
On projective QTAG-modules

Fahad Sikander

College of Science and Theoretical Studies, Saudi Electronic University (Jeddah Branch), Jeddah-23442, Kingdom
of Saudi Arabia

E-mail: f.sikander@seu.edu.sa

Abstract

In this paper we introduce the new class of QTAG-modules namely ω1-(ω + n)-projective
modules, which is an amalgamation of three important classes of modules: n-bounded modules,
the direct sum of uniserial modules and the countably generated modules. This class is given
many equivalent characterizations including being the smallest class containing the (ω + n)-
projective modules that is closed with respect to ω1-bijective homomorphisms.
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1 Introduction

Many concepts for groups like purity, projectivity, injectivity, height etc. have been generalized for
modules. To obtain results of groups which are not true for modules either conditions have been
applied on modules or upon the underlying rings. We imposed the condition on modules that every
finitely generated submodule of any homomorphic image of the module is a direct sum of uniserial
modules while the rings are associative with unity. After these conditions many elegant results of
groups can be proved for QTAG-modules which are not true in general. Many results of this paper
are the generalization of the paper [2].

The study of QTAG-modules was initiated by Singh [10]. Khan, Mehdi, Abbasi etc. worked a
lot on these modules [3, 4] etc. They studied different notions and structures of QTAG-modules,
developed the theory of these modules by introducing several notions and investigated some inter-
esting properties and characterized them. Yet there is much to explore.

A module M over an associative ring R with unity is a QTAG-module if every finitely generated
submodule of any homomorphic image of M is a direct sum of uniserial modules [11]. All the
rings R considered here are associative with unity and modules M are unital QTAG-modules. An
element x ∈ M is uniform, if xR is a non-zero uniform (hence uniserial) module and for any R-
module M with a unique composition series, d(M) denotes its composition length. For a uniform

element x ∈ M, e(x) = d(xR) and HM (x) = sup

{
d

(
yR

xR

)
| y ∈M, x ∈ yR and y uniform

}
are

the exponent and height of x in M, respectively. Hk(M) denotes the submodule of M generated by
the elements of height at least k and Hk(M) is the submodule of M generated by the elements of

exponents at most k. M is h-divisible if M = M1 =
∞⋂
k=0

Hk(M) [3] and it is h-reduced if it does not

contain any h-divisible submodule. In other words it is free from the elements of infinite height. A
QTAG-module M is said to be separable, if M1 = 0. Let M be a module, then the sum of all simple
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submodules of M is called the socle of M and is denoted by Soc(M). If M,M ′ are QTAG-modules
then a homomorphism f : M → M ′ is an isometry if it is 1-1, onto and HM ′(f(x)) = HM (x),
for all x ∈ M. A submodule N of a QTAG-module M is a nice submodule if every nonzero coset
a+N is proper with respect to N i.e. for every nonzero a+N there is an element b ∈ N such that
HM (a+ b) = HM/N (a+N). A family N of submodules of M is called a nice system in M if

(i) 0 ∈ N ;

(ii) If {Ni}i∈I is any subset of N , then ΣINi ∈ N ;

(iii) Given any N ∈ N and any countable subset X of M, there exists K ∈ N containing N ∪X,
such that K/N is countably generated [4].

Every submoddule in a nice system is nice submodule. A h-reduced QTAG-module M is called
totally projective if it has a nice system and direct sums and direct summands of totally projective
modules are also totally projective. A submodule N of M is h-pure in M if N ∩Hk(M) = Hk(N),
for every integer k ≥ 0. A QTAG- module M is (ω + n)- projective, if there exists a submodule
N ⊂ Hn(M) such that M/N is a direct sum of uniserial modules or equivalently, if and only if
there is a direct sum of uniserial module K with a submodule L ⊆ Hn(K) such that M ∼= K/L.
M is ω-projective if and only if it is a direct sum of uniserial modules. Also two (ω+ n)-projective
QTAG-modules M1 ,M2 are isometric if and only if there is a height preserving isomorphism
between Hn(M1) and Hn(M2) [4]. For any QTAG- module M, g(M) denotes the smallest cardinal
number λ such that M admits a generating set X of uniform elements of cardinality λ i.e :, |X| = λ.
A homomorphism f : M → N is said to be ω1-bijective if g(ker f), g(N/f(M)) < ω1.

2 Some characterizations of the class Wn

The three important classes of modules that are closed under arbitrary submodules are

(i) The class of n-bounded modules, which we denote by Bn.

(ii) The class of countably generated modules, which we denote by C.

(iii) The class of direct sum of uniserial modules, which we denote by D.

Here we study a class of modules which combines all three of these classes and denoted by Wn

and we call these modules as ω1-(ω + n)-projective modules.

In this section, we will establish some interesting equivalent characterizations of this class and
we also show that the class Wn is the smallest class of modules containing the (ω + n)-projective
modules that is closed under ω1-bijective homomorphisms.

If M and N are classes of modules, a module M is said to be an extension of a module
in M by a quotient in N , denoted by E(M,N ), if and only if there is a short exact sequence
0 → L → M → N → 0 where L ∈ M and N ∈ N . Such module is said to be an elongation of a
module in N modulo a submodule in M. Dually, M is said to be a quotient of a module in M
by a submodule in N , denoted by M ∈ Q(M,N ), if and only if there is a short exact sequence
0→ L→ N →M → 0 where L ∈M and N ∈ N .

We start with the following lemma:
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Lemma 2.1. (cf. [2], Lemma 1.1) Suppose M is a QTAG-module.

(a) M ∈ E(Bn,D) if and only if M ∈ Q(Bn,D) if and only if M is (ω + n)-projective.

(b) M ∈ E(Bn, C) if and only if M ∈ E(C,Bn) if and only if Hn(M) ∈ C if and only if M is
isomorphic to the direct sum of an Hn-bounded and a countably generated submodule.

(c) M ∈ E(C,D) if and only if M ∈ E(D, C) if and only if M ∈ Q(C,D) if and only if M is
isomorphic to the direct sum of a countably generated module and a module which is direct
sum of uniserial modules.

Proof. (a) follows trivially by characterization of (ω + n)-projective modules.

(b) Suppose M is isomorphic to the direct sum of a n-bounded and a countably generated module
i.e. M ∼= L ⊕K, where L ∈ Bn, K ∈ C; then Hn(M) ∼= Hn(K) is countably generated and
the first two statements hold as well. Conversely, if Hn(M) is countably generated, let K be a
maximal n-bounded submodule of M . It follows that M ∼= K⊕L and as Hn(M) is countably
generated it gives L is countably generated.

Let M ∈ E(Bn, C) and let N be an n-bounded submodule of M with M/N = K countably
generated. Let H be a countably generated submodule of M such that M = N +H. There-
fore Hn(M) = Hn(N) + Hn(H) ⊆ H is countably generated as desired. Further, suppose
that M ∈ E(C,Bn). Since Hn(M) ⊆ N is countably generated submodule of M for which
M/N = K is n-bounded, which completes the proof of part (b).

(c) Suppose M is isomorphic to the direct sum of countably generated module L and a module
N , which is direct sum of uniserial modules i.e. M ∼= L⊕N , then let D be the direct sum of
countably generated modules with a submodule F such that D/F ∼= L. If E = D ⊕N , then
E ∈ D with exact sequence 0 → F → E → M → 0 implying M ∈ Q(C,D). On the other
hand, if M ∈ Q(C,D), then let L be a countably generated module contained in E ∈ D such
that E/L ∼= M implying E = T ⊕ P with T countably generated and L ⊆ T . If C = T/L,
then P ∈ D, C ∈ C and M ∼= C ⊕ P as desired.

If M ∈ E(C,D), then it has a countably generated submodule N such that P = M/N ∈ D.
Take the maximal submodule N ′ of M such that N ′ ∩N = {0}. As M → P is injective on
N ′ implies N ′ ∈ D. Hence M ∈ E(D, C) as N maps to an essential submodule of P ′ = M/N ′

implying N ′ ∈ C.

Lastly, if M ∈ E(D, C) then there is a submodule N ∈ D such that P = M/N ∈ C. If we
choose a countably generated module T in such a way that M = T + N , then N = T ′ ⊕ E
where T ′ is countably generated module contains T ∩ N and E ∈ D. If A = T + T ′, then
A ∈ C and M = A⊕ E, which completes the proof.

q.e.d.
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Let us recall a module M is said to be a Σ-module if every high submodule of M is a direct
sum of uniserial modules. In general, submodules of Σ-module need not be Σ-module. We will say
M is a totally Σ-module if every submodule of M is also a Σ-module. M is said to be ω-totally
ω-projective if every separable submodule of M is a direct sum of uniserial modules [9].

We will use the following notations in the subsequent results:

Fn: The class of (ω + n)-projective modules.
Cn: The class of nth-level countably generated modules.
W: The class of ω-totally ω-projective modules.

We will say that a module M ∈ Fn if it satisfies Lemma 2.1 (a) and M ∈ Cn if it satisfies Lemma
2.1 (b). Now we have the following interesting result:

Theorem 2.2. (cf. [2], Theorem 1.2) For the module M , the following are equivalent:

(i) M is an extension of a n-bounded module by an ω-totally ω-projective quotient i.e. M ∈
E(Bn,W).

(ii) M is a quotient of an ω-totally ω-projective module modulo an n-bounded submodule i.e. M ∈
Q(Bn,W).

(iii) M is an extension of a nth-level countably generated module by a quotient which is a direct
sum of uniserial modules i.e. M ∈ E(Cn,D).

(iv) M is a quotient of a direct sum of uniserial modules modulo an nth-level countably generated
submodule i.e. M ∈ Q(Cn,D).

(v) M is an extension of a countably generated module by a (ω+n)-projective quotient i.e. M ∈
E(Fn, C).

(vi) M is a quotient of (ω + n)-projective module modulo a countably generated submodule
i.e. M ∈ Q(C,Fn).

(vii) M is an extension of a (ω + n)-projective module by a countably generated quotient.

Proof. Let N be a submodule of M with K = M/N and P be a submodule of Q with Q/P = M .

(i) ⇒ (iii) : If N be an n-bounded submodule and K be ω-totally ω-projective module, then
there is a countably generated submodule S of K such that K/S = K ′ ∈ D. If we let N ′ be the
submodule of M containing N such that N ′/N = S and M/N ′ ∼= K ′ ∈ D, as desired.

(iii)⇒ (v) : If N be an nth-level countably generated module and K be a submodule which is
the direct sum of uniserial modules and there is a countably generated submodule N ′ of N such
that N/N ′ = S ∈ Bn, which is a submodule of K ′ = M/N ′ such that K ′/S ∼= K ∈ D implies
K ′ ∈ Fn, which is (v).

(v) ⇒ (vii) : Let N be a countably generated submodule and K be a (ω + n)-projective mod-
ule. Choose a submodule N ′ of M which is maximal with the property that N ′ ∩N = {0}. N ′ is
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(ω + n)-projective as it maps injectively into K. Since N is isomorphic to an essential submodule
of K ′ = M/N ′ implying that K ′ is countably generated, which is (vii).

(vii) ⇒ (vi) : Let N be an (ω + n)-projective submodule and K be a countably generated
submodule of M . Let S be a countably generated module which is a direct sum of uniserial module
and f : S → M be a homomorphism such that M = N + f(S). If Q = N ⊕ S, then Q is (ω + n)-
projective module. Let N →M be the identity map, then Q→M be a surjective homomorphism.
If P is its kernel, then P ∩N = {0} so that P is isomorphic to a submodule of S and hence P will
be countably generated, which is (vi).

(vi)⇒ (iv) : Suppose Q be an (ω+n)-projective and P be a countably generated module. There
is a module Q′, which is the direct sum of uniserial modules, having an n-bounded submodule S
such that Q = Q′/S. If P ′ be the submodule of Q′ such that P ′/S = P , then P ′ is nth-level
countably generated and Q′/P ′ ∼= M, which is (iv).

(iv)⇒ (ii) : Suppose Q be the direct sum of uniserial modules and P be nth-level countably gen-
erated module, then there is a submodule S of Q such that S is countably generated with P/S = P ′

is n-bounded module. As Q/S = Q′ be ω-totally ω-projective module and Q′/P ′ ∼= M, which is (ii).

(ii)⇒ (i) : Let Q be ω-totally ω-projective and P be n-bounded module and N = Hn(Q)/P ⊆
M with K = M/N. Since N is n-bounded and

K =
(Q/P )

(Hn(Q)/P )
∼=

Q

Hn(Q)
∼= Hn(Q) ∈ W

which completes the proof of the theorem. q.e.d.

Now we have the following:

Definition 2.3. A module M is said to be ω1-(ω+n)-projective if it satisfies any of the properties
of Theorem 2.2.

Proposition 2.4. (cf. [2], Proposition 1.4) A module M is ω1-(ω + n)-projective if and only if it
has a countably generated submodule N ⊆ Hω(M) such that M/N is (ω + n)-projective.

Proof. Suppose N is a countably generated submodule of Hω(M) such that M/N is (ω + n)-
projective. Then the module M satisfies Theorem 2.2(v) and hence M is ω1-(ω + n)-projective.
For the reverse implication, suppose M is ω1-(ω + n)-projective, then by Theorem 2.2 (ii), there
is an ω-totally ω-projective module P with an n-bounded submodule Q such that M = P/Q. Let
N = [Hω(P ) +Q]/Q, which is a countably generated submodule of Hω(M). Now

M/N =
(P/Q)

([Hω(P ) +Q]/Q)
∼=

P

(Hω(P ) +Q)

∼=
(P/Hω(P ))

([(Hω(P ) +Q)]/Hω(P )
.

As P/Hω(P ) is a direct sum of uniserial modules and [Hω(P ) + Q]/Hω(P ) is n-bounded, it
imply that M/N is (ω + n)-projective and we are done. q.e.d.
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We will discuss an interesting characterization of ω1-(ω + n)-projective modules as follows:

Theorem 2.5. (cf. [2], Theorem 1.5) For a QTAG-module M , the following ar equivalent:

(a) M is ω1-(ω + n)-projective.

(b) M is a submodule of the direct sum P of a countably generated module Q and a (ω + n)-
projective module S.

(c) M is h-pure submodule of a module P (as in part (b)), where P/M is countably generated.

Proof. (b)⇒ (a) : Suppose P = Q⊕ S is a QTAG-module where Q is the direct sum of countably
generated module and S an (ω + n)-projective module such that M ⊆ P . If ϕ : P → S is the
projection, then we can find a short exact sequence 0→M ∩Q→M → ϕ(M)→ 0. As ϕ(M) ⊆ S,
so it is (ω + n)-projective and M ∩ Q(⊆ Q) is countably generated. Therefore M is an extension
of a countably generated module by a (ω + n)-projective quotient. Now by Theorem 2.2 (v), M is
ω1-(ω + n)-projective.

(a) ⇒ (c) : Suppose M is ω1-(ω + n)-projective. By Proposition 2.4, we may find countably
generated submodule N ⊆ Hω(M) such that M/N is (ω+n)-projective. If D is the h-divisible hull
of N , then we may find a commutative diagram with short exact sequences and columns

Since D is h-divisible, we have P ∼= D⊕M/N. This implies that P/M ∼= D/N , which is count-
ably generated and M is mapped as an h-pure submodule of P and we are done.

(c)⇒ (a) is trivial.
q.e.d.

As an immediate consequence, we have the following:

Corollary 2.6. (cf. [2], Corollary 1.6) If P is ω1-(ω+n)-projective module and M is an arbitrary
submodule of P , then M is also ω1-(ω + n)-projective module.

If M is a module, then by a countable system on M we will mean a collection M of countably
generated submodules of M such that (i) if {Ni}i<ω ⊆M is an increasing sequence of submodules
in M, then N =

⋃
i<ω

Ni ∈ M and (ii) if K ⊆ M is any countably generated subset then there is

a submodule N ∈ M such that K ⊆ N. Clearly the intersection of two countable system is again
countable system.

Lemma 2.7. (cf. [2], Lemma 1.7) Let Q be (ω + n)-projective module, then there is a countable
system M on P consisting of submodules P ⊆ Q such that Q/P is (ω + n)-projective.
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Proof. Let S be an n-bounded submodule of Q such that T = Q/S is direct sum of uniserial
modules. Fix a decomposition T =

⊕
k∈K

Tk, where each Tk is a uniserial module and ϕ : Q → T

be surjection. Let M be the collection of all countably generated submodules P ⊆ Q such that
ϕ(P ) =

⊕
k∈I

Tk, where I ⊆ K. Clearly M is a countably generated system. If P ∈ M, then there

is a short exact sequence 0→ (P + S)/P → Q/P → Q/(P + S)→ 0. As (P + S)/P is n-bounded
and

Q/(P + S) ∼=
(Q/S)

(P + S)/S
∼= (

⊕
k∈K

Tk)/(
⊕
k∈I

Tk) ∼=
⊕

k∈K−I
Tk

is a direct sum of uniserial modules and each Q/P is (ω + n)-projective as required. q.e.d.

If J and K are classes of modules, let PE(J ,K) be the class of all modules M such that there is
a pure submodule J of M with K = M/J ∈ Y. Define PQ(J ,K) in the similar way. Theorem 2.5
suggests the question of whether in the various parts of Theorem 2.2, we can replace E orQ by PE or
PQ respectively. As a bounded pure submodule is a summand, we have PE(Bn,W) = PQ(Bn,W),
so Theorem 2.2 (i) and (ii) gives nothing new and since a module which is direct sum of uniserial
module is a summand, we have PE(Cn,D) =W, so also Theorem 2.2 (iii) gives nothing new. As to
Theorem 2.2 (iv), if M ∈ PQ(Cn,D) then there is a module N ∈ D with a pure submodule H ∈ Cn
such that N/H = M. Note that H = A⊕B, where A is countably generated and B is n-bounded.
It follows that B is also pure in N and hence a summand. Also, H ′ = H/B is a countably generated
submodule N ′ = N/B such that N ′/H ′ ∼= N/H = M. Since N ′ is isomorphic to a summandof N ,
it is in P, so that M ∈ W or we can say that PQ(Cn,D) also agree with W.

Following is an easy consequence of the above discussion:

Theorem 2.8. (cf. [2], Theorem 1.8) We have Wn = PE(C,Fn) = PQ(C,Fn) = PE(Fn, C).

Let us recall that a homomorphism f : M → N is said to ω1-bijective if and only if its kernel
and cokernel are countably generated and a class of modules M is closed under ω1-bijective ho-
momorphism if whenever M → N is an ω1-bijective homomorphism, then N ∈ M if and only if
M ∈M.

Lemma 2.9. (cf. [2], Lemma 1.9) If M is a class of modules, then the following are equivalent:

(i) M is closed under ω1-bijective homomorphisms.

(ii) Whenever M is a submodule of N with N/M countably generated, then M ∈M if and only
if N ∈M.

(iii) Whenever L is a countably generated submodule of M , then M ∈M if and only if M/L ∈M.

Proof. IfM is closed with respect to ω1-bijections and N is a submodule of M with M/N is count-
ably generated, then the inclusion map is ω1-bijective, implying M ∈M if and only if N ∈M.

On the other hand, if M satisfies (ii), suppose α : M → N is an ω1-bijective homomorphism.
Let H be the kernel of α and J be the image of α. Let P be a submodule of M which is maximal
with respect to the property P ∩H = {0}. Clearly H is isomorphic to an essential submodule of
M/P , and since H is countably generated so is M/P implying M ∈ M if and only if P ∈ M. As
P →M/H ∼= J is also injective with a countably generated cokernel, gives that P ∈M if and only
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if J ∈ M. Lastly, as the inclusion J ⊆ N has a countably generated cokernel, J ∈ M if and only
if N ∈ M. Which shows that the first two conditions are equivalent. In the same fashion we can
establish the equivalence of third condition, completing the proof. q.e.d.

If H is a class of modules, let H be the smallest class of modules containing H which is closed
under ω1-bijective homomorphisms. Now we have the following:

Proposition 2.10. (cf. [2], Proposition 1.10) If H is a class of modules, then the following are
equivalent:

(i) M ∈ H.

(ii) There is a module M ′ ∈ H and a module K containing both M and M ′ for which K/M and
K/M ′ are countably generated.

(iii) There is a module M ′′ ∈ H and countably generated submodules N ⊆ M, N ′′ ⊆ M ′′ such
that M/N ∼= M ′′/N ′′.

Proof. Let K be the collection of all M for which there is module K containing both M, M ′ ∈ H
such that K/M and K/M ′ are countably generated. If M ∈ K, so that M ′ and K exist, then
since M ′ ⊆ K is ω1-bijective implies that K ∈ H and as M ⊆ K is also ω1-bijective conclude that
M ∈ H. Hence K ⊆ H.

On the other hand, if we are able to show that K is closed under ω1-bijective homomorphisms, we
are done as H ⊆ K. Let M be a submodule of P such that P/M is countably generated. If P ∈ K,
then we take K containing P and P ′ ∈ H such that K/P and K/P ′ are countably generated. Then
M is also a submodule of K with K/M is countably generated as K/P and P/M are countably
generated implying M ∈ K. For completing the proof of this part by Lemma 2.9 (ii), it remains
to show that if M ∈ K, then P ∈ K. For showing this suppose that M ∈ K; and let M ′ ∈ H
such that M and M ′ are contained in a module K with K/M and K/M ′ countably generated. Let
K ′ = (P ⊕K)/{(x,−x) : x ∈M} be the sum of P and K along M. If P identifies with the image
of P/⊕ {0} in K ′ and K with the image of {0} ⊕K in K ′, then P +K = K ′ and P ∩K = M. It
is easy to see that K/M and P/M are countably generated as K ′/P ∼= K/(P ∩K) = K/M and
K ′/K ∼= P/(P ∩K) = P/M are countably generated and as K/M ′ is countably generated implies
that K ′/M ′ is countably generated. Therefore P ∈ K, which ensures by Lemma 2.9 (ii), now that
K is closed under ω1-bijective homomorphisms, which establishes the equivalence of the first two
conditions; their equivalence to the third condition can be establish in the same fashion, completing
the proof of the proposition. q.e.d.

Now we have interesting characterization of Wn:

Theorem 2.11. (cf. [2], Theorem 1.11) We have Wn = Fn.

Proof. Clearly Wn is closed under ω1-bijective homomorphisms. So by Lemma 2.9, suppose P is
a module and M is a submodule of P such that P/M is countably generated. If P ∈ Wn, then
M ∈ Wn by Corollary 2.6. On the other hand, if M ∈ Wn, then by Theorem 2.2 (vii), there is an
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(ω+n)-projective submodule D of M such that M/D is countably generated implying that P/D is
also countably generated, so that Fn ⊆ Wn. Reverse implication follows immediately by Theorem
2.2 (v), (vi) or (vii) i.e. any class containing Fn which is closed under ω1-bijective homomorphism
necessarily contains Wn, which completes the proof. q.e.d.

Now we investigate that under what conditions the factor module M/Hω+n(M) is ω1-(ω + n)-
projective.

Proposition 2.12. (cf. [2], Corollary 2.1) If M is a module, then M is ω1-(ω + n)-projective
module if and only if the following holds:

(i) Hω+n(M) is countably generated, and

(ii) M/Hω+n(M) is ω1-(ω + n)-projective module.

Proof. Suppose M is ω1-(ω+ n)-projective module, then by Theorem 2.2 (v), we have a countably
generated submodule N of M such that M/N = P is (ω + n)-projective implying Hω+n(P ) = 0,
so Hω+n(M) ⊆ N, which ensures that Hω+n(M) is countably generated, which is (i). Therefore
M →M/Hω+n(M) will be ω1-bijective, so by Theorem 2.11, M/Hω+n(M) is ω1-(ω+n)-projective,
which is (ii).

On the other hand if M satisfies (i) and (ii), then M → M/Hω+n(M) will be ω1-bijective.
Therefore by Theorem 2.11 and (ii) imply that M ∈ Wn, which completes the proof. q.e.d.

Proposition 2.13. (cf. [2], Corollary 2.2) If M is ω1-(ω + n)-projective module, then its Ulm
factor M/Hω(M) is (ω + n)-projective.

Proof. Let N be a countably generated submodule of Hω(M) such that M/N is (ω+n)-projective

implying that M/Hω(M) ∼=
(M/N)

Hω(M/N)
is (ω + n)-projective. q.e.d.

The following example ensures the existence of a module M such that Hω(M) is a uniserial
module of length n, M is not (ω + n)-projective but M/Hω(M) is (ω + 1)-projective.

Example 1 Let M = B be an unbounded closed QTAG-module [7], such that M is the complete

direct sum of Bi’s where B =
∞⊕
i=1

Bi is a basic submodule of M . Here each Bi is the direct sum

of the uniserial modules of length i. Consider a h-pure and h-dense submodule N of M such that
g(M/N) = 1. Let us put K = M/Hn(N), T = Hn+1(M)/Hn(N) and X = {x ∈ T | HT (x) =
HM (x) ≥ ω}. This is possible because the elements of T have finite exponents but their heights are
not bounded and we have X = Hn(M)/Hn(N) ∼= Y , where Y is a uniserial module of length n.
Now T/X is isometric to Hn+1(M)/Hn(M) ∼= Soc(Hn(M)), which is closed in the h-topology. Let
P be a module such that P ⊇ T and the heights of elements of T in T are same as their heights in P
and P/T is a direct sum of uniserial modules. Now Hω(P ) = X ∼= Y. Moreover, P/Hω(P ) ∼= P/X

has a 1-bounded submodule Q = T/X for which
(P/Hω(P ))

Q
∼= P/T is a direct sum of uniserial
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modules. Therefore P/Hω(P ) is (ω + 1)-projective.

Let A be a direct sum of uniserial modules and f : P → A be a homomorphism. Now, f(X) = 0
so that f determines a height preserving isomorphism f : T/X → A and T/X is complete. Therefore
there exists an integer k such that f(T ∩Hk(P )) = 0. Since Hk(T ) is not n-bounded, there is no
n-bounded submodule D of P such that P/D is a direct sum of uniserial modules. Therefore T is
not (ω + n)-projective.

Proposition 2.14. (cf. [2], Proposition 2.4) Suppose Mk be a module for each k ∈ K. Then
M =

⊕
k∈K

Mk ∈ Wn if and only if for each k ∈ K, Mk ∈ Wn and there is a countable subset J ⊆ K

such that Mk ∈ Fn for all k ∈ K − J.
Proof. Suppose M =

⊕
k∈K

Mk ∈ Wn, then by Corollary 2.6, each Mk ∈ Wn. If N is a countably

generated submodule of M such that M/N ∈ Fn, then let J be a countable subset of K such that
N ⊆

⊕
k∈J

Mk. Since for k ∈ K − J, Mk embeds in M/N implies that all these Mk are (ω + n)-

projective.

For the reverse implication, suppose the given conditions hold. For each k ∈ J, we can find a
countably generated submodule Nk such that Mk/Nk is (ω + n)-projective. If N =

⊕
k∈J

Nk ⊆ M ,

then N is countably generated and M/N ∼= (
⊕
k∈J

(Mk/Nk)) ⊕ (
⊕

k∈K−J
Mk) is (ω + n)-projective,

which completes the proof. q.e.d.

One of the interesting property of (ω + n)-projective modules is that two modules of this class
are isomorphic if and only if they have isometric Hn(M)-socles. But the obvious generalization of
this to the class of ω1-(ω + n)-projective modules does not hold.

Proposition 2.15. (cf. [2], Example 2.6) If n < ω, then there are non-isomorphic ω + n-bounded
ω1-(ω+n)-projective modulesM1 andM2, whoseHn(M)-soclesHn(M1) andHn(M2) are isometric.

Proof. Let P be a module for which Hω(P ) is isomorphic to a uniserial module of length n. If
N is a ω-high submodule of P , then there is an isomorphism Hn(P ) ∼= Hn(N) ⊕ Hω(P ). This
isomorphism is an isometry as the nonzero elements of Hω(P ) have infinite height. It is easy to see
that P is not (ω + n)-projective but since N embeds in P/Hω+n(P ), which is (ω + 1)-projective,
we infer that N is (ω + 1)-projective.
Further, let S be a countably generated module such that Hω(S) is isomorphic to the uniserial
module of length n and Q be a Hω(M)-high submodule of S. From the above arguments there
is an isometry Hn(S) ∼= Hn(Q) ⊕ Hω(S). Since Q embeds in S/Hω(S) which is direct sum of
uniserial modules, we conclude that Q is also direct sum of uniserial modules. Set M1 = P ⊕ Q
and M2 = N ⊕ S. Since P,N, S and Q are ω1-(ω + n)-projective so M1 and M2 also. Now

Hn(M1) ∼= Hn(P )⊕Hn(Q) ∼= Hn(N)⊕Hω(P )⊕Hn(Q)
∼= Hn(N)⊕Hω(S)⊕Hn(Q) ∼= Hn(N)⊕Hn(S)
∼= Hn(M2)

Since P is not (ω+n)-projective neither is M1; but since both N and S are (ω+n)-projective, M2

is as well. In particular, M1 and M2 are not isomorphic. q.e.d.
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3 Other classes of modules

Let us recall a module M is (ω+n)-totally (ω+n)-projective if every Hω+n(M)-bounded submodule
of M is (ω + n)-projective. For n > 0, (ω + n)-projective module is proper if it fails to be
(ω+ n− 1)-projective. If n < ω, then a QTAG-module M has the core class property if either it is
(ω + n)-projective or it contains a proper (ω + n − 1)-projective submodule i.e. the submodule is
(ω + n − 1)-projective but not (ω + n)-projective. If this is true ∀ n < ω, M has the generalized
core class property.

Proposition 3.1. (cf. [2], Proposition 3.1) If M is (ω + n)-totally (ω + n)-projective, then it is
ω1-(ω + n)-projective.

Proof. We know that if n < ω and M is (ω + n)-totally (ω + n)-projective, then Hω+n(M) is
countably generated. If K is Hω+n(M)-high in M , then M/K will be countably generated as
Hω+n(M) embed in it as an essential submodule. As Hω+n(K) = {0}, K is (ω+ n)-projective and
the result follows from Theorem 2.11. q.e.d.

Proposition 3.2. (cf. [2], Proposition 3.2) A module M fails to be ω-totally ω-projective if and
only if it has a separable submodule which is a proper (ω + 1)-projective module.

Proof. Suppose M is not ω-totally ω-projective module. Then it has a submodule P which is not
a direct sum of uniserial modules. By extended core class theorem for QTAG-modules P has a
separable submodule Q which is a proper (ω + 1)-projective module. For the converse part, if
M has a separable submodule which is a proper (ω + 1)-projective, then it is not an ω-totally
ω-projective module, which completes the proof. q.e.d.

This result leads us to the investigation of the relationship between ω1-(ω+n)-projective modules
and ω-totally (ω + n)-projective modules. For exploring this, we start with the following:

Theorem 3.3. (cf. [2], Theorem 3.3) The class of ω-totally (ω + n)-projective modules is closed
under ω1-bijections.

Proof. For proving this result we will use Lemma 2.9. Suppose P is a module and M is a submodule
of P such that P/M is countably generated. If P is ω-totally (ω + n)-projective, then all its
separable submodules are (ω + n)-projective implying that M has the same property, so it is ω-
totally (ω+n)-projective. For the reverse implication, suppose M is ω-totally (ω+n)-projective. If
Q is a separable submodule of P , then S = Q ∩M is a separable submodule of M . By hypothesis,
S is a separable (ω + n)-projective. Clearly, Q/S embeds in P/M, which is countably generated,
therefore Q/S is also countably generated. By [4], Q is (ω + n)-projective so that P is ω-totally
(ω + n)-projective. q.e.d.

Corollary 3.4. (cf. [2], Corollary 3.4) A module M is ω-totally (ω + n)-projective if it is ω1-
(ω + n)-projective.

Proof. Since any (ω+n)-projective module is ω-totally (ω+n)-projective. Also Wn is the smallest
class of modules containing Fn, which by Theorem 2.11, is closed under ω1-bijective homomorphisms
and hence the result follows from Theorem 3.3. q.e.d.

Corollary 3.5. (cf. [2], Proposition 3.5) A module M is ω-totally (ω+n)-projective if and only if
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(a) Hω+n(M) is countably generated; and

(b) M/Hω+n(M) is ω-totally (ω + n)-projective.

Proof. If M is ω-totally (ω+n)-projective, then by [9], Hω+n(M) is countably generated, so this is
true on both sides of the “if and only if ” statement. Hence M → M/Hω+n(M) is an ω1-bijective
homomorphism and hence the result follows from Theorem 3.3. q.e.d.

Now we will show that the class of ω1-(ω + n)-projective modules and the class of ω-totally
(ω + n)-projective modules coincide in a simple case.

Theorem 3.6. (cf. [2], Theorem 3.6) Suppose M is a module and Hω(M) is countably generated.
Then the following are equivalent:

(a) M is ω1-(ω + n)-projective.

(b) M is ω-totally (ω + n)-projective.

(c) M/Hω(M) is (ω + n)-projective.

(d) Some ω-high submodule of M is (ω + n)-projective.

Proof. (a) implies (b) by Corollary 3.4. Suppose (b) holds. As M → M/Hω(M) is ω1-bijective,
by Theorem 3.3, M/Hω(M) is ω-totally (ω + n)-projective, which implies (c) immediately. Now,
suppose (c) holds and let N be ω-high submodule in M , then it embeds in M/Hω(M) so that it is
(ω + n)-projective, which is (d). Lastly, suppose (d) holds, and let N be an ω-high submodule of
M that is (ω + n)-projective and hence ω1-(ω + n)-projective. As Hω(M) is countably generated
and it embeds as an essential submodule of M/N implying that M/N is countably generated. By
Theorem 2.11, (a) follows immediately. q.e.d.

Now, we define

Definition 3.7. A module satisfying the conditions in Theorem 3.6 will be called an ω1-separable
(ω + n)-projective module.

In fact (ω+ 1)-projective modules necessarily decompose into a direct sum P ⊕Q, where P is a
separable (ω+1)-projective module and Q is an (ω+1)-bounded direct sum of countably generated
modules. We now show that this extends to the current scenario.

Theorem 3.8. (cf. [2], Theorem 3.7) A module M is ω1-(ω + 1)-projective if and only if it is
isomorphic to the direct sum of an ω1-separable (ω + 1)-projective module and (ω + 1)-bounded
direct sum of countably generated modules.

Proof. Suppose M has a pure and (ω + 1)-projective submodule Q such that M/Q is countably
generated. Let P be a countably generated submodule of M such that M = P +Q. Let Q = B⊕C,
where B is separable and (ω + 1)-projective and C is an (ω + 1)-bounded direct sum of countably
generated modules. Let C =

⊕
k∈K

Ck be the decomposition such that each Ck is countably generated

(ω + 1)-bounded module. If J ⊆ K, let CJ =
⊕
k∈J

Ck ⊆ C. Let J be a countable subset of K such

that P ∩Q ⊆ B ⊕ CJ . If N = P + (B ⊕ CJ) and T = CI−J , then obviously M = N ⊕ T and T is
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Hω+1(M)-bounded direct sum of countably generated modules. Therefore, to complete the proof
it remains to show that Hω(N) is countably generated. If S = B ⊕CJ , then S is pure in Q, which
is pure in M , so that S is also pure in N . Also, if D = N/S then D = Soc(P + S)/S ∼= P/(P ∩ S)
is countably generated.

Clearly the pure exact sequence 0 → S → N → D → 0 induces a left exact sequence 0 →
Hω(S)→ Hω(N)→ Hω(D). As Hω(D) ⊆ D is countably generated and Hω(D) = Hω(CJ) is also
countably generated implying Hω(N) is countably generated, which completes the proof. q.e.d.

Recall that for any QTAG-module M, g(M) denotes the smallest cardinal number λ such
that M admits a generating set X of uniform elements of cardinality λ and the final g(M) or
fin g(M) of a QTAG-module M is defined as the infimum of g(Hk(M)) for k = 0, 1, 2, . . . ,∞ i.e.
fin g(M) = inf g(Hk(M)). A QTAG-module M is U -decomposable if M ∼= N ⊕ U , where U
is the direct sum of uniserial modules and fing(U) = fing(M) [6]. It is useful to recall that
(ω + 1)-projective modules are always U -decomposable. Now we are able to prove:

Theorem 3.9. (cf. [2], Theorem 3.8) A reduced ω1-(ω+1)-projective moduleM is U -decomposable.

Proof. Let M be an h-reduced module. It is easy to verify that M is U -decomposable for countable
fin g(M). We are done if we can show that M is U -decomposable with M has uncountable
fin g(M) = ` (say). Without loss of generality, we may assume that M has g(M) = ` as well. Let
N be a pure and (ω + 1)-projective submodule of M such that M/N is countably generated. It
is easy to see that fin g(N) and g(N) are ` as well. Let N = P ⊕ Q, where P is direct sum of
uniserial modules summand with fin g(P ) = `. There is a countably generated submodule S of
M such that M = N + S, and a decomposition P = P0 ⊕ P1, where P1 is countably generated and
S ∩N ⊆ P1 ⊕Q. So we have M = P0 ⊕ (S + (P1 ⊕Q)), and P0 will also have fin g(P0) = `, which
completes the proof. q.e.d.

We end this article with the discussion of the interesting question: describe when an ω1-(ω+n)-
projective module is an (ω + n)-module. Let us recall some definitions: Let α denote the class of
all QTAG- modules M such that M/Hβ(M) is totally projective for all ordinals β < α. These
module are called α- modules [5]. In addition we say that a QTAG-module M is n-summable, if
Soc(Hn(M)) is isometric to a valuated direct sum of countably generated modules.

Following results will also be useful:

Theorem 4.2.3 [8] A module M is n-summable if and only Hω(M) is n-summable and it is (ω+n)-
module.

Remark 4.3.1 [8] Let M be a h-reduced QTAG-module, which is a nice-ℵ0-elongation of K by N.
Then K is totally projective if and only if M is totally projective.

Remark 4.3.2 [8] For α ≤ ω1, if M is a nice-ℵ0- elongation of K, then M is an α-module if and
only if K is an α-module.

Now we are able to prove the following:
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Theorem 3.10. (cf. [2], Theorem 3.9) If M is ω1-(ω + n)-projective module with n > 0, then
following are equivalent:

(i) M is direct sum of countably generated modules.

(ii) M is an (ω + n)-module.

(iii) M is n-summable module.

Proof. Trivially (i) and (ii) are equivalent and their equivalence to (iii) follows directly from The-
orem 4.2.3 [8].

q.e.d.
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