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Abstract. A distance-squared function is one of the most significant functions in the

application of singularity theory to di¤erential geometry. Moreover, distance-squared

mappings are naturally extended mappings of distance-squared functions, wherein each

component is a distance-squared function. In this paper, compositions of a given plane

curve and generic distance-squared mappings on the plane into the plane are inves-

tigated from the viewpoint of stability.

1. Introduction

Throughout this paper, let l and n stand for positive integers. In this

paper, unless otherwise stated, all manifolds and mappings belong to class Cy

and all manifolds are without boundary. Let q ¼ ðq1; . . . ; qnÞ A Rn be a given

point. The mapping dq : Rn ! R defined by

dqðxÞ ¼
Xn
i¼1

ðxi � qiÞ2

is called a distance-squared function, where x ¼ ðx1; . . . ; xnÞ. In [5], the follow-

ing notion is investigated.

Definition 1. Let p1; . . . ; pl be l given points in Rn. Set p ¼
ðp1; . . . ; plÞ A ðRnÞl. The mapping Dp : Rn ! Rl defined by

Dp ¼ ðdp1 ; . . . ; dplÞ

is called a distance-squared mapping.

We have the following motivation for investigating distance-squared

mappings. Height functions and distance-squared functions have been inves-

tigated in detail so far, and they are useful tools in the applications of

singularity theory to di¤erential geometry (see [1]). A mapping in which each
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component is a height function is nothing but a projection. Projections as

well as height functions or distance-squared functions have been investigated

so far. For example, in [6] (resp., [2]), compositions of generic projections

and embeddings (resp., stable mappings) are investigated from the viewpoint

of stability (for the definition of stability, refer to [3]). On the other hand, a

mapping in which each component is a distance-squared function is a distance-

squared mapping. Therefore, it is natural to investigate distance-squared

mappings as well as projections.

In this paper, compositions of a given plane curve and generic distance-

squared mappings on the plane into the plane are investigated from the view-

point of stability.

A mapping f : Rn ! Rl is said to be A-equivalent to a mapping

g : Rn ! Rl if there exist di¤eomorphisms j : Rn ! Rn and c : Rl ! Rl

such that c � f � j�1 ¼ g. For given points x ¼ ðx1; . . . ; xnÞ; y ¼ ðy1; . . . ; ynÞ A
Rn, set

xy!¼ ðy1 � x1; . . . ; yn � xnÞ:

Given l points p1; . . . ; pl A Rn ð1a la nþ 1Þ are said to be in general position

if l ¼ 1 or p1 p2
��!; . . . ; p1 pl

��! ð2a la nþ 1Þ are linearly independent.

In [5], a characterization of distance-squared mappings is given as follows:

Proposition 1 ([5]). (1) Let l, n be integers such that 2a la n, and

let p1; . . . ; pl A Rn be in general position. Then, Dp : Rn ! Rl is

A-equivalent to the mapping defined by ðx1; . . . ; xnÞ 7! ðx1; . . . ; xl�1;

x2
l þ � � � þ x2

nÞ.
(2) Let l, n be integers such that 1a n < l, and let p1; . . . ; pl A Rn be l

points such that p1; . . . ; pnþ1 are in general position. Then, Dp : Rn !
Rl is A-equivalent to the inclusion ðx1; . . . ; xnÞ 7! ðx1; . . . ; xn; 0; . . . ; 0Þ.

In the following, by N, we denote a manifold of dimension 1. A mapping

f : N ! R2 is called a mapping with normal crossings if the mapping f satisfies

the following conditions.

(1) For any y A R2, j f �1ðyÞja 2, where jAj is the number of elements

of the set A.

(2) For any two distinct points q1; q2 A N satisfying f ðq1Þ ¼ f ðq2Þ, we

have dimðdfq1ðTq1NÞ þ dfq2ðTq2NÞÞ ¼ 2.

From Corollary 8 in [4], we have the following.

Proposition 2 ([4]). Let g : N ! R2 be an injective immersion, where N is

a manifold of dimension 1. Then, the set

fp A R2 �R2 jDp � g : N ! R2 is an immersion with normal crossingsg

is dense in R2 �R2.
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On the other hand, the purpose of this paper is to investigate whether the

set

fp A gðNÞ � gðNÞ jDp � g : N ! R2 is an immersion with normal crossingsg

is dense in gðNÞ � gðNÞ or not. Here, note that O is an open set of

gðNÞ � gðNÞ if there exists an open set O 0 of R2 �R2 satisfying O ¼ O 0 \
ðgðNÞ � gðNÞÞ.

Let g : N ! R2 be an immersion. We say that k : U ! R is called the

curvature of g on a coordinate neighborhood ðU ; tÞ of N if

kðtÞ ¼

det

dg1
dt

ðtÞ d 2g1
dt2

ðtÞ

dg2
dt

ðtÞ d 2g2
dt2

ðtÞ

0
BBB@

1
CCCA

dg1
dt

ðtÞ
� �2

þ dg2
dt

ðtÞ
� �2 !3=2 ;

where g ¼ ðg1; g2Þ. Note that for a given point q A N, whether kðqÞ ¼ 0 or

not does not depend on the choice of a coordinate neighborhood.

Definition 2. Let N be a manifold of dimension 1. We say that an

immersion g : N ! R2 satisfies ð�Þ if for any non-empty open set U of N, there

exists a point q A U satisfying kðqÞ0 0, where k is the curvature of g on a

coordinate neighborhood around q.

The main result in this paper is the following.

Theorem 1. Let g : N ! R2 be an injective immersion satisfying ð�Þ,
where N is a manifold of dimension 1. Then, the set

fp A gðNÞ � gðNÞ jDp � g : N ! R2 is an immersion with normal crossingsg

is dense in gðNÞ � gðNÞ.

If we drop the hypothesis ð�Þ in Theorem 1, then the conclusion of

Theorem 1 does not necessarily hold (see Examples 1 and 2 in Section 2).

In Theorem 1, if the mapping Dp � g : N ! R2 is proper, then the immer-

sion with normal crossings Dp � g : N ! R2 is necessarily stable (see [3], p. 86).

Thus, from Theorem 1, we get the following.

Corollary 1. Let N be a compact manifold of dimension 1. Let g : N !
R2 be an embedding satisfying ð�Þ. Then, the set

fp A gðNÞ � gðNÞ jDp � g : N ! R2 is stableg

is dense in gðNÞ � gðNÞ.
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In Section 2, Examples 1 and 2 are given. In Section 3, preliminaries

for the proof of Theorem 1 are given. Section 4 is devoted to the proof of

Theorem 1.

2. Dropping the hypothesis ð�Þ in Theorem 1

In this section, we will give two examples such that Theorem 1 without the

hypothesis ð�Þ does not hold (see Examples 1 and 2).

Firstly, we prepare the following proposition, which is used in Example 1.

Proposition 3. Let g : N ! R2 be a mapping, where N is a manifold of

dimension 1. Let p1, p2 be two points of R2. Then, a point q A N is a singular

point of the mapping Dp � g : N ! R2 ðp ¼ ðp1; p2ÞÞ if and only if

p1gðqÞ
���!

� dg
dt

ðqÞ ¼ 0 and p2gðqÞ
���!

� dg
dt

ðqÞ ¼ 0;

where t is a local coordinate around the point q and ‘‘�’’ stands for the inner

product in R2, that is, p1 and p2 are on the line normal to the curve gðNÞ at

gðqÞ.

Proof. Let q be a point of N. The composition of g : N ! R2 and

Dp : R2 ! R2 is given as follows:

Dp � gðqÞ ¼ ððg1ðqÞ � p11Þ2 þ ðg2ðqÞ � p12Þ2; ðg1ðqÞ � p21Þ2 þ ðg2ðqÞ � p22Þ2Þ;

where p1 ¼ ðp11; p12Þ, p2 ¼ ðp21; p22Þ and g ¼ ðg1; g2Þ.
Then, we have

dDp � g
dt

ðqÞ ¼ 2

�
ðg1ðqÞ � p11Þ

dg1
dt

ðqÞ þ ðg2ðqÞ � p12Þ
dg2
dt

ðqÞ;

ðg1ðqÞ � p21Þ
dg1
dt

ðqÞ þ ðg2ðqÞ � p22Þ
dg2
dt

ðqÞ
�

¼ 2 p1gðqÞ
���!

� dg
dt

ðqÞ; p2gðqÞ
���!

� dg
dt

ðqÞ
� �

;

where t is a local coordinate around the point q. Hence, a point q is a

singular point of the mapping Dp � g if and only if

p1gðqÞ
���!

� dg
dt

ðqÞ; p2gðqÞ
���!

� dg
dt

ðqÞ
� �

¼ ð0; 0Þ:

Example 1. In this example, we use Proposition 3. Let g : S1 ! R2 be

an embedding such that gðS1Þ is given by Figure 1. Here, note that there
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exists an open set U of N such that for any q A U , kðqÞ ¼ 0 (see gðUÞ in

Figure 1). Namely, g does not satisfy ð�Þ.
Let p ¼ ðp1; p2Þ A gðUÞ � gðUÞ be any point. Then, we will show that

the mapping Dp � g is not an immersion. From Figure 1, it is clearly seen

that

p1gðq 0Þ
����!

� dg
dt

ðq 0Þ ¼ 0 and p2gðq 0Þ
����!

� dg
dt

ðq 0Þ ¼ 0;

where gðq 0Þ is the point in Figure 1 and t is a local coordinate around the point

q 0. By Proposition 3, the point q 0 is a singular point of Dp � g. Namely, for

any p ¼ ðp1; p2Þ A gðUÞ � gðUÞ, the mapping Dp � g is not an immersion.

Since gðUÞ � gðUÞ is a non-empty open set of gðS1Þ � gðS1Þ, the conclusion

of Theorem 1 does not hold.

Example 2. Let I1, I2 and I3 be open intervals ð0; 1Þ, ð1; 2Þ and ð2; 3Þ
of R, respectively. Let g : I1 [ I2 [ I3 ! R2 be the mapping given by

gðtÞ ¼
ðt;�1Þ; t A I1;

ðt� 1; 0Þ; t A I2;

ðt� 2; 1Þ; t A I3:

8><
>:

For the image of g, see Figure 2. Here, note that g does not satisfy ð�Þ. Let

p ¼ ðp1; p2Þ A gðI2Þ � gðI2Þ be any point. Then, we will show that Dp � g is not

a mapping with normal crossings. Since p1 ¼ ðp11; p12Þ; p2 ¼ ðp21; p22Þ A gðI2Þ,
we have p12 ¼ p22 ¼ 0. Thus, we obtain

Dpðx1; x2Þ ¼ ððx1 � p11Þ2 þ x2
2 ; ðx1 � p21Þ2 þ x2

2Þ:

Fig. 1. Curve g of Example 1
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Let t0 A I1 be any element. Then, it follows that t0 þ 2 A I3 and

ðDp � gÞðt0Þ ¼ ðDp � gÞðt0 þ 2Þ:

Since

ðDp � gÞjI1ðtÞ ¼ ððt� p11Þ2 þ 1; ðt� p21Þ2 þ 1Þ;

ðDp � gÞjI3ðtÞ ¼ ððt� 2� p11Þ2 þ 1; ðt� 2� p21Þ2 þ 1Þ;

we get

dðDp � gÞt0 ¼ 2
t� p11

t� p21

� �
t¼t0

;

dðDp � gÞt0þ2 ¼ 2
t� 2� p11

t� 2� p21

� �
t¼t0þ2

:

Since the rank of the 2� 2 matrix ðdðDp � gÞt0 ; dðDp � gÞt0þ2Þ is less than two,

Dp � g is not a mapping with normal crossings. Hence, for any p ¼ ðp1; p2Þ A
gðI2Þ � gðI2Þ, Dp � g is not a mapping with normal crossings.

Remark 1. There is an example such that Theorem 1 without the

hypothesis ð�Þ holds. Let g : R ! R2 be the mapping defined by gðtÞ ¼ ðt; 0Þ.
Set

Fig. 2. Image of the mapping g of Example 2
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A ¼ fp A gðRÞ � gðRÞ jDp � g : R ! R2 is an immersion

with normal crossingsg:

We will show that A is dense in gðRÞ � gðRÞ. Let p1 ¼ ðp11; p12Þ; p2 ¼
ðp21; p22Þ A gðRÞ ð¼ R� f0gÞ be arbitrary points. Then, we have

Dp � gðtÞ ¼ ððt� p11Þ2; ðt� p21Þ2Þ;

where p ¼ ðp1; p2Þ. It is not hard to see that if p11 0 p21, then there exists

a di¤eomorphism H : R2 ! R2 such that H �Dp � gðtÞ ¼ ðt; 0Þ. Namely, if

p11 0 p21, then Dp � g is an immersion with normal crossings. On the other

hand, if p11 ¼ p21, then Dp � g is not an immersion with normal crossings.

Hence,

A ¼ fp A gðRÞ � gðRÞ j p11 0 p21g:

Thus, A is dense in gðRÞ � gðRÞ.

3. Preliminaries for the proof of Theorem 1

For the proof of Theorem 1, we prepare Proposition 4 and Lemma 1.

Proposition 4. Let L be a straight line of R2. For any p1; p2 A L

ðp1 0 p2Þ and for any ~pp1; ~pp2 A L ð~pp1 0 ~pp2Þ, there exists an a‰ne transformation

H : R2 ! R2 such that

H �Dp ¼ D~pp;

where p ¼ ðp1; p2Þ and ~pp ¼ ð~pp1; ~pp2Þ.

Proof. Set p1 ¼ ðp11; p12Þ, p2 ¼ ðp21; p22Þ, ~pp1 ¼ ð~pp11; ~pp12Þ and ~pp2 ¼
ð~pp21; ~pp22Þ.

Let H1 : R2 ! R2 be the linear transformation defined by

H1ðX1;X2Þ ¼ ðX1;X1 � X2Þ:

Then, we have

H1 �Dpðx1; x2Þ ¼ ððx1 � p11Þ2 þ ðx2 � p12Þ2;

2ððp21 � p11Þx1 þ ðp22 � p12Þx2Þ þ c1Þ;

where c1 is a constant term.

Let H2 : R2 ! R2 be the a‰ne transformation defined by

H2ðX1;X2Þ ¼ ðX1;X2 � c1Þ:
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Then, we get

H2 �H1 �Dpðx1; x2Þ ¼ ððx1 � p11Þ2 þ ðx2 � p12Þ2;

2ððp21 � p11Þx1 þ ðp22 � p12Þx2ÞÞ:

Since p1; p2; ~pp1; ~pp2 A L and p1 0 p2, there exist l1; l2 A R satisfying

~pp1 ¼ p1 þ l1 p1 p2
��!; ð1Þ

~pp2 ¼ p1 þ l2 p1 p2
��!: ð2Þ

Since ~pp1 0 ~pp2, we get l1 0 l2.

Let H3 : R2 ! R2 be the linear transformation defined by

H3ðX1;X2Þ ¼ ðX1 � l1X2;X1 � l2X2Þ:

Then, we get

H3 �H2 �H1 �Dpðx1; x2Þ

¼ ðx2
1 � 2ðp11 þ l1ðp21 � p11ÞÞx1 þ x2

2 � 2ðp12 þ l1ðp22 � p12ÞÞx2 þ d1;

x2
1 � 2ðp11 þ l2ðp21 � p11ÞÞx1 þ x2

2 � 2ðp12 þ l2ðp22 � p12ÞÞx2 þ d2Þ;

where d1, d2 are constant terms. By (1) and (2), we also get

H3 �H2 �H1 �Dpðx1; x2Þ

¼ ðx2
1 � 2~pp11x1 þ x2

2 � 2~pp12x2 þ d1; x
2
1 � 2~pp21x1 þ x2

2 � 2~pp22x2 þ d2Þ

¼ ððx1 � ~pp11Þ
2 þ ðx2 � ~pp12Þ

2 þ d 0
1; ðx1 � ~pp21Þ

2 þ ðx2 � ~pp22Þ
2 þ d 0

2Þ;

where d 0
1, d 0

2 are constant terms.

Let H4 : R2 ! R2 be the a‰ne transformation defined by

H4ðX1;X2Þ ¼ ðX1 � d 0
1;X2 � d 0

2Þ:

Then, we have

H4 �H3 �H2 �H1 �Dpðx1; x2Þ

¼ ððx1 � ~pp11Þ
2 þ ðx2 � ~pp12Þ

2; ðx1 � ~pp21Þ
2 þ ðx2 � ~pp22Þ

2Þ

¼ D~ppðx1; x2Þ:

This completes the proof of Proposition 4.

Lemma 1. Let g : N ! R2 be an immersion satisfying ð�Þ, where N is a

manifold of dimension 1. Then, for any non-empty open set U1 �U2 of N �N,
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there exists an element ðq1; q2Þ A U1 �U2 such that

det

dg1
dt1

ðq1Þ g1ðq2Þ � g1ðq1Þ

dg2
dt1

ðq1Þ g2ðq2Þ � g2ðq1Þ

0
BBB@

1
CCCA0 0;

where g ¼ ðg1; g2Þ and t1 is a local coordinate around q1.

Proof. Let U1 �U2 be any non-empty open set of N �N. Then,

there exists a coordinate neighborhood ðU 0
1 �U 0

2; ðt1; t2ÞÞ satisfying U 0
1 �U 0

2 �
U1 �U2. Fix q 0

1 A U 0
1.

Now, suppose that for any point t2 A U 0
2,

det

dg1
dt1

ðq 0
1Þ g1ðt2Þ � g1ðq 0

1Þ

dg2
dt1

ðq 0
1Þ g2ðt2Þ � g2ðq 0

1Þ

0
BBB@

1
CCCA¼ 0; ð3Þ

where g ¼ ðg1; g2Þ. By (3), we have

dg1
dt1

ðq 0
1Þðg2ðt2Þ � g2ðq 0

1ÞÞ �
dg2
dt1

ðq 0
1Þðg1ðt2Þ � g1ðq 0

1ÞÞ ¼ 0;

for any point t2 A U 0
2. Hence, we get

dg1
dt1

ðq 0
1Þ
dg2
dt2

ðt2Þ �
dg2
dt1

ðq 0
1Þ
dg1
dt2

ðt2Þ ¼ 0; ð4Þ

dg1
dt1

ðq 0
1Þ
d 2g2
dt22

ðt2Þ �
dg2
dt1

ðq 0
1Þ
d 2g1
dt22

ðt2Þ ¼ 0; ð5Þ

for any point t2 A U 0
2. By (4) and (5), we have

dg2
dt2

ðt2Þ � dg1
dt2

ðt2Þ

d 2g2
dt22

ðt2Þ � d 2g1
dt22

ðt2Þ

0
BBB@

1
CCCA

dg1
dt1

ðq 0
1Þ

dg2
dt1

ðq 0
1Þ

0
BBB@

1
CCCA¼ 0

0

� �
; ð6Þ

for any point t2 A U 0
2. Since g is an immersion, it follows that

dg1
dt1

ðq 0
1Þ

dg2
dt1

ðq 0
1Þ

0
BBB@

1
CCCA0

0

0

� �
: ð7Þ
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By (6) and (7), we have

det

dg2
dt2

ðt2Þ � dg1
dt2

ðt2Þ

d 2g2
dt22

ðt2Þ � d 2g1
dt22

ðt2Þ

0
BBB@

1
CCCA¼ 0

for any point t2 A U 0
2. This contradicts the hypothesis that g satisfies

ð�Þ.

Remark 2. It is clearly seen that Lemma 1 does not depend on the choice

of a coordinate neighborhood containing a point q1 of N.

4. Proof of Theorem 1

Let O be any non-empty open set of gðNÞ � gðNÞ. Then, there exist non-

empty open sets O1 and O2 of gðNÞ satisfying O1 �O2 � O. For the proof,

it is su‰cient to show that there exist points p1 A O1 and p2 A O2 such that

Dp � g : N ! R2 is an immersion with normal crossings, where p ¼ ðp1; p2Þ.
Since g is continuous, there exist coordinate neighborhoods ðU1; t1Þ and ðU2; t2Þ
of N such that gðU1Þ � O1 and gðU2Þ � O2.

Now, let I1 (resp., I2) be an open interval containing 0 (resp., 1) of R,

and let F : U1 �U2 � I1 � I2 ! R4 be the mapping defined by

Fðt1; t2; s1; s2Þ ¼ ðgðt1Þ þ s1gðt1Þgðt2Þ
������!

; gðt1Þ þ s2gðt1Þgðt2Þ
������!

Þ

¼ ðð1� s1Þg1ðt1Þ þ s1g1ðt2Þ; ð1� s1Þg2ðt1Þ þ s1g2ðt2Þ;

ð1� s2Þg1ðt1Þ þ s2g1ðt2Þ; ð1� s2Þg2ðt1Þ þ s2g2ðt2ÞÞ;

where g ¼ ðg1; g2Þ. Then, we get

JFðt1; t2; s1; s2Þ ¼

ð1� s1Þ
dg1
dt1

ðt1Þ s1
dg1
dt2

ðt2Þ g1ðt2Þ � g1ðt1Þ 0

ð1� s1Þ
dg2
dt1

ðt1Þ s1
dg2
dt2

ðt2Þ g2ðt2Þ � g2ðt1Þ 0

ð1� s2Þ
dg1
dt1

ðt1Þ s2
dg1
dt2

ðt2Þ 0 g1ðt2Þ � g1ðt1Þ

ð1� s2Þ
dg2
dt1

ðt1Þ s2
dg2
dt2

ðt2Þ 0 g2ðt2Þ � g2ðt1Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Set s1 ¼ 0 and s2 ¼ 1. Then, we have
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JFðt1; t2;0;1Þ ¼

dg1
dt1

ðt1Þ 0 g1ðt2Þ � g1ðt1Þ 0

dg2
dt1

ðt1Þ 0 g2ðt2Þ � g2ðt1Þ 0

0
dg1
dt2

ðt2Þ 0 g1ðt2Þ � g1ðt1Þ

0
dg2
dt2

ðt2Þ 0 g2ðt2Þ � g2ðt1Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Let us first show that there exists an element ð~tt1; ~tt2Þ A U1 �U2 such that

det dFð~tt1; ~tt2;0;1Þ 0 0. Let j1 : U1 �U2 ! R and j2 : U1 �U2 ! R be the func-

tions defined by

j1ðt1; t2Þ ¼ det

dg1
dt1

ðt1Þ g1ðt2Þ � g1ðt1Þ

dg2
dt1

ðt1Þ g2ðt2Þ � g2ðt1Þ

0
BBB@

1
CCCA;

j2ðt1; t2Þ ¼ det

dg1
dt2

ðt2Þ g1ðt2Þ � g1ðt1Þ

dg2
dt2

ðt2Þ g2ðt2Þ � g2ðt1Þ

0
BBB@

1
CCCA;

respectively. Note that the function j1 (resp., j2) is defined by the entries of

the 1st column vector and the 3rd column vector of JFðt1; t2;0;1Þ (resp., the 2nd

column vector and the 4th column vector of JFðt1; t2;0;1Þ). In order to show

that there exists an element ð~tt1; ~tt2Þ A U1 �U2 such that det dFð~tt1; ~tt2;0;1Þ 0 0, it is

su‰cient to show that there exists an element ð~tt1; ~tt2Þ A U1 �U2 satisfying

j1ð~tt1; ~tt2Þ0 0 and j2ð~tt1; ~tt2Þ0 0. By Lemma 1, there exists ðt 01; t 02Þ A U1 �U2

such that j1ðt 01; t 02Þ0 0. Since the function j1 is continuous, there exists an

open neighborhood U 0
1 �U 0

2 ð� U1 �U2Þ of ðt 01; t 02Þ satisfying j1ðt1; t2Þ0 0 for

any ðt1; t2Þ A U 0
1 �U 0

2. Moreover, by Lemma 1, there exists ð~tt1; ~tt2Þ A U 0
1 �U 0

2

such that j2ð~tt1; ~tt2Þ0 0. Namely, there exists an element ð~tt1; ~tt2Þ A U1 �U2 such

that det dFð~tt1; ~tt2;0;1Þ 0 0.

Now, by the inverse function theorem, there exists an open neighborhood

V of ð~tt1; ~tt2; 0; 1Þ A U1 �U2 � I1 � I2 such that F : V ! FðVÞ is a di¤eomor-

phism. Let S � R2 �R2 be the set consisting of points p ¼ ðp1; p2Þ A R4

such that Dp � g : N ! R2 is not an immersion with normal crossings. Note

that by Proposition 2, the set R4 � S is dense in R4. Set

D ¼ fðy1; y2Þ A R2 �R2 j y1 ¼ y2g:

Since FðVÞ is an open set of R4 and the set D is a proper algebraic set of R4,

there exists an element p 0 ¼ ðp 0
1; p

0
2Þ A FðVÞ � S [ D. As p 0 B S, the com-
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position Dp 0 � g : N ! R2 is an immersion with normal crossings. Set ðt 01; t 02;
s 01; s

0
2Þ ¼ ðFjV Þ

�1ðp 0
1; p

0
2Þ. Then, we have

p 0
1 ¼ gðt 01Þ þ s 01gðt 01Þgðt 02Þ

������!
;

p 0
2 ¼ gðt 01Þ þ s 02gðt 01Þgðt 02Þ

������!
:

Since p 0
1 0 p 0

2, we get gðt 01Þ0 gðt 02Þ. Let L be the straight line defined by

L ¼ fgðt 01Þ þ sgðt 01Þgðt 02Þ
������!

j s A Rg:

Set ~pp1 ¼ gðt 01Þ and ~pp2 ¼ gðt 02Þ. Then, it is clearly seen that ~pp1 A O1 and

~pp2 A O2. Since p 0
1; p

0
2 A L ðp 0

1 0 p 0
2Þ and ~pp1; ~pp2 A L ð~pp1 0 ~pp2Þ, by Proposition

4, there exists an a‰ne transformation H : R2 ! R2 such that

H �Dp 0 ¼ D~pp;

where ~pp ¼ ð~pp1; ~pp2Þ. Since Dp 0 � g : N ! R2 is an immersion with normal cross-

ings, D~pp � g : N ! R2 is also an immersion with normal crossings. r
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