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Abstract

Let L = —A + V (z) be a Schrodinger operator, where A is the Laplacian on R", while
nonnegative potential V' (z) belonging to the reverse Holder class. In this paper, using the some
conditions on ¢ (z.r), we dwell on the boundedness of Marcinkiewicz integrals with rough kernel
associated with schrédinger operators and commutators generated by these operators and local
Campanato functions both on generalized local Morrey spaces and on generalized vanishing
local Morrey spaces, respectively. As an application of the above results, the boundedness of
parametric Marcinkiewicz integral and its commutator both on generalized local Morrey spaces
and on generalized vanishing local Morrey spaces is also obtained.
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1 Introduction and main results

In this section, we will give some background material that is needed for later chapters. We assume
that our readers are familiar with the foundation of real analysis. Since it is impossible to squeeze
everything into just a few pages, sometimes we will refer the interested readers to some papers and
references.

Notation. Let z = (z1,22,...,2n), § = (£&1,&2,...,&) . . . . etc . be points of the real n-

n n 3
dimensional space R™. Let z.£ = in& stand for the usual dot product in R™ and |z| = <Zm$>
for the Euclidean norm of z. =

- By 2/, we always mean the unit vector corresponding to z, i.e. 2’ = % for any = # 0.

- §"=1 = {2 € R" :|x| = 1} represents the unit sphere and da’ is its surface measure.

- By B(z,r), we always mean the open ball centered at z of radius r and by (B(z, r))c, we always
mean its complement and | B(z, r)| is the Lebesgue measure of the ball B(z,r) and |B(x,r)| = v,r",
where v, = |B(0,1)|. We also have CB(z,r) = B(z,Cr) for C > 0.

- F~Gmeans F 2 G 2 F; while F 2 G means F > CG for a constant C’ > 0; and P’ and s’
always denote the conjugate index of any p > 1 and s > 1, that is, ? =1-2tand L :=1-

- C stands for a positive constant that can change its value in each statement w1th0ut eXpllclt
mention.
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- The Lebesgue measure of a measurable set E is denoted as |E|. Roughly speaking: in one-
dimension |E| is the length of F, in two-dimension it is the area of E, and in three dimension (or
higher) it is the “volume” of E.

- We use the notation )
fB ) T T/ N / f(y) dy
@0 1B (w,7)]
B(z,r)

s

N, (gn-1y = (Sf Q(2)[* do (')

In 1938, Morrey [23] considered regularity of the solution of elliptic partial differential equa-
tions(PDEs) in terms of the solutions themselves and their derivatives. This is a very famous work
by Morrey [23]. We define Morrey spaces L, » (R™) via the following norm.

A measurable function f € L, (R™), p € (1,00), belongs to the Morrey spaces L, » (R™) with
A € [0,n) if the following norm is finite:

1/p

1
.= | s 5 [ 1w

zeR? r>0 T
B(z,r)
When A =0, L, » (R™) coincides with the Lebesgue space L, (R™). Recently, Chen et al. [6] gave a
criterion of the boundedness of a general linear or sublinear operators with rough kernel on Morrey
spaces:

Theorem 1.1. [6] Let 0 < A < n. Suppose that Q € L,(S" ') for ¢ > 2~ and Tg, is a sublinear
operator with rough kernel satisfying following

92z~ y)
(Tof(@)] < CR[ ) .

Let 1 < p < oo. If the operator T is bounded on L, (R™), then T, is bounded on L, » (R™).

We also refer readers to the elegant book [1] for further information about these spaces and
references on recent developments in this field associated with harmonic analysis.

On the other hand, the study of the operators of harmonic analysis in vanishing Morrey space,
in fact has been almost not touched. A version of the classical Morrey space L, x(R™) where it
is possible to approximate by ”nice” functions is the so called vanishing Morrey space VL, »(R™)
has been introduced by Vitanza in [33] and has been applied there to obtain a regularity result for
elliptic PDEs. This is a subspace of functions in L, »(R™), which satisfies the condition

. _a
}1_{% Isuﬂgm t™p Hf||Lp(B(m7t)) =0.

o<t<r

Later in [34] Vitanza has proved an existence theorem for a Dirichlet problem, under weaker as-
sumptions than in [22] and a W?3? regularity result assuming that the partial derivatives of the
coeflicients of the highest and lower order terms belong to vanishing Morrey spaces depending on
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the dimension. Also Ragusa has proved a sufficient condition for commutators of fractional inte-
gral operators to belong to vanishing Morrey spaces VL, x(R™) (see [26]). For the properties and
applications of vanishing Morrey spaces, see also [4, 27].

The concept of the generalized local (central) Morrey space LMIS{;EPO} has been introduced in [3]
and studied in [12, 13, 14]. Later, motivated by [3, 12, 13] and using parabolic metric, Giirbiiz
[15, 16] has introduced parabolic generalized local (central) Morrey space and showed that the
boundedness of a class of parabolic rough operators and their commutators on these spaces. But,
this topic exceeds the scope of this paper. Thus, we omit the details here. The spaces we are
interested in this paper are of the following forms:

Definition 1.2. (generalized local (central) Morrey space) Let ¢(z,r) be a positive mea-
surable function on R™ x (0,00) and 1 < p < co. For any fixed zy € R"™ we denote by LM{,{fg’} =
LMgfp“}(R") the generalized local Morrey space, the space of all functions f € LLOC(R”) with finite
quasinorm

_ _1
”f”LM;ig} = Slilgso(xoar) B0, )77 (£l (Bzo.r)) < 0O

Also by WLMZ;{f;} = WLM;@}(R") we denote the weak generalized local Morrey space of all
functions f € WLY(R™) for which

_ _1
£y agteor = sup (o, 7)1 [B(@o, )% | fllw L, (Bzor)) < 0
p.¥ >0

According to this definition, we recover the local Morrey space LM, { 0} and the weak local
A—n

Morrey space WLMZ;{’ '/ under the choice p(xg,r) =77 :

LLi%Y = Lafeo} | sy WLLEY = WLz} | A=n
p(zo,r)=r P p(zo,r)=r P
For the properties and applications of generalized local (central) Morrey spaces LM,;{ 0}, see
also [3, 12, 13, 14].

For brevity, in the sequel we use the notations

_1
|B(@o, )| "% I1fllz, (B,
@(mO’T)

gﬁp,tp (f§$07r) =

and

Blwo,r)| % |||
Wop _ |B(xo, W Ly (B(z0,7))
mpga(faanr) T 90($0,7“) .

Extending the definitions of the vanishing Morrey spaces and vanishing generalized Morrey
spaces given by Vitanza [33] and Samko [27] to the case of the generalized local (central) Morrey
spaces, in [13], Giirbiiz has introduced the following definitions:

Definition 1.3. [13](generalized vanishing local Morrey space) The generalized vanishing
local Morrey space VLM;ZO}(R”) is defined as the spaces of functions f € LM,f{faO}(R”) such that

lim M, o, (f;20,7) = 0.

r—0
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Definition 1.4. [13] (weak generalized vanishing local Morrey space) The weak gener-
alized vanishing local Morrey space WVLMI;{,‘;"}(R") is defined as the spaces of functions f €
W LM} (R™) such that

lim imm (f;z0,7) = 0.

r—0
Everywhere in the sequel we assume that

1

— =0 1.1
B o(xq,7) ’ (1.1)

and

1
sup < 00, (1.2)

0<r<oo SD(xO» T)
which make the spaces VLM;:L?} (R™) non-trivial, because bounded functions with compact support
belong to this space. The spaces VLM,H‘?}(R”) and WVLM,;{,G;O}(R”) are Banach spaces with
respect to the norm

||fHVLM}£ﬁ9} = ||f||L]\/[1§z9} :EL;IO)WIP#P (f;l'o,’l”),
— _ w .
Hf”WVLMéiQ} - ||f||WLMéI¢9} - iglgmp,cp (fa‘TOaT) )

respectively. The spaces VLM,;{ff,,O}(R”) and WVLM,;{pr}(IR{”) are closed subspaces of the Banach

spaces LMY (R™) and WLMS%} (R™), respectively, which may be shown by standard means.

Suppose that S"~1 is the unit sphere in R™ (n > 2) equipped with the normalized Lebesgue
measure do = do (2').

In [30], Stein has defined the Marcinkiewicz integral for higher dimensions. Suppose that
satisfies the following conditions.

(a) Q is the homogeneous function of degree zero on R™ \ {0}, that is,

Qux) = Qx), for any p >0,z € R™\ {0}. (1.3)

(b) © has mean zero on S™~1, that is,

/ Q(/)do(a') = 0, (1.4)
Sn—l

where 2’ = 1] for any x #0.
(c) Q € Lip,(S™™1), 0 < v < 1, that is there exists a constant M > 0 such that,

1Q(z") — Q)| < M|z' — 3| for any ',y € S 1.

(d) Qe Ly(S™1).
The Marcinkiewicz integral operator of higher dimension ug is defined by

1/2

no(f) (@) = / Fo,(N@PY)
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where

Foup) = | UL =Y) 1)y,

z -yt
le—y|<t
Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been extensively studied
as a research topic and also provides useful tools in harmonic analysis [21, 31, 32].

Remark 1.5. We easily see that the Marcinkiewicz integral operator of higher dimension uq can
be regarded as a generalized version of the classical Marcinkiewicz integral in the one dimension
case. Also, it is easy to see that uq is a special case of the Littlewood-Paley g-function if we take

g (@) = Q@) 2| X< (J2]) -

When 2 satisfies some size conditions, the kernel of the operator pn has no regularity, and so the
operator pq is called rough Marcinkiewicz integral operator. The theory of Operators with rough
kernel is a well studied area on some kinds of function spaces (see [3, 5, 6, 7, 12, 13, 15, 16, 17, 18, 21]
for example).

Now we give the definition of the commutator generalized by pg and b by

. 1/2
pas(N@) = | [1FnaD@PS |
0

where

FooN@ = [ 2 Dhbte) b))y

On the other hand, in this paper we consider the Schrédinger operator
L=-A+V(z) on R", n>3

where V' () is a nonnegative potential belonging to the reverse Holder class RH,, for some exponent
q > 5; that is, there exists a constant C' such that the reverse Holder inequality
1
1 e
— [V (2)dx| < —/V (z) dx (1.5)
B'B/ B |

B

holds for every ball B C R"; see [28].

We introduce the definition of the reverse Holder index of V as go = sup{q:V € RH,}. It is
worth pointing out that the RH, class is that, if V€ RH, for some ¢ > 1, then there exists ¢ > 0,
which depends only on n and the constant C in (1.5), such that V' € RH, .. Therefore, under the
assumption V' € RHz, we may conclude gy > 5. Throughout this paper, we always assume that
0 # V € RH,. In particular, Shen [28] has considered L, estimates for Schrédinger operators L

with certain potentials which include Schrodinger Riesz transforms RJL = %L*%, j=1-- n.
J
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Similar to the Marcinkiewicz integral operator with rough kernel pq, we define the Marcinkiewicz
integral operator with rough kernel Hﬁg associated with the Schrédinger operator L by

2 3
r d
phof@=| [ [ 10a-nIKF @) 5|
0 Jz—y|<t

where K} (z,y) = KL(x y) |z — y| and KL(x y) is the kernel of R; = a—L 3 j=1,...,n
In particular, when V = 0, Kj (x,y) = f(jv (,y)|lz—y| = (z; —y;) /|lz—y|) /| — y|”71 and
KjA (x,y) is the kernel of R; = %A‘é, j=1,...,n. In this paper, we write K; (z,y) = KjA (z,9)
and pjo = ujAﬂ and so, ,u]% is defined by

2 3
r d
wat@=| [| [ 0e-IK @)@ 5
0 Jz—y|<t

Obviously, p; are classical Marcinkiewicz functions. Therefore, it will be an interesting thing to
study the properties of ,qu

On the other hand, for b € L!°¢(R"), denote by B the multiplication operator defined by
Bf () =b(x) f (z) for any measurable function f. If ,uﬁg is a linear operator on some measurable
function space, then the commutator formed by B and ,uﬁﬂ is defined by

Nf,sz,bf (z) = b, NJLQ]f(x) = (B/ifsz - MfszB) f(x) = b(x) Miszf(x) - Nﬁsz(bf)(x)-

The commutators we are interested in here are of the form

it (2) = b ko) / / (= 9)| KF (2,9) b (x) — b)) F () dy| 2]
0

z—y|<t

where () satisfies both (1.3) and (1.4). It is worth noting that for a constant C, if ,uﬁﬂ is linear we
have,

[b+C, Nﬁsﬂf =(b+0C) Nﬁszf - /Jﬁsz((b +C) f)
= bM]I‘:Qf + Cliﬁnf - Hﬁﬂ (0f) — Cﬂiﬂf
= [b, Mﬁsz]f .
This leads one to intuitively look to spaces for which we identify functions which differ by constants,

and so it is no surprise that b € BMO (bounded mean oscillation space) or LCI{)i\O} (R™) (local
Campanato space) has had the most historical significance.
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Gao and Tang [10] have shown that Marcinkiewicz integral u]L is bounded on L,(R"), for
1 < p < o0, and are bounded from L; (R™) to WL;(R™). Later, Akbulut and Kuzu [2] have shown
that the Marcinkiewicz integral operators with rough kernel ﬂﬁﬂ, 7 =1,...,n, associated with the
Schrodinger operator L are bounded on L,(R™), for 1 < p < oo, and are bounded from L;(R™) to
WLy (R™) that we need. Their results can be formulated as follows.

Theorem 1.6. (see [2]) Let 1 < p < 0o, Q € L,(S" 1), 1 < ¢ < oo satisfies (1.3) and V € RH,,.
Then, for every ¢’ < p < co or 1 < p < q, there is a constant C' independent of f such that

lifafll,, <ClflL, .

and for p =1

On the other hand, there are two major reasons for considering the problem of commutators.
The first one is that the boundedness of commutators can produce some characterizations of function
spaces (see [3, 7, 12, 13, 15, 16, 17, 18, 20, 25]). The other one is that the theory of commutators
plays an important role in the study of the regularity of solutions to elliptic and parabolic PDEs
of the second order (see [8, 9, 11, 24, 29]).

In this paper, we assume that b is in the local Campanato spaces LC;?T} and consider its
boundedness properties on generalized local (central) Morrey space.

Let us recall the defination of the space of LC’;?A"} (R™) (local Campanato space).

Definition 1.7. (see [3, 12, 13]) Let 1 <p < oo and 0 < A < % A function f € L;"C (R™) is said
to belong to the LCI‘E&O} (R™), if

P

1 p
f {zo} =SUD | ———— 11 / f Yy) — f z0,T dy < Q. 1.6
|| ”LCP,AO r>0 ‘B (1'07 T)|1+)\p3(a:o ) ‘ ( ) o )| ( )

Define

ref) (®) = {1 € L R s 1l e < o0
Remark 1.8. If two functions which differ by a constant are regarded as a function in the space
LC’IE:&“} (R™), then LC;;?} (R™) becomes a Banach space. The space LC’IE;?"} (R™) when A = 0 is
just the LC;IO}(R”). Apparently, (1.6) is equivalent to the following condition:

p

1
supinf | ——— / fly)—cfdy| < oo
et | 1B (o, 7 >| v
To,T

For local Campanato space’s historical development and its backgrounds, see also [3, 12, 13, 14].

The following lemma plays a key role in the proof of following Lemma 2.2.
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Lemma 1.9. (see [12, 13, 14]) Let b be function in LCIEf\”} (R"),1<p<oo,0<A<Landr,
ro > 0. Then

1
P

1 1
W / ’b(y) = bB(zo,r) Pdy <C (1 + ‘hﬁr?
0,71 Blwo,m)

lblorp . 0D

where C' > 0 is independent of b, r; and rs.
From this inequality (1.7), we have

T1 A
oot = eyl < € (14102 ) 1B (oo ) bl 19)
and it is easy to see that

n
< Crv ™Mb .
Ly(Baor) — 1Bl o

o= ®)0n (1.9)

Our main results can be formulated as follows.

Theorem 1.10. Let zp € R", 1 <p < 00, 2 € L, (S"!), 1 < ¢ < oo satisfies (1.3) and V € RH,,.
Let also, for ¢’ < p, p # 1, the pair (o1, p2) satisfies the condition

oo

n
essinf Lo, T)TP
/t<T<oo #1(@o, 7)

t@+1 dt < CSOQ(IOaT)v (110)

T
and for 1 < p < ¢ the pair (¢1, p2) satisfies the condition

00 . n
essinf To,T)TP
/t<r<oc(p1( 0:7)

tr ol

dt < C(pg(xom)r%,

T

where C does not depend on 7.
Then the operators uﬁﬂ, j=1,...,n are bounded from LM,;{f;’l} to LM,;{T;’; for p > 1 and from

LM} to WLM™) for p = 1. Moreover, for p > 1

Ler L2
g fll aggzer S M1l aggeny »
and for p =1
5 sl Larzo) S 1N pargeer -
Now using above Theorem 1.10, we get the boundedness of the operators uﬁﬂ, j=1,...,non

the generalized vanishing local Morrey spaces VLM,}%O}.
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Theorem 1.11. Let zp € R", 1 < p <00, Q € L, (5" 1), 1 < ¢ < oo satisfies (1.3) and V € RH,,.
Let also, for ¢’ < p, p # 1, the pair (¢1, 2) satisfies conditions (1.1)-(1.2) and

ts
Cs = \/Qﬁl (IEO,t) t%ﬁdt < 00 (111)
§
for every § > 0, and
tv
/Sﬁl(x(ht)tgﬁdt < CO‘PZ(CUOW); (1'12)

and for 1 < p < ¢ the pair (¢1, p2) satisfies conditions (1.1)-(1.2) and also

o0

als| =B

t
csr = /901 (l’o,t) t%_ﬁdt < 00

S5

for every ¢’ > 0, and

] n

tr n
/%(xovt)t%_ﬁdt < Co p2(wo, )re,
I

where Cj does not depend on r > 0.
Then the operators ,uﬁg, j=1,...,n are bounded from VLMI‘,{fg’l} to VLM;f;’Q} for p > 1 and

from VLMl{fpol} to WVLMl{fp‘;} for p = 1. Moreover, we have for p > 1

IIMﬁQfHVLMP{?Q} S Iy paggzo) »

and for p =1
L
5ty Lartzoy S 1Flly pastzos -

Remark 1.12. Akbulut and Kuzu [2] have shown that the boundedness of the operator pﬁg
from generalized Morrey spaces in itself by considering the following conditions (1.13) and (1.14)
according to conditions (1.11) and (1.12)

T dt
cs = /<P1 (z,t) sy < 00 (1.13)
s
for every § > 0, and
t
/*"lﬁi’l Jat < ¢, 22%7) (1.14)
tr re

where Cj does not depend on x € R™ and r > 0. In fact, this difference stems from the definitions of
spaces. Because, in this paper the definitions of generalized local (central) and generalized vanishing
local Morrey spaces are given with the concept of normalized norm, but these definitions are not
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given in this [2]. In other words, if we use the definition of vanishing generalized Morrey space
in [2], then we use conditions (1.13) and (1.14) instead of conditions (1.11) and (1.12). Also, we
would like to remark that the main method employed in this paper is a combination of ideas and
arguments from [2].

Theorem 1.13. Suppose that zg € R, 1 < p < o0, Q € L,(S"1),1 < ¢ < oo satisfies (1.3) and
VeRH, Letbe LOS™(RY), L =L+ Land0o< A< L.
Let also, for ¢’ < p the pair (¢1, p2) satisfies the condition

s £\ essinf o1 (zo,7) T
/ (1 + In T) t<7‘<0:ﬁ+17n)\ dt S 0802 (,f[,‘o, T') s (115)

T
and for p; < ¢ the pair (p1, @2) satisfies the condition

s o\ essinf o1 (zo,7) ThT )
/ <1+ln) t<T<O: = dt < Cips (zo,7) 7749,

r P AR D)

T

where C' does not depend on r.
Then, the operators uiﬂyb, j=1,...,n are bounded from LM];{f”,E’p}l to LMZ;{ff,?Q}. Moreover,

L cr S o} -
HMJ’Q’beLM;,{P%} ~ ||b||LC;{;2,OA} ”fHLMélRP}l
Now using above Theorem 1.13, in the following theorem we also obtain the boundedness of the
operators uﬁgb, 7 =1,...,n on the vanishing generalized local Morrey spaces VLMI;{;Z"}.

Theorem 1.14. Suppose that 79 € R", 1 < p < oo, Q € Ly(S"1),1 < ¢ < oo satisfies (1.3) and
VeRH,. Letbe LCE&}(R”), % = p% + p% and 0 < A < £. Let also, for ¢ < p, the pair (1, ¢2)
satisfies conditions (1.1)-(1.2) and

t tor
/ (1 + In ’]") QOl(Z‘O,t)mdt S COQOQ(.’EO,?”), (116)
pr1

T

where Cy does not depend on r > 0,

lim — " =0 1.17
T‘l—r>r%) ()02(.r0’7‘) ( )
and -
tor
tr1
4

for every § > 0, and for p; < ¢ the pair (¢1, p2) satisfies conditions (1.1)-(1.2) and also

t tor o
/ (1 +In r) ‘Pl(xoat)mdt < Copa2(wo, )17,
;
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where Cy does not depend on r > 0,

and
o1
e i= [ (L+Inl) o1 (00,8) eyt < o0
q

Pl
5/

for every ¢’ > 0.
Then the operators uf’ﬂ’b, j=1,...,n are bounded from VLM,;{ffp}l to VLMp{fo}. Moreover,

HMJ[':vafHVLMgﬁ’Q} S ”bHLC;;O,\} ”fHVLI\/I;f,%}I :

Now, we give following Lemma 1.15 that we use in this paper.

Lemma 1.15. (see [35] page 143) Let f be a real-valued nonnegative function and measurable on
E. Then

-1
(essinff (m)) = esssup 1 (1.19)

z€E zeFE f(l’)

2 Proof of theorems
To prove the theorems (Theorems 1.10, 1.11, 1.13 and 1.14), we need the following lemmas.
Lemma 2.1. (see [2]) Let zp € R", 1 < p < 00, Q € L, (S" 1), 1 < g < oo satisfies (1.3) and

V € RH,.
If p > 1 and ¢’ < p, then the inequality

o

L o _n_g
||Mj79f|‘L],(B(xo,r)) S /t ? ||fHLp(B(wo,t)) dt (2.1)
2r

holds for any ball B (zo,r) and for all f € L (R™).
If p > 1 and p < g, then the inequality

o0

L n_mn n_n_q
HMJ’,QfHLp(B(xO,r)) Sree /tq v ||f||Lp(B(a:0,t)) dt
2r

holds for any ball B (¢, 7) and for all f € L (R™).
Moreover, for ¢ > 1 the inequality

o0

0 D a7 € W ey

2r

holds for any ball B (z¢,7) and for all f € L’ (R"™).
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We end this part by presenting the following lemma, which is the heart of the proofs of Theorems
1.13 and 1.14.

Lemma 2.2. Let zp € R", 1 < p < o0, 2 € Ly(S"!), 1 < ¢ < oo satisfies (1.3) and V € RH,,.

{zo} n —
LetalsobeLszg\(R ),%—p%+p%and0§)\<%.
Then, for ¢’ < p, the inequality

oo

I i nA—=2—1
IS lasimnn S oty 75 [ (141083 it (22)
P2,

2r

holds for any ball B(xo,r) and for all f € LI°¢(R™).
Also, for p; < g, the inequality

o0

n_n t A—pn_q
ik ooy S Wllyieg 755 [ (140 E) 2520y,
2r

holds for any ball B(zg,r) and for all f € LLOIC(R").

Proof. Note that ¢ > 2r and |z — zo| < r, we have t + |z — 20| < t +r < 3t < 2t. Moreover, for
x € B (x,t), notice that Q € L,(S" '), 1 < ¢ < oo satisfies (1.3). Then, we obtain

Qa-pliay| = [ e
B(zo,t) B(z—z0,t)
1
< / 1(2)|7dz
B(0,t+|z—z0])
1
< / 1 (2)]?dz
B(0,2t)
2t 7
= //|Q(z’)\qda(z’)r"71dr
0 gn—1
1
= C 911, 5n-s) 1B (20,20)]F - (23)

Let 1 <p<oo,be LC{IO)\}(R") and %’ = p% + p%. Set B = B (xq,r) for the ball centered at z

P2,

and of radius r and 2B = B (g, 2r). We represent f as

f=h+fe,  fH@W=FfWxsW). LG=fWxesc ), >0,
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and have

1y apf () = (b(x) —bp) piafi (x) — uio (b(-) —bp) f1) (x)
+ (b(x) = bp) pjaf2 (x) — pig (b() —bp) f2) (x)
=L+ o+ 3+ Ja.

Hence we get
L
HHj,Q,beLp(B) < Willp, sy + 11200, ) + 15l L, 5y + 1 all ., (5 -

By the Holder’s inequality, the boundedness of MﬁQ on Ly, (see Theorem 1.6) and (1.9) it follows
that:

1002,y < 1OC) = b8) wfafs Ol 5y
<N =085, 5 10l Oll,, s

2 4
SCHbHLCg:&}”? " Hf1||Lp1(B)

o0
_ L4 n A —-1-
= C ol tn 7 E T Sl ) [ Fo
27
o0
n t A g
5 Hb”LC;;UA} T’P/ <1+ln 7") tn P1 Hf”Lpl(B("/Uo,t)) dt7
2r

where % = p% + p%'
Using the boundedness of uﬁg on L, (see Theorem 1.6), by the Hélder’s inequality and (1.9)
for Jo we have

HJ2||LP(B) < H/v‘ﬁg (b() —bs) leL,,(B)
SO C) =b8) fillL, s

<160 = bslly,, y I6ills, ()

oo
non gy 11—
5 Hb”LC:"TUA} TR TR ||fHLp1 (2B) /t P1 dt
> 2r
)
n t A
S Hb”LC;:&} T‘P/ (1 +In r) tn P1 Hf”Lpl(B(mo,t)) dt,
2r
1 _ 1 1
where > = o T

For Js, it is known that x € B, y € (QB)C, which implies % lzo —y| < |z —y| < % |zo — yl.
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When ¢’ < p1, by the Fubini’s theorem, the Holder’s inequality and (2.3) we have
i,

|330 - Z/|n

koo ()] < co / Q@ — )|

(2B)¢

/ [ 1ol el e

2r2r<|zo—y|<t

/ [ 0@l wldgerar

27 B wo ,t)

1 _1 —n
< / 1L, ooy 192 = Yl ooy 1B (o, O] 504 71—t

oo
—n_
S [ 1y, a5
2r

Hence, by the Holder’s inequality, (2.4) and (1.9) we get

5l 5) = = |6 ( B) 115, Jaf2 (¢ HL »(B)
= [|(b ()— B)HLPZ(B) HNj,QfZ ) HLm(B)

oo

<10 =8y oy 755 [FT 1S ot

2r

oo
ni t —o=—1
< b Cmm* /<1+lnr N Mz, (B, 9

2r

n t nA—f—l
S bl o0 “/ <1+1n ) I lE,, (Bo,ey @t
P2sA r 1

2r

where L_ 14 1
pP1

D2
Let 1 < p < q. Similarly to (2.3), when y € B (xg,t), notice that

1
3 q
B <$072t)‘ .

Q=

[ 1oe-nray | <clol, s,
B(zo,r)

F. Giirbiiz

(2.4)
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When p; < ¢, by the Fubini’s theorem, the Minkowski inequality and from (1.9), (2.5), we get

N
dt
Mally, i < /// Db (@)~ ol 192 — )] dy s | d
2TB(Q:0t
dt
< IF G =b8) 20 =9, W
27B(10,t)
Vi dt
< LF @l Ib () = bB||Lp2(B) (- y)”Lm(B) dytnﬁ
2r B(zo,t)
mA 1 _ 1 dt
SIIbIILC;:&}T” | B| 7 // IFONILE =9z, ) Wi
27 B(zo,t)
1
n_n 3\[* dt
< el oy 7 +’“/ oo |2 (20 51)| 75

n_n dt
ni
R ey (P AT p—

2r
oo
n_n t nA—t+2—1
Sl 7 [ (D) U
2r

On the other hand, for Jy, when ¢ < p, for 2 € B by the Fubini’s theorem, applying the Holder’s
inequality and from (2.3), (1.8), (1.9) we have

ko (0() = bB) f2) ()| S / b(y) — bs| [ (x — )| L2Ldy
(2B)°

[ 16 el 19— )| ey

(2B)°

/ / y) = bl |2 (= = y)| |f ()| dyitee

2r 2r<|w0 yl<t

A

5/ / 16(y) = bB@on| 12 (@ — v)|1f (W) dy s

2r B(zo,t)
(oo}

[ Ptenn — ool [ 19— 0)l1f )]y

2r B(wo ,t)
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o0
11
S 10O = 050000) L 0 19 = Dl ) 1B 07
_1_1
+/ |bB(zo,r) - bB(:ro,t)‘ Hf”L,,l(B(zo,t)) Q0 — y)”Lq(B(xo,t)) |B (wo,t)|' "7 a7 Lt

/ H bB(:L’o,t)) HLpz(B(To t)) ”fHLpl (B(zo, t))t liﬁdt

n)\f—fl
H bl 20 / 1+ ) N oo
P2,

2r
)

niA—=2—1
S IIbHLclgzp;/(HlH%)t e, (o) 4
2r
Then, we have

1 all 5y = I 0 () = b8) foll, 5,

o t n)\ —71
S0t 75 [ (14102 ) O S o

2r

When p; < g, by the Minkowski inequality, applying the Holder’s inequality and from (2.5), (1.8),
(1.9) we have

p P
||J4HLP(B) N (f I |b( ) — bB(aco,t)| |f )] 182 (z - )|dytn+1 d$>

PN

+ (I dz)

B

27 B(zo,t)
ST b = b If DHIQC =91, (o) Wit

oo
f |bB(woyT) - bB(wo7t)| f |f W] (z —y)| dytn+1

2r B(wo,t)

27"3(12(),15)
"‘f |bB(3¢o7T) _bB(xo,t)| I fliec _y)”Lp(B(wo,t)) dyt,,fl%
B(zo,t)
; 1%
P @) = s [ O C =D L, (B0 Wt
TB(wo,t)
+|B|p f ‘bB (zo;r) bB(mO,t)| (f : FREOINIC —y)”Lq(B(xO,t))d?J%
2r B(xg,t
n_n % 1
ST LNOO) = be@on)le,, o 11, (o0 1B @0 O |B (@0, 31)|* 5
n_n 1
+re 2f VB (z0,r) — DB(zo,t)] If1L,, (B@o.t) |B (20, 31)|° t£t+l

o0
n_n A—Dpn_q
§||b\|w£&}rp qur(1+1n§)tn T fll Ly, (Blao.t)dt-
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Now combined by all the above estimates, we end the proof of Lemma 2.2. Q.E.D.

The Proof of Theorem 1.10. Since f € LMgfﬁl}, by (1.19) and the non-decreasing, with
respect to t, of the norm Hf”L,,(B(mO 1)» we get

Hf”L »(B(z0,t)) ”fHLp(B(aco,t))

= < esssup =
0<ets<81Tn<foocpl(xo, T)T? — 0<t<r<co @1(Xo,T)T?
/1]

< esssup ——2BEom) o

> (JL b
0<7T<00 (pl(l‘(), )TP HfHLM 0

For ¢’ < p < o0, since (g1, ¢2) satisfies (1.10), we have

/“fHLP(B(wo,t))t T

o0

1y by SE5E 10, D)7 gy
7 t

7/ essinf @ (g, 7)7 % t

r t<rt<oo

[ sl erlo T gy
< M loaggegy e T

r

< Ol o0 #2(0,7).
Then by (2.1), we get

Il as gy = sp 22 (o0, ) ™ 1B, 5t

<CSUP<P2 Zo, T /||f||L (B(zo.t)) ¢ ”7

S C ||f||LM;£,l;91} .

For the case of 1 < p < ¢, we can also use the same method, so we omit the details. This completes

the proof of Theorem 1.10.
The Proof of Theorem 1.11. The norm inequalities follow from Theorem 1.10. Thus we

only have to prove that

lim 9, (f320,7) = 0 implies lim M, ,, (1hafizo,r) =0 (2.6)
r— ?

r—0

and
}ii% My, . (f;20,7) = 0 implies }13(1) 9]13;2 (Mf:gf; zo,1) = 0. (2.7)
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_n
rr ||H.7L’Qf||Lp(B(:cO,7‘))

To show that
Y2 (wO ’T)

< ¢ for small r, we split the right-hand side of (2.1):

17 nfaf (5o

@2(1‘0, 7“)

< CIs, (xo,7) + Jsy (z0,7)]

where dg > 0 (we may take dp < 1), and

)
1 _n_1q
Is, (xo,7) = 902(55'0,7‘)/t P HfHLp(B(xo,t)) dt,
and o]
1 _n_q
Jso (zo,7) := m t» ”fHLp(B(xo,t)) dt,
do

and r < dp and the rest of the proof is the same as the proof of Theorem 6 in [2]. Thus, we can
prove that (2.6).

The proof of (2.7) is similar to the proof of (2.6). For the case of 1 < p < ¢, we can also use the
same method, so we omit the details.

The Proof of Theorem 1.13. Since f € LM;ifo}l, by (1.19) and the non-decreasing, with
respect to ¢, of the norm [|fll L (p(ay,e)), We get

11z, (3o 1£1z,. (o

— < esssup m

essinf (2o, T)TP1  O<t<r<oco (p1(To,T)TPL

0<t<T<00

111z, (B0,

)
< esssup < Hf”LM,ff?Jl .

0<r<oo (p1(xo, T)Tﬁ

For ¢’ < p < oo, since (1, p2) satisfies (1.15), we have

A
/(1+1nr>t A P1 1Hf||Lp1(B(1'(),t))dt

r

i f " essinf gpl(xo’,r),rﬁ
§/<1+lnt) | HLPl(B( 0,t))  t<r<oo ”

T inf 1 tpr T1mA
r ooy
o0 ssinf oy (z0, 7)7 71
0\ sl o1 (e,
<C ”f”LMélIf{P}l / (1 +In 7") s dt

T

< Cllfllppteg) #2(a0,7):
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Then by (2.2), we get

520t aggze) = sup 2 (o) ™ 1B G0, )7 00 | iy

— t\ aa—n
< Ol iz s tronr) ! [ (1+1n)t 5L oot
P2,X >0 T

T

< OBl ooy 11l gz,

For the case of p; < ¢, we can also use the same method, so we omit the details. This completes
the proof of Theorem 1.13.

Remark 2.3. We point out that some ideas in the proofs of Theorems 1.10 and 1.13 are taken from
[3, 12, 13, 15, 16]. However, the reader can find that the main techniques and non-trivial estimates
used in the proofs of our conclusions are quite different from [3, 12, 13, 15, 16]. For example, using
inequality about the weighted Hardy operator H,, in [3, 12, 13, 15, 16], in this paper we only used
above a relationship between essential supremum and essential infimum (see Lemma 1.15).

The Proof of Theorem 1.14. The norm inequality having already been provided by Theorem
1.13, we only have to prove the implication

, oL
vy LA V2 bf)
r Pp1 0T VALY
tim "y B0 _ implies lim Ly(Blaor) _ g, (2.8)
r—0 ()01(33077“) r—0 @2(1‘0,7")
To show that
Y L
Toe “j,ﬂ,bf’
Ly (B(zo.1)) < ¢ for small r,
<p2(:c077")
we use the estimate (2.2):
_n L
% k.| 1ol ey
T LD(B(QTOJ’)) < chg,/\ /(1 t) nA—-—1
< +In—- )t P z0.4))dL.

v2(z0,7) o2(z0,7) r ||f||Lp1(B( 0,t))

We take r < §y, where §y will be chosen small enough and split the integration:
% ||uk
r M],Q,bf‘ Ly (B(zo,r)) < C[Ié (xO ?") + Js (xO ?”)] (2 9)
paleor) Lo T o |

where dyp > 0 (we may take dg < 1), and

do

. 1 t ni—-2—1
I‘S‘J(%’T)':soz(:cm/(lﬂnr)t Ny, Bty 4t
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and

1 7 t nA—-2—1

Js. (20,7) i= ——— [ (1 4+1In= )¢5 dt

50 (Z0,7) g02(]:0,74)/( + nr> 1 ”f“Lm(B(mg,t))
0

and r < dg. Now we choose any fixed dg > 0 such that

o If1L,, (B@o.t) L€
o1(0, 1) 20C,’

tS507

where C and Cy are constants from (1.16) and (2.9). This allows to estimate the first term uniformly
inr e (0, (5())2
€
0160 (xo,’l“) < 5, 0<7<dp.
For the second term, writing 1 +In< <1+ |Int|+In 2, we obtain
Csy + CoyIn L

do (an T) s02(‘r077ﬂ) ||f||LM;£1,O<p}1 )

where c¢s, is the constant from (1.18) with § = §y and ¢5, is a similar constant with omitted
logarithmic factor in the integrand. Then, by (1.17) we can choose small enough 7 such that

)

J50 (1'0, ’I") <

N ™

which completes the proof of (2.8).

For the case of p; < ¢, we can also use the same method, so we omit the details.

Now, we give the applications of Theorem 1.10, Theorem 1.11, Theorem 1.13 and Theorem 1.14
for the parametric Marcinkiewicz integral operator.

For 0 < p < n, in 1960, Hormander [19] defined the parametric Marcinkiewicz integral operator
of higher dimension as

- 1/2
dt
(@ = [1R P g |
0

where QO )

o _ Ty dy.
54 (@) / |I_y|n_,,f(y) y
le—y|<t

Let b be a locally integrable function, the commutator generated by parametric Marcinkiewicz
integral operator uf, and b is defined by

2 1/2
Vi Qz—y dt
bl D@ = [| [ 2L bw bl g | 0<p<n
|z —y["” t2
0 |z—y|<t
It is well known that the operator ud, = uqo was first introduced by Stein in [30]. He proved that
if ) satisfies above condition (c), then pq is the operator of strong type (p,p) for 1 < p < 2 and
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of weak type (1,1). On the other hand, in 1960, Hérmander [19] proved that if Q satisfies above
condition (c), then for 0 < p < n, uf) is of strong type (p,p) for all 1 < p < co. His conclusion can
be summarized as follows.

Theorem 2.4. Let 0 < p < n and f € L, (R™). If Q satisfies above conditions (a)-(c), then s
is bounded on L, (R™) for 1 < p < co. Moreover, there exists a constant C' > 0 independent of f
such that

e flly, < ClIFL, -

Lemma 2.5. Let 0 < p < n, 9 € R", 1 < p < oo and 2 satisfies above conditions (a)-(c). Then,
for 1 < p < oo the inequality
o0

6 Ny 75 [ 57 U8

2r

holds for any ball B (zq,7) and for all f € L (R™).
Moreover, for p = 1 the inequality

6 ooy 57 [ 1S s

2r
holds for any ball B (zq,7) and for all f € L’ (R"™).

Proof. The proof of Lemma 2.5 is obtained in the same manner in the proof of Lemma 2.1, directly.
Q.E.D.

Lemma 2.6. Let 0 < p <mn, 0 € R", 1 < p < oo and  satisfies above conditions (a)-(c). Let
also be LCUY (R, =L+ Land0< A< L.
Then, the mequahty

n t n)\ no_
0Ly S Wiz 7 [ (102 ) €
P2,

2r
holds for any ball B(xo,r) and for all f € LI°¢(R™).

Proof. The proof of Lemma 2.6 is obtained in the same manner in the proof of Lemma 2.2, directly.
Q.E.D.

Theorem 2.7. Let 0 < p < n, o € R", 1 < p < 0o and  satisfies above conditions (a)-(c). Let
also, the pair (1, p2) satisfies condition (1.10). Then the operator ug, is LMgffl} to LM,;{fp‘;} for
p > 1 and from LM{IO} to WLMl{zfj for p = 1. Moreover, for p > 1
||/”L£2fHLM;fpr2} S Hf”LM,fiBl} i
and for p =1
Hﬂa‘f”WLMl{f?; S Hf”LMl{fpol} .
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Proof. The statement of Theorem 2.7 follows by Lemmas 2.5 and 1.15 in the same manner as in
the proof of Theorem 1.10. Q.E.D.

Theorem 2.8. Let 0 < p < mn, g € R”, 1 < p < oo and € satisfies above conditions (a)-(c). Let
also b € LCIE:&} (R™), % = p% + p% and 0 < A < L. Let also, the pair (1, 2) satisfies condition
(1.15). Then the operator [b, 42 is bounded from LMA™), to LMS%} . Moreover,

p
116, Q) Fll  pr o) S ”b”Lc;;?j 1A gtz -

Proof. The statement of Theorem 2.8 follows by Lemmas 2.6 and 1.15 in the same manner as in
the proof of Theorem 1.13. Q.E.D.

Theorem 2.9. Let 0 < p < n, 2o € R", 1 < p < oo and Q satisfies above conditions (a)-(c).
Let also, the pair (¢1,2) satisfies conditions (1.1)-(1.2) and (1.11)-(1.12). Then the operator s,

is bounded from VLM% to VLML) for p > 1 and from VLM to WVLM{™) for p = 1.
Moreover, we have for p > 1

18y arsens 1y g
and for p =1

el iy arzoy S IFlly pagtzo) -

Proof. The proof of Theorem 2.9 is obtained in the same manner in the proof of Theorem 1.11,
directly. Q.E.D.

Theorem 2.10. Let 0 < p < m, 29 € R”, 1 < p < oo and ) satisfies above conditions (a)-
(c). Let also b € LC’;:S\} (R™), %
conditions (1.1)-(1.2) and (1.16)-(1.17)-(1.18). Then the operator [b, u5] is bounded from VLM];{f,fo}l
to VLM;:’;’Z}. Moreover,

= p% + p% and 0 < A < 1. Let also, the pair (p1,¢2) satisfies

P
||[b7 MQ}fHVLMé,I@OZ} g ||b||LC;{>:,O>\} ”f”VLMéf,ng}l .

Proof. The proof of Theorem 2.10 is obtained in the same manner in the proof of Theorem 1.14,
directly. Q.E.D.
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