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Abstract

In this paper, a numerical method for solving the radiative transfer equation in a slab medium
with isotropic scattering is presented. By employing the properties of Chebyshev wavelets to-
gether with the collocation method, the problem is reduced into a system of algebraic equations
and the approximate solutions are computed. Moreover, numerical examples are included to
demonstrate the validity and applicability of this method and a comparison is made with the
existing results.
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1 Introduction

Mathematical modelling of systems usually consists of solving differential and integro-differential
equations (see, e.g., [10, 17]). Many numerical methods have been applied for solving these equa-
tions, which include finite difference methods (see, e.g., [36, 44]), finite element methods (see, e.g.,
[11, 37]), Laplace transform methods (see, e.g., [42]), meshless methods (see, e.g., [26, 27, 28, 7, 24]),
spectral methods (see, e.g., [19, 23, 18, 21, 20]) and other numerical techniques. Finite difference
methods are conditionally stable, i.e, we have restriction on step sizes. In finite element methods,
large amounts of CPU time for building a body fitted mesh in two and three-dimensional problems
will be needed. Moreover, the boundary element method requires a domain node distribution and
spectral methods are not flexible with the domain of problem.

Recently, the issue of wavelets has influenced major areas of pure and applied mathematics,
especially in the numerical analysis of integro-differential equations (see, e.g., [30, 2, 4, 47]). Also,
Wavelets are considered as a strong mathematical tool with a wide range of applications (see, e.g.,
[6]).

In order to represent the efficiency of wavelets, the Chebyshev wavelet method is applied for
solving the radiative transfer equation (RTE).

The RTE in a slab medium is defined as (see, e.g.,[41, 43])

x

t0

∂I(y, x)

∂y
+ I(y, x) = S(y) +

ω

2

∫ 1

−1

P (x, x̂)I(y, x̂)dx̂, (1)
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which is irradiated by an isotropic radiation field I0(y, x), with azimuthal symmetry. In this prob-
lem, I(y, x) is the angle distribution of intensity normalized to I0(y, x), y is the distance normalized
by the optical depth t0 of slab (0 ≤ y ≤ 1), ω is the albedo of a single scattering, x is the direction
cosine of angle made by the specific intensity at any depth y with the direction of increasing y and
S(y) is the dimensionless emission source. The boundary conditions of problem are assumed to be

I(0, x) = f0(x), 0 < x ≤ 1 (2)

and
I(1, x) = f1(x), −1 ≤ x < 0, (3)

where f0(x) and f1(x) are known (see, e.g., [34]). The scattering phase function P (x, x̂) is repre-
sented in terms of the Legendre polynomials of first kind Pn(x) by the expansion (see, e.g., [40, 41]),

P (x, x̂) = 1 +

∞∑
n=1

cnPn(x)Pn(x̂) =

∞∑
n=0

cnPn(x)Pn(x̂),

where cn’s are the expansion coefficients with c0 = 1.
The RTE has many practical applications in coal-fired combustion and conversion systems, lightweight
fibrous insulation, study of atmospheres and remote sensing (see, e.g., [1, 41]). In the applications of
remote sensing at optical wavelengths to different surfaces from satellite borne and high-resolution
instruments, an understanding of the various physical mechanisms that contribute to the measured
data is important. Accordingly, the solution of radiative transfer equation (RTE) has been utilized
in several applications such as pattern recognition, target information retrieval techniques, and the
bidirectional reflectance model in the remote sensing (see, e.g., [33]).

Many numerical methods for solving this problem have been developed (see, e.g., [5, 14, 35, 29,
22, 38, 39, 9, 41, 43, 25]). Examples of such methods are: iterative, two-flux, spherical harmonic,
series expansion, variational, eigenfunction expansion, Padé approximation, Generalized Eddington
approximation and linear spline approximation (see, e.g., [33]).

In this paper, the Chebyshev wavelet method (CWM) is presented to the solution of equations
(1)-(3). In this procedure, the Chebyshev wavelets are used as the basis functions to approximate the
solution I(y, x) and then the RTE is converted into a system of algebraic equations. The properties
of Chebyshev wavelets, such as orthogonality, compact support and the ability to represent functions
at different levels of resolution, together with the collocation method are employed to solve the
obtained system. The root points of Chebyshev wavelets are used as the collocation points to
evaluate the unknown coefficients and then the approximate solutions of equations (1)-(3) are
identified.

This paper is organized as follows. The properties of Chebyshev wavelets and the operational
matrices required for our problem are described in Section 2. In Section 3, the application of current
method to the solution of the RTE is discussed. The proposed method is applied to numerical ex-
amples in Section 4. Moreover, a comparison is made between the exact and approximate solutions
obtained by other methods and the ability of proposed method is also discussed.

2 Chebyshev wavelets and their properties

In this section, the Chebyshev polynomials are presented to derive the Chebyshev wavelets. Also,
the main properties of these wavelets are also discussed.
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2.1 Chebyshev polynomials

The Chebyshev polynomial of first kind of order m is defined as follows:

Tm(t) = cos[mcos−1(t)], t ∈ [−1, 1], m = 0, 1, 2, ....

Hence
Tm(cosθ) = cos(mθ) θ ∈ [0, π], m = 0, 1, 2, ....

2.2 Properties of the Chebyshev polynomials

The Chebyshev polynomials Tm(t), m ≥ 1, satisfy the following properties:

T0(t) = 1,

T1(t) = t,

Tm+1(t) = 2tTm(t)− Tm−1(t), m = 1, 2, ...,

(4)

which are orthogonal with respect to the weight function ω(t) = 1√
1−t2 on the interval [−1, 1].

2.3 Fundamentals of wavelet theory

Consider a complex-valued function ψ which satisfies the following properties∫ ∞
−∞
|ψ(t)|2dt <∞, (5)

Cψ = 2π

∫ ∞
−∞

|Ψ(ω)|2

|ω|
dω <∞, (6)

where Ψ is the Fourier transform of ψ. The first condition implies finite energy of the function ψ,
and the second condition, the admissibility condition, implies that if Ψ(ω) is smooth then Ψ(0) = 0.
The function ψ, is called the mother wavelet.

2.4 One-dimensional Chebyshev wavelets

In recent years, wavelets have attracted much interest in the field of science and technology.
Wavelets are a family of functions derived from the dilation and translation of a single function
ψ(t).

The continuous wavelets can be presented as:

ψa,b(t) = |a|− 1
2ψ(

t− b
a

), (7)

where ψ(t) is a single wavelet function and a 6= 0 and b are the dilation and translation parameters
which are real numbers. For discrete values of a and b,

a = a−k0 , a0 > 1, b0 > 0,

b = nb0a
−k
0 ,

(8)

the family of discrete wavelets are then shown as follows:

ψk,n(t) = |a0|
k
2ψ(ak0t− nb0), (9)
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which is a wavelet basis for L2(R) with integers k and n. Also, an orthonormal basis is constructed
for a0 = 2 and b0 = 1.

Consequently, Chebyshev Wavelets are in the following form:

ψn,m(t) =

{
2

k
2 Tm(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise,
(10)

where m = 0, 1, 2, ...,M − 1 is the order of Chebyshev polynomials of first kind, n = 1, 2, ..., 2k−1

and k is any positive integer. Moreover,

Tm(t) =

{ 1√
π
, m = 0,√
2
πTm(t), m > 0.

(11)

Then, by (9)-(10), the wavelets {ψn,m} form an orthonormal basis for L2([0, 1]) (see, e.g., [3]).
Because of the orthogonality, in this form of Chebyshev wavelets, the weight function w(t) =
w(2t− 1) should be dilated and transformed to wn(t) = w(2kt− 2n+ 1).

In Chebyshev wavelet method, a given function u(t) on the domain [0, 1] is approximated as:

u(t) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(t) (12)

where cn,m = (u(t), ψn,m(t)) and ( , ) is the inner product in L2([0, 1]).
The infinite series in equation (12) can be truncated as follows:

u(t) ≈
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(t) = CTΨ(t) (13)

where C and Ψ(t) are matrices of size (2k−1M × 1) as follows:

C = [c1,0, c1,1, ..., c1,M−1, c2,0, ..., c2,M−1, ..., c2k−1,0, c2k−1,1, ..., c2k−1,M−1]T ,

Ψ = [ψ1,0, ψ1,1, ..., ψ1,M−1, ψ2,0, ..., ψ2,M−1, ..., ψ2k−1,0, ψ2k−1,1, ..., ψ2k−1,M−1]T .

Theorem 2.1. Let Ψ(t) be the one-dimensional Chebyshev wavelets vector defined in (13), we
have

dΨ(t)

dt
= DΨ(t)

where D is 2k−1M × 2k−1M , and

D =


F O · · · O
O F · · · O
...

...
. . .

...
O O · · · F

 (14)
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in which F and O are M ×M , and the elements are

Fi,j =

{
2k+1(i− 1)

√
σi−1

σj−1
, , i = 2, 3, ...,M, j = 1, 2, ..., i− 1, i+ j odd,

0, otherwise
(15)

and

σj =

{
2, j = 0,
1 j ≥ 1.

(16)

Proof. A proof can be found in [45]. q.e.d.

2.5 Error analysis

The convergence of Chebyshev wavelet approximation in (12) has been proved in [45].

Theorem 2.2. A function u(t) ∈ L2
ω([0, 1]), with bounded second derivative, say |u′′(t)| ≤ N , can

be expanded as an infinite sum of Chebyshev wavelets, and the series converges uniformly to u(t),
that is,

u(t) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(t).

Since the truncated Chebyshev wavelets series is an approximate solution, so one has an error
function E(t) for u(t) as follows:

E(t) = |u(t)− CTΨ(t)|.
The error bound of approximate solution by using Chebyshev wavelets series is given by the following
theorem.

Theorem 2.3. Suppose that u(t) ∈ Cm[0, 1] and CTΨ(t) is the approximate solution using the
CWM. Then the error bound would be obtained as follows:

E(t) ≤ ‖ 2

m!4m2m(k−1)
maxt∈[0,1]|um(t)|‖2. (17)

Proof. Applying the definition of norm in the inner product space, we have

‖E(t)‖2 =

∫ 1

0

[u(t)− CTΨ(t)]2dt.

Because the interval [0, 1] is divided into 2k−1 subintervals In = [ (n−1)
2k−1 ,

n
2k−1 ], n = 1, 2, ..., 2k−1,

then we can obtain
‖E(t)‖2 =

∫ 1

0
[u(t)− CTΨ(t)]2dt,

=
∑2k−1

n=1

∫ n

2k−1

(n−1)

2k−1

[u(t)− CTΨ(t)]2dt,

≤
∑2k−1

n=1

∫ n

2k−1

(n−1)

2k−1

[u(t)− Pm(t)]2dt,

(18)

where Pm(t) is the interpolating polynomial of degree m which agrees with u(t) at the Chebyshev
nodes on In with the following error bound for interpolating:

|u(t)− Pm(t)| ≤ 2

m!4m2m(k−1)
maxt∈In |um(t)|.



22 S. Shekarpaz, K. Parand, H. Azari

Therefore, using the above equation, we would get

‖E(t)‖2 ≤
∑2k−1

n=1

∫ n

2k−1

(n−1)

2k−1

[u(t)− Pm(t)]2dt

≤
∑2k−1

n=1

∫ n

2k−1

(n−1)

2k−1

[ 2
m!4m2m(k−1)maxt∈In |um(t)|]2dt

≤
∑2k−1

n=1

∫ n

2k−1

(n−1)

2k−1

[ 2
m!4m2m(k−1)maxt∈[0,1]|um(t)|]2dt,

=
∫ 1

0
[ 2
m!4m2m(k−1)maxt∈[0,1]|um(t)|]2dt,

= ‖ 2
m!4m2m(k−1)maxt∈[0,1]|um(t)|‖2.

(19)

q.e.d.

2.6 Two-dimensional Chebyshev wavelets

The generalization of CWM for two dimensional problems on a closed domain Ω = Ωy × Ωt is
considered where Ωy = [y1, y2] and Ωt = [t1, t2]. The subscript y is used to denote that the wavelet
basis and all the parameters associated with it (ay0 , ay, ny,m1, by0 , by) are defined for the domain
Ωy. Thus, relation (8) can be written as:

ay = a
−ky
y0 , ay0 > 1, by0 > 1,

by = nyby0a
−ky
y0 .

(20)

Similarly the subscript t and parameters (at0 , at, nt,m2, bt0 , bt) is used for the domain Ωt = [0, 1].
Thus, the two dimensional basis {ψn,m1,m2(y, t)} can be constructed as a combination of two one-
dimensional translation and a dilation of a truly two-dimensional wavelet ψ(y, t).

Consider k = max{ky, kt}, consequently, a two-dimensional wavelet basis on [0, 1]× [0, 1] from
the relation (10) can be written as (see, e.g., [12]):

ψn,m1,m2(y, t) =

 2kTm1
(2ky − 2n+ 1)Tm2

(2kt− 2n+ 1),
ny−1

2ky−1 ≤ y < ny

2ky−1 ,
nt−1
2kt−1 ≤ t < nt

2kt−1 ,
0 otherwise,

(21)

where m1 = 0, 1, ...,M1− 1, m2 = 0, 1, ...,M2− 1, ky and kt are positive integers and ny and nt are
defined similarly to n. Then the following relation is also constituted:

{(by0 , bt0)} = {by0} × {bt0},

and the wavelets ψn,m1,m2
(y, t) form a basis for L2([0, 1]2).

A function I(y, t) defined on a closed domain Ω = [0, 1] × [0, 1] can be expanded as (see. e.g.,
[15, 46]):

I(y, t) ∼=
∞∑
n=1

∞∑
m1=0

∞∑
m2=0

cn,m1,m2
ψn,m1,m2

(y, t). (22)
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If the infinite series in (22) is truncated, then we have

I(y, t) ∼=
2k−1∑
n=1

M1−1∑
m1=0

M2−1∑
m2=0

cn,m1,m2ψn,m1,m2(y, t), (23)

where

cn,m1,m2 = 〈I(y, t), ψn,m1,m2(y, t)〉 =

∫ 1

0

∫ 1

0

I(y, t)ψn,m1,m2(y, t)dydt.

The equation (23) can be expressed as

I(y, t) = CTΨ(y, t), (24)

where C and Ψ(y, t) are as follows

C = [c1,0,0, ..., c1,0,M2−1, c1,1,0, ..., c1,1,M2−1, ..., c1,M1−1,0, ..., c1,M1−1,M2−1, ...,
c2,0,0, ..., c2,0,M2−1, c2,1,0, ..., c2,1,M2−1, ..., c2,M1−1,0, ..., c2,M1−1,M2−1, ...,
c2k−1,0,0, ..., c2k−1,0,M2−1, ..., c2k−1,M1−1,0, ..., c2k−1,M1−1,M2−1]T ,

(25)

Ψ = [ψ1,0,0, ..., ψ1,0,M2−1, ψ1,1,0, ..., ψ1,1,M2−1, ..., ψ1,M1−1,0, ..., ψ1,M1−1,M2−1, ...,
ψ2,0,0, ..., ψ2,0,M2−1, ψ2,1,0, ..., ψ2,1,M2−1, ..., ψ2,M1−1,0, ..., ψ2,M1−1,M2−1, ...,
ψ2k−1,0,0, ..., ψ2k−1,0,M2−1, ..., ψ2k−1,M1−1,0, ..., ψ2k−1,M1−1,M2−1]T .

(26)

Theorem 2.4. Let Ψ(y, t) be the two-dimensional Chebyshev wavelets vector defined in (24), we
have

∂Ψ(y, t)

∂y
= DyΨ(y, t)

where Dy is 2k−1M1M2 × 2k−1M1M2, and we have

Dy =


D O′ · · · O′

O′ D · · · O′

...
...

. . .
...

O′ O′ · · · D

 (27)

in which D and O′ are M1M2 ×M1M2. The elements are

Di,j =

{
2k+1(i− 1)

√
σi−1

σj−1
I, , i = 2, 3, ...,M1, j = 1, 2, ..., i− 1, i+ j odd,

O, otherwise,
(28)

where I and O are M2 ×M2 matrix, and

σj =

{
2, j = 0,
1 j ≥ 1.

(29)

Proof. A proof can be found in [45, 46]. q.e.d.
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Theorem 2.5. Let Ψ(y, t) be the two-dimensional Chebyshev wavelets vector defined in (24). In
general, the r−times derivative of Ψ(y, t) for r ∈ N can be expressed as:

∂rΨ(y, t)

∂yr
= Dr

yΨ(y, t)

where Dr
y is the r−th power of matrix Dy.

Similarly, by using the operational matrix Dt, we can obtain the derivatives with respect to t.
In this section, the operational matrix of integration Pt will be derived.

Theorem 2.6. The operational matrix of integration Pt of the chebyshev wavelet Ψ(y, t) is in the
following form ∫ t

0

Ψ(y, s)ds ' PtΨ(y, t)

where Ψ(y, t) is given before and Pt is a 2k−1M1M2 × 2k−1M1M2 matrix, given by:

Pt =


C S S · · · S
O′ C S · · · S
O′ O′ C · · · S
...

...
...

. . . S
O′ O′ O′ · · · C

 (30)

and S and C are M1M2 ×M1M2

S =

√
2

2k−1



1 0 0 · · · 0
0 0 0 · · · 0
− 1

3 0 0 · · · 0
0 0 0 · · · 0
− 1

15 0 0 · · · 0
...

...
...

. . .
...

− 1
M(M−2) 0 0 · · · 0


(31)

and

C =
1

2k−1



1
2

1
2
√

2
0 0 · · · 0 0 0

− 1
8
√

2
0 1

8 0 · · · 0 0 0

− 1
6
√

2
− 1

4 0 1
12 · · · 0 0 0

...
...

...
...

. . .
...

...
...

− 1
2
√

2(M−1)(M−3)
0 0 0 · · · − 1

4(M−3) 0 − 1
4(M−1)

− 1
2
√

2M(M−2)
0 0 0 · · · 0 − 1

4(M−2) 0


(32)

Proof. A proof can be found in [13]. q.e.d.
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3 Application of the CWM for solving radiative transfer equation

In this section, the CWM is employed for solving the RTE.
With the transformation x = 2t−1, the shifted Legendre polynomials Pn(t, t̂) are obtained on [0, 1]
by shifting the defining domain of Pn(x, x̂) which is [−1, 1]. We have

2t− 1

t0

∂I(y, t)

∂y
+ I(y, t) = S(y) +

ω

2

∫ 1

0

P (t, t̂)I(y, t̂)dt̂, (33)

with the following initial conditions;

I(0, t) = f0(t),
1

2
< t ≤ 1,

I(1, t) = f1(t), 0 ≤ t < 1

2
.

Then with the collocation method, for solving (33), we define;

F (I(y, t)) = (F1(I(y, t)), F2(I(y, t)), F3(I(y, t))), (34)

and we have to solve a system of differential equations in the following form

F (I(y, t)) = 0, (35)

where;

F1(I(y, t)) = 2t−1
t0

∂I(y,t)
∂y + I(y, t)− S(y)− ω

2

∫ 1

0
P (t, t̂)I(y, t̂)dt̂,

F2(I(0, t)) = I(0, t)− f0(t), 1
2 < t ≤ 1,

F3(I(1, t)) = I(1, t)− f1(t), 0 ≤ t < 1
2 ,

(36)

and ∂I(y,t)
∂y and

∫ 1

0
P (t, t̂)I(y, t̂)dt̂ are obtained by using the Theorems 4 and 6.

By collocating the function F at points {(yi, tj)|i = 0, 1, 2, ..., 2k−1M1, j = 0, 1, 2, ...,M2} , the
following system of equations is obtained:

F1(I(yi, tj)) = 0, i = 1, 2, ..., 2k−1M1 − 1, j = 1, 2, ...,M2,
F2(I(0, tj)) = 0, j = M2

2 + 1, ...,M2,
F3(I(1, tj)) = 0, j = 0, ..., M2

2 − 1,
(37)

where (yi, tj)i,j are the roots of Chebyshev wavelets on Ω. These equations generate an 2k−1M1M2

set of algebraic equations. Thus, by evaluating the coefficients {cn,m1,m2
}, approximate solution

I(y, t) can be computed at every chosen point and the solutions of RTE are obtained.

4 Numerical examples and results

In this section, the proposed method is used for solving two examples with k = 3, M1 = M2 = 3
and the numerical results are also presented. Moreover, the approximate solutions are compared
with the exact and approximated solutions obtained by other methods and the validity of proposed
method is also demonstrated.
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Example 4.1. The RTE can be given as (see, e. g., [31])

x

t0

∂I(y, x)

∂y
+ I(y, x) =

1

2

∫ 1

−1

(1 + c1P1(x)P1(x̂))I(y, x̂)dx̂, (38)

with the following conditions,

I(0, x) = 1 0 < x ≤ 1, (39)

I(1, x) = 0 − 1 ≤ x < 1. (40)

By using the CWM for equations (38)–(40), the radiative fluxes are evaluated as

F+(y) = 2

∫ 1

0

I(y, x)xdx,

which have been presented in Tables 1-3 for different values of c1 and t0. Moreover by using the
generalized Eddington approximation (GEA) (see, e.g., [43]) and the linear spline approximation
(LSA) (see, e.g., [41]), pseudospectral Legendre method (PLM) (see, e.g., [31]) and multiquadric
radial basis functions (MQ-RBF) (see, e.g., [25]) together with the exact values (see, e.g., [8]), a
comparison is made for these results.

Table 1. Approximated and exact values of F+(1) with c1 = 0.7
method t0 = 0.1 t0 = 0.5 t0 = 1 t0 = 3
GEA [43] Not reported 0.753 0.615 0.369
LSA[41] Not reported 0.7498 0.6112 0.3547
Collocation-type method (PLM) [31] 0.93187 0.75035 0.61123 0.35806
MQ-RBF [25] 0.93071 0.75049 0.61211 0.35834
Galerkin-type method [32] 0.93187 0.75035 0.61123 0.35806
Hybrid functions method [33] 0.93187 0.75035 0.61123 0.35806
Tau method [34] 0.9317 0.7503 0.6112 0.3580
Chebyshev Wavelet (present method) 0.9314 0.7504 0.6114 0.3580
Exact 0.931 0.750 0.611 0.358

Table 2. Approximated and exact values of F+(1) with c1 = 0
method t0 = 0.1 t0 = 0.5 t0 = 1 t0 = 3
GEA [43] Not reported 0.707 0.555 0.315
LSA [41] Not reported 0.7036 0.5520 0.2989
Collocation-type method (PLM) [31] 0.91710 0.70434 0.55340 0.30131
MQ-RBF [25] 0.91581 0.70427 0.55351 0.30132
Galerkin-type method [32] 0.91630 0.70423 0.55330 0.30121
Hybrid functions method [33] 0.91710 0.70434 0.55340 0.30131
Tau method [34] 0.9170 0.7043 0.5533 0.3013
Chebyshev Wavelet (present method) 0.91618 0.70420 0.55333 0.30131
Exact 0.916 0.704 0.553 0.301
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Table 3. Approximated and exact values of F+(1) with c1 = −0.7
method t0 = 0.1 t0 = 0.5 t0 = 1 t0 = 3
GEA [43] Not reported 0.666 0.507 0.274
LSA [41] Not reported 0.6628 0.5033 0.2583
Collocation-type method (PLM) [31] 0.90242 0.66327 0.50483 0.26007
MQ-RBF [25] 0.901372 0.663414 0.504659 0.260349
Galerkin-type method [32] 0.90142 0.66325 0.50522 0.26007
Hybrid functions method [33] 0.90242 0.66327 0.50483 0.26007
Tau method [34] 0.9024 0.6633 0.5048 0.2601
Chebyshev Wavelet (present method) 0.90154 0.66328 0.50510 0.26007
Exact 0.901 0.663 0.505 0.260

Clearly, the approximations in Tables 1-3, show the efficiency of CWM for solving this kind of
problem. Moreover, numerical results indicate the efficiency and accuracy of the proposed method
in comparison with the other methods.

Example 4.2. Let RTE be given as (see, e.g., [31])

x
∂I(y, x)

∂y
+ I(y, x) =

0.8

2

∫ 1

−1

[1 +

4∑
n=1

cnpn(x)pn(x̂)]I(y, x̂)dx̂, (41)

which it was considered by Mengüç and Viskanta in [16]. In this example, the

Table 4. Approximated and exact values of F+(1)
method t0 = 0.1
Generalized Eddington algorithm [43] 0458
Modified two-flux method 0.471
Spherical harmonic method (P1) 0.456
Spherical harmonic method (P3) 0.456
FN method (F1) 0.455
FN method (F3) 0.456
FN method (F9) 0.456
Collocation-type method (PLM) (M1 = M2 = 7) [31] 0.4569
Galerkin-type method (M1 = M2 = 7) [32] 0.4569
Hybrid functions method (M1 = M2 = 7) [33] 0.4564
Tau method (M1 = M2 = 7) [34] 0.4569
MQ-RBF (M1 = M2 = 10) [25] 0.4577
Chebyshev Wavelet (present method) 0.4561

values c1 = 0.6438, c2 = 0.5542, c3 = 0.1036, and c4 = 0.0105 are given and boundary con-
ditions are the same as those in equations (39)–(40). In Table 4, the values of F+(y) have been
approximated by the CWM. The obtained results show the efficiency of the presented method in
compare with the other techniques.
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5 Conclusions

In this paper, the CWM was applied for the RTE in a slab medium. By using this method, the
differential and integral expressions which arise in the radiative transfer equation are converted into
a system of linear algebraic equations and the solutions are found by determining the corresponding
coefficients that satisfy in the algebraic equations. By comparing the numerical results obtained
in Tables 1- 4, the high ability of proposed method was proved in comparison with the other
techniques. The simplicity of Chebyshev wavelets and their efficiency together with the convergence
of this method make this procedure very attractive for solving this kind of problems.
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[35] C. E. Siewert, J. R. Maiorino and M. N. Özişik, The use of the the FN method for radiative
transfer problems with reactive boundary conditions, Journal of Quantitative Spectroscopy and
Radiative Transfer, vol. 23, no. 6, pp. 565-573 (1980).
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