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Abstract

The aim of this paper is to discuss the uniqueness of p-adic difference monomials fnf(z+c). The
results obtained in this paper are the p-adic analogues and supplements of the theorems given
by Qi, Yang and Liu [Uniqueness and periodicity of meromorphic functions concerning the dif-
ference operator, Comput. Math. Appl. 60(2010), 1739-1746], Wang, Han and Wen [Uniqueness
theorems on difference monomials of entire functions, Abstract Appl. Anal. 2012(2012), Arti-
cle ID 407351], Yang and Hua [Uniqueness and value-sharing of meromorphic functions, Ann.
Acad. Sci. Fenn. Math. 22(1997), 395-406].
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1 Introduction and main results
W.K. Hayman proposed the following well-known conjecture.

Hayman’s Conjecture [10]. If an entire function satisties fnf ′ 6= 1 for all positive integers
n ∈ N , then f is a constant.

It has been verified by Hayman himself in [11] for the case n > 1 and Clunie in [9] for the case
n ≥ 1, respectively. In 1997, corresponding to the above famous conjecture of Hayman, Yang and
Hua studied the unicity of differential monomials and obtained the following theorem.

Theorem 1.1. [24] Let f and g be two nonconstant entire functions, n ≥ 6 a positive integer. If fnf ′

and gng′ share 1 CM, then either f(z) = c1e
cz , g(z) = c2e

−cz , where c1, c2, c are three constants
satisfying (c1c2)

n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

In 2010, Qi, Yang and Liu studied the uniqueness of difference monomials and obtained the
following result.

Theorem 1.2. [21] Let f and g be transcendental entire functions with finite order, c a nonzero
complex constant, and n ≥ 6 an integer. If fnf(z + c) and gng(z + c) share 1 CM, then fg = t1 or
f = t2g for some constants t1 and t2 which satisfy tn+1

1 = 1 and tn+1
2 = 1.
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In 2012, Wang, Han and Wen proved the following theorem.

Theorem 1.3. [22] Let f and g be transcendental entire functions with finite order, c a nonzero
complex constant, and n ≥ 6 an integer. If E3)(1, f

nf(z + c)) = E3)(1, g
ng(z + c)), then fg = t1 or

f = t2g for some constants t1 and t2 which satisfy tn+1
1 = 1 and tn+1

2 = 1.

In recent years, similar problems are investigated in non-Archimedean fields. Now let K be an
algebraically closed field of characteristic zero, complete for a non-Archimedean absolute value.
We denote by A(K) the ring of entire functions in K and by M(K) the field of meromorphic func-
tions. The value sharing problems for meromorphic functions in K was investigated first in [1]
and [13]. In recent years, numerous interesting results were obtained in the investigation of the
value-sharing problem for meromorphic function in K [2]-[4], [6]-[8], [16]-[18], [19][20][23].

Let us recall some basic definitions. For f ∈M(K) and S ⊂ K̂, we define

Ef (S) =
⋃
a∈S
{(z,m)|f(z) = a withmultiplicity m} ,

and we denote by Ekf (a) the set of all a-points of f where an a-point with mutiplicity m is counted
m times if m ≤ k and k + 1 times if m > k. It’s obvious that if Ekf (a) = Ekg (a), then z0 is a zero of
f − a with multiplicity m(≤ k) if and only if it is a zero of g− a with multiplicity m(≤ k) and z0 is
a zero of f − a with multiplicity m(> k) if and only if it is a zero of g − a with multiplicity n(> k),
where m is not necessarily equal to n.

Let F be a nonempty subset of M(K). Two functions f , g of F are said to share S, counting
multiplicity(share S CM), if Ef (S) = Eg(S).

In the present paper, we discuss the uniqueness problem of p-adic difference monomials fnf(z+
c) and prove the following theorems.

Theorem 1.4. Let f and g be nonconstant p-adic entire functions, n ≥ 8 an integer. IfE2
fnf(z+c)(1) =

E2
gng(z+c)(1), then f = tg, where t is a constant and tn+1 = 1.

Theorem 1.5. Let f and g be nonconstant p-adic entire functions, n ≥ 8 an integer. IfEfnf(z+c)(1) =
Egng(z+c)(1), then f = tg, where t is a constant and tn+1 = 1.

The main tool of the proof is the p-adic Nevanlinna theory [12][13][14][15]. So in the next
section, we establish the basic properties of the characteristic functions of p-adic meromorphic
functions.

2 Counting functions and Characteristic functions of p-adic meromorphic
functions

Let f be a nonconstant entire function on K and b ∈ K. Then we can write f in the following form

f =

∞∑
n=q

bn(z − b)n ,
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where bq 6= 0 and we denote ω0
f (b) = q. For a point a ∈ K, we define the function ωaf : K → N by

ωaf (b) = ω0
f−a(b).

For a real number ρ with 0 < ρ ≤ r. Take a ∈ K and we set

Nf (a, r) =
1

lnρ

∫ r

ρ

nf (a, x)

x
dx ,

where nf (a, x) is the number of solutions of the equation f(z) = a(counting multiplicities) in the
disk Dx = {z ∈ K : |z| ≤ x}. If a = 0, the we set Nf (r) = Nf (0, r).

If l is a positive integer, then we define

Nl,f (a, r) =
1

lnρ

∫ r

ρ

nl,f (a, x)

x
dx ,

where nl,f (a, x) =
∑
|z|≤rmin{ωf−a(z), l}.

Let k be a positive integer. Define the function ωkf from K into N by ωkf (z) = 0 if ω0
f (z) > k and

ωkf (z) = ω0
f (z) if ω0

f (z) ≤ k. And n≤kf (r) =
∑
|z|≤r ω

≤k
f (z), n≤kf (a, r) = n≤kf−a(r).

Define

N≤kf (a, r) =
1

lnρ

∫ r

ρ

n≤kf (a, x)

x
dx ,

If a = 0, then we set N≤kf (r) = N≤kf (0, r). Set

N≤kl,f (a, r) =
1

lnρ

∫ r

ρ

n≤kl,f (a, x)

x
dx ,

where n≤kl,f (a, x) =
∑
|z|≤rmin{ω≤kf−a(z), l}. In a similar way, we can define N<k

f (a, r), N<k
l,f (a, r),

N>k
f (a, r), N≥kf (a, r), N≥kl,f (a, r) and N>k

l,f (a, r).

Recall that for a nonconstant entire function f(z) on K, represented by the power series

f(z) =

∞∑
n=0

anz
n

for each r > 0, we define |f |r = max{|an|rn, 0 ≤ n <∞}.

Now let f = f1
f2

be a nonconstant meromorphic function on K, where f1 and f2 are entire func-

tions on K having no common zeros. We set |f |r = |f1|
|f2| . For a point a ∈ K ∪ {∞}, we define the

function ωaf : K → N by ωaf (b) = ω0
f1−af2(b) with a 6=∞ and ω∞f (b) = ω0

f2
(b).
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Taking a ∈ K, we denote the counting function of zeros of f − a, counting multiplicity, in the
disk Dr = {z ∈ K : |z| ≤ r}, i.e. we set Nf (a, r) = Nf1−af2(r) and set Nf (∞, r) = Nf2(r). In
a similar way, for nonconstant meromorphic function on K, we can define N<k

f (a, r), N<k
l,f (a, r),

N>k
f (a, r), N≥kf (a, r), N≥kl,f (a, r) and N>k

l,f (a, r).

We define

mf (∞, r) = max{0, log|f |r}, mf (a, r) = m 1
f−a

(∞, r) ,

and then characteristic function of f by

Tf (r) = mf (∞, r) +Nf (∞, r) .

Thus we get

Nf (a, r) +mf (a, r) = Tf (r) +O(1) ,

where a ∈ K ∪ {∞} and

Tf (r) = T 1
f
(r) +O(1), m f(k)

f

(∞, r) = O(1) .

3 Some Lemmas
In this section, we present some lemmas which will be needed in the sequel.

Lemma 3.1. [12][5] Let f be a nonconstant meromorphic function on K and let a1, a2,...,aq be
distinct points of K. Then

(q − 1)Tf (r) ≤ N1,f (∞, r) +
q∑
i=1

N1,f (ai, r)−N0,f ′(r)− logr +O(1) .

Lemma 3.2. Let f and g be nonconstant meromorphic functions on K. If E2
f (1) = E2

g(1), then one
of the following three cases holds:

(i) Tf (r) ≤ N1,f (0, r) +N≥21,f (0, r) +N1,g(0, r) +N≥21,g (0, r) +N1,f (∞, r)

+N≥21,f (∞, r) +N1,g(∞, r) +N≥21,g (∞, r)− logr +O(1) ,

(ii) f = g , (iii) fg = 1 .

Proof. Set

H =

(
f ′′

f ′
− 2f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
.

First we suppose that H 6≡ 0. It’s obvious that mH(∞, r) = O(1), and

N≤1f (1, r) ≤ NH(0, r) ≤ TH(r) +O(1) ≤ NH(∞, r) +O(1)

≤ N≥21,f (0, r) +N≥21,g (0, r) +N≥21,f (∞, r) +N≥21,g (∞, r)
+N1,0,f ′(r) +N1,0,g′(r) +O(1) , (1.1)
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where N1,0,f ′(r) is the counting function of those zeros of f ′ that are not zeros of f(f − 1), while
each zero is counted with multiplicity 1.
On the other hand, by Lemma 3.1, we have

Tf (r) ≤ N1,f (∞, r) +N1,f (0, r) +N1,f (1, r)−N0,f ′(r)− logr +O(1) . (1.2)

Since E2
f (1) = E2

g(1), we note that

N1,f (1, r) = N≤1f (1, r) +N≥21,f (1, r) = N≤1f (1, r) +N≥21,g (1, r) , (1.3)

Then

Tf (r) ≤ N1,f (∞, r) +N1,f (0, r) +N≤1f (1, r)

+N≥21,g (1, r)−N0,f ′(r)− logr +O(1) . (1.4)

Next we consider N≥21,g (1, r).

Ng′(0, r)−Ng(0, r) +N1,g(0, r) = N g′
g

(0, r) ≤ T g′
g

(r) +O(1)

= N g′
g

(∞, r) +m g′
g

(∞, r) +O(1) = N1,g(∞, r) +N1,g(0, r) +O(1) . (1.5)

So

Ng′(0, r) ≤ N1,g(∞, r) +Ng(0, r) +O(1) . (1.6)

Moreover

N0,g′(r) +N≥21,g (1, r) +N≥2g (0, r)−N≥21,g (0, r) ≤ Ng′(0, r) , (1.7)

where N0,g′(r) is the counting function of those zeros of g′ that are not zeros of g(g − 1). From (6)
and (7) , we get

N0,g′(r) +N≥21,g (1, r) ≤ N1,g(∞, r) +N1,g(0, r) +O(1) . (1.8)

Combining (1), (4) and (8), we obtain

Tf (r) ≤ N1,f (0, r) +N≥21,f (0, r) +N1,g(0, r) +N≥21,g (0, r) +N1,f (∞, r)

+N≥21,f (∞, r) +N1,g(∞, r) +N≥21,g (∞, r)− logr +O(1) .

Suppose H ≡ 0. Then by integration we get

f ≡ ag + b

cg + d
, (1.9)

where a, b, c and d are constants and ad− bc 6= 0. So Tf (r) = Tg(r) +O(1).

We now consider the following cases.
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Case 1. Let ac 6= 0. Then

f − a

c
=

bc− ad
c(cg + d)

. (1.10)

So, By Lemma 3.1, we get

Tf (r) ≤ N1,f (∞, r) +N1,f− a
c
(0, r) +N1,f (0, r) +O(1)

= N1,f (0, r) +N1,f (∞, r) +N1,g(∞, r) +O(1) ,

which implies (i).

Case 2. a 6= 0 and c = 0. Then f = a
dg +

b
d . If b 6= 0, by Lemma 3.1,

Tf (r) ≤ N1,f (∞, r) +N1,f− b
d
(0, r) +N1,f (0, r) +O(1)

= N1,f (∞, r) +N1,g(0, r) +N1,f (0, r) +O(1) ,

which implies (i).

If b = 0, then f = ag
d . If a

d = 1, we obtain (ii). If a
d 6= 1, then by E2

f (1) = E2
g(1) we get f 6= 1

and f 6= a
d . According to Lemma 3.1, we have

Tf (r) ≤ N1,f (∞, r) +N1,f (1, r) +N1,f (
a

d
, r) +O(1) = N1,f (∞, r) +O(1) ,

which implies (i).

Case 3. a = 0 and c 6= 0. Then f = b
cg+d . If d 6= 0, by Lemma 3.1,

Tf (r) ≤ N1,f (∞, r) +N1,f− b
d
(0, r) +N1,f (0, r) +O(1)

= N1,f (∞, r) +N1,g(0, r) +N1,f (0, r) +O(1) ,

which implies (i).

If d = 0, then f = b
cg . If b

c = 1, we obtain (iii). If b
c 6= 1, then by E2

f (1) = E2
g(1) we get f 6= 1

and f 6= b
c . According to Lemma 3.1, we have

Tf (r) ≤ N1,f (∞, r) +N1,f (1, r) +N1,f (
b

c
, r) +O(1) = N1,f (∞, r) +O(1) ,

which implies (i). The proof of Lemma 3.2 is complete.

Lemma 3.3. [16] Let f and g be nonconstant meromorphic functions on K. If Ef (1) = Eg(1), then
one of the following three cases holds:

(i) Tf (r) ≤ N1,f (0, r) +N≥21,f (0, r) +N1,g(0, r) +N≥21,g (0, r) +N1,f (∞, r)

+N≥21,f (∞, r) +N1,g(∞, r) +N≥21,g (∞, r)− logr +O(1) ,

(ii) f = g , (iii) fg = 1 .
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Lemma 3.4. [2] Let f be a nonconstant p-adic meromorphic function. Then

m f(z+c)
f

(∞, r) = O(1); Tf(z+c)(r) = Tf(z)(r) +O(1) .

Lemma 3.5. Let f be a p-adic entire function, c ∈ K. If F (z) = fn(z)f(z + c), then

T (r, F ) = (n+ 1)T (r, f) +O(1) .

Proof. We can deduce form Lemma 3.4 that

(n+ 1)Tf (r) = Tfn+1(r) +O(1) = mfn+1(r) +O(1)

≤ m fn+1

F

(r) +mF (r) +O(1) = m f
f(z+c)

(r) +mF (r) +O(1)

≤ TF (r) +O(1) .

Therefore

(n+ 1)Tf (r) ≤ TF (r) +O(1) .

On the other hand, Lemma 3.4 implies

TF (r) ≤ Tfn(r) + Tf(z+c)(r) = nTf (r) + Tf (r) +O(1) = (n+ 1)Tf (r) +O(1) .

We obtain the conclusion of Lemma 3.5.

4 Proof of Theorem 1.4
Let

F = fnf(z + c), G = gng(z + c) . (1.11)

Then it is easy to verify E2
F (1) = E2

G(1). Suppose the Case (i) in Lemma 3.2 holds

TF (r) ≤ N1,F (0, r) +N≥21,F (0, r) +N1,G(0, r) +N≥21,G(0, r)− logr +O(1) . (1.12)

From Lemma 3.4, we have

N1,F (0, r) +N≥21,F (0, r) ≤ 2N1,F (0, r)

= 2N1,f (0, r) + 2N1,f(z+c)(0, r) ≤ 4Tf (r) , (1.13)

and

N1,G(0, r) +N≥21,G(0, r) ≤ 2N1,G(0, r)

= 2N1,g(0, r) + 2N1,g(z+c)(0, r) ≤ 4Tg(r) . (1.14)

From (12), (13), (14) and Lemma 3.5, we deduce

TF (r) = (n+ 1)Tf (r) ≤ 4Tf (r) + 4Tg(r) +O(1) , (1.15)
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that is,

(n− 3)Tf (r) ≤ 4Tg(r) +O(1) . (1.16)

Similarly we can deduce

(n− 3)Tg(r) ≤ 4Tf (r) +O(1) . (1.17)

Combining (16) and (17), we have

(n− 7)Tf (r) + (n− 7)Tg(r) ≤ O(1) , (1.18)

which contradicts the hypothesis n ≥ 8. Therefore F = G or FG = 1.

If F = G, that is

fn(z)f(z + c) = gn(z)g(z + c) . (1.19)

Let h(z) = f(z)
g(z) . We have

hn(z)h(z + c) = 1 . (1.20)

If h(z) is not a constant, then Lemma 3.4 implies

nTh(r) = Th(z+c)(r) +O(1) = Th(r) +O(1) , (1.21)

which is a contadiction with n ≥ 8. Thus h(z) = t, where t is a constant. From (20) we have f = tg
and tn+1 = 1.

If FG = 1, that is

fn(z)f(z + c)gn(z)g(z + c) = 1 . (1.22)

Let ω(z) = f(z)g(z). We have

ωn(z)ω(z + c) = 1 . (1.23)

By a similar discussion, we can show that ω is a constant. Therefore fg = ω and ωn+1 = 1. This is
a contradiction because nonconstant entire function on K have at least one zero and hence, if fg is
a constant, at least one of the two functions f or g is meromorphic, but not entire. This completes
the proof of Theorem 1.4.

5 Proof of Theorem 1.5
Let

F = fnf(z + c), G = gng(z + c) . (1.24)

Then it is easy to verify EF (1) = EG(1). Suppose the Case (i) in Lemma 3.3 holds

TF (r) ≤ N1,F (0, r) +N≥21,F (0, r) +N1,G(0, r) +N≥21,G(0, r)− logr +O(1) . (1.25)

Similar to the arguments in Theorem 1.4, we see that Theorem 1.5 holds.



Uniqueness for the Difference Monomials of P-Adic Entire Functions 75

References
[1] W.W. Adam and E.G. Straus, Non-Archimedean analytic functions taking the same values at

the same points, Illinois. J. Math. 15(1971), 418-424.

[2] V.H. An and H.H. Khoai, Value sharing problems for p-adic meromorphic functions and their
difference polynomials, Ukranian Math. J. 64(2012), 147-164.

[3] K. Boussaf, A. Escassut and J. Ojeda, New results on applications of Nevanlinna methods
to value sharing problems, P-adic Numbers, Ultrametric Analysis and Applications, 5(2013),
278-301.

[4] K. Boussaf, A. Escassut and J. Ojeda, P-adic meromorphic functions sharing a small function,
Bull. Sci. Math. 136(2012), 172-200.

[5] A. Boutabaa, Theorie de Nevanlinna p-adique, Manuscript Math. 67(1990), 251-269.

[6] A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag.
Math. 8(1997), 145-155.

[7] A. Boutabaa and A. Escassut, URS and URSIMS for p-adic meromorphic functions inside a
disk, Proc. Edinburgh Math. Soc. 44(2001), 485-504.

[8] W. Cherry and C.C. Yang, Uniqueness of non-archimedean entire functions sharing sets of
values counting multiplicities, Proc. Amer. Math. Soc. 127(1998), 967-971.

[9] J. Clunie, On a result of Hayman, J. Lond. Math. Soc. 42(1967), 389-392.

[10] W.K. Hayman, Reserch problems in function theory, University of London, The Athlone
Press, London, 1967.

[11] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math.
70(1959), 9-42.

[12] P.C. Hu, and C.C. Yang, Meromorphic functions over non-archimedean fields, Kluwer, Dor-
drecht, 2000.

[13] H.H. Khoai, On p-adic meromorphic functions, Duke Math. J. 50(1983), 695-711.

[14] H.H. Khoai and , Value distribution for p-adic hypersurfaces, Taiwanese J. Math. 7(2003),
51-67.

[15] H.H. Khoai and M.V. Quang, On p-adic Nevanlinna theory, Lecture Notes in Mathematics,
Vol. 1351, Springer-Verlag, Berlin, 1988, 146-158.

[16] H.H. Khoai, Vu Hoai An and N.X. Lai, Value sharing problem and uniqueness for p-adic
meromorphic functions, Annales Univ. Sci. Budapest. Sect. Comp.38(2012), 57-70.

[17] J. Ojeda, On Hayman’s conjecture over a p-adic field, Taiwanese J. Math. 12(2008), 2295-2313.

[18] J. Ojeda, Applications of the p-adic Nevanlinna theory to problems of uniqueness, Advances
in p-adic and non-Archimedean Analysis, Contemporary Mathematics, 508(2010), 161-179.



76 C. Meng and G. Liu

[19] J. Ojeda, Uniqueness for ultrametric analytic functions, Bull. Math. Soc. Sci. Math. Roumanie.
54(2011), 153-165.

[20] P.D. Tuan and N.T. Quang, Picad values and uniqueness for p-adic meromorphic functions,
Acta Math Vietnam. 41(2016), 563-582.

[21] X.G. Qi, L.Z. Yang and K. Liu, Uniqueness and periodicity of meromorphic functions con-
cerning the difference operator, Comput. Math. Appl. 60(2010), 1739-1746.

[22] G. Wang, D.L. Han and Z.T. Wen, Uniqueness theorems on difference monomials of entire
functions, Abstract Appl. Anal. 2012(2012), Article ID 407351.

[23] J.T.Y. Wang, Uniqueness polynomials and bi-unique range sets, Acta Arith. 104(2002), 183-
200.

[24] C.C. Yang and X.H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann.
Acad. Sci. Fenn. Math. 22(1997), 395-406.


	Uniqueness for the Difference Monomials of P-Adic Entire Functions Chao Meng1 and Gang Liu2
	Introduction and main results
	Counting functions and Characteristic functions of p-adic meromorphic functions
	Some Lemmas
	Proof of Theorem 1.4
	Proof of Theorem 1.5


