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Abstract

In recent papers, new sets of Sheffer and Brenke polynomials based on higher order
Bell numbers, and several integer sequences related to them have been studied. In this
article new sets of logarithmic-Sheffer polynomials are introduced. Connection with Bell
numbers are shown.
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1 Introduction

In recent articles [9, 21], new sets of Sheffer [23] and Brenke [8] polynomials, based on higher
order Bell numbers [5, 17, 19, 20, 14, 21], have been studied. Furthermore, several integer
sequences associated [24] with the considered polynomials sets both of exponential [1, 2] and
logarithmic type have been introduced [9].
It is worth to note that exponential and logarithmic polynomials have been recently studied
in the multidimensional case [14, 15, 16].
In this article new sets of logarithmic-Sheffer polynomials are introduced.

2 Sheffer polynomials

The Sheffer polynomials {sn(x)} are introduced [23] by means of the exponential generating
function [25] of the type:

A(t) exp(xH(t)) =
∑
n=0

∞
sn(x)

tn

n!
, (2.1)

where

A(t) =

∞∑
n=0

an
tn

n!
, (a0 6= 0) ,

H(t) =

∞∑
n=0

hn
tn

n!
, (h0 = 0) .

(2.2)

According to a different characterization (see [22, p. 18]), the same polynomial sequence can
be defined by means of the pair (g(t), f(t)), where g(t) is an invertible series and f(t) is a
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delta series:

g(t) =

∞∑
n=0

gn
tn

n!
, (g0 6= 0) ,

f(t) =

∞∑
n=0

fn
tn

n!
, (f0 = 0, f1 6= 0) .

(2.3)

Denoting by f−1(t) the compositional inverse of f(t) (i.e. such that f
(
f−1(t)

)
= f−1 (f(t)) =

t), the exponential generating function of the sequence {sn(x)} is given by

1

g[f−1(t)]
exp

(
xf−1(t)

)
=

∞∑
n=0

sn(x)
tn

n!
, (2.4)

so that

A(t) =
1

g[f−1(t)]
, H(t) = f−1(t) . (2.5)

When g(t) ≡ 1, the Sheffer sequence corresponding to the pair (1, f(t)) is called the associated
Sheffer sequence {σn(x)} for f(t), and its exponential generating function is given by

exp
(
xf−1(t)

)
=

∞∑
n=0

σn(x)
tn

n!
. (2.6)

A list of known Sheffer polynomial sequences and their associated ones can be found in [7].

3 New Logarithmic-Sheffer polynomial sets

We introduce, for shortness, the following compact notation.
Put, by definition:

E0(t) := exp(t)− 1
E1(t) := E0(E0(t)) = exp(exp(t)− 1)− 1
. . . . . . . . .
Er(t) := E0(Er−1(t)) = exp(. . . exp(exp(t)− 1)− 1) · · · − 1 , [(r + 1)− times exp] ,

and in a similar way:

Λ0(t) := log(t+ 1)
Λ1(t) := Λ0(Λ0(t)) = log(log(t+ 1) + 1)
. . . . . . . . .
Λr(t) := Λ0(Λr−1(t)) = log (log (. . . (log(t+ 1) + 1) . . . ) + 1) , [(r + 1)− times log] .
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Remark 3.1. Note that, for every integers r, k, h,

Er(Λr(t)) = t , Λr(Er(t)) = t ,

(if k > h) Ek(Λh(t)) = Ek−h−1(t) , Eh(Λk(t)) = Λk−h−1(t) ,

(if k > h) Λk(Eh(t)) = Λk−h−1(t) , Λh(Ek(t)) = Ek−h−1(t) ,

eEr(t) = Er+1(t) + 1 , eΛr(t) = Λr−1(t) + 1 .

Remark 3.2. Note that the coefficients of the Taylor expansion of H1(t) are given by the

Bell numbers bn = b
[1]
n

E1(t) =

∞∑
n=1

b[1]
n

tn

n!
,

and, in general the coefficients of the Taylor expansion of Hr(t) are given by the higher order

Bell numbers b
[r]
n

Er(t) =

∞∑
n=1

b[r]
n

tn

n!
.

The higher order Bell numbers, also known as higher order exponential numbers, have been
considered in [17, 18, 19], and used in [21] in the framework of Brenke and Sheffer polyno-
mials.

Remark 3.3. Note that the coefficients of the Taylor expansion of Λ0(t) are given by the

logarithmic numbers l
[1]
n = (−1)n−1(n− 1)!

Λ0(t) =

∞∑
n=1

l[1]
n

tn

n!
=

∞∑
n=1

(−1)n−1(n− 1)!
tn

n!
,

and, in general the coefficients of the Taylor expansion of Λr−1(t) are given by the higher

order logarithmic numbers l
[r]
n

Λr−1(t) =
∞∑

n=1

l[r]
n

tn

n!
.

The higher order logarithmic numbers, which are the counterpart of the higher order Bell
(exponential) numbers, have been considered in [9], and used there in the framework of new
sets of Sheffer polynomials.
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3.1 The polynomials M(0)
k (x)

Therefore, we consider the Sheffer polynomials, defined through their generating function,
by putting

A(t) = et , H(t) = Λ0(t) ,

G(t, x) = exp [t+ xΛ0(x)] = et (t+ 1)x =

∞∑
k=0

M(0)
k (x)

tk

k!
,

(3.1)

3.2 A differential identity

Theorem 3.4. - For any k ≥ 0, the polynomials M(0)
k (x) satisfy the differential identity:

[M(0)
k (x)]′ =

k−1∑
h=0

(−1)h k!

(h+ 1) (k − h− 1)!
M(0)

k−h−1(x) . (3.2)

Proof. - Differentiating G(t, x) with respect to x , we have

∂G(t, x)

∂x
= G(t, x) log(t+ 1) , (3.3)

i.e.

∞∑
k=1

[M(0)
k (x)]′

tk

k!
=

∞∑
k=0

M(0)
k (x)

tk

k!

∞∑
k=0

(−1)k
tk+1

k + 1
=

∞∑
k=0

(−1)k+1 tk+1

(k + 1)
=

=

∞∑
k=0

k∑
h=0

(−1)hM(0)
k−h(x)

tk+1

(h+ 1) (k − h)!

and therefore:

∞∑
k=1

[M(0)
k (x)]′

tk

k!
=

∞∑
k=1

k−1∑
h=0

(−1)hM(0)
k−h−1(x)

k!

(h+ 1) (k − h− 1)!

tk

k!
,

so that our result follows by shifting the indexes in the last equation.

3.3 Recurrence relation for the M(0)
k (x)

Theorem 3.5. - For any k ≥ 0, the polynomials M(0)
k (x) satisfy the following recurrence

relation:

M(0)
k+1(x) =M(0)

k (x) + x

k∑
h=0

(−1)k−h k!

h!
M(0)

h (x) . (3.4)
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Proof. - Differentiating G(t, x) with respect to t , we have

∂G(t, x)

∂t
= G(t, x)

[
1 +

x

t+ 1

]
, (3.5)

and therefore

∞∑
k=0

M(0)
k+1(x)

tk

k!
=

∞∑
k=0

M(0)
k (x)

tk

k!
+ x

∞∑
k=0

M(0)
k (x)

tk

k!

∞∑
k=0

(−1)k k!
tk

k!
,

i.e.

∞∑
k=0

M(0)
k+1(x)

tk

k!
=

∞∑
k=0

M(0)
k (x)

tk

k!
+ x

∞∑
k=0

k∑
h=0

(
k

h

)
M(0)

h (x)(−1)k−h (k − h)! ,

so that the recurrence relation (3.4) follows.

3.4 Generating function’s PDE

Theorem 3.6. The generating function (3.1)2 satisfies the homogeneous linear PDE

(t+ 1 + x)
∂G(t, x)

∂t
= (t+ 1) log(t+ 1)

∂G(t, x)

∂x
. (3.6)

Proof. - By taking the ratio between the members of equations (3.3) and (3.5), we find
equation (3.6).

3.5 Shift operators

We recall that a polynomial set {pn(x)} is called quasi-monomial if and only if there exist
two operators P̂ and M̂ such that

P̂ (pn(x)) = npn−1(x) , M̂ (pn(x)) = pn+1(x) , (n = 1, 2, . . . ). (3.7)

P̂ is called the derivative operator and M̂ the multiplication operator, as they act in the
same way of classical operators on monomials.
This definition traces back to a paper by J.F. Steffensen [26], recently improved by G. Dattoli
[11] and widely used in several applications.
Y. Ben Cheikh [3] proved that every polynomial set is quasi-monomial under the action of
suitable derivative and multiplication operators. In particular, in the same article (Corollary
3.2), the following result is proved

Theorem 3.7. Let (pn(x)) denote a Boas-Buck polynomial set, i.e. a set defined by the
generating function

A(t)ψ(xH(t)) =

∞∑
n=0

pn(x)
tn

n!
, (3.8)
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where

A(t) =

∞∑
n=0

ant
n , (a0 6= 0) ,

ψ(t) =

∞∑
n=0

γnt
n , (γn 6= 0 ∀n) ,

(3.9)

with ψ(t) not a polynomial, and lastly

H(t) =

∞∑
n=0

hn t
n+1 , (h0 6= 0) . (3.10)

Let σ ∈ Λ(−) the lowering operator defined by

σ(1) = 0 , σ(xn) =
γn−1

γn
xn−1 , (n = 1, 2, . . . ). (3.11)

Put

σ−1(xn) =
γn+1

γn
xn+1 (n = 0, 1, 2, . . . ). (3.12)

Denoting, as before, by f(t) the compositional inverse of H(t), the Boas-Buck polynomial
set {pn(x)} is quasi-monomial under the action of the operators

P̂ = f(σ) , M̂ =
A′[f(σ)]

A[f(σ)]
+ xDxH

′[f(σ)]σ−1 , (3.13)

where prime denotes the ordinary derivatives with respect to t.

Note that in our case we are dealing with a Sheffer polynomial set, so that since we have
ψ(t) = et, the operator σ defined by equation (3.10) simply reduces to the derivative operator
Dx. Furthermore, we have:

f(t) = H−1(t) = et − 1 = E0(t) ,

A′(t)

A(t)
= 1 , H ′(t) =

1

t+ 1
,

and consequently

f(σ) = E0(Dx) ,

H ′[f(σ)] = H ′[E0(Dx)] =
1

E0(Dx) + 1
= e−Dx .

100



Theorem 3.8. The Bell-Sheffer polynomials {M(0)
k (x)} are quasi-monomial under the ac-

tion of the operators

P̂ = f(Dx) = E0(Dx) =

∞∑
k=0

Dk+1
x

(k + 1)!
,

M̂ = 1 + x e−Dx = 1 + x

∞∑
k=0

(−1)kDk
x

k!
.

(3.14)

3.6 Differential equation for the M(0)
k (x)

According to the results of monomiality principle [11], the quasi-monomial polynomials
{pn(x)} satisfy the differential equation

M̂P̂ pn(x) = n pn(x) . (3.15)

In the present case, recalling equations (3.15), we have

Theorem 3.9. The Bell-Sheffer polynomials {M(0)
k (x)} satisfy the differential equation

n−1∑
k=0

Dk+1
x

(k + 1)!
+ x

n−1∑
k=0

k∑
h=0

(−1)k−h
Dk+1

x

(h+ 1)! (k − h)!
M(0)

n (x) = nM(0)
n (x) . (3.16)

Proof - Equation (3.15), by using equations (3.14), becomes

∞∑
k=0

Dk+1
x

(k + 1)!
+ x

∞∑
k=0

k∑
h=0

(−1)k−h
Dk+1

x

(h+ 1)! (k − h)!
M(0)

n (x) = nM(0)
n (x)

and furthermore, for any fixed n, the last series expansion reduces to a finite sum, with upper
limit n− 1, when it is applied to a polynomial of degree n.

Remark 3.10. – Here we show the first few values of the Bell-Sheffer polynomialsM(0)
k (x),

defined by the generating function (3.1)2

M(0)
0 (x) = 1,

M(0)
1 (x) = x+ 1,

M(0)
2 (x) = x2 + x+ 1,

M(0)
3 (x) = x3 + 2x+ 1,

M(0)
4 (x) = x4 − 2x3 + 5x2 + 1,

M(0)
5 (x) = x5 − 5x4 + 15x3 − 15x2 + 9x+ 1.

Further values can be easily achieved by using Wolfram Alpha c©.
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4 Iterated Logarithmic-Sheffer polynomial sets

Here we iterate the procedure introduced in Sect. 3, by considering the Sheffer polynomial
sets defined by putting

A(t) = et , H(t) = Λ1(t) ,

G(t, x) = exp [t+ xΛ1(x)] =

∞∑
k=0

M(1)
k (x)

tk

k!
.

(4.1)

We find:

f(t) = H−1(t) = E1(t) ,
A′(t)

A(t)
= 1 ,

H ′(t) =
1

[Λ0(t) + 1] (t+ 1)
,

and consequently

f(σ) = E1(Dx) ,

H ′[f(σ)] = H ′[E1(Dx)] =
1

[Λ0(E1(Dx)) + 1] [E1(Dx) + 1]
=

=
1

[E0(Dx) + 1] [E1(Dx) + 1]
=

e−Dx

E1(Dx) + 1
.

Theorem 4.1. The Bell-Sheffer polynomials {M(1)
k (x)} are quasi-monomial under the ac-

tion of the operators

P̂ = E1(Dx) =

∞∑
k=0

b
[1]
k

Dk+1
x

(k + 1)!
,

M̂ = 1 + x
e−Dx

E1(Dx) + 1
.

(4.2)

4.1 Differential equation for the M(1)
k (x)

According to the results of monomiality principle [11, 12], the quasi-monomial polynomials
{pn(x)} satisfy the differential equation

M̂P̂ pn(x) = n pn(x) . (4.3)

In the present case, recalling equations (3.13), we have
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Theorem 4.2. The Bell-Sheffer polynomials {M(1)
k (x)} satisfy the differential equation[

1 + x
e−Dx

E1(Dx) + 1

]
E1(Dx)M(1)

n (x) = nM(1)
n (x) . (4.4)

Remark 4.3. – Here we show the first few values of the Bell-Sheffer polynomials M(1)
k (x),

defined by the generating function (4.1)2

M(1)
0 (x) = 1,

M(1)
1 (x) = x+ 1,

M(1)
2 (x) = x2 + 1,

M(1)
3 (x) = x3 − 3x2 + 4x+ 1,

M(1)
4 (x)) = x4 − 8x3 + 22x2 − 15x+ 1,

M(1)
5 (x) = x5 − 15x4 + 80x3 − 165x2 + 108x+ 1.

Further values can be easily achieved by using Wolfram Alpha c©.

5 The general case

In general, by putting

A(t) = et, H(t) = Λr(t) ,

G(t, x) = exp [t+ xΛr(t)] =

∞∑
k=0

M(r)
k (x)

tk

k!
,

(5.1)

we find:

f(t) = H−1(t) = Er(t) ,

A′(t)

A(t)
= 1 , H ′(t) =

[
r−1∏
`=0

[Λ`(t) + 1] (t+ 1)

]−1

,

and consequently

f(σ) = Er(Dx) ,

H ′[f(σ)] = H ′[Er(Dx)] =

[
r−1∏
`=0

[Λ`(Er(Dx)) + 1] [Er(Dx) + 1]

]−1

.

Recalling Remark 3.1, we find

Λ`(Er(Dx)) = Er−`−1(Dx) ,

r−1∏
`=0

[Er−`−1(Dx) + 1] [Er(Dx) + 1] =

r∏
`=0

[E`(Dx) + 1] ,
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so that we have the theorem:

Theorem 5.1. The Bell-Sheffer polynomials {M(r)
k (x)} are quasi-monomial under the ac-

tion of the operators

P̂ = Er(Dx) ,

M̂ = 1 + x

[
r∏

`=0

[E`(Dx) + 1]

]−1

.

(5.2)

5.1 Differential equation for the M(r)
k (x)

According to the results of monomiality principle [11], the quasi-monomial polynomials
{pn(x)} satisfy the differential equation

M̂P̂ pn(x) = n pn(x) . (5.3)

In the present case, recalling equations (5.2), we have

Theorem 5.2. The Bell-Sheffer polynomials {M(r)
k (x)} satisfy the differential equation1 + x

[
r∏

`=0

[E`(Dx) + 1]

]−1
Er(Dx) M(r)

n (x) = nM(r)
n (x) . (5.4)
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