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Abstract

Let L = −∆ + V (x) be a Schrödinger operator, where ∆ is the Laplacian on Rn, while
nonnegative potential V (x) belonging to the reverse Hölder class. In this paper, using the some
conditions on ϕ (x.r), we dwell on the boundedness of Marcinkiewicz integrals with rough kernel
associated with schrödinger operators and commutators generated by these operators and local
Campanato functions both on generalized local Morrey spaces and on generalized vanishing
local Morrey spaces, respectively. As an application of the above results, the boundedness of
parametric Marcinkiewicz integral and its commutator both on generalized local Morrey spaces
and on generalized vanishing local Morrey spaces is also obtained.
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1 Introduction and main results

In this section, we will give some background material that is needed for later chapters. We assume
that our readers are familiar with the foundation of real analysis. Since it is impossible to squeeze
everything into just a few pages, sometimes we will refer the interested readers to some papers and
references.

Notation. Let x = (x1, x2, . . . , xn), ξ = (ξ1, ξ2, . . . , ξn) . . . . etc . be points of the real n-

dimensional space Rn. Let x.ξ =

n∑
i=1

xiξi stand for the usual dot product in Rn and |x| =

(
n∑
i=1

x2
i

) 1
2

for the Euclidean norm of x.
· By x′, we always mean the unit vector corresponding to x, i.e. x′ = x

|x| for any x 6= 0.

· Sn−1 = {x ∈ Rn :|x| = 1} represents the unit sphere and dx′ is its surface measure.

· By B(x, r), we always mean the open ball centered at x of radius r and by (B(x, r))
C

, we always
mean its complement and |B(x, r)| is the Lebesgue measure of the ball B(x, r) and |B(x, r)| = vnr

n,
where vn = |B(0, 1)|. We also have CB(x, r) = B(x,Cr) for C > 0.
· F ≈ G means F & G & F ; while F & G means F ≥ CG for a constant C > 0; and p′ and s′

always denote the conjugate index of any p > 1 and s > 1, that is, 1
p′ := 1− 1

p and 1
s′ := 1− 1

s .
· C stands for a positive constant that can change its value in each statement without explicit

mention.
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· The Lebesgue measure of a measurable set E is denoted as |E|. Roughly speaking: in one-
dimension |E| is the length of E, in two-dimension it is the area of E, and in three dimension (or
higher) it is the “volume” of E.
· We use the notation

fB(x,r) =
1

|B (x, r)|

∫
B(x,r)

f (y) dy.

· ‖Ω‖Ls(Sn−1) :=

( ∫
Sn−1

|Ω (z′)|s dσ (z′)

) 1
s

.

In 1938, Morrey [23] considered regularity of the solution of elliptic partial differential equa-
tions(PDEs) in terms of the solutions themselves and their derivatives. This is a very famous work
by Morrey [23]. We define Morrey spaces Lp,λ (Rn) via the following norm.

A measurable function f ∈ Lp (Rn), p ∈ (1,∞), belongs to the Morrey spaces Lp,λ (Rn) with
λ ∈ [0, n) if the following norm is finite:

‖f‖Lp,λ =

 sup
x∈Rn,r>0

1

rλ

∫
B(x,r)

|f (y)|p dy


1/p

.

When λ = 0, Lp,λ (Rn) coincides with the Lebesgue space Lp (Rn). Recently, Chen et al. [6] gave a
criterion of the boundedness of a general linear or sublinear operators with rough kernel on Morrey
spaces:

Theorem 1.1. [6] Let 0 < λ < n. Suppose that Ω ∈ Lq(Sn−1) for q > n
n−λ and TΩ is a sublinear

operator with rough kernel satisfying following

|TΩf(x)| ≤ C
∫
Rn

|Ω(x− y)|
|x− y|n

|f(y)| dy.

Let 1 < p <∞. If the operator TΩ is bounded on Lp (Rn), then TΩ is bounded on Lp,λ (Rn).

We also refer readers to the elegant book [1] for further information about these spaces and
references on recent developments in this field associated with harmonic analysis.

On the other hand, the study of the operators of harmonic analysis in vanishing Morrey space,
in fact has been almost not touched. A version of the classical Morrey space Lp,λ(Rn) where it
is possible to approximate by ”nice” functions is the so called vanishing Morrey space V Lp,λ(Rn)
has been introduced by Vitanza in [33] and has been applied there to obtain a regularity result for
elliptic PDEs. This is a subspace of functions in Lp,λ(Rn), which satisfies the condition

lim
r→0

sup
x∈Rn
0<t<r

t−
λ
p ‖f‖Lp(B(x,t)) = 0.

Later in [34] Vitanza has proved an existence theorem for a Dirichlet problem, under weaker as-
sumptions than in [22] and a W 3,2 regularity result assuming that the partial derivatives of the
coefficients of the highest and lower order terms belong to vanishing Morrey spaces depending on
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the dimension. Also Ragusa has proved a sufficient condition for commutators of fractional inte-
gral operators to belong to vanishing Morrey spaces V Lp,λ(Rn) (see [26]). For the properties and
applications of vanishing Morrey spaces, see also [4, 27].

The concept of the generalized local (central) Morrey space LM
{x0}
p,ϕ has been introduced in [3]

and studied in [12, 13, 14]. Later, motivated by [3, 12, 13] and using parabolic metric, Gürbüz
[15, 16] has introduced parabolic generalized local (central) Morrey space and showed that the
boundedness of a class of parabolic rough operators and their commutators on these spaces. But,
this topic exceeds the scope of this paper. Thus, we omit the details here. The spaces we are
interested in this paper are of the following forms:

Definition 1.2. (generalized local (central) Morrey space) Let ϕ(x, r) be a positive mea-

surable function on Rn × (0,∞) and 1 ≤ p < ∞. For any fixed x0 ∈ Rn we denote by LM
{x0}
p,ϕ ≡

LM
{x0}
p,ϕ (Rn) the generalized local Morrey space, the space of all functions f ∈ Llocp (Rn) with finite

quasinorm

‖f‖
LM

{x0}
p,ϕ

= sup
r>0

ϕ(x0, r)
−1 |B(x0, r)|−

1
p ‖f‖Lp(B(x0,r)) <∞.

Also by WLM
{x0}
p,ϕ ≡ WLM

{x0}
p,ϕ (Rn) we denote the weak generalized local Morrey space of all

functions f ∈WLlocp (Rn) for which

‖f‖
WLM

{x0}
p,ϕ

= sup
r>0

ϕ(x0, r)
−1 |B(x0, r)|−

1
p ‖f‖WLp(B(x0,r)) <∞.

According to this definition, we recover the local Morrey space LM
{x0}
p,λ and the weak local

Morrey space WLM
{x0}
p,λ under the choice ϕ(x0, r) = r

λ−n
p :

LL
{x0}
p,λ = LM{x0}

p,ϕ |
ϕ(x0,r)=r

λ−n
p
, WLL

{x0}
p,λ = WLM{x0}

p,ϕ |
ϕ(x0,r)=r

λ−n
p

.

For the properties and applications of generalized local (central) Morrey spaces LM
{x0}
p,ϕ , see

also [3, 12, 13, 14].
For brevity, in the sequel we use the notations

Mp,ϕ (f ;x0, r) :=
|B(x0, r)|−

1
p ‖f‖Lp(B(x0,r))

ϕ(x0, r)

and

MW
p,ϕ (f ;x0, r) :=

|B(x0, r)|−
1
p ‖f‖WLp(B(x0,r))

ϕ(x0, r)
.

Extending the definitions of the vanishing Morrey spaces and vanishing generalized Morrey
spaces given by Vitanza [33] and Samko [27] to the case of the generalized local (central) Morrey
spaces, in [13], Gürbüz has introduced the following definitions:

Definition 1.3. [13](generalized vanishing local Morrey space) The generalized vanishing

local Morrey space V LM
{x0}
p,ϕ (Rn) is defined as the spaces of functions f ∈ LM{x0}

p,ϕ (Rn) such that

lim
r→0

Mp,ϕ (f ;x0, r) = 0.
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Definition 1.4. [13] (weak generalized vanishing local Morrey space) The weak gener-

alized vanishing local Morrey space WV LM
{x0}
p,ϕ (Rn) is defined as the spaces of functions f ∈

WLM
{x0}
p,ϕ (Rn) such that

lim
r→0

MW
p,ϕ (f ;x0, r) = 0.

Everywhere in the sequel we assume that

lim
r→0

1

ϕ(x0, r)
= 0, (1.1)

and

sup
0<r<∞

1

ϕ(x0, r)
<∞, (1.2)

which make the spaces V LM
{x0}
p,ϕ (Rn) non-trivial, because bounded functions with compact support

belong to this space. The spaces V LM
{x0}
p,ϕ (Rn) and WV LM

{x0}
p,ϕ (Rn) are Banach spaces with

respect to the norm
‖f‖

V LM
{x0}
p,ϕ
≡ ‖f‖

LM
{x0}
p,ϕ

= sup
r>0

Mp,ϕ (f ;x0, r) ,

‖f‖
WVLM

{x0}
p,ϕ

= ‖f‖
WLM

{x0}
p,ϕ

= sup
r>0

MW
p,ϕ (f ;x0, r) ,

respectively. The spaces V LM
{x0}
p,ϕ (Rn) and WV LM

{x0}
p,ϕ (Rn) are closed subspaces of the Banach

spaces LM
{x0}
p,ϕ (Rn) and WLM

{x0}
p,ϕ (Rn), respectively, which may be shown by standard means.

Suppose that Sn−1 is the unit sphere in Rn (n ≥ 2) equipped with the normalized Lebesgue
measure dσ = dσ (x′).

In [30], Stein has defined the Marcinkiewicz integral for higher dimensions. Suppose that Ω
satisfies the following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(µx) = Ω(x), for any µ > 0, x ∈ Rn \ {0}. (1.3)

(b) Ω has mean zero on Sn−1, that is,∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.4)

where x′ = x
|x| for any x 6= 0.

(c) Ω ∈ Lipγ(Sn−1), 0 < γ ≤ 1, that is there exists a constant M > 0 such that,

|Ω(x′)− Ω(y′)| ≤M |x′ − y′|γ for any x′, y′ ∈ Sn−1.

(d) Ω ∈ L1(Sn−1).
The Marcinkiewicz integral operator of higher dimension µΩ is defined by

µΩ(f)(x) =

 ∞∫
0

|FΩ,t(f)(x)|2 dt
t3

1/2

,
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where

FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been extensively studied
as a research topic and also provides useful tools in harmonic analysis [21, 31, 32].

Remark 1.5. We easily see that the Marcinkiewicz integral operator of higher dimension µΩ can
be regarded as a generalized version of the classical Marcinkiewicz integral in the one dimension
case. Also, it is easy to see that µΩ is a special case of the Littlewood-Paley g-function if we take

g (x) = Ω (x′) |x|−n+1
χ|x|≤1 (|x|) .

When Ω satisfies some size conditions, the kernel of the operator µΩ has no regularity, and so the
operator µΩ is called rough Marcinkiewicz integral operator. The theory of Operators with rough
kernel is a well studied area on some kinds of function spaces (see [3, 5, 6, 7, 12, 13, 15, 16, 17, 18, 21]
for example).

Now we give the definition of the commutator generalized by µΩ and b by

µΩ,b(f)(x) =

 ∞∫
0

|FΩ,t,b(f)(x)|2 dt
t3

1/2

,

where

FΩ,t,b(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
[b(x)− b(y)]f(y)dy.

On the other hand, in this paper we consider the Schrödinger operator

L = −∆ + V (x) on Rn, n ≥ 3

where V (x) is a nonnegative potential belonging to the reverse Hölder class RHq, for some exponent
q ≥ n

2 ; that is, there exists a constant C such that the reverse Hölder inequality 1

|B|

∫
B

V (x)
q
dx

 1
q

≤ C

|B|

∫
B

V (x) dx, (1.5)

holds for every ball B ⊂ Rn; see [28].
We introduce the definition of the reverse Hölder index of V as q0 = sup {q : V ∈ RHq}. It is

worth pointing out that the RHq class is that, if V ∈ RHq for some q > 1, then there exists ε > 0,
which depends only on n and the constant C in (1.5), such that V ∈ RHq+ε. Therefore, under the
assumption V ∈ RHn

2
, we may conclude q0 >

n
2 . Throughout this paper, we always assume that

0 6= V ∈ RHn. In particular, Shen [28] has considered Lp estimates for Schrödinger operators L

with certain potentials which include Schrödinger Riesz transforms RLj = ∂
∂xj

L−
1
2 , j = 1, · · · , n.
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Similar to the Marcinkiewicz integral operator with rough kernel µΩ, we define the Marcinkiewicz
integral operator with rough kernel µLj,Ω associated with the Schrödinger operator L by

µLj,Ωf (x) =

 ∞∫
0

∣∣∣∣∣∣∣
∫

|x−y|≤t

|Ω (x− y)|KL
j (x, y) f (y) dy

∣∣∣∣∣∣∣
2

dt

t3


1
2

,

where KL
j (x, y) = K̃L

j (x, y) |x− y| and K̃L
j (x, y) is the kernel of Rj = ∂

∂xj
L−

1
2 , j = 1, . . . , n.

In particular, when V = 0, K∆
j (x, y) = K̃∆

j (x, y) |x− y| = ((xj − yj) / |x− y|) / |x− y|n−1
and

K̃∆
j (x, y) is the kernel of Rj = ∂

∂xj
∆−

1
2 , j = 1, . . . , n. In this paper, we write Kj (x, y) = K∆

j (x, y)

and µj,Ω = µ∆
j,Ω and so, µ∆

j,Ω is defined by

µj,Ωf (x) =

 ∞∫
0

∣∣∣∣∣∣∣
∫

|x−y|≤t

|Ω (x− y)|Kj (x, y) f (y) dy

∣∣∣∣∣∣∣
2

dt

t3


1
2

.

Obviously, µj are classical Marcinkiewicz functions. Therefore, it will be an interesting thing to
study the properties of µLj,Ω.

On the other hand, for b ∈ Lloc1 (Rn), denote by B the multiplication operator defined by
Bf (x) = b (x) f (x) for any measurable function f . If µLj,Ω is a linear operator on some measurable

function space, then the commutator formed by B and µLj,Ω is defined by

µLj,Ω,bf (x) = [b, µLj,Ω]f(x) :=
(
BµLj,Ω − µLj,ΩB

)
f (x) = b(x)µLj,Ωf(x)− µLj,Ω(bf)(x).

The commutators we are interested in here are of the form

µLj,Ω,bf (x) = [b, µLj,Ω]f(x) =

 ∞∫
0

∣∣∣∣∣∣∣
∫

|x−y|≤t

|Ω (x− y)|KL
j (x, y) [b (x)− b (y)] f (y) dy

∣∣∣∣∣∣∣
2

dt

t3


1
2

,

where Ω satisfies both (1.3) and (1.4). It is worth noting that for a constant C, if µLj,Ω is linear we
have,

[b+ C, µLj,Ω]f = (b+ C)µLj,Ωf − µLj,Ω((b+ C) f)

= bµLj,Ωf + CµLj,Ωf − µLj,Ω (bf)− CµLj,Ωf
= [b, µLj,Ω]f.

This leads one to intuitively look to spaces for which we identify functions which differ by constants,

and so it is no surprise that b ∈ BMO (bounded mean oscillation space) or LC
{x0}
p,λ (Rn) (local

Campanato space) has had the most historical significance.
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Gao and Tang [10] have shown that Marcinkiewicz integral µLj is bounded on Lp(Rn), for
1 < p <∞, and are bounded from L1(Rn) to WL1(Rn). Later, Akbulut and Kuzu [2] have shown
that the Marcinkiewicz integral operators with rough kernel µLj,Ω, j = 1, . . . , n, associated with the
Schrödinger operator L are bounded on Lp(Rn), for 1 < p <∞, and are bounded from L1(Rn) to
WL1(Rn) that we need. Their results can be formulated as follows.

Theorem 1.6. (see [2]) Let 1 < p < ∞, Ω ∈ Lq(Sn−1), 1 < q ≤ ∞ satisfies (1.3) and V ∈ RHn.
Then, for every q′ < p <∞ or 1 < p < q, there is a constant C independent of f such that∥∥µLj,Ωf∥∥Lp ≤ C ‖f‖Lp ,
and for p = 1 ∥∥µLj,Ωf∥∥WL1

≤ C ‖f‖L1
.

On the other hand, there are two major reasons for considering the problem of commutators.
The first one is that the boundedness of commutators can produce some characterizations of function
spaces (see [3, 7, 12, 13, 15, 16, 17, 18, 20, 25]). The other one is that the theory of commutators
plays an important role in the study of the regularity of solutions to elliptic and parabolic PDEs
of the second order (see [8, 9, 11, 24, 29]).

In this paper, we assume that b is in the local Campanato spaces LC
{x0}
p,λ and consider its

boundedness properties on generalized local (central) Morrey space.

Let us recall the defination of the space of LC
{x0}
p,λ (Rn) (local Campanato space).

Definition 1.7. (see [3, 12, 13]) Let 1 ≤ p < ∞ and 0 ≤ λ < 1
n . A function f ∈ Llocp (Rn) is said

to belong to the LC
{x0}
p,λ (Rn), if

‖f‖
LC
{x0}
p,λ

= sup
r>0

 1

|B (x0, r)|1+λp

∫
B(x0,r)

∣∣f (y)− fB(x0,r)

∣∣p dy


1
p

<∞. (1.6)

Define

LC
{x0}
p,λ (Rn) =

{
f ∈ Llocp (Rn) : ‖f‖

LC
{x0}
p,λ

<∞
}
.

Remark 1.8. If two functions which differ by a constant are regarded as a function in the space

LC
{x0}
p,λ (Rn), then LC

{x0}
p,λ (Rn) becomes a Banach space. The space LC

{x0}
p,λ (Rn) when λ = 0 is

just the LC
{x0}
p (Rn). Apparently, (1.6) is equivalent to the following condition:

sup
r>0

inf
c∈C

 1

|B (x0, r)|1+λp

∫
B(x0,r)

|f (y)− c|p dy


1
p

<∞.

For local Campanato space’s historical development and its backgrounds, see also [3, 12, 13, 14].

The following lemma plays a key role in the proof of following Lemma 2.2.
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Lemma 1.9. (see [12, 13, 14]) Let b be function in LC
{x0}
p,λ (Rn), 1 ≤ p < ∞, 0 ≤ λ < 1

n and r1,
r2 > 0. Then 1

|B (x0, r1)|1+λp

∫
B(x0,r1)

∣∣b (y)− bB(x0,r2)

∣∣p dy


1
p

≤ C
(

1 +

∣∣∣∣ln r1

r2

∣∣∣∣) ‖b‖LC{x0}
p,λ

, (1.7)

where C > 0 is independent of b, r1 and r2.
From this inequality (1.7), we have

∣∣bB(x0,r1) − bB(x0,r2)

∣∣ ≤ C (1 + ln
r1

r2

)
|B (x0, r1)|λ ‖b‖

LC
{x0}
p,λ

, (1.8)

and it is easy to see that ∥∥∥b− (b)B(x0,r)

∥∥∥
Lp(B(x0,r))

≤ Cr
n
p+nλ ‖b‖

LC
{x0}
p,λ

. (1.9)

Our main results can be formulated as follows.

Theorem 1.10. Let x0 ∈ Rn, 1 ≤ p <∞, Ω ∈ Lq(Sn−1), 1 < q ≤ ∞ satisfies (1.3) and V ∈ RHn.
Let also, for q′ ≤ p, p 6= 1, the pair (ϕ1, ϕ2) satisfies the condition

∞∫
r

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p+1

dt ≤ Cϕ2(x0, r), (1.10)

and for 1 < p < q the pair (ϕ1, ϕ2) satisfies the condition

∞∫
r

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p−

n
q +1

dt ≤ C ϕ2(x0, r)r
n
q ,

where C does not depend on r.

Then the operators µLj,Ω, j = 1, . . . , n are bounded from LM
{x0}
p,ϕ1 to LM

{x0}
p,ϕ2 for p > 1 and from

LM
{x0}
1,ϕ1

to WLM
{x0}
1,ϕ2

for p = 1. Moreover, for p > 1∥∥µLj,Ωf∥∥LM{x0}
p,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

,

and for p = 1 ∥∥µLj,Ωf∥∥WLM
{x0}
1,ϕ2

. ‖f‖
LM

{x0}
1,ϕ1

.

Now using above Theorem 1.10, we get the boundedness of the operators µLj,Ω, j = 1, . . . , n on

the generalized vanishing local Morrey spaces V LM
{x0}
p,ϕ .
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Theorem 1.11. Let x0 ∈ Rn, 1 ≤ p <∞, Ω ∈ Lq(Sn−1), 1 < q ≤ ∞ satisfies (1.3) and V ∈ RHn.
Let also, for q′ ≤ p, p 6= 1, the pair (ϕ1, ϕ2) satisfies conditions (1.1)-(1.2) and

cδ :=

∞∫
δ

ϕ1 (x0, t)
t
n
p

t
n
p+1

dt <∞ (1.11)

for every δ > 0, and
∞∫
r

ϕ1(x0, t)
t
n
p

t
n
p+1

dt ≤ C0ϕ2(x0, r), (1.12)

and for 1 < p < q the pair (ϕ1, ϕ2) satisfies conditions (1.1)-(1.2) and also

cδ′ :=

∞∫
δ′

ϕ1 (x0, t)
t
n
p

t
n
p−

n
q +1

dt <∞

for every δ′ > 0, and
∞∫
r

ϕ1(x0, t)
t
n
p

t
n
p−

n
q +1

dt ≤ C0 ϕ2(x0, r)r
n
q ,

where C0 does not depend on r > 0.

Then the operators µLj,Ω, j = 1, . . . , n are bounded from V LM
{x0}
p,ϕ1 to V LM

{x0}
p,ϕ2 for p > 1 and

from V LM
{x0}
1,ϕ1

to WV LM
{x0}
1,ϕ2

for p = 1. Moreover, we have for p > 1∥∥µLj,Ωf∥∥V LM{x0}
p,ϕ2

. ‖f‖
V LM

{x0}
p,ϕ1

,

and for p = 1 ∥∥µLj,Ωf∥∥WVLM
{x0}
1,ϕ2

. ‖f‖
V LM

{x0}
1,ϕ1

.

Remark 1.12. Akbulut and Kuzu [2] have shown that the boundedness of the operator µLj,Ω
from generalized Morrey spaces in itself by considering the following conditions (1.13) and (1.14)
according to conditions (1.11) and (1.12)

cδ :=

∞∫
δ

ϕ1 (x, t)
dt

t
n
p+1

<∞ (1.13)

for every δ > 0, and
∞∫
r

ϕ1(x, t)

t
n
p+1

dt ≤ C0
ϕ2(x, r)

r
n
p

, (1.14)

where C0 does not depend on x ∈ Rn and r > 0. In fact, this difference stems from the definitions of
spaces. Because, in this paper the definitions of generalized local (central) and generalized vanishing
local Morrey spaces are given with the concept of normalized norm, but these definitions are not
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given in this [2]. In other words, if we use the definition of vanishing generalized Morrey space
in [2], then we use conditions (1.13) and (1.14) instead of conditions (1.11) and (1.12). Also, we
would like to remark that the main method employed in this paper is a combination of ideas and
arguments from [2].

Theorem 1.13. Suppose that x0 ∈ Rn, 1 < p < ∞, Ω ∈ Lq(Sn−1),1 < q ≤ ∞ satisfies (1.3) and

V ∈ RHn. Let b ∈ LC{x0}
p2,λ

(Rn), 1
p = 1

p1
+ 1

p2
and 0 ≤ λ < 1

n .

Let also, for q′ ≤ p the pair (ϕ1, ϕ2) satisfies the condition

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x0, τ) τ
n
p1

t
n
p1

+1−nλ dt ≤ Cϕ2 (x0, r) , (1.15)

and for p1 < q the pair (ϕ1, ϕ2) satisfies the condition

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x0, τ) τ
n
p1

t
n
p1
−nq +1−nλ dt ≤ Cϕ2 (x0, r) r

n
q ,

where C does not depend on r.

Then, the operators µLj,Ω,b, j = 1, . . . , n are bounded from LM
{x0}
p1,ϕ1 to LM

{x0}
p,ϕ2 . Moreover,∥∥µLj,Ω,bf∥∥LM{x0}

p,ϕ2

. ‖b‖
LC
{x0}
p2,λ

‖f‖
LM

{x0}
p1,ϕ1

.

Now using above Theorem 1.13, in the following theorem we also obtain the boundedness of the

operators µLj,Ω,b, j = 1, . . . , n on the vanishing generalized local Morrey spaces V LM
{x0}
p,ϕ .

Theorem 1.14. Suppose that x0 ∈ Rn, 1 < p < ∞, Ω ∈ Lq(Sn−1),1 < q ≤ ∞ satisfies (1.3) and

V ∈ RHn. Let b ∈ LC{x0}
p2,λ

(Rn), 1
p = 1

p1
+ 1

p2
and 0 ≤ λ < 1

n . Let also, for q′ ≤ p, the pair (ϕ1, ϕ2)

satisfies conditions (1.1)-(1.2) and

∞∫
r

(
1 + ln

t

r

)
ϕ1(x0, t)

t
n
p1

t
n
p1

+1−nλ dt ≤ C0ϕ2(x0, r), (1.16)

where C0 does not depend on r > 0,

lim
r→0

ln 1
r

ϕ2(x0, r)
= 0 (1.17)

and

cδ :=

∞∫
δ

(1 + ln |t|)ϕ1 (x0, t)
t
n
p1

t
n
p1

+1−nλ dt <∞ (1.18)

for every δ > 0, and for p1 < q the pair (ϕ1, ϕ2) satisfies conditions (1.1)-(1.2) and also

∞∫
r

(
1 + ln

t

r

)
ϕ1(x0, t)

t
n
p1

t
n
p1
−nq +1−nλ dt ≤ C0ϕ2(x0, r)r

n
q ,
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where C0 does not depend on r > 0,

lim
r→0

ln 1
r

ϕ2(x0, r)
= 0

and

cδ′ :=

∞∫
δ′

(1 + ln |t|)ϕ1 (x0, t)
t
n
p1

t
n
p1
−nq +1−nλ dt <∞

for every δ′ > 0.

Then the operators µLj,Ω,b, j = 1, . . . , n are bounded from V LM
{x0}
p1,ϕ1 to V LM

{x0}
p,ϕ2 . Moreover,∥∥µLj,Ω,bf∥∥V LM{x0}

p,ϕ2

. ‖b‖
LC
{x0}
p2,λ

‖f‖
V LM

{x0}
p1,ϕ1

.

Now, we give following Lemma 1.15 that we use in this paper.

Lemma 1.15. (see [35] page 143) Let f be a real-valued nonnegative function and measurable on
E. Then (

essinf
x∈E

f (x)

)−1

= esssup
x∈E

1

f (x)
. (1.19)

2 Proof of theorems

To prove the theorems (Theorems 1.10, 1.11, 1.13 and 1.14), we need the following lemmas.

Lemma 2.1. (see [2]) Let x0 ∈ Rn, 1 ≤ p < ∞, Ω ∈ Lq(S
n−1), 1 < q ≤ ∞ satisfies (1.3) and

V ∈ RHn.
If p > 1 and q′ ≤ p, then the inequality

∥∥µLj,Ωf∥∥Lp(B(x0,r))
. r

n
p

∞∫
2r

t−
n
p−1 ‖f‖Lp(B(x0,t))

dt (2.1)

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
If p > 1 and p < q, then the inequality

∥∥µLj,Ωf∥∥Lp(B(x0,r))
. r

n
p−

n
q

∞∫
2r

t
n
q−

n
p−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
Moreover, for q > 1 the inequality

∥∥µLj,Ωf∥∥WL1(B(x0,r))
. rn

∞∫
2r

t−n−1 ‖f‖L1(B(x0,t))
dt

holds for any ball B (x0, r) and for all f ∈ Lloc1 (Rn).



144 F. Gürbüz

We end this part by presenting the following lemma, which is the heart of the proofs of Theorems
1.13 and 1.14.

Lemma 2.2. Let x0 ∈ Rn, 1 < p < ∞, Ω ∈ Lq(Sn−1), 1 < q ≤ ∞ satisfies (1.3) and V ∈ RHn.

Let also b ∈ LC{x0}
p2,λ

(Rn), 1
p = 1

p1
+ 1

p2
and 0 ≤ λ < 1

n .

Then, for q′ ≤ p, the inequality

‖µLj,Ω,bf‖Lp(B(x0,r)) . ‖b‖LC{x0}
p2,λ

r
n
p

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1
−1‖f‖Lp1 (B(x0,t))dt (2.2)

holds for any ball B(x0, r) and for all f ∈ Llocp1
(Rn).

Also, for p1 < q, the inequality

‖µLj,Ω,bf‖Lp(B(x0,r)) . ‖b‖LC{x0}
p2,λ

r
n
p−

n
q

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1

+n
q−1‖f‖Lp1 (B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp1
(Rn).

Proof. Note that t > 2r and |x− x0| < r, we have t + |x− x0| < t + r < 3
2 t < 2t. Moreover, for

x ∈ B (x0, t), notice that Ω ∈ Lq(Sn−1), 1 < q ≤ ∞ satisfies (1.3). Then, we obtain ∫
B(x0,t)

|Ω (x− y)|q dy


1
q

=

 ∫
B(x−x0,t)

|Ω (z)|q dz


1
q

≤

 ∫
B(0,t+|x−x0|)

|Ω (z)|q dz


1
q

≤

 ∫
B(0,2t)

|Ω (z)|q dz


1
q

=

 2t∫
0

∫
Sn−1

|Ω (z′)|q dσ (z′) rn−1dr


1
q

= C ‖Ω‖Lq(Sn−1) |B (x0, 2t)|
1
q . (2.3)

Let 1 < p < ∞, b ∈ LC{x0}
p2,λ

(Rn) and 1
p = 1

p1
+ 1

p2
. Set B = B (x0, r) for the ball centered at x0

and of radius r and 2B = B (x0, 2r). We represent f as

f = f1 + f2, f1 (y) = f (y)χ2B (y) , f2 (y) = f (y)χ(2B)C (y) , r > 0,
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and have

µLj,Ω,bf (x) = (b (x)− bB)µLj,Ωf1 (x)− µLj,Ω ((b (·)− bB) f1) (x)

+ (b (x)− bB)µLj,Ωf2 (x)− µLj,Ω ((b (·)− bB) f2) (x)

≡ J1 + J2 + J3 + J4.

Hence we get ∥∥µLj,Ω,bf∥∥Lp(B)
≤ ‖J1‖Lp(B) + ‖J2‖Lp(B) + ‖J3‖Lp(B) + ‖J4‖Lp(B) .

By the Hölder’s inequality, the boundedness of µLj,Ω on Lp1 (see Theorem 1.6) and (1.9) it follows
that:

‖J1‖Lp(B) ≤
∥∥(b (·)− bB)µLj,Ωf1 (·)

∥∥
Lp(B)

≤ ‖(b (·)− bB)‖Lp2
(B)

∥∥µLj,Ωf1 (·)
∥∥
Lp1 (B)

≤ C ‖b‖
LC
{x0}
p2,λ

r
n
p2

+nλ ‖f1‖Lp1
(B)

= C ‖b‖
LC
{x0}
p2,λ

r
n
p2

+ n
p1

+nλ ‖f‖Lp1
(2B)

∞∫
2r

t−1− n
p1 dt

. ‖b‖
LC
{x0}
p2,λ

r
n
p

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt,

where 1
p = 1

p1
+ 1

p2
.

Using the boundedness of µLj,Ω on Lp (see Theorem 1.6), by the Hölder’s inequality and (1.9)
for J2 we have

‖J2‖Lp(B) ≤
∥∥µLj,Ω (b (·)− bB) f1

∥∥
Lp(B)

. ‖(b (·)− bB) f1‖Lp(B)

. ‖b (·)− bB‖Lp2
(B) ‖f1‖Lp1

(B)

. ‖b‖
LC
{x0}
p2,λ

r
n
p2

+ n
p1

+nλ ‖f‖Lp1 (2B)

∞∫
2r

t−1− n
p1 dt

. ‖b‖
LC
{x0}
p2,λ

r
n
p

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt,

where 1
p = 1

p1
+ 1

p2
.

For J3, it is known that x ∈ B, y ∈ (2B)
C

, which implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|.



146 F. Gürbüz

When q′ ≤ p1, by the Fubini’s theorem, the Hölder’s inequality and (2.3) we have

∣∣µLj,Ωf2 (x)
∣∣ ≤ c0 ∫

(2B)C

|Ω (x− y)| |f (y)|
|x0 − y|n

dy

≈
∞∫

2r

∫
2r<|x0−y|<t

|Ω (x− y)| |f (y)| dyt−1−ndt

.

∞∫
2r

∫
B(x0,t)

|Ω (x− y)| |f (y)| dyt−1−ndt

.

∞∫
2r

‖f‖Lp1
(B(x0,t))

‖Ω (x− ·)‖Lq(B(x0,t))
|B (x0, t)|1−

1
p1
− 1
q t−1−ndt

.

∞∫
2r

‖f‖Lp1
(B(x0,t))

t−
n
p1
−1dt. (2.4)

Hence, by the Hölder’s inequality, (2.4) and (1.9) we get

‖J3‖Lp(B) =
∥∥(b (·)− bB)µLj,Ωf2 (·)

∥∥
Lp(B)

= ‖(b (·)− bB)‖Lp2 (B)

∥∥µLj,Ωf2 (·)
∥∥
Lp1

(B)

≤ ‖(b (·)− bB)‖Lp2
(Rn) r

n
p1

∞∫
2r

t−
n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt

. ‖b‖
LC
{x0}
p2,λ

r
n
p+nλ

∞∫
2r

(
1 + ln

t

r

)
t−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt

. ‖b‖
LC
{x0}
p2,λ

r
n
p

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt,

where 1
p = 1

p1
+ 1

p2
.

Let 1 < p < q. Similarly to (2.3), when y ∈ B (x0, t), notice that ∫
B(x0,r)

|Ω (x− y)|q dy


1
q

≤ C ‖Ω‖Lq(Sn−1)

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q

. (2.5)
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When p1 < q, by the Fubini’s theorem, the Minkowski inequality and from (1.9), (2.5), we get

‖J3‖Lp(B) ≤

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |b (x)− bB | |Ω (x− y)| dy dt

tn+1

∣∣∣∣∣∣∣
p

dx


1
p

≤
∞∫

2r

∫
B(x0,t)

|f (y)| ‖(b (·)− bB) Ω (· − y)‖Lp(B) dy
dt

tn+1

≤
∞∫

2r

∫
B(x0,t)

|f (y)| ‖b (·)− bB‖Lp2
(B) ‖Ω (· − y)‖Lp1

(B) dy
dt

tn+1

. ‖b‖
LC
{x0}
p2,λ

r
n
p2

+nλ |B|
1
p1
− 1
q

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B) dy
dt

tn+1

. ‖b‖
LC
{x0}
p2,λ

r
n
p−

n
q +nλ

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
q dt

tn+1

. ‖b‖
LC
{x0}
p2,λ

r
n
p−

n
q +nλ

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp1 (B(x0,t))

dt

t
n
p1
−nq +1

. ‖b‖
LC
{x0}
p2,λ

r
n
p−

n
q

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1

+n
q−1 ‖f‖Lp1 (B(x0,t))

dt.

On the other hand, for J4, when q′ ≤ p, for x ∈ B by the Fubini’s theorem, applying the Hölder’s
inequality and from (2.3), (1.8), (1.9) we have∣∣µLj,Ω ((b (·)− bB) f2) (x)

∣∣ . ∫
(2B)C

|b (y)− bB | |Ω (x− y)| |f(y)|
|x−y|n dy

.
∫

(2B)C

|b (y)− bB | |Ω (x− y)| |f(y)|
|x0−y|n dy

≈
∞∫

2r

∫
2r<|x0−y|<t

|b (y)− bB | |Ω (x− y)| |f (y)| dy dt
tn+1

.

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |Ω (x− y)| |f (y)| dy dt
tn+1

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|Ω (x− y)| |f (y)| dy dt
tn+1



148 F. Gürbüz

.

∞∫
2r

∥∥(b (·)− bB(x0,t)

)
f
∥∥
Lp(B(x0,t))

‖Ω (· − y)‖Lq(B(x0,t))
|B (x0, t)|1−

1
p−

1
q dt
tn+1

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp1 (B(x0,t))
‖Ω (· − y)‖Lq(B(x0,t))

|B (x0, t)|1−
1
p1
− 1
q t−n−1dt

.

∞∫
2r

∥∥(b (·)− bB(x0,t)

)∥∥
Lp2

(B(x0,t))
‖f‖Lp1 (B(x0,t))

t−1− n
p1 dt

+ ‖b‖
LC
{x0}
p2,λ

∞∫
2r

(
1 + ln t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt

. ‖b‖
LC
{x0}
p2,λ

∞∫
2r

(
1 + ln t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt.

Then, we have

‖J4‖Lp(B) =
∥∥µLj,Ω (b (·)− bB) f2

∥∥
Lp(B)

. ‖b‖
LC
{x0}
p2,λ

r
n
p

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt.

When p1 < q, by the Minkowski inequality, applying the Hölder’s inequality and from (2.5), (1.8),
(1.9) we have

‖J4‖Lp(B) .

(∫
B

∣∣∣∣∣∞∫2r ∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| |Ω (x− y)| dy dt
tn+1

∣∣∣∣∣
p

dx

) 1
p

+

(∫
B

∣∣∣∣∣∞∫2r ∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt
tn+1

∣∣∣∣∣
p

dx

) 1
p

.
∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Lp(B(x0,t))
dy dt

tn+1

+
∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lp(B(x0,t))
dy dt

tn+1

. |B|
1
p−

1
q

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy dt

tn+1

+ |B|
1
p−

1
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy dt

tn+1

. r
n
p−

n
q

∞∫
2r

∥∥(b (·)− bB(x0,t)

)∥∥
Lp2 (B(x0,t))

‖f‖Lp1
(B(x0,t))

|B (x0, t)|1−
1
p
∣∣B (x0,

3
2 t
)∣∣ 1
q dt
tn+1

+r
n
p−

n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp1 (B(x0,t))

∣∣B (x0,
3
2 t
)∣∣ 1
q dt

t
n
p1

+1

. ‖b‖
LC
{x0}
p2,λ

r
n
p−

n
q

∞∫
2r

(
1 + ln t

r

)
tnλ−

n
p1

+n
q−1‖f‖Lp1

(B(x0,t))dt.
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Now combined by all the above estimates, we end the proof of Lemma 2.2. q.e.d.

The Proof of Theorem 1.10. Since f ∈ LM
{x0}
p,ϕ1 , by (1.19) and the non-decreasing, with

respect to t, of the norm ‖f‖Lp(B(x0,t))
, we get

‖f‖Lp(B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)τ
n
p
≤ esssup

0<t<τ<∞

‖f‖Lp(B(x0,t))

ϕ1(x0, τ)τ
n
p

≤ esssup
0<τ<∞

‖f‖Lp(B(x0,τ))

ϕ1(x0, τ)τ
n
p
≤ ‖f‖

LM
{x0}
p,ϕ1

.

For q′ ≤ p <∞, since (ϕ1, ϕ2) satisfies (1.10), we have

∞∫
r

‖f‖Lp(B(x0,t))
t−

n
p
dt

t

≤
∞∫
r

‖f‖Lp(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p

dt

t

≤ C ‖f‖
LM

{x0}
p,ϕ1

∞∫
r

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
p

dt

t

≤ C ‖f‖
LM

{x0}
p,ϕ1

ϕ2(x0, r).

Then by (2.1), we get∥∥µLj,Ωf∥∥LM{x0}
p,ϕ2

= sup
r>0

ϕ2 (x0, r)
−1 |B(x0, r)|−

1
p

∥∥µLj,Ωf∥∥Lp(B(x0,r))

≤ C sup
r>0

ϕ2 (x0, r)
−1

∞∫
r

‖f‖Lp(B(x0,t))
t−

n
p
dt

t

≤ C ‖f‖
LM

{x0}
p,ϕ1

.

For the case of 1 ≤ p < q, we can also use the same method, so we omit the details. This completes
the proof of Theorem 1.10.

The Proof of Theorem 1.11. The norm inequalities follow from Theorem 1.10. Thus we
only have to prove that

lim
r→0

Mp,ϕ1
(f ;x0, r) = 0 implies lim

r→0
Mp,ϕ2

(
µLj,Ωf ;x0, r

)
= 0 (2.6)

and
lim
r→0

Mp,ϕ1 (f ;x0, r) = 0 implies lim
r→0

MW
p,ϕ2

(
µLj,Ωf ;x0, r

)
= 0. (2.7)
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To show that
r
−n
p ‖µLj,Ωf‖Lp(B(x0,r))

ϕ2(x0,r)
< ε for small r, we split the right-hand side of (2.1):

r−
n
p

∥∥µLj,Ωf∥∥Lp(B(x0,r))

ϕ2(x0, r)
≤ C [Iδ0 (x0, r) + Jδ0 (x0, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x0, r) :=
1

ϕ2(x0, r)

δ0∫
r

t−
n
p−1 ‖f‖Lp(B(x0,t))

dt,

and

Jδ0 (x0, r) :=
1

ϕ2(x0, r)

∞∫
δ0

t−
n
p−1 ‖f‖Lp(B(x0,t))

dt,

and r < δ0 and the rest of the proof is the same as the proof of Theorem 6 in [2]. Thus, we can
prove that (2.6).

The proof of (2.7) is similar to the proof of (2.6). For the case of 1 ≤ p < q, we can also use the
same method, so we omit the details.

The Proof of Theorem 1.13. Since f ∈ LM{x0}
p1,ϕ1 , by (1.19) and the non-decreasing, with

respect to t, of the norm ‖f‖Lp1
(B(x0,t))

, we get

‖f‖Lp1
(B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)τ
n
p1

≤ esssup
0<t<τ<∞

‖f‖Lp1
(B(x0,t))

ϕ1(x0, τ)τ
n
p1

≤ esssup
0<τ<∞

‖f‖Lp1
(B(x0,τ))

ϕ1(x0, τ)τ
n
p1

≤ ‖f‖
LM

{x0}
p1,ϕ1

.

For q′ ≤ p <∞, since (ϕ1, ϕ2) satisfies (1.15), we have

∞∫
r

(
1 + ln

t

r

)
tnλ−

n
p1
−1‖f‖Lp1

(B(x0,t))dt

≤
∞∫
r

(
1 + ln

t

r

) ‖f‖Lp1
(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p1

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p1

t
n
p1

+1−nλ dt

≤ C ‖f‖
LM

{x0}
p1,ϕ1

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p1

t
n
p1

+1−nλ dt

≤ C ‖f‖
LM

{x0}
p1,ϕ1

ϕ2(x0, r).
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Then by (2.2), we get∥∥µLj,Ω,bf∥∥LM{x0}
p,ϕ2

= sup
r>0

ϕ2 (x0, r)
−1 |B(x0, r)|−

1
p

∥∥µLj,Ω,bf∥∥Lp(B(x0,r))

≤ C ‖b‖
LC
{x0}
p2,λ

sup
r>0

ϕ2 (x0, r)
−1

∞∫
r

(
1 + ln

t

r

)
tnλ−

n
p1
−1‖f‖Lp1 (B(x0,t))dt

≤ C ‖b‖
LC
{x0}
p2,λ

‖f‖
LM

{x0}
p1,ϕ1

.

For the case of p1 < q, we can also use the same method, so we omit the details. This completes
the proof of Theorem 1.13.

Remark 2.3. We point out that some ideas in the proofs of Theorems 1.10 and 1.13 are taken from
[3, 12, 13, 15, 16]. However, the reader can find that the main techniques and non-trivial estimates
used in the proofs of our conclusions are quite different from [3, 12, 13, 15, 16]. For example, using
inequality about the weighted Hardy operator Hw in [3, 12, 13, 15, 16], in this paper we only used
above a relationship between essential supremum and essential infimum (see Lemma 1.15).

The Proof of Theorem 1.14. The norm inequality having already been provided by Theorem
1.13, we only have to prove the implication

lim
r→0

r−
n
p1 ‖f‖Lp1

(B(x0,r))

ϕ1(x0, r)
= 0 implies lim

r→0

r−
n
p

∥∥∥µLj,Ω,bf∥∥∥
Lp(B(x0,r))

ϕ2(x0, r)
= 0. (2.8)

To show that

r−
n
p

∥∥∥µLj,Ω,bf∥∥∥
Lp(B(x0,r))

ϕ2(x0, r)
< ε for small r,

we use the estimate (2.2):

r−
n
p

∥∥∥µLj,Ω,bf∥∥∥
Lp(B(x0,r))

ϕ2(x0, r)
.
‖b‖

LC
{x0}
p2,λ

ϕ2(x0, r)

∞∫
r

(
1 + ln

t

r

)
tnλ−

n
p1
−1‖f‖Lp1 (B(x0,t))dt.

We take r < δ0, where δ0 will be chosen small enough and split the integration:

r−
n
p

∥∥∥µLj,Ω,bf∥∥∥
Lp(B(x0,r))

ϕ2(x0, r)
≤ C [Iδ0 (x0, r) + Jδ0 (x0, r)] , (2.9)

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x0, r) :=
1

ϕ2(x0, r)

δ0∫
r

(
1 + ln

t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1

(B(x0,t))
dt,
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and

Jδ0 (x0, r) :=
1

ϕ2(x0, r)

∞∫
δ0

(
1 + ln

t

r

)
tnλ−

n
p1
−1 ‖f‖Lp1 (B(x0,t))

dt

and r < δ0. Now we choose any fixed δ0 > 0 such that

t−
n
p1 ‖f‖Lp1

(B(x0,t))

ϕ1(x0, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (1.16) and (2.9). This allows to estimate the first term uniformly
in r ∈ (0, δ0):

CIδ0 (x0, r) <
ε

2
, 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0 (x0, r) ≤
cδ0 + c̃δ0 ln 1

r

ϕ2(x0, r)
‖f‖

LM
{x0}
p1,ϕ1

,

where cδ0 is the constant from (1.18) with δ = δ0 and c̃δ0 is a similar constant with omitted
logarithmic factor in the integrand. Then, by (1.17) we can choose small enough r such that

Jδ0 (x0, r) <
ε

2
,

which completes the proof of (2.8).
For the case of p1 < q, we can also use the same method, so we omit the details.
Now, we give the applications of Theorem 1.10, Theorem 1.11, Theorem 1.13 and Theorem 1.14

for the parametric Marcinkiewicz integral operator.
For 0 < ρ < n, in 1960, Hörmander [19] defined the parametric Marcinkiewicz integral operator

of higher dimension as

µρΩ (f) (x) =

 ∞∫
0

|F ρΩ,t (x) |2 dt

t2ρ+1

1/2

,

where

F ρΩ,t (x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
f (y) dy.

Let b be a locally integrable function, the commutator generated by parametric Marcinkiewicz
integral operator µρΩ and b is defined by

[b, µρΩ] (f) (x) =

 ∞∫
0

∣∣∣∣∣∣∣
∫

|x−y|≤t

Ω (x− y)

|x− y|n−ρ
[b (x)− b (y)] f (y) dy

∣∣∣∣∣∣∣
2

dt

t2ρ+1


1/2

0 < ρ < n.

It is well known that the operator µ1
Ω ≡ µΩ was first introduced by Stein in [30]. He proved that

if Ω satisfies above condition (c), then µΩ is the operator of strong type (p, p) for 1 < p ≤ 2 and
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of weak type (1, 1). On the other hand, in 1960, Hörmander [19] proved that if Ω satisfies above
condition (c), then for 0 < ρ < n, µρΩ is of strong type (p, p) for all 1 < p <∞. His conclusion can
be summarized as follows.

Theorem 2.4. Let 0 < ρ < n and f ∈ Lp (Rn). If Ω satisfies above conditions (a)-(c), then µρΩ
is bounded on Lp (Rn) for 1 < p < ∞. Moreover, there exists a constant C > 0 independent of f
such that

‖µρΩf‖Lp ≤ C ‖f‖Lp .

Lemma 2.5. Let 0 < ρ < n, x0 ∈ Rn, 1 ≤ p <∞ and Ω satisfies above conditions (a)-(c). Then,
for 1 < p <∞ the inequality

‖µρΩf‖Lp(B(x0,r))
. r

n
p

∞∫
2r

t−
n
p−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
Moreover, for p = 1 the inequality

‖µρΩf‖WL1(B(x0,r))
. rn

∞∫
2r

t−n−1 ‖f‖L1(B(x0,t))
dt

holds for any ball B (x0, r) and for all f ∈ Lloc1 (Rn).

Proof. The proof of Lemma 2.5 is obtained in the same manner in the proof of Lemma 2.1, directly.
q.e.d.

Lemma 2.6. Let 0 < ρ < n, x0 ∈ Rn, 1 < p < ∞ and Ω satisfies above conditions (a)-(c). Let

also b ∈ LC{x0}
p2,λ

(Rn), 1
p = 1

p1
+ 1

p2
and 0 ≤ λ < 1

n .
Then, the inequality

‖[b, µρΩ]f‖Lp(B(x0,r)) . ‖b‖LC{x0}
p2,λ

r
n
p

∞∫
2r

(
1 + ln

t

r

)
tnλ−

n
p1
−1‖f‖Lp1

(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp1
(Rn).

Proof. The proof of Lemma 2.6 is obtained in the same manner in the proof of Lemma 2.2, directly.
q.e.d.

Theorem 2.7. Let 0 < ρ < n, x0 ∈ Rn, 1 ≤ p < ∞ and Ω satisfies above conditions (a)-(c). Let

also, the pair (ϕ1, ϕ2) satisfies condition (1.10). Then the operator µρΩ is LM
{x0}
p,ϕ1 to LM

{x0}
p,ϕ2 for

p > 1 and from LM
{x0}
1,ϕ1

to WLM
{x0}
1,ϕ2

for p = 1. Moreover, for p > 1

‖µρΩf‖LM{x0}
p,ϕ2

. ‖f‖
LM

{x0}
p,ϕ1

,

and for p = 1
‖µρΩf‖WLM

{x0}
1,ϕ2

. ‖f‖
LM

{x0}
1,ϕ1

.
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Proof. The statement of Theorem 2.7 follows by Lemmas 2.5 and 1.15 in the same manner as in
the proof of Theorem 1.10. q.e.d.

Theorem 2.8. Let 0 < ρ < n, x0 ∈ Rn, 1 < p < ∞ and Ω satisfies above conditions (a)-(c). Let

also b ∈ LC{x0}
p2,λ

(Rn), 1
p = 1

p1
+ 1

p2
and 0 ≤ λ < 1

n . Let also, the pair (ϕ1, ϕ2) satisfies condition

(1.15). Then the operator [b, µρΩ] is bounded from LM
{x0}
p1,ϕ1 to LM

{x0}
p,ϕ2 . Moreover,

‖[b, µρΩ]f‖
LM

{x0}
p,ϕ2

. ‖b‖
LC
{x0}
p2,λ

‖f‖
LM

{x0}
p1,ϕ1

.

Proof. The statement of Theorem 2.8 follows by Lemmas 2.6 and 1.15 in the same manner as in
the proof of Theorem 1.13. q.e.d.

Theorem 2.9. Let 0 < ρ < n, x0 ∈ Rn, 1 ≤ p < ∞ and Ω satisfies above conditions (a)-(c).
Let also, the pair (ϕ1, ϕ2) satisfies conditions (1.1)-(1.2) and (1.11)-(1.12). Then the operator µρΩ
is bounded from V LM

{x0}
p,ϕ1 to V LM

{x0}
p,ϕ2 for p > 1 and from V LM

{x0}
1,ϕ1

to WV LM
{x0}
1,ϕ2

for p = 1.
Moreover, we have for p > 1

‖µρΩf‖V LM{x0}
p,ϕ2

. ‖f‖
V LM

{x0}
p,ϕ1

,

and for p = 1
‖µρΩf‖WVLM

{x0}
1,ϕ2

. ‖f‖
V LM

{x0}
1,ϕ1

.

Proof. The proof of Theorem 2.9 is obtained in the same manner in the proof of Theorem 1.11,
directly. q.e.d.

Theorem 2.10. Let 0 < ρ < n, x0 ∈ Rn, 1 < p < ∞ and Ω satisfies above conditions (a)-

(c). Let also b ∈ LC{x0}
p2,λ

(Rn), 1
p = 1

p1
+ 1

p2
and 0 ≤ λ < 1

n . Let also, the pair (ϕ1, ϕ2) satisfies

conditions (1.1)-(1.2) and (1.16)-(1.17)-(1.18). Then the operator [b, µρΩ] is bounded from V LM
{x0}
p1,ϕ1

to V LM
{x0}
p,ϕ2 . Moreover,

‖[b, µρΩ]f‖
V LM

{x0}
p,ϕ2

. ‖b‖
LC
{x0}
p2,λ

‖f‖
V LM

{x0}
p1,ϕ1

.

Proof. The proof of Theorem 2.10 is obtained in the same manner in the proof of Theorem 1.14,
directly. q.e.d.
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