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Generic distance-squared mappings on plane curves
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ABSTRACT. A distance-squared function is one of the most significant functions in the
application of singularity theory to differential geometry. Moreover, distance-squared
mappings are naturally extended mappings of distance-squared functions, wherein each
component is a distance-squared function. In this paper, compositions of a given plane
curve and generic distance-squared mappings on the plane into the plane are inves-
tigated from the viewpoint of stability.

1. Introduction

Throughout this paper, let / and »n stand for positive integers. In this
paper, unless otherwise stated, all manifolds and mappings belong to class C*
and all manifolds are without boundary. Let ¢ = (gi,...,¢,) € R" be a given
point. The mapping d, : R" — R defined by

n

dg(x) = Z(xi - %)2
=1
is called a distance-squared function, where x = (xi,...,x,). In [5], the follow-
ing notion is investigated.

DerFmNiTION 1. Let py,...,p, be ¢ given points in R". Set p=
(p1,...,ps) € (R")’. The mapping D, :R" — R’ defined by

D, = (dPl?""d[’/)
is called a distance-squared mapping.

We have the following motivation for investigating distance-squared
mappings. Height functions and distance-squared functions have been inves-
tigated in detail so far, and they are useful tools in the applications of
singularity theory to differential geometry (see [1]). A mapping in which each
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component is a height function is nothing but a projection. Projections as
well as height functions or distance-squared functions have been investigated
so far. For example, in [6] (resp., [2]), compositions of generic projections
and embeddings (resp., stable mappings) are investigated from the viewpoint
of stability (for the definition of stability, refer to [3]). On the other hand, a
mapping in which each component is a distance-squared function is a distance-
squared mapping. Therefore, it is natural to investigate distance-squared
mappings as well as projections.

In this paper, compositions of a given plane curve and generic distance-
squared mappings on the plane into the plane are investigated from the view-
point of stability.

A mapping f:R" - R’ is said to be .Z-equivalent to a mapping
g:RR" - R’ if there exist diffeomorphisms ¢:IR” — R” and y : R’ — R’
such that Yo fop~! =¢g. For given points x = (x1,...,X,), ¥ = (¥1,..., Iu) €
R", set

s
xJ/:(YI—x17-~~aJ/n—xn)-

Given / points py,...,p, € R" (1 </ <n+ 1) are said to be in general position
if /=1 or pip3,...,pip; (2<¢<n+1) are linearly independent.
In [5], a characterization of distance-squared mappings is given as follows:

ProposiTioN 1 ([5]). (1) Let /, n be integers such that 2 </ <n, and

let p1,...,pr€R" be in general position. Then, D,:R" — R’ is
of -equivalent to the mapping defined by (xy,...,x,) — (X1,...,%X/_1,
X7+ X,

(2) Let ¢, n be integers such that 1 <n </{, and let py,...,p, e R" be
points such that p1, ..., p,1 are in general position. Then, D, : R" —
R’ is .o/-equivalent to the inclusion (xy,...,x,) — (x1,...,%,,0,...,0).

In the following, by N, we denote a manifold of dimension 1. A mapping
f: N — R? is called a mapping with normal crossings if the mapping f satisfies
the following conditions.
(1) For any yeR?, |f~!(y)| <2, where |4| is the number of elements
of the set A.
(2) For any two distinct points ¢j,q, € N satisfying f(q1) = f(g2), we
have dim(df,, (T, N) +df,,(T,N)) = 2.
From Corollary 8 in [4], we have the following.

PrOPOSITION 2 ([4]). Let y: N — R? be an injective immersion, where N is
a manifold of dimension 1. Then, the set

{peR?*xR?*|D,0y: N — R? is an immersion with normal crossings}

is dense in R? x R2.
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On the other hand, the purpose of this paper is to investigate whether the
set

{pey(N)x y(N)|Dyoy: N —R? is an immersion with normal crossings}

is dense in p(N) x p(N) or not. Here, note that O is an open set of
»(N) x p(N) if there exists an open set O’ of IR? x R? satisfying O = 0’ N
(H(N) x (N)).

Let y: N — IR? be an immersion. We say that x: U — R is called the
curvature of y on a coordinate neighborhood (U,¢) of N if

dy, d2V1
4 E() 7 (1)
et p o
dy 72
dt () dr? ()

((%(Z)YJF(%U))Z)W’

where y = (y,,7,). Note that for a given point ¢ € N, whether x(q) =0 or
not does not depend on the choice of a coordinate neighborhood.

DerFiNiTION 2. Let N be a manifold of dimension 1. We say that an
immersion y : N — R? satisfies (*) if for any non-empty open set U of N, there
exists a point g € U satisfying x(g) # 0, where x is the curvature of y on a
coordinate neighborhood around g¢.

The main result in this paper is the following.

TuEOREM 1. Let y: N — R? be an injective immersion satisfying (x),
where N is a manifold of dimension 1. Then, the set

{pey(N)x p(N)|Dyoy: N —R? is an immersion with normal crossings}
is dense in p(N) x p(N).

If we drop the hypothesis (x) in Theorem 1, then the conclusion of
Theorem 1 does not necessarily hold (see Examples 1 and 2 in Section 2).

In Theorem 1, if the mapping D,oy: N — R? is proper, then the immer-
sion with normal crossings D, oy : N — IR? is necessarily stable (see [3], p. 86).
Thus, from Theorem 1, we get the following.

COROLLARY 1. Let N be a compact manifold of dimension 1. Let y: N —
R? be an embedding satisfying (). Then, the set

{pey(N)x p(N)|Dyoy: N— R? is stable}
is dense in y(N) x p(N).
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In Section 2, Examples 1 and 2 are given. In Section 3, preliminaries
for the proof of Theorem 1 are given. Section 4 is devoted to the proof of
Theorem 1.

2. Dropping the hypothesis («) in Theorem 1

In this section, we will give two examples such that Theorem 1 without the
hypothesis () does not hold (see Examples 1 and 2).
Firstly, we prepare the following proposition, which is used in Example 1.

PROPOSITION 3. Let y: N — R? be a mapping, where N is a manifold of
dimension 1. Let py, p» be two points of R%.  Then, a point q € N is a singular
point of the mapping D,oy: N — R* (p = (p1,p2)) if and only if

—  d —  d
pr(Q)'j};(Q):O and pzy(q)-%(q)zQ

where t is a local coordinate around the point q and - stands for the inner
product in R?, that is, py and p> are on the line normal to the curve y(N) at

7(q)-

PrROOF. Let ¢ be a point of N. The composition of y: N — R? and
D, :R* — R? is given as follows:

D, o9(q) = ((11(q) — p11)* + (1) — p12)% (1(9) — p21)* + (1a(q) — p2)?),

where p1 = (p11, p12), p2 = (p21, p22) and y = (y1,7,).
Then, we have

aDp07 ;) - z(m@) — ) () + ()~ pi2) 22 (g,

(1 (q) = pa) % (@) + (12(q) — p2) % (q)>

= 2<p1y(q) -% (@), p2y(q) -% (q)),

where ¢ is a local coordinate around the point ¢. Hence, a point g is a
singular point of the mapping D, oy if and only if

(@22 00 ptd) -5 @) = 0.0)

ExampLE 1. In this example, we use Proposition 3. Let y: S!' — IR? be
an embedding such that y(S') is given by Figure 1. Here, note that there
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Fig. 1. Curve y of Example 1

exists an open set U of N such that for any ge U, x(q) =0 (see y(U) in
Figure 1). Namely, y does not satisfy (x).

Let p=(p1,p2) €p(U) x y(U) be any point. Then, we will show that
the mapping D, oy is not an immersion. From Figure 1, it is clearly seen
that

— dy no_ — = dy no_

pg') - —(¢) =0 and  pay(q)-—(q') =0,
where y(¢’) is the point in Figure 1 and ¢ is a local coordinate around the point
q'. By Proposition 3, the point ¢’ is a singular point of D, oy. Namely, for
any p = (p1,p2) €y(U) x p(U), the mapping D,oy is not an immersion.
Since y(U) x y(U) is a non-empty open set of y(S') x y(S!), the conclusion
of Theorem 1 does not hold.

ExaMpLE 2. Let I}, I, and Iz be open intervals (0,1), (1,2) and (2,3)
of R, respectively. Let y:I; UL UL — R? be the mapping given by

(la_l)a Zejlv
(1) =4 (t—1,0), teb,
(1—2,1), tels.

For the image of y, see Figure 2. Here, note that y does not satisfy (x). Let
p = (p1,p2) € y(b) x y(I,) be any point. Then, we will show that D, oy is not
a mapping with normal crossings. Since p; = (pi1, p12), P2 = (pa1, p22) € y(h),
we have pjp = p»» =0. Thus, we obtain

D,(x1,x2) = ((x1 —p1)” +x3, (x1 — pa) + xD).
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N
I y({to+2)
10 O
—=0 (S e
0l »1  p2 1
~1¢ . O

¥(to)

Fig. 2. Image of the mapping y of Example 2

Let 7o € I; be any element. Then, it follows that 7y +2 € I3 and
(Dp o 7)(t0) = (Dp o) (1o +2).
Since
(Dp o)y (1) = (1= pn)* + 1, (¢ = pu)* + 1),
(Dpo),()=((t-2~ 1711)2 +1,(1-2- P21)2 + 1),

we get

I—pn
awyon, =21
=ty

1—=2—pn
d(Dyo7y), »= 2< .
)4 to+2 t— 2 — P i 42
Since the rank of the 2 x 2 matrix (d(Djo7),,d(Dyo7),,,) is less than two,
D, oy is not a mapping with normal crossings. Hence, for any p = (p1, p2) €
y(L) x (L), D, oy is not a mapping with normal crossings.

RemMARk 1. There is an example such that Theorem 1 without the
hypothesis (*) holds. Let y: IR — IR? be the mapping defined by y(¢) = (¢,0).
Set



Generic distance-squared mappings on plane curves 71

A={peyR)xy(R)|D,oy: R — R? is an immersion
with normal crossings}.

We will show that A4 is dense in p(R) x p(IR). Let p; = (pin,p12), p2 =
(pa1, p22) € y(R) (=R x {0}) be arbitrary points. Then, we have

Dyoy(t) = ((t— pn)>, (t — pu)?),

where p = (p1,p2). It is not hard to see that if pj; # ps;, then there exists
a diffeomorphism H : R* — IR? such that H o D,oy(t) = (#,0). Namely, if
pi1 # pa1, then D, oy is an immersion with normal crossings. On the other
hand, if pi; = p21, then D, oy is not an immersion with normal crossings.
Hence,

A={pey(R) xy(R)|pn # px}.

Thus, A4 is dense in p(R) x y(R).

3. Preliminaries for the proof of Theorem 1
For the proof of Theorem 1, we prepare Proposition 4 and Lemma 1.

PROPOSITION 4. Let L be a straight line of R% For any pi,p»€L
(p1 # p2) and for any p,,p, € L (p| # P,), there exists an affine transformation
H:R?> = R? such that

H oD, = Dj,
where p = (p1, p2) and p = (py, p,).

PROOF. Set pi = (p11,p12), p2= (pa1,p2), P1= (P11,P1n) and p, =

(ﬁ2171~722)'
Let H; : R? — IR? be the linear transformation defined by

Hi(X1, X2) = (X1, X1 — X2).
Then, we have
HioDy(x1,x2) = ((x1 — )’ + (2 — pi)?,
2((p21 — pn)x1 + (p22 — p12)x2) +c1),

where ¢; 1S a constant term.
Let H,: R> — IR? be the affine transformation defined by

H)(X,,X) = (X1, X — ).
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Then, we get
Hy o Hy o Dy(x1,x2) = ((x1 — pui)* + (x2 — p1a)?,

2((pa1 — p1)x1 + (p22 — p12)x2)).

Since pi1, pa2, P1, P2 € L and p; # pa, there exist 4,4, € R satisfying

Py = p1+Aipipa, (1)
Py =p1+ pips. 2)

Since p; # p,, we get A1 # /a.
Let H;: R> — IR? be the linear transformation defined by

Ha(X1,X5) = (X1 — 1 Xa, Xi — 20 X0).
Then, we get
Hsz o Hyo HyoDy(xi,x2)
= (x7 = 2(pi + A1 (p21 — pi))x1 + x5 = 2(pr12 + Ai(po2 — pi2))x2 + di,
X7 = 2(p11 4 Aa(par — p11))xi + x5 — 2(p1a + Z2(pn — p12))x2 + da),
where d;, d» are constant terms. By (1) and (2), we also get
Hsz o Hyo HyoDy(xi,x2)
= (xX{ = 2P11x1 + X3 — 2P 1px2 + i, X] — 2Py X1 + X3 — 2PyX2 + db)
= ((x1 = pn)* + (2 = pro)? 4, (x1 = po)* + (2 = pn)* + ),

where d|, dj are constant terms.
Let Hy: R? — IR? be the affine transformation defined by

Hy(X1,X2) = (X1 —d, X» — d).
Then, we have
Hyo Hy o Hy o Hy o Dy(x1,x2)
= ((x1 = p1)? + (2 = pio)™s (61 = pon)” + (32 = p)?)
= Djs(x1,x2).
This completes the proof of Proposition 4.

LemMa 1. Let y: N — R? be an immersion satisfying (x), where N is a
manifold of dimension 1.  Then, for any non-empty open set Uy x Uy of N x N,
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there exists an element (q1,q>) € Uy x U, such that

dy
dTI(ql) 1(02) = 71(q1)
det| #£0,

L) nla) - nla)

where y = (y,,7,) and t| is a local coordinate around q.

73

Proor. Let U; x U, be any non-empty open set of N x N. Then,
there exists a coordinate neighborhood (U] x Uj, (#1,1,)) satisfying U| x U; C

U, x U,. Fix ¢q] e U].
Now, suppose that for any point #, € Uj,

d
G ()= nl)

det & =0,
di @) () =)

where y = (y;,7,).- By (3), we have

dVl
dt

for any point #, € U;. Hence, we get

dVl
dll

a7,
dn

(a0 2 () - ) G () = 0

N dyy , d7y
(q1) a2 (2) — i, (41)—75 a2 (2) =0,

for any point #, € U;. By (4) and (5), we have

dyZ (t ) dyl ([ ) d]/]

—5 (1) _W(IZ) d_ll(qi)

for any point #, € U,. Since y is an immersion, it follows that

dy,

@2y | N
di, q;

(@005 = (D) — 2 () (1 () — 1(a})) =

dt, 2 d_ll(ch) _(0)
d2V1 dy, 0/’
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By (6) and (7), we have

det diy ary 0
N |
iz 7’ az '’

for any point #, € U;. This contradicts the hypothesis that y satisfies

(%)-

REMARK 2. It is clearly seen that Lemma 1 does not depend on the choice
of a coordinate neighborhood containing a point g; of N.

4. Proof of Theorem 1

Let O be any non-empty open set of y(N) x y(N). Then, there exist non-
empty open sets O; and O, of y(N) satisfying O; x O, C O. For the proof,
it is sufficient to show that there exist points p; € O; and p; € O, such that
Dyoy:N — R? is an immersion with normal crossings, where p = (p1,p2)-
Since y is continuous, there exist coordinate neighborhoods (U, #1) and (U, 1)
of N such that »(U;) C Oy and y(U,) C O,.

Now, let I; (resp., o) be an open interval containing 0 (resp., 1) of R,
and let @: U; x Uy x I} x I, — R* be the mapping defined by

D(t1,12,51,8) = (p(t1) +s19(01)p(t2), y(t1) + s29(t1) p(12))
= (I =s)y(t1) +s171(82), (1 = s1)72(t1) + s172(22),

(1 =s52)y1(t1) + 5271 (22), (1 = 2)72(11) + 202 (82)),

where y = (y,,7,). Then, we get

(=) w) 5w e -nm) 0

(-0 2P ne)-nm) 0
e -y %@ 0 -

(-2 22w 0 n) - )

Set sy =0 and s, = 1. Then, we have
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dy
a0 ) =) !
d
d_yz([l) 0 1(t2) = 1a(t1) 0
h
JD.1r,0,1) = dy
0 4 ®) 0 A
2
d
w0 )
2

Let us first show that there exists an element (7j,%,) € U; x U, such that
detd®D; 7,01y #0. Let g, : Uy x Uy — R and ¢, : U; x U; — R be the func-
tions defined by

d
) ni) = ni(n)
1
¢1(11,12) = det d ;
d—[f(ll) 72(12) = 72(11)
d
TH(1) () = ()
2
¢y(11, 1) = det d ;
de(fz) 72(12) = 7a(11)
2

respectively. Note that the function ¢, (resp., ¢,) is defined by the entries of
the 1st column vector and the 3rd column vector of J®@(, ,, o 1) (resp., the 2nd
column vector and the 4th column vector of J®(, , ¢ 1)). In order to show
that there exists an element (#1,%) € Uy x U, such that det dDg i0,1) # 0, it is
sufficient to show that there exists an element (f1,5) e U; x U, satisfying
pi1(f1,5) #0 and ¢,(f1,5) #0. By Lemma I, there exists (¢],4) € U x U,
such that ¢(#],#5) # 0. Since the function ¢, is continuous, there exists an
open neighborhood U; x Uy (C U; x U,) of (t{,1t5) satisfying ¢,(t1,1,) # 0 for
any (11,1) € U{ x U;. Moreover, by Lemma 1, there exists (¢,5) € U/ x U;
such that ¢,(#,%) # 0. Namely, there exists an element (#,%,) € Uy x U, such
that det dq&(ﬂ,fz,ovl) # 0.

Now, by the inverse function theorem, there exists an open neighborhood
V oof (f1,6,0,1) e Uy x Uy x I} x I, such that @ : V — ®(V) is a diffeomor-
phism. Let ¥ c R? x R? be the set consisting of points p = (py, p2) € R*
such that D,oy: N — R? is not an immersion with normal crossings. Note
that by Proposition 2, the set R* — % is dense in IR*. Set

A={(y1,») e R? x R?*| y; = y}.

Since @(V') is an open set of IR* and the set 4 is a proper algebraic set of R*,
there exists an element p’ = (p{,p}) e ®(V)—2UAd. As p’'¢2X, the com-
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position D, oy: N — IR? is an immersion with normal crossings. Set (¢, 1},
si,55) = (®],,) (], p4). Then, we have

! / ! ! /
pi = (1) +spp()(0),
! ! / ! !
py = y(1y) + s37(8)7(83)-
Since p{ # p}, we get p(t]) # y(t}). Let L be the straight line defined by

L={y(t;) +s7(t1)»(1) | s € R}.

Set p, =y(t{) and p, =y(¢}). Then, it is clearly seen that p, € O; and
D, €0, Since pj,pseL (p; # p5) and py,p, e L (p, # p,), by Proposition
4, there exists an affine transformation H : R?> — R? such that

Ho Dp/ = Dﬁ
where p = (py, p,). Since D, oy : N — IR? is an immersion with normal cross-
ings, Dyjoy: N — R? is also an immersion with normal crossings. O
Acknowledgement

The author is most grateful to the anonymous reviewer for carefully
reading the first manuscript of this paper and for giving invaluable sugges-
tions. The author is grateful to Takashi Nishimura for his kind comments.

References

[1] J. W. Bruce and P. J. Giblin, Curves and singularities (second edition), Cambridge
University Press, Cambridge, 1992.

[2] J. W. Bruce and N. P. Kirk, Generic projections of stable mappings, Bull. London Math.
Soc., 32 (2000), 718-728.

[3] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts
in Mathematics 14, Springer, New York, 1973.

[4] S. Ichiki, Composing generic linearly perturbed mappings and immersions/injections,
J. Math. Soc. Japan, 70 (2018), no. 3, 1165-1184.

[5] S. Ichiki and T. Nishimura, Distance-squared mappings, Topology Appl., 160 (2013),
1005-1016.

[6] J. N. Mather, Generic projections, Ann. of Math., (2) 98 (1973), 226-245.

Shunsuke Ichiki
Department of Mathematical and Computing Science
School of Computing, Tokyo Institute of Technology
Tokyo 152-8552, Japan
E-mail: ichiki@ec.titech.ac.jp



