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ABSTRACT. Given a planar Jordan domain G with rectifiable boundary, it is well
known that smooth functions on the closure of G do not always admit smooth exten-
sions to €. Further conditions on the boundary are necessary to guarantee such exten-
sions. On the other hand, Weierstrass’ approximation theorem yields polynomials
converging uniformly to f e C(G,C). In this note we show that for Vitushkin sets
K with K = K° it is always possible to uniformly approximate on K the smooth func-
tion f e C'(K,C) by smooth functions f, in € so that also df, converges uniformly
to df on K. As a byproduct we deduce from its “smooth in a neighborhood version”
the general Gauss integral theorem for functions whose partial derivatives in G merely
admit continuous extensions to its boundary.

Introduction

Let K be a compact set in € satisfying K° = K. Given a function f €
C(K,C)N CY(K°, ), suppose that the partial derivatives, f, and f,, or equiv-
alently the Wirtinger derivatives df and df, admit continuous extensions to
K° =K. We denote this set of functions by C'(K,C). Is f the trace of a
C'-function in €? This very classical subject has been considered and gener-
alized by generations of mathematicians. Let us only mention the theories
developed by Hassler Whitney and later by Charles Fefferman. It is very easy
to come up with a counterexemple.

As soon as there are cusps, these extensions are not possible (see Figure
1). In fact such a function, F, would locally satisfy a Lipschitz condition.
In particular, around small disks centered at the origin, we would have for
x<0

X2 = |F(x,x%) = F(x, =x°)| < LI|(x,x%) = (x, =x) || = 2L[x°].

Thus, dividing by x?, we arrive at 1 < 2L|x|, which is a contradiction whenever
|x| is small.
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Fig. 1. Not the trace of a C!-function

For smooth domains, though, smooth extensions are possible [8]:

Tueorem 1 (Seeley). Let D C € be a bounded domain with C*-boundary.
Then every f € CK(D) is the trace on D of a function F € CX(C), where C*(T)
is the space of k-times continuously differentiable functions with compact support
in C.

See also [5, p. 69] for a sketched proof. For example, if k=1 and
D =D, then a C'-extension to R x [0,3/2] of p, defined by p(0,r) = f(re®)
for (0,r) e R x [0,1], is given by

p(6,r) if 0<r<l

F0,r) = {n(ﬁ,r) i=3p(0,2—r) —2p(0,3 - 2r) if 1 <r<3/2.

Multiplying F with a C®-function that is independent of 6, equals 1 on
R x [0,6/5] and 0 on R x [7/5,00[ now yields a C!(R?) extension of p.
Denote this by F again. Now by using the 2z-periodicity of F, the function
[ RA\{(0,0)} — €, given by

[ (x,y)=F(0,r) where x =rcosf, y=rsinf,r>0, -7 <0 <m,

is well-defined and so a C'-extension of f:ID — C.

So, as smooth extensions are not always possible, one may ask whether
a simultaneous approximation of f e C!(K,C) and its derivatives is possible.
As a contribution to an answer to this question we will show that for a wide
class of compacta it is always possible to find f, € C!(C,C) such that f,
converges uniformly on K to f and df, to df. These compacta arise in the
theory of rational approximation. They are the so called Vitushkin sets (see
below).
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1. Simultaneous approximation

Recall that A(K) is the space of all functions continuous on the compact
set K C € and holomorphic in its interior K°, and that R(K) is the uniform
closure on K of the set of rational functions without poles on K. The fol-
lowing definition is motivated by a very deep result of A. G. Vitushkin,
who characterized those planar compacta K for which A(K) = R(K) (see [6,
p. 217)).

DEeriNITION 1. A compact set K in € is called a Vitushkin set if R(K) =
A(K).

For example, if K C C is a compact set such that C\K has only finitely
many connected components, then A(K) = R(K) (see [6]). For f e C'(K,C),
we denote the extensions of f, and f, from K° to K° by f¢ and /), respec-
tively. Moreover, d.f denotes the continuous extension of Jf := (fy —ify)/2
to K°. Note that 0,/ = (f¢ — ify)/2 due to the uniqueness of these exten-
sions. The same applies for 0.f. Finally, let ||f|x :=sup{|f(z)|:z€e K}.
Here is now our result.

THEOREM 2. Let K C € be a Vitushkin set satisfying K = K°. Then, for
every f e CY(K,C), there exist f, e C*(C) such that

I =fllx =0 and  ||ofy = 0ef || — 0.

PrOOF. Let

F()(Z) ::—% p C—Z

where g, denotes planar Lebesgue measure in €. Since Fy and f € C(K,C)
and since 0Fy = df on K° (see [2] and [7]), Fy = f + h for some holomorphic
function 1 € A(K). Fix a compact neighborhood C of K and consider Tietze
extensions /1* of h to C and d,f of of € C(K°,C) to C. Since by hypothesis
A(K) = R(K), given ¢ > 0, there is a rational function W such that | W — h|| g
< e Let the open set U be chosen so that

Kcucc, |[W-hg<e

Now let U, be open neighboorhoods of K with

KCU,CU,CU, UnCU, [JU=K
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By Weierstrass’ approximation Theorem, there exist polynomials W, € Clx, y]
so that
1.f = Walle < 1/n. (L1)

Consider the Cauchy transforms

1

Fu(z) == —7J Wa({)

g, ¢(—z

das (),

T

which are continuous on €, and on C let f :=F,— W. Since U, C U, we
conclude that f* € C*(U,). Due to the fact (see [1, p. 150]) that for all ze €

1
J m dO’z(C) < 2\/7‘(02(](),
k=
we obtain on K the following estimates:

\f = £ =1(Fo = h) = (B, = W) = [(Fo — Fu) — (h = W)

L[ 20 L W)
|2 F a0 5], F o0
110/ = Wa(0)] 1 |Wa(0)]
= ”JK £ — | d62(€)+7TJUn\K | — 2| dox(0) +e
12 2 —
2LV Wille = \m(0AK) +o

5)1+H5(,f|\c —0 as n—oo
(i1

< 3¢ for all n > ny.

Moreover, on U,!

[Oef — Of,[| = |0cf — OF, + OW| = |0cf — W,H—QI%V_/\

Hence ||0.f — 0f;*||x < 1/n. The final approximating function f, now will be
a cutoff of f*. That is, let O, and V), be open sets with

Kgongangl/ngVngUw

't is only here that we need K to be a Vitushkin set, in order to obtain an approximating
function W with W = 0.
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Choose o, € C*(C) with 0<a<l, o,=1 on O, and o, =0 on C\V,.
Define f, by f, = fu, on V, and f, :=0 on C\V,. Then it is easy to see
that f, € C*(C,C). Moreover, on O, we have f, = f* as well as df, = of",
because

a -*nzg* » *5,,:5*
(/) o) (fn)g( I Qo =,
= =0

Hence f, satisfies

Ifo =fllx =0 and  [|3fy = Oefllx — O.
This finishes the proof of Theorem 2. O

Here we have two questions: Is it possible to achieve also the uniform
convergence of df, to d,f? And in how far the condition K a Vitushkin set,
can be relaxed?

2. Gauss’ Theorem revisited

In [3] Carmona and Cufi gave a really magnificent proof of the com-
plex version of the “smooth in a neighborhood version” of Gauss’ theorem by
using the d-calculus, a proof that should be included in every complex analysis
course (see [2, p. 213]). Recall that, by definition, the boundary of an admis-
sible domain splits into finitely many pairwise disjoint C!-Jordan curves with
the appropriate orientation. We denote here the area integral with a double
integral.

THEOREM 3 (Gauss’ Theorem, complex version). Let G be an admissible
domain and U an open neighborhood of G. Suppose that f € C'(U). Then

|, ez =21 [| ardenc)

The more general version for functions whose partial derivatives in G
merely admit continuous extensions to its boundary (denoted by f e C'(G))
can be shown in various ways. An obvious approach is to approximate the
boundary curves of G by curves y, of the same type entirely contained in G and
such that

Jy,, f(z)dz — LG f(z)dz

(not so easy and rather technical). Another approach is given in [3] by using
a result in advanced function theory that the derivative of a Riemann map
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r:ID — Q onto a Jordan domain belongs to the Hardy space H' if and only
if the boundary of @ is rectifiable (see [4, p. 44]).

We now apply Theorem 2 in the special case where K = D for some ad-
missible domain D, to deduce the following general version of Gauss’ Theorem
from its special version 3.

TueoreM 4 (Gauss). Let D be an admissible domain and f e C'(D).
Then

| rea=2 ] r@an.

Proor. Let K =D. Since D is admissible, K has only finitely many
holes. Hence, by Mergelyan’s Theorem for rational approximation [6], R(K) =
A(K). Thus K is a Vitushkin set. According to Theorem 2, choose f, €
C*(C) such that

Ifn =Sllx — O and Hgfn - gefHK — 0.
By Theorem 3,

| #cra =21 an0dno).

The uniform convergence of f, to f and df, to 0,/ on K now yields the
assertion.
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