Uniqueness for the Difference Monomials of P**-Adic Entire Functions**

Chao Meng¹ and Gang Liu²

¹College of Science, Shenyang Aerospace University, Shenyang 110136, China. ²College of Science, Shenyang Aerospace University, Shenyang 110136, China.

E-mail: mengchaosau@163.com¹, liugangljlp@126.com²

Abstract

The aim of this paper is to discuss the uniqueness of p-adic difference monomials $f^n f(z+c)$. The results obtained in this paper are the p-adic analogues and supplements of the theorems given by Qi, Yang and Liu [Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60(2010), 1739-1746], Wang, Han and Wen [Uniqueness theorems on difference monomials of entire functions, Abstract Appl. Anal. 2012(2012), Article ID 407351], Yang and Hua [Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22(1997), 395-406].

2010 Mathematics Subject Classification. **30D35**. 11S80 Keywords. Uniqueness, P-adic entire function, Difference monomial.

1 Introduction and main results

W.K. Hayman proposed the following well-known conjecture.

Hayman's Conjecture [\[10\]](#page-8-0). If an entire function satisties $f^n f' \neq 1$ for all positive integers $n \in N$, then f is a constant.

It has been verified by Hayman himself in [\[11\]](#page-8-1) for the case $n > 1$ and Clunie in [\[9\]](#page-8-2) for the case $n \geq 1$, respectively. In 1997, corresponding to the above famous conjecture of Hayman, Yang and Hua studied the unicity of differential monomials and obtained the following theorem.

Theorem 1.1. [\[24\]](#page-9-0) Let f and g be two nonconstant entire functions, $n \geq 6$ a positive integer. If $f^n f'$ and g^ng' share 1 CM, then either $f(z) = c_1e^{cz}$, $g(z) = c_2e^{-cz}$, where c_1 , c_2 , c are three constants satisfying $(c_1c_2)^{n+1}c^2 = -1$, or $f = tg$ for a constant t such that $t^{n+1} = 1$.

In 2010, Qi, Yang and Liu studied the uniqueness of difference monomials and obtained the following result.

Theorem 1.2. [\[21\]](#page-9-1) Let f and g be transcendental entire functions with finite order, c a nonzero complex constant, and $n \geq 6$ an integer. If $f^n f(z+c)$ and $g^n g(z+c)$ share 1 CM, then $fg = t_1$ or $f = t_2g$ for some constants t_1 and t_2 which satisfy $t_1^{n+1} = 1$ and $t_2^{n+1} = 1$.

In 2012, Wang, Han and Wen proved the following theorem.

Theorem 1.3. [\[22\]](#page-9-3) Let f and q be transcendental entire functions with finite order, c a nonzero complex constant, and $n \ge 6$ an integer. If $E_3(1, f^n f(z+c)) = E_3(1, g^n g(z+c))$, then $fg = t_1$ or $f = t_2 g$ for some constants t_1 and t_2 which satisfy $t_1^{n+1} = 1$ and $t_2^{n+1} = 1$.

In recent years, similar problems are investigated in non-Archimedean fields. Now let K be an algebraically closed field of characteristic zero, complete for a non-Archimedean absolute value. We denote by $A(K)$ the ring of entire functions in K and by $M(K)$ the field of meromorphic functions. The value sharing problems for meromorphic functions in K was investigated first in [\[1\]](#page-8-3) and [\[13\]](#page-8-4). In recent years, numerous interesting results were obtained in the investigation of the value-sharing problem for meromorphic function in K [\[2\]](#page-8-5)-[\[4\]](#page-8-6), [\[6\]](#page-8-7)-[\[8\]](#page-8-8), [\[16\]](#page-8-9)-[\[18\]](#page-8-10), [\[19\]](#page-9-4)[\[20\]](#page-9-5)[\[23\]](#page-9-6).

Let us recall some basic definitions. For $f \in M(K)$ and $S \subset \hat{K}$, we define

$$
E_f(S) = \bigcup_{a \in S} \{ (z, m) | f(z) = a \quad with \ multiplicity \quad m \},\
$$

and we denote by $E_f^k(a)$ the set of all a-points of f where an a -point with mutiplicity m is counted m times if $m \leq k$ and $k + 1$ times if $m > k$. It's obvious that if $E_f^k(a) = E_g^k(a)$, then z_0 is a zero of $f - a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g - a$ with multiplicity $m(\leq k)$ and z_0 is a zero of $f - a$ with multiplicity $m(> k)$ if and only if it is a zero of $g - a$ with multiplicity $n(> k)$, where m is not necessarily equal to n .

Let F be a nonempty subset of $M(K)$. Two functions f, g of F are said to share S, counting multiplicity(share S CM), if $E_f(S) = E_g(S)$.

In the present paper, we discuss the uniqueness problem of p-adic difference monomials $f^n f(z+)$ c) and prove the following theorems.

Theorem 1.4. Let f and g be nonconstant p-adic entire functions, $n \geq 8$ an integer. If $E_{f^n f(z+c)}^2(1)$ = $E^2_{g^n g(z+c)}(1)$, then $f = tg$, where t is a constant and $t^{n+1} = 1$.

Theorem 1.5. Let f and g be nonconstant p-adic entire functions, $n \geq 8$ an integer. If $E_{f^n f(z+c)}(1) =$ $E_{g^ng(z+c)}(1)$, then $f = tg$, where t is a constant and $t^{n+1} = 1$.

The main tool of the proof is the p-adic Nevanlinna theory [\[12\]](#page-8-11)[\[13\]](#page-8-4)[\[14\]](#page-8-12)[\[15\]](#page-8-13). So in the next section, we establish the basic properties of the characteristic functions of p-adic meromorphic functions.

2 Counting functions and Characteristic functions of p-adic meromorphic functions

Let f be a nonconstant entire function on K and $b \in K$. Then we can write f in the following form

$$
f = \sum_{n=q}^{\infty} b_n (z - b)^n,
$$

Uniqueness for the Difference Monomials of P-Adic Entire Functions 69

where $b_q \neq 0$ and we denote $\omega_f^0(b) = q$. For a point $a \in K$, we define the function $\omega_f^a : K \to N$ by $\omega_f^a(b) = \omega_{f-a}^0(b).$

For a real number ρ with $0 < \rho \leq r$. Take $a \in K$ and we set

$$
N_f(a,r) = \frac{1}{\ln \rho} \int_{\rho}^{r} \frac{n_f(a,x)}{x} dx,
$$

where $n_f(a, x)$ is the number of solutions of the equation $f(z) = a$ (counting multiplicities) in the disk $D_x = \{z \in K : |z| \le x\}$. If $a = 0$, the we set $N_f(r) = N_f(0, r)$.

If l is a positive integer, then we define

$$
N_{l,f}(a,r) = \frac{1}{ln\rho} \int_{\rho}^{r} \frac{n_{l,f}(a,x)}{x} dx,
$$

where $n_{l,f}(a,x) = \sum_{|z| \leq r} \min\{\omega_{f-a}(z), l\}.$

Let k be a positive integer. Define the function ω_f^k from K into N by $\omega_f^k(z)=0$ if $\omega_f^0(z)>k$ and $\omega_{f}^{k}(z)=\omega_{f}^{0}(z)$ if $\omega_{f}^{0}(z)\leq k.$ And $n_{f}^{\leq k}(r)=\sum_{|z|\leq r}\omega_{f}^{\leq k}(z)$, $n_{f}^{\leq k}(a,r)=n_{f-a}^{\leq k}(r).$

Define

$$
N_f^{\leq k}(a,r) = \frac{1}{\ln \rho} \int_{\rho}^r \frac{n_f^{\leq k}(a,x)}{x} dx,
$$

If $a=0$, then we set $N_f^{\leq k}(r)=N_f^{\leq k}(0,r).$ Set

$$
N_{l,f}^{\leq k}(a,r) = \frac{1}{ln\rho} \int_{\rho}^{r} \frac{n_{l,f}^{\leq k}(a,x)}{x} dx,
$$

where $n \in \mathbb{R}^{\leq k}$ $(a, x) = \sum_{|z| \leq r} \min\{\omega \leq k}^{\leq k} (z), l\}$. In a similar way, we can define $N_f^{< k} (a, r)$, $N_{l,f}^{< k} (a, r)$, $N_f^{>k}(a,r)$, $N_f^{\geq k}(a,r)$, $N_{l,f}^{\geq k}(a,r)$ and $N_{l,f}^{>k}(a,r)$.

Recall that for a nonconstant entire function $f(z)$ on K, represented by the power series

$$
f(z) = \sum_{n=0}^{\infty} a_n z^n
$$

for each $r > 0$, we define $|f|_r = \max\{|a_n|r^n, 0 \le n < \infty\}.$

Now let $f = \frac{f_1}{f_2}$ be a nonconstant meromorphic function on K, where f_1 and f_2 are entire functions on K having no common zeros. We set $|f|_r = \frac{|f_1|}{|f_2|}$ $\frac{|f_1|}{|f_2|}$. For a point $a \in K \cup \{\infty\}$, we define the function $\omega_f^a : K \to N$ by $\omega_f^a(b) = \omega_{f_1 - af_2}^0(b)$ with $a \neq \infty$ and $\omega_f^{\infty}(b) = \omega_{f_2}^0(b)$.

Taking $a \in K$, we denote the counting function of zeros of $f - a$, counting multiplicity, in the disk $D_r = \{z \in K : |z| \leq r\}$, i.e. we set $N_f(a,r) = N_{f_1 - af_2}(r)$ and set $N_f(\infty,r) = N_{f_2}(r)$. In a similar way, for nonconstant meromorphic function on K, we can define $N_f^{< k}(a,r)$, $N_{l,f}^{< k}(a,r)$, $N_f^{>k}(a,r)$, $N_f^{\geq k}(a,r)$, $N_{l,f}^{\geq k}(a,r)$ and $N_{l,f}^{>k}(a,r)$.

We define

$$
m_f(\infty, r) = \max\{0, \log|f|_r\}, \quad m_f(a, r) = m_{\frac{1}{f-a}}(\infty, r),
$$

and then characteristic function of f by

$$
T_f(r) = m_f(\infty, r) + N_f(\infty, r).
$$

Thus we get

$$
N_f(a,r) + m_f(a,r) = T_f(r) + O(1),
$$

where $a \in K \cup \{\infty\}$ and

$$
T_f(r) = T_{\frac{1}{f}}(r) + O(1), \quad m_{\frac{f^{(k)}}{f}}(\infty, r) = O(1).
$$

3 Some Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 3.1. [\[12\]](#page-8-11)[\[5\]](#page-8-14) Let f be a nonconstant meromorphic function on K and let $a_1, a_2,...,a_q$ be distinct points of K . Then

$$
(q-1)T_f(r) \leq N_{1,f}(\infty,r) + \sum_{i=1}^q N_{1,f}(a_i,r) - N_{0,f'}(r) - logr + O(1).
$$

Lemma 3.2. Let f and g be nonconstant meromorphic functions on K. If $E_f^2(1) = E_g^2(1)$, then one of the following three cases holds:

(i)
$$
T_f(r) \leq N_{1,f}(0,r) + N_{1,f}^{\geq 2}(0,r) + N_{1,g}(0,r) + N_{1,f}^{\geq 2}(0,r) + N_{1,f}(\infty,r) + N_{1,f}^{\geq 2}(\infty,r) + N_{1,g}(\infty,r) + N_{1,g}^{\geq 2}(\infty,r) - logr + O(1),
$$

$$
(ii) \t f = g, \t (iii) \t fg = 1.
$$

Proof. Set

$$
H = \left(\frac{f''}{f'} - \frac{2f'}{f-1}\right) - \left(\frac{g''}{g'} - \frac{2g'}{g-1}\right).
$$

First we suppose that $H \not\equiv 0$. It's obvious that $m_H(\infty, r) = O(1)$, and

$$
N_f^{\leq 1}(1,r) \leq N_H(0,r) \leq T_H(r) + O(1) \leq N_H(\infty,r) + O(1)
$$

\n
$$
\leq N_{1,f}^{\geq 2}(0,r) + N_{1,g}^{\geq 2}(0,r) + N_{1,f}^{\geq 2}(\infty,r) + N_{1,g}^{\geq 2}(\infty,r)
$$

\n
$$
+ N_{1,0,f'}(r) + N_{1,0,g'}(r) + O(1),
$$
\n(1.1)

Uniqueness for the Difference Monomials of P-Adic Entire Functions 71

where $N_{1,0,f'}(r)$ is the counting function of those zeros of f' that are not zeros of $f(f-1)$, while each zero is counted with multiplicity 1.

On the other hand, by Lemma 3.1, we have

$$
T_f(r) \le N_{1,f}(\infty,r) + N_{1,f}(0,r) + N_{1,f}(1,r) - N_{0,f'}(r) - logr + O(1).
$$
 (1.2)

Since $E_f^2(1)=E_g^2(1)$, we note that

$$
N_{1,f}(1,r) = N_f^{\leq 1}(1,r) + N_{1,f}^{\geq 2}(1,r) = N_f^{\leq 1}(1,r) + N_{1,g}^{\geq 2}(1,r),
$$
\n(1.3)

Then

$$
T_f(r) \le N_{1,f}(\infty, r) + N_{1,f}(0,r) + N_f^{\le 1}(1,r)
$$

+
$$
N_{1,g}^{\ge 2}(1,r) - N_{0,f'}(r) - \log r + O(1).
$$
 (1.4)

Next we consider $N^{\geq 2}_{1,g}(1,r)$.

$$
N_{g'}(0,r) - N_g(0,r) + N_{1,g}(0,r) = N_{\frac{g'}{g}}(0,r) \le T_{\frac{g'}{g}}(r) + O(1)
$$

=
$$
N_{\frac{g'}{g}}(\infty,r) + m_{\frac{g'}{g}}(\infty,r) + O(1) = N_{1,g}(\infty,r) + N_{1,g}(0,r) + O(1).
$$
 (1.5)

So

$$
N_{g'}(0,r) \le N_{1,g}(\infty,r) + N_g(0,r) + O(1).
$$
\n(1.6)

Moreover

$$
N_{0,g'}(r) + N_{1,g}^{\geq 2}(1,r) + N_g^{\geq 2}(0,r) - N_{1,g}^{\geq 2}(0,r) \leq N_{g'}(0,r) ,\qquad (1.7)
$$

where $N_{0,g'}(r)$ is the counting function of those zeros of g' that are not zeros of $g(g-1)$. From (6) and (7) , we get

$$
N_{0,g'}(r) + N_{1,g}^{\geq 2}(1,r) \leq N_{1,g}(\infty,r) + N_{1,g}(0,r) + O(1).
$$
 (1.8)

Combining (1) , (4) and (8) , we obtain

$$
T_f(r) \leq N_{1,f}(0,r) + N_{1,f}^{\geq 2}(0,r) + N_{1,g}(0,r) + N_{1,g}^{\geq 2}(0,r) + N_{1,f}(\infty,r) + N_{1,f}^{\geq 2}(\infty,r) + N_{1,g}(\infty,r) + N_{1,g}^{\geq 2}(\infty,r) - logr + O(1).
$$

Suppose $H \equiv 0$. Then by integration we get

$$
f \equiv \frac{ag+b}{cg+d},\tag{1.9}
$$

where *a*, *b*, *c* and *d* are constants and $ad - bc \neq 0$. So $T_f(r) = T_g(r) + O(1)$.

We now consider the following cases.

72 C. Meng and G. Liu

Case 1. Let $ac \neq 0$. Then

$$
f - \frac{a}{c} = \frac{bc - ad}{c(cg + d)}.
$$
\n
$$
(1.10)
$$

So, By Lemma 3.1, we get

$$
T_f(r) \le N_{1,f}(\infty, r) + N_{1,f-\frac{a}{c}}(0, r) + N_{1,f}(0, r) + O(1)
$$

= N_{1,f}(0, r) + N_{1,f}(\infty, r) + N_{1,g}(\infty, r) + O(1),

which implies (i) .

Case 2. $a \neq 0$ and $c = 0$. Then $f = \frac{a}{d}g + \frac{b}{d}$. If $b \neq 0$, by Lemma 3.1,

$$
T_f(r) \le N_{1,f}(\infty, r) + N_{1,f-\frac{b}{d}}(0,r) + N_{1,f}(0,r) + O(1)
$$

= $N_{1,f}(\infty, r) + N_{1,g}(0,r) + N_{1,f}(0,r) + O(1)$,

which implies (i) .

If $b = 0$, then $f = \frac{ag}{d}$. If $\frac{a}{d} = 1$, we obtain (ii). If $\frac{a}{d} \neq 1$, then by $E_f^2(1) = E_g^2(1)$ we get $f \neq 1$ and $f \neq \frac{a}{d}$. According to Lemma 3.1, we have

$$
T_f(r) \leq N_{1,f}(\infty,r) + N_{1,f}(1,r) + N_{1,f}(\frac{a}{d},r) + O(1) = N_{1,f}(\infty,r) + O(1),
$$

which implies (i) .

Case 3.
$$
a = 0
$$
 and $c \neq 0$. Then $f = \frac{b}{cg+d}$. If $d \neq 0$, by Lemma 3.1,
\n
$$
T_f(r) \leq N_{1,f}(\infty, r) + N_{1,f-\frac{b}{d}}(0, r) + N_{1,f}(0, r) + O(1)
$$
\n
$$
= N_{1,f}(\infty, r) + N_{1,g}(0, r) + N_{1,f}(0, r) + O(1),
$$

which implies (i) .

If $d=0$, then $f=\frac{b}{cg}$. If $\frac{b}{c}=1$, we obtain (iii). If $\frac{b}{c}\neq 1$, then by $E_f^2(1)=E_g^2(1)$ we get $f\neq 1$ and $f \neq \frac{b}{c}$. According to Lemma 3.1, we have

$$
T_f(r) \leq N_{1,f}(\infty,r) + N_{1,f}(1,r) + N_{1,f}(\frac{b}{c},r) + O(1) = N_{1,f}(\infty,r) + O(1),
$$

which implies (i) . The proof of Lemma 3.2 is complete.

Lemma 3.3. [\[16\]](#page-8-9) Let f and g be nonconstant meromorphic functions on K. If $E_f(1) = E_g(1)$, then one of the following three cases holds:

(i)
$$
T_f(r) \le N_{1,f}(0,r) + N_{1,f}^{\geq 2}(0,r) + N_{1,g}(0,r) + N_{1,g}^{\geq 2}(0,r) + N_{1,f}(\infty,r)
$$

 $+ N_{1,f}^{\geq 2}(\infty,r) + N_{1,g}(\infty,r) + N_{1,g}^{\geq 2}(\infty,r) - logr + O(1),$
\n(ii) $f = g$, (iii) $fg = 1$.

Uniqueness for the Difference Monomials of P-Adic Entire Functions 73

Lemma 3.4. [\[2\]](#page-8-5) Let f be a nonconstant p-adic meromorphic function. Then

$$
m_{\frac{f(z+c)}{f}}(\infty,r) = O(1); T_{f(z+c)}(r) = T_{f(z)}(r) + O(1).
$$

Lemma 3.5. Let *f* be a p-adic entire function, $c \in K$. If $F(z) = f^{n}(z)f(z + c)$, then

$$
T(r, F) = (n + 1)T(r, f) + O(1).
$$

Proof. We can deduce form Lemma 3.4 that

$$
(n+1)T_f(r) = T_{f^{n+1}}(r) + O(1) = m_{f^{n+1}}(r) + O(1)
$$

\n
$$
\leq m_{\frac{f^{n+1}}{F}}(r) + m_F(r) + O(1) = m_{\frac{f}{f(z+c)}}(r) + m_F(r) + O(1)
$$

\n
$$
\leq T_F(r) + O(1).
$$

Therefore

$$
(n+1)T_f(r) \le T_F(r) + O(1).
$$

On the other hand, Lemma 3.4 implies

$$
T_F(r) \leq T_{f^n}(r) + T_{f(z+c)}(r) = nT_f(r) + T_f(r) + O(1) = (n+1)T_f(r) + O(1).
$$

We obtain the conclusion of Lemma 3.5.

4 Proof of Theorem 1.4

Let

$$
F = fn f(z + c), G = gn g(z + c).
$$
 (1.11)

Then it is easy to verify $E_F^2(1) = E_G^2(1)$. Suppose the Case (i) in Lemma 3.2 holds

$$
T_F(r) \le N_{1,F}(0,r) + N_{1,F}^{\geq 2}(0,r) + N_{1,G}(0,r) + N_{1,G}^{\geq 2}(0,r) - \log r + O(1). \tag{1.12}
$$

From Lemma 3.4, we have

$$
N_{1,F}(0,r) + N_{1,F}^{\geq 2}(0,r) \leq 2N_{1,F}(0,r)
$$

= 2N_{1,f}(0,r) + 2N_{1,f(z+c)}(0,r) \leq 4T_f(r), (1.13)

and

$$
N_{1,G}(0,r) + N_{1,G}^{\geq 2}(0,r) \leq 2N_{1,G}(0,r)
$$

= 2N_{1,g}(0,r) + 2N_{1,g(z+c)}(0,r) \leq 4T_g(r). (1.14)

From (12), (13), (14) and Lemma 3.5, we deduce

$$
T_F(r) = (n+1)T_f(r) \le 4T_f(r) + 4T_g(r) + O(1),
$$
\n(1.15)

that is,

$$
(n-3)T_f(r) \le 4T_g(r) + O(1). \tag{1.16}
$$

Similarly we can deduce

$$
(n-3)T_g(r) \le 4T_f(r) + O(1). \tag{1.17}
$$

Combining (16) and (17), we have

$$
(n-7)T_f(r) + (n-7)T_g(r) \le O(1),\tag{1.18}
$$

which contradicts the hypothesis $n \geq 8$. Therefore $F = G$ or $FG = 1$.

If $F = G$, that is

$$
f^{n}(z)f(z+c) = g^{n}(z)g(z+c).
$$
 (1.19)

Let $h(z) = \frac{f(z)}{g(z)}$. We have

$$
h^{n}(z)h(z+c) = 1.
$$
\n(1.20)

If $h(z)$ is not a constant, then Lemma 3.4 implies

$$
nT_h(r) = T_{h(z+c)}(r) + O(1) = T_h(r) + O(1), \qquad (1.21)
$$

which is a contadiction with $n \geq 8$. Thus $h(z) = t$, where t is a constant. From (20) we have $f = tg$ and $t^{n+1} = 1$.

If $FG = 1$, that is

$$
f^{n}(z)f(z+c)g^{n}(z)g(z+c) = 1.
$$
\n(1.22)

Let $\omega(z) = f(z)g(z)$. We have

$$
\omega^n(z)\omega(z+c) = 1.
$$
\n(1.23)

By a similar discussion, we can show that ω is a constant. Therefore $fg = \omega$ and $\omega^{n+1} = 1$. This is a contradiction because nonconstant entire function on K have at least one zero and hence, if fg is a constant, at least one of the two functions f or g is meromorphic, but not entire. This completes the proof of Theorem 1.4.

5 Proof of Theorem 1.5

Let

$$
F = fn f(z + c), G = gn g(z + c).
$$
 (1.24)

Then it is easy to verify $E_F(1) = E_G(1)$. Suppose the Case (i) in Lemma 3.3 holds

$$
T_F(r) \le N_{1,F}(0,r) + N_{1,F}^{\geq 2}(0,r) + N_{1,G}(0,r) + N_{1,G}^{\geq 2}(0,r) - \log r + O(1).
$$
 (1.25)

Similar to the arguments in Theorem 1.4, we see that Theorem 1.5 holds.

References

- [1] W.W. Adam and E.G. Straus, Non-Archimedean analytic functions taking the same values at the same points, Illinois. J. Math. 15(1971), 418-424.
- [2] V.H. An and H.H. Khoai, Value sharing problems for p-adic meromorphic functions and their difference polynomials, Ukranian Math. J. 64(2012), 147-164.
- [3] K. Boussaf, A. Escassut and J. Ojeda, New results on applications of Nevanlinna methods to value sharing problems, P-adic Numbers, Ultrametric Analysis and Applications, 5(2013), 278-301.
- [4] K. Boussaf, A. Escassut and J. Ojeda, P-adic meromorphic functions sharing a small function, Bull. Sci. Math. 136(2012), 172-200.
- [5] A. Boutabaa, Theorie de Nevanlinna p-adique, Manuscript Math. 67(1990), 251-269.
- [6] A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag. Math. 8(1997), 145-155.
- [7] A. Boutabaa and A. Escassut, URS and URSIMS for p-adic meromorphic functions inside a disk, Proc. Edinburgh Math. Soc. 44(2001), 485-504.
- [8] W. Cherry and C.C. Yang, Uniqueness of non-archimedean entire functions sharing sets of values counting multiplicities, Proc. Amer. Math. Soc. 127(1998), 967-971.
- [9] J. Clunie, On a result of Hayman, J. Lond. Math. Soc. 42(1967), 389-392.
- [10] W.K. Hayman, Reserch problems in function theory, University of London, The Athlone Press, London, 1967.
- [11] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70(1959), 9-42.
- [12] P.C. Hu, and C.C. Yang, Meromorphic functions over non-archimedean fields, Kluwer, Dordrecht, 2000.
- [13] H.H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50(1983), 695-711.
- [14] H.H. Khoai and , Value distribution for p-adic hypersurfaces, Taiwanese J. Math. 7(2003), 51-67.
- [15] H.H. Khoai and M.V. Quang, On p-adic Nevanlinna theory, Lecture Notes in Mathematics, Vol. 1351, Springer-Verlag, Berlin, 1988, 146-158.
- [16] H.H. Khoai, Vu Hoai An and N.X. Lai, Value sharing problem and uniqueness for p-adic meromorphic functions, Annales Univ. Sci. Budapest. Sect. Comp.38(2012), 57-70.
- [17] J. Ojeda, On Hayman's conjecture over a p-adic field, Taiwanese J. Math. 12(2008), 2295-2313.
- [18] J. Ojeda, Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances in p-adic and non-Archimedean Analysis, Contemporary Mathematics, 508(2010), 161-179.
- [19] J. Ojeda, Uniqueness for ultrametric analytic functions, Bull. Math. Soc. Sci. Math. Roumanie. 54(2011), 153-165.
- [20] P.D. Tuan and N.T. Quang, Picad values and uniqueness for p-adic meromorphic functions, Acta Math Vietnam. 41(2016), 563-582.
- [21] X.G. Qi, L.Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions concerning the difference operator, Comput. Math. Appl. 60(2010), 1739-1746.
- [22] G. Wang, D.L. Han and Z.T. Wen, Uniqueness theorems on difference monomials of entire functions, Abstract Appl. Anal. 2012(2012), Article ID 407351.
- [23] J.T.Y. Wang, Uniqueness polynomials and bi-unique range sets, Acta Arith. 104(2002), 183- 200.
- [24] C.C. Yang and X.H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22(1997), 395-406.