotton soliton with potential vector field being collinear with Reeb
vector field &, then M either is Sasakian, or has constant sectional curvature 0
or 1.

Proor. We can denote U’ and U as follows:

U ={peM:.=0 in a neighborhood of p},
U={peM:1+#0 in a neighborhood of p}.

If M =U’, then M is Sasakian. In the following we assume that U is not
empty, and let {e, ge, &} be a ¢-basis in U.

The assumption that Q¢ = p& and (7) imply 4 = B=0 and p =2(1 — /12),
where &(p) =0. From this we know Z = £(1) = 0.

If V=0 then Cotton equation (1) becomes C =ogyg. Since the (0,2)-
tensor C is trace-free, we see that ¢ must vanish, thus M is locally conformally
flat. By Theorem 4.1 of [8], M has constant sectional curvature 0 or 1.

Next we suppose that V = f& for some non-zero smooth function f.
Then in view of (4), for any X, Y € ¥(M), Cotton soliton equation (1) may be
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expressed as
—=2/9(phX, Y) + X (f)n(Y) + Y(fn(X) + C(X,Y) =0g(X,Y).  (18)

Letting X = Y =e¢ in (18) and recalling (11) imply
—(1=2) Gr—zax)+4a2x+3(1—1)(1 - =o (19)
Similarly, letting X = Y = ¢e in (18) and recalling (14) give
—4a’) — (14 7) <%r+2a/1)+3(1 +)(1 -2 =0 (20)
and putting X =e¢ and Y = ¢e in (18) and using (12) give
~23é(a) + () = 2. e1)

Now using (19) to plus (20) implies
20 = —r —4ai* +6(1 — 1), (22)
Comparing (22) with (19), we conclude
2a(2a+1 - 2% =o.
Moreover, differentiating this along ¢ implies
(4a+1—7%)é(a) =0 (23)

since ¢ is constant and &(1) = 0.

If &(a) =0 then differentiating (22) along ¢ yields &(r) = 0. By (21), we
have f =0 since A > 0. This shows that Cotton soliton is trivial.

If &(a) # 0 on some open subset ¢ C U, then 2* = 1 4 4a by (23). There-
fore, by differentiating this along &, we see £(a) =0. This is a contradiction.

We complete the proof theorem. ]

For a gradient Cotton soliton on M3, we prove the following conclusion.

TueoREM 2. Let (M3, ¢,E,n,9) be a contact metric manifold such that
Q¢& = pé&, where p is a smooth function on M constant along Reeb vector field &.
If M admits a gradient Cotton soliton, then M either is Sasakian, or has constant
sectional curvature 0 or 1.

ProOF. As before if M = U’ then M is Sasakian. Let {e,de, &} be a
¢-basis in non-empty set U. First we write the potential vector field

V=Vf = fie+ frge + f3¢,
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where f1, f>, f3 are three smooth functions on M. Since C is divergence-free,
we have QVf =0 (see [18, Remark 3]). Hence we derive from (7) that

fl(%r—l—FiZ—Zal):O, fzer—1+iz+2ai)=0,
f(1=2%) =0. (24)

If V=0 then Cotton soliton is trivial as in the proof of Theorem 1. Now
we assume that at least one of f, f>, f3 is nonzero. Next we will divide into
two cases to discuss.

Case I: If A=1 then b=c=0 by (5) and (6). Moreover, Equation
(8) implies r = 4a, thus it follows from the second term of Equation (24) that
af = 0.

For every Riemannian manifold we recall the following well-known
formula:

%Vr =div Q.

Making use of (7) and the above formula, a direct computation deduces that
Va =0, i.e. a is constant. If ¢ =0 all components of C are zero, that means
that M is locally conformally flat. If a # 0, then f; = 0. By Proposition 1,
the components of C become

Cyy = 4a?, Cp =0, Ci3 =0,
C22 = —4(12 — Sa, C23 == 07 C33 = 8a. (25)

For any X,Y € ¥(M), the gradient Cotton soliton equation (3) is ex-
pressed as

29(VxVI, Y)+ C(X,Y) =09(X,Y). (26)
By taking X = Y =e¢ in (26) and using (25), we get
2e(f)) +4a*> =a

and taking X = ¢ and Y = e in (26) gives &(f;) = 0. Finally, putting X = ¢e
and Y =e in (26) implies ge(f;) =0 since A =1. By the third term of (9)
acting on fi, we find e(f;) =0, which shows ¢ =4a®>. Moreover, putting
X =Y = ¢e in (26) gives

—4a® — 8a = o = 4a°,

which shows a = —1.
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Similarly, we can obtain from (26) that ¢e(f;) =0, e(f;) =0 and
E(fs) +8a=0=4d> ie. E(f3) =12 as a=—1. However, the first term of
(9) acting on f3 implies £(f3) =0 because b =c¢=0. This leads to a con-
tradiction.

Case II: If 1 # 1 in some open set ¢ C U then f3 =0 by the third term
of (24). Putting X =Y =¢ in (26) and using (16) we have

r+4ai* —6(1 —i%) =o. (27)

Letting X =e¢ and Y = ¢ in (26), we conclude from (13) and (5) that
265(1 4 2) — (4b2* = 20ge(a)) — %qﬁe(r) =0. (28)

Similarly, letting X = ¢e and Y = ¢ in (26), we conclude from (6) and (15)
that

21— 1) + 4¢i? + 2Je(a) + %e(r) =0. (29)

Next we consider the following open sets:

1 . .
Oy :{pe(ﬁ:ir—l—f—lz—Zai;éO in a neighborhood of p},

1
@2—{p66:§r—1+/12—2a/1—0 in a neighborhood of p},

where the set ()} U (), is open and dense in the closure of (. In the set O, it
implies f; =0 from the first term of (24). Since f3 =0, we must have that
f» #0 in ;. Hence the second term of (24) yields

%r—l+iz+2ai:0.

By comparing it with (27), we get
—4(1 =% —4a(h -2} =o. (30)
Since Poincare Lemma d?f =0, i.e. the relation
gVxVf,Y)=g(VyVf, X) (31)

holds for any X, Y € X(M), letting X = ¢ and Y = ¢ in (31) and using Lemma
1, we obtain

a=—-1-2.



Three dimensional contact metric manifolds with Cotton solitons 285

Substituting this into (30) implies that A and @ are constants. Thus b=c=0
by (5) and (6). Furthermore, it follows from (27) that r is also constant.
Recalling (28), we find f,(1+4) =0. This shows f; =0 since 1 >0 in 0.
The contradiction means that ¢} is empty.

In 0, the following relation holds:

%r—1+2272M;:0 (32)

Then af; =0 by the second term of (24). Write
V1={pe0r:a+#0} and V2 ={pel,:a=0}.

Here 77 U 75 is the open and dense in the closure of ¢,. Then f, =0 in 77].
Letting X =¢ and Y = ¢e in (31) and using Lemma 1, we obtain

a=—-1+41

since f1 #0 in #7. Adopting analogous method as before, we can prove
that »=c¢ =0 and a, r are constants. Thus (29) implies f; =0. The con-
tradiction shows that 77 is empty. Thus ¢ =0 in ¢, and it implies from (32)
that

r=2(1-2%).

Inserting this into (27) implies o = —4(1 — 4%). This shows that r is constant
and b=c=0. However, Equations (28) and (29) yield f; = fo =0 since
A# 1. It is impossible.

We complete the proof of theorem. O

Furthermore, for the potential vector field V' being orthogonal to &, we
need more strong hypothesis that p is constant.

Tueorem 3. Let (M3, ¢,E,n,9) be a contact metric manifold such that
Q& = pé&, where p is constant. If M admits a Cotton soliton with potential
vector field being orthogonal to Reeb vector field &, then M is either
(a) Sasakian,
(b) Slat,
(c) locally isometric to one of the following Lie groups equipped with a left
invariant metric:  SU(2) or SO(3).

Proor. Under the assumption, by the main theorem of [12], the Ricci
operator is expressed as

OQ=ol +pn@<+yh,
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where o =1(r—2k), p=1(6k—r), y=—o and k =1 trace(/). Moreover, r
and 1 =+1—k are constants. Thus we have b=c=A4=B=7Z=0 and
a =1%o is also constant from (7).

When 2 =0, M is Sasakian. In the following we assume A >0. By
Proposition 1, the components of C become

C = (1 — A)(ﬂ+ 06/1) +oc2/1,
Cp=0, Ci=0,

Con = (1+A)(f —al) —a?l,

Cy3 =0, Ci3=2a+20i*—4k.

(33)

Set V = fie+ fage, where fi, fo» are smooth functions on M. For any
X,Y € X(M), Cotton soliton equation (1) is rewritten as

gVxV,Y)+gVyV,X)+ C(X,Y) =0g(X,Y). (34)
Putting X = Y =e¢ in (34), it follows from Lemma 1 and (33) that
2e(fi) + (1 = 2)(B+ol) + oA =0 (35)
Putting X = Y = ¢e¢ in (34), it follows from Lemma 1 that
2pe(f2) + (14 2)(B —ad) —a’h=oa. (36)
Similarly, putting X = Y =¢ in (34) and using (33) we have
o =20+ 204 — k. (37)

Letting X =e and Y = ¢ in (34), it implies from Lemma 1 that

L +2A—a)+E(fi)=0. (38)
Letting X = ¢ and Y = ge in (34) implies
e(f2) + ge(f1) =0 (39)
and letting X = ge and Y = ¢ in (34) implies
filh—=14a)+E(f) =0. (40)

Now differentiating (38) along e and using (39), we have

—ge(f1)(1 + 2 —a) +e(S(f1)) = 0.

Since e(fi) is constant by (35), applying the second term of (9) in f;
provides

e(€(N)) = cle(N)) = (a+ 2+ Dge(fi) = —(a+ 2+ 1)ge(1).
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Substituting this into previous formula gives ¢ge(f;) = 0, which implies e(f,) = 0
from (39).

Further, applying the first term of (9) in f; and f, respectively provides
E(fi) =<&(f2) =0. Therefore (38) and (40) become

fL(l4+A—a)=0 and  fill—1+4a)=0. (41)

If 1+A—a=0 then f; =0. Applying the second term of (9) in f;
provides

e(€(f2)) —<le(2)) = —(a+ A+ D)de(f2) = =2(4 + )de(f2).

This shows that ¢ge(f;) =0, ie. f, is constant. Moreover, (35) and (36)
become

(1+2)(B—al) — ol =oa,
(1= (B+ak) +a*)=o0.
The above equations, combining the relation ff =2k — o and (37), imply
20—2k+o*=0 and 20— 2k—ok=0.

That is, « = —k. Because 1+/1:a:%oz and A2 =1—k, we get o =8 and
A =3. Equation (9) becomes

e, pe] = 2¢, [£,e] = 8de, [pe, &] = 2e.

Thus M is locally isometric to SU(2) or SO(3) according to [12, Theorem
3].

If A—1+a=0 then f, =0 by (41). Applying the third term of (9) in
f1 provides

0= ge(E(N1)) — <(ge(N1)) = (a = A+ De(fi) = =2(4 = De(/1).  (42)

For A =1, then k =0 and a = 0. Therefore, by (35) and (37), we have e(f;) =
40— o?> = 0. In this case M is flat and f; is constant. When A # 1, Equation
(42) shows that e(f;) =0, i.e. fi is constant. As before, from (35), (36) and
(37) we can obtain o« =8 and A= —3. It is impossible.

Summing up the above discussion, we thus complete the proof of theorem.

O

4. (ic,u,v)-contact metric 3-manifolds

DeriNITION 1 ([13]). A contact metric manifold (M3, ¢,¢&,n,g) is called a
(rc, u, v)-contact metric manifold if the curvature tensor satisfies the condition
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R(X,Y)¢ =xm(Y)X = n(X)Y) + u(n(Y)hX —n(X)hY)
+v((Y)phX —n(X)phY)
for any vector fields X, Y, where x, 4 and v are smooth functions on M.

In particular, if v=0 and x, u are constants, M is said to be a (k,u)-
contact metric space (cf. [4]).

LeEmMA 2 ([15, Lemma 4.3]). For every p € U, there exists an open neigh-
borhood W of p and orthonormal local vector fields e, ¢ge, &, defined on W, such
that

he = Ae, hpe = —Ade, hé =0,
where A =+v1 — k.

LeMMA 3. Let (M3,¢,&,5,9) be a (ix,u,v)-contact metric manifold.
Then

E(r) = 2&(i) = —4(1 — K)v.

Proor. For a (k,u,v)-contact metric manifold the Ricci operator may be
expressed as (see [1, Eq. (3.3)]):

1 1
Q:<§r—K>I+<—§r+31c);7®é—|—,uh+v¢h. (43)
Taking the basis {e, ge, &}, by Lemma 2, we thus have
0¢ = 2k¢,

Qe = <%r—k+iu>e+lv¢e,

1
Qde = (Er —K— /lﬂ)qﬁe + Ave.
It implies from (7) that Z = Av. Now using Lemma 1, we obtain

(VeQ)¢ = 2L()S,
(V.Q)e =V, (Qe) — QV,e = e<%r - K+/1ﬂ)e+ b<%r — K+ 2/1>¢e

+ e(Av)ge + Av(—be + (1 + 2)&E) — bOge

1 1
= e(ir—x+lﬂ>e+b(§r—K+lﬂ)¢e
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1
+ e(Av)de + iv(=be + (1 + 1)&) — b((ir —K— iu) pe + ive)
= {e(%r — K+ )41) - 2biv}e + {2b2u + e(Av) re + (1 + A)E,

(Vi Q) e = Vgo(Ofe) — OVyepe = e Gr . zu) po+ c(%r . zu)e

+ ge(Av)e + Av(—cge + (A — 1)E) — cQe

= ¢e(%rkiﬂ>¢€+6<érffiﬂ)e

+ de(Av)e + W(—cde + (A — 1)&) — c((%r —K+ iu)e + /1V¢e)

= {ge(Av) — 2cAu}te + {(/ﬁe (%r —K— A,u) - 2civ}¢e + Av(A —1)¢.
Since %Vr = div Q, which, in the basis {e, de, &}, is written as
1
5 le(r)e + de(r)ge + <(r)} = (VeQ)e + (Ve Q)de + (Ve Q)<

we conclude
1

5&) = 202y 4 2&(xc).

Since &(1) =Z = Av and A =+1 — K, we get the desired conclusion. O
In the following we use the above two lemmas to prove our conclusions.

THEOREM 4. Let (M3,$,¢,5,9) be a (k,u,v)-contact metric manifold. If
M admits a Cotton soliton such that the potential vector field V is the Reeb
vector field &, then M is Sasakian.

PrOOF. As before if M = U’ then M is Sasakian. Cotton soliton equa-
tion (1), for any X,Y € X(M), is expressed as

—2g(phX,Y)+ C(X,Y) =0g(X,7Y). (44)

The relation Q¢ = 2x¢ shows 4 = B =0 from the third term of (7). Further-
more, Z = Av and u= —2a by (7) and (43).
Letting X = Y =e¢ in (44) and using (11) imply

—(1=2) Gr — 34322 - 2a/l> —&2Z2)+4d) =0
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and letting X = Y = ¢e in (44) and using (14) give
1
E(Z) —da’i— (14 1) (§r+2ax) +31+ 01 -1 =0
The previous two formulas yield
20 = —r —4ai* +6(1 — 1), (45)
Putting X = Y =¢ in (44) and using (16), we have
r—2u(l —x) —6x=o0. (46)
This yields 0 =0 by comparing (45) with (46). That is,
r=2ui* + 6x. (47)

Putting X = e and Y = ¢e in (44) gives
2E(w) + 2udv — (1 — )Av + %f(r) = 2. (48)
Similarly, using (13) and (15) respectively, we deduce
Jo(s) — 4462+ els0) — ypelr) =0, (49)

Mach —e(n)) — Ape(v) + %e(r) =0. (50)
Here we have used Z = v, a = —}u and Equations (5) and (6).
Because &(4) = Z = Av, differentiating (47) with respect to & gives
E(r) = 28(uh?) + 6(x) = 227E(p) + 4uva® + 6¢(x0).
By Lemma 3, we see
&) = v —2um. (51)

Substituting (51) into (48), we obtain

V=

2
> (52)

For a (x,u,v)-contact metric manifold, we recall the following equations
(see [13, Eq. (4-18))):

e(i) — Ae(u) — Age(v) =0, (53)

—ge(k) — Age(p) + Ae(v) = 0. (54)
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Making use of (49) and (50), we obtain from (47) that

e(u) = —4c — 4cp.
Hence, by (52), inserting this into (53) and (54) respectively gives

0 = ge(v) = —4ch + 4c + 4ep, (55)
0=e(v) = —4bA — 4b — 4bp. (56)

Next we decompose three cases to discuss.

Case I: If b =c¢ =0 then e(u) = ge(u) =0, and further e(x) = ge(x) =0
from (53) and (54). However, the first term of (9) acting on x implies
E(k) =0. It is a contradiction since &(x) = —24% # 0 by (52).

Case II: If h#0 in some open set @ C U then A+ 1= —u by (56).
Inserting this into (55) gives ¢(u+ 1) =0. For u= —1, it follows from (53)
and (54) that e(x) = ¢e(x) = 0. Tt is impossible as before. Thus ¢ =0, i.e.
e(y) =0 in 0. Using the second term of (9) and (51), we have

0 =e(&(n) —&(e(n) = [e,Elu= —(a+ A+ 1)ge(u),

which yields a+4+1=0, ie. 2+ 1 =1y since if ge(u) =0 it will lead to a
contradiction as Case I. Recalling the previous relation A + 1 = —u, we derive
that © =0. That means that A= —1. It is impossible.

Case III: If ¢ #0 in some open subset of U then A—1=u by (55).
Inserting this into (56) gives b(u+ 1) = 0. In the same way as Case 1I, we can
prove that it is impossible.

Hence we complete the proof. O

THEOREM 5. Let (M3,$,¢,5,9) be a (k,u,v)-contact metric manifold.  If
M admits a nontrivial gradient Cotton soliton, then one of the following state-
ments holds:
(@) for k=1, M is Sasakian,
(b) for k=0, M is either flat or (0,—4)-contact metric space. In the
second case M is locally isometric to one of the following Lie groups:
SU(2) or SO(3),
(c) for k<1l and k #0, M is a contact metric (k,0)-space. In this case,
M is locally isometric to one of the following Lie groups equipped with
a left invariant metric: SU(2) if 0 <x <1, SL(2,R) if x <O.

Proor. If M = U’ then a (k,u,v)-contact metric manifold is Sasakian
with k=1, ueR and 7 =0. Next we assume that U is not empty and
{e,de, &} is a ¢-basis as before.
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Write the potential vector field

V =Vf = fie+ frge+ f3¢,

where fi, f>, f3 are three smooth functions on M. For any X, Y € X(M),
the gradient Cotton soliton equation (3) is written as Equation (26). Since
OVf =0, we have

1 1 ) ,
ﬁ(zr—}c—i—iﬂ)—i—lev:o, f2<2r—K—A,u)+f1/Lv:0,
fax=0. (57)

If k=0 in U then A=+v1—-x=1. We get Z=2¢&(1) =Av=0, equiv-
alently, v=0. Further it is easy to see that r =4a and u = —2a are con-
stants. From (57), afa =0. If a=0, i.e. u=0 and in this case M is flat.
If a#0 then f, =0. Putting X =Y =¢ in (26) we have

28(f3) +8a=o0. (58)

Letting X = e and Y = & in (26) implies e(f3) = 0. Moreover, letting X = ¢e
and Y =¢ in (26) implies ¢ge(f3) =0. Because b = ¢ =0, applying the first
term of (9) on f; gives &(f3) =0. Thus (58) implies o = 8a.

On the other hand, since g(V:Vf, ge) = g(VyVf, &), we obtain afi = de(f3)
=0, ie. fi=0. Letting X =Y =¢ in (26) implies 2e(f;) + 4a*> = o, ie.
o =4a’. Therefore we find a =2, i.e. u=—4. According to [4, Theorem
3], M is locally isometric to one of the following Lie groups: SU(2) or
SO(3).

In the following we consider the case where x < 1 and x # 0. Denote
by

U ={peU:k(p) #0 and x(p) < 1}.
Then f3 =0 in U;. Putting X =Y =¢ in (26) we have
r—2u(l — k) — 6K =a0. (59)

Since ¢ is constant, differentiating (59) along ¢ and using Lemma 2, we also
obtain Equation (51).

Because at least one of f; and f, is nonzero, the first and second terms
of (57) imply

(1= + %) = (57 - K)z. (60)
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Next we prove v=0 in U;. Since Z=Av and a = —%,u, letting X =e
and Y = ¢e in (26) gives

2bf1 + 2e(f2) + AE(u) + 2uty — (1 — l)lv—k%é(}’) =0.

In terms of (51) and Lemma 3, the above formula becomes
2bf1 + 2e(f2) +34v = 0. (61)

Letting X =e and Y =¢ in (26) implies
2(1 4 2) — 84%h = %¢e(r). (62)
Moreover, letting X = ¢e and Y = ¢ in (26) implies
26 (A —1) 4 8ch* = —%e(r). (63)

Here we have used Equations (53) and (54).
Using (62) and (63), we conclude from the second term of (9) that

—be(r) + cpe(r) + 2£(r) = [e, pe]r = e(ge(r)) — de(e(r))
= 8e(f>)(1 + A) + 16fr¢) — 322%¢(b)
+ 8ge(f1) (A — 1) + 16f1b1 + 3227 e(c).
It follows from Lemma 3 that
—22v=le(fo) + bAil(1 + 1) + [pe(f1) + cfo] (2 — 1) — 42%e(b) + 422 pe(c).  (64)
Since g(V.Vf,e) = g(V.Vf, ¢e), using Lemma 1 we see that
ge(fi) + cf2 = e(/2) + b, (65)
thus recalling (61) we obtain from (64) that
v = —2e(b) + 2¢e(c). (66)
Since 4 = B =0, it follows from (5) and (6) that

o) = e(qﬁew) _ e(ge(2)A — ge(2)e(2)

22 2,° ’
o[ COI) _ delelid)d— el
felc) = g ) = 2L LLNeld)
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Hence using the first term of (9) we have

de(c) — e(h) = W’;% (2) _ be(2) — c¢;(lﬂv) -2 _

Substituting this into (66), we find that v=0 on U;. This shows ¢&(x) =
&(u) =0 from (51). Moreover, by (60) we know that either 1r —x = Au or
Lr—k=-1
S —K = =

If 1r —x = Ju then Equation (57) implies fiu=0. Consider

V1={pelUi: fi(p)=0} and ¥2={peU : fi(p) #0}.

Thus 77U 7, is dense in the closure of U;. In 77, we have f; #0. Then
(61) yields e(f2) =0, which further implies ¢ =0 from (65). Recalling (6) we
get e(4) = 0.

Now by using the second term of (9) on 4 we obtain (a+ A+ 1)ge(1) =
0. If ge(2) # 0 in some open set ;' C ¥} then a=—2A—1, ie. Su=2+1.
Recalling x = 1 — 2%, we derive from (59) that

4(A+1)—4) —4=0.

This shows that /4 is constant since ¢ is constant. Consequently, ge(4) =0 in
7. The contradiction gives ¢e(4) =0 in #j. Namely, 4 is constant, hence
it is easy to see that r is constant and » =0. However, Equation (62) yields
A= —1, which is impossible since f, # 0 and A is positive. This shows that
77 is empty and £ =0 in U;. We conclude from (53) and (54) that x is
constant.

For %r — Kk = —Au, we have uf; =0 from (57). In the same way, we can
prove that =0 and x is constant.
Summing up the above discussion, we complete the proof. O

Since the condition that v is constant does not imply that the other func-
tions x and v are constants (see [13, Remark 5.3]), we consider the case where v
is constant.

THEOREM 6. Let (M3,¢,E,n,9) be a contact metric (x, u, v)-manifold such
that v is constant. If M admits a Cotton soliton with potential vector field V
being orthogonal to Reeb vector field &, then M is either

(a) Sasakian,

(b) a contact metric (x,u)-space. Moreover, by Theorem 3, in this case

M is either flat, or locally isometric to one of the following Lie groups
equipped with a left invariant metric: SU(2) or SO(3).

Proor. We know that Q& =2x¢ implies A =B =0, and Z=14v, u=
—2a. Then &(Z) =%, e(Z) = 2icv and ge(Z) = 2biv.
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As before, we may set V = fie + fage. Using Cotton soliton equation (1)
we derive from Lemma 1 and Proposition 1 the following equations:

bfi + e(f2) + de(fi) + fac + 30 =0,

H(L+ 7 —a)+E(fi) — 8bA% = § e(r),
filh=T1+a)+E(f) +8ca’ = —Le(r),

2e(fi) = 2bfs — (1 = 2)(4r — 3 + 32> + pi) + 4a?) = o,
2pe(fr) — 2¢fi —4a*A— (1 + 1) (3r—3+ 32 — ) =o,
r—2u(l —x) — 6K =o0.

(67)

Here the first equation has used (51) and Lemma 3 and the second and third
equations have used Equations (53) and (54).

Moreover, differentiating the last equation of (67) along &, we can also
obtain (51). Since v is constant, by (53) and (54), we have

e(x) _ e(1—2%)

and
_delw) _ ge(1-2) _
de(p) = — = 7 =4bJ. (69)

Here we have used (5) and (6). Using (51) and the second term of (9), we
get

—(a+ 2+ )ge(u) = [e, {Ju = e(E(n)) — E(e(n))
= —2e(p)v+4&(c)A + deiv.

Since ¢ = —2a and (69) imply ¢ge(d) = —ge(a), we derive from the first term of
(10) that &(¢) = b(a+ A+ 1). Hence inserting (68) and (69) into the previous
relation gives

3cv=-2ba+A1+1). (70)
Using the similar method with above, we can obtain
3bv=2c(a— 2+ 1). (71)
Next we consider four open subsets

Ul :{pe Ub(p) 7507 C(p) 750}3
Ur={peU:b(p)=0,c(p) #0},
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Us={peU:b(p)#0, c(p) =0},
Us={peU:b(p)=0,c(p) =0}

of U. Clearly, U UU,UUsU U, is dense in the closure of U.
Case I. For pe U, if p e U then the previous two formulas (70) and (71)
yield

N2 = —d(a+i+1)(a—A+1). (72)

Differentiating this along e gives ¢ — A+ 1 =0 since e(a) = e(4) # 0 obtained
from (6) and (68). On the other hand, differentiating (72) along ¢e gives
a+A+1=0 since ¢ge(a) = —¢e(L) #0. Thus we obtain A=0, which is
impossible.

Case Il. If pe U,, we have v=0 and ¢ — A+ 1 =0 from (70) and (71).
Moreover, it is easy to prove that e(u) #0 and de(u) = ge(l) = ge(k) =
ge(r) =0. By (51) and v=0, we know &(u) =0. Moreover, it is easy to
see that &(2) = &(k) = &(c) = 0. Recalling x = 1 — A2, Equation (67) becomes

e(f2) + ge(fi) + frc =0,

Ll +A—a)+<(h) =0,

filh=1+a)+&(f) +8c2 = —e(r), (73)
2e(fi) —rdu+ pPh=c+1(1 - Do,

2pe( f>) — 2¢fi — 2)+K/1/1*0'+ (1+A)o.

Differentiating the third term of (73) with respect to ¢e implies ge(E(f3)) =
—¢e(f1)(A—1+a) and differentiating the last term of (73) with respect to ¢
gives &(ge(f2)) = c&(f1). Hence applying the third term of (9) in f; implies

0 = [ge, <] (f2) = de(E(f2)) — E(de(f2)) = —de(/1)(A— 1 +a) — c<(fr).
Recalling the first and second terms of (73) we obtain
e(f2)(A—1)+cHA=0. (74)

On the other hand, differentiating the second term of (73) along e gives
e(6(f) = —(A+1—a)e(f2) — (2cA —e(a)) f» and differentiating the fourth term
of (73) along & gives &(e(f1)) = 0. Hence applying the second term of (9) in
f1 implies

—(a+ A+ 1)ge(fi) = [e, <](N) = e(E(N1)) — <(e(f1))
=—(A+1—a)e(f2) — 2ci —e(a)) fa-
Recalling the first term of (73) we get
(A4 De(f2) = —Achr. (75)
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By comparing (74) with (75), we find 2cif;, =0, which shows f, =0 since
4> 0. Thus Equation (73) is simplified as

2fia = 2¢)*(a — p) = 6aci?,
2e(f1) — rdu+ 22 =13 = Ao,
—2¢fy — @i+ kip =13+ Ao,
r—2u(l — k) — 6k =o0.

(76)

Here we have used
e(r) = e(2ui” + 6c) = —8cA* (A — p+ 3).

We know a # 0 in U,, otherwise, if @ =0 then 4 = 1 which implies ¢ = 0 from
(6). By the first term of (76), we obtain f; = 3cA>. Inserting this into the
third term of (76) gives

—6¢20% — 1P+ K = %(3 + ). (77)

Differentiating fi = 3¢4%, we have
e(f1) = 34%e(c) + 126222

Substituting this into the second term of (76), we conclude
61%e(c) + 24¢2 0% — Kip + i = % (3—No. (78)
Furthermore, since r = 2uA” 4 6x + o, it follows from (8) that
e(c) = (1+ 2+ 2K + ¢ +g. (79)

From (77), (78) and (79), we can eliminate the function ¢. We remark that
k=1—/%and y=—2a=—2(A—1). Therefore we see that . must be con-
stant since o is constant. It shows that ¢ = 0 from (6), which is contradictory
with p e U,.

Case III. If pe Us then we have v=0 and a+ 1+ 1=0. Moreover,
de(n) #0 and e(p) =e(l) =e(k) =e(r) =0. Also, we have &(1) =¢&(k) =
&(¢) = 0. In the same way as Case II, we can obtain from the above formulas
that f; =0. Thus Equation (67) is simplified as

H(1+ 7 —a)—82%b =L ge(r),
=2bfs — kip+ 2 =3(3 = Ao,
2¢e(fo) — A+ xiu =33+ Ao,
r—2u(l — k) — 6K =o0.
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As Case II, making use of (5), (8) and the above formulas, we can also prove
that A is constant, which is contradictory with p € Us.

Case IV. If pe Uy then e(u) = ge(u) =0. Applying the first term of
(9) on p, we get &(u) = 0, which shows that x and « are constants. Moreover,
it is easy to prove that A,k are constants and v =0. That shows that M is
a contact metric (x,u)-space, equivalently, M satisfies Q& = p¢ with p = 2k is
constant.

By Theorem 3, we complete the proof. O
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