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Abstract

The main idea of this paper is to introduce the notion of a Schreier 2-category and of a crossed
semimodule over categories and to prove the categorical equivalence between their categories.
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1 Introduction
A group-groupoid (alternatively named G-groupoid [7] or 2-group [1, 2]) is an internal category
(which is automatically an internal groupoid) in the category of groups. A crossed module of groups
as defined by Whitehead is a pair of groups M,N with an action • : N ×M →M and a morphism
∂ : M → N of groups such that ∂(n •m) = n ·∂(m) ·n−1 and ∂(m) •m′ = m ·m′ ·m−1 [16, 17]. The
equivalence of the categories of crossed modules and group-groupoids is well known, see [7]. This
equivalence is described in [1] by considering a group-groupoid as a 2-category with one object.
The notion of 2-category was first introduced by Bénabou in 1967 [3]. A 2-category consists of
objects, 1-morphisms as in a classical category and 2-morphisms between 1-morphisms as follows
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which can be composed vertically and horizontally. Further details are recalled later in the paper.
A 2-groupoid is a 2-category whose all 1-morphisms are invertible as in a classical groupoid and all
2-morphisms are invertible vertically and horizontally [1, 11].

For the groupoid version of crossed modules, basic references are Brown-Higgins [4, 5] and
Brown-Icen [6]. One can find in [9] that the categories of 2-groupoids and of crossed modules over
groupoids are equivalent. For the topological aspect of this equivalence, see [8].

Let MON be the category of monoids. A Schreier internal category in MON is an internal cate-
gory in MON which satisfies the Schreier condition [12]. A crossed semimodule of monoids is a pair of
monoidsM,N with an action • : N×M →M of monoids and a morphism ∂ : M → N of monoids
such that ∂(n •m) · n = n · ∂(m) and

(
∂(m) •m′

)
·m = m ·m′ [12]. The categorical equivalence

between Schreier internal categories in MON and crossed semimodules is proved in [12]. This
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equivalence is the generalization of the equivalence between the category of group-groupoids and
of crossed modules of groups. On the other hand in [15], a similar equivalence is proved for topo-
logical monoids by viewing a Schreier internal category in the category of topological monoids as
a 2-category with a single object.

The main purpose of this paper is to develope the construction of Schreier 2-categories and
of crossed semimodules of categories and to prove that the categories of crossed semimodules of
categories and of Schreier 2-categories are equivalent. The results which are obtained in this paper
are the generalization of the results in [12], [13] and [9].

2 Preliminaries
Let C = (C0, C1, s, t, ε,m) be a finitely complete category. An internal categoryD = (D0, D1, s, t, ε,m)
in C consists of a set of objects D0 ∈ C0 and a set of morphisms D1 ∈ C0 with morphisms
s, t : D1 → D0, ε : D0 → D1 in C called the source, the target and the identity maps, respec-
tively, such that sε = tε = 1D0

and a morphism m : D1 ×D0
D1 → D1 of C called the composition

map (usually expressed as m(f, g) = g ◦ f ) where D1 ×D0 D1 is the pullback of s and t such
that h ◦ (g ◦ f) = (h ◦ g) ◦ f and εs(f) ◦ f = f = f ◦ εs(f) [12, 10]. An internal groupoid in C
is an internal category with a morphism η : D1 → D1, η(f) = f of C called inverse such that
f ◦ f = 1s(f), f ◦ f = 1t(f).

LetM = (M0,M1, s, t, ε,m) be an internal category in MON. If for any f ∈ M1 there exists a
unique f̃ ∈ Kers such that f = f̃ · εs(f), thenM is called a Schreier internal category in MON and
this condition is called the Schreier condition [12]. A Schreier internal groupoid in MON is a Schreier
internal category in MON whose all morphisms are invertible.

A crossed semimodule K = (M,N, ∂, •) of monoids consists of monoids M,N with a homo-
morphism ∂ : M → N and an action • : N ×M →M of monoids such that ∂(n •m) · n = n · ∂(m)
and (∂(m) •m′) ·m = m ·m′.

The following theorem and corollary are given in [12]:

Theorem 2.1. The category of Schreier internal categories in MON and of crossed semimodules
are equivalent.

Restricting this equivalence we have

Corollary 2.2. The category of schreier internal groupoids in MON is equivalent to the category of
crossed semimodules where M is a group.

Note that Corollary 2.2 is obtained as a special case of the theorem of [13].

Group-groupoids can be thought of as internal categories in the category of groups which is
denoted by GP [14]. A crossed module K = (M,N, ∂, •) of groups consists of groups M,N with
a homomorphism ∂ : M → N of groups and an action • : N ×M → M of groups which satisfy
∂(n •m) = n · ∂(m) · n−1 and ∂(m) •m′ = m ·m′ ·m−1 [16, 17]. Restricting of Corollary 2.2, the
following theorem is obtained as given by Brown and Spencer in [7]:
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Theorem 2.3. The category of internal categories in the category of groups is equivalent to the
category of crossed modules.

We present the following definition as in [1]:

A 2-category C = (C0, C1, C2) consists of a set of objects C0, a set of 1-morphisms C1 and a set
of 2-morphisms C2 as follows
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with

• the source and the target maps
s : C1 → C0, s(f) = x, sh : C2 → C0, sh(α) = x, sv : C2 → C1, sv(α) = f,
t : C1 → C0, t(f) = y, th : C2 → C0, th(α) = y, tv : C2 → C1, tv(α) = g,

• the composition of 1-morphisms as in an ordinary category,

• the associative horizontal composition of 2-morphisms ◦h : C2 ×C0 C2 → C2 where C2 ×C0

C2 = {(α, δ) ∈ C2 × C2|sh(δ) = th(α)} as

x

f

**

g

44�� α y

f1

**

g1

44�� δ z = x

f1◦f
**

g1◦g

44�� δ◦hα z ,

• the associative vertical composition of 2-morphisms ◦v : C2×C1
C2 → C2 where C2×C1

C2 =
{(α, β) ∈ C2 × C2|sv(β) = tv(α)} as

x

f

%%�� α
99

h

�� β
g // y = x

f

**

h

44�� β◦vα y

• the identity maps ε : C0 → C1, ε(x) = 1x, εh : C0 → C2, εh(x) = 11x
such that α ◦h 11x

=
α = 11y

◦h α and εv : C1 → C2, εv(f) = 1f such that α ◦v 1f = α = 1g ◦v α whenever the
compositions are defined.

• the interchange rule
(θ ◦v δ) ◦h (β ◦v α) = (θ ◦h β) ◦v (δ ◦h α)

whenever the compositions are defined.
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Hence the construction of a 2-category C = (C0, C1, C2) contains three compatible category struc-
tures C1 = (C0, C1, s, t, ε, ◦), C2 = (C0, C2, sh, th, εh, ◦h) and C3 = (C1, C2, sv, tv, εv, ◦v) such that
the following diagram commutes.

C2

sh //
th

//

tv

��

sv

��

C0

εh
ss

ε

��C1

t

EE

s

EE

εv

TT

A 2-functor is a map F : C → C′ between 2-categories C and C′ sending each object of C to an
object of C′, each 1-morphism of C to 1-morphism of C′ and 2-morphism of C to 2-morphism of C′
as follows

x

f

))

g

55�� α y 7→ F (x)

F (f)
++

F (g)

33�� F (α) F (y)

such that F (f1 ◦f) = F (f1)◦F (f), F (δ◦hα) = F (δ)◦hF (α), F (β ◦vα) = F (β)◦vF (α), F (11x
) =

1F (1x) = 11F (x)
, F (1f ) = 1F (f). Thus, 2-categories and 2-functors form a category which is de-

noted by 2CAT [11].

A 2-groupoid is a 2-category whose all 1-morphisms and 2-morphisms are invertible as follows
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g
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Let G,G′ be 2-groupoids. A morphism of 2-groupoids is a 2-functor F : G → G′ which preserves
the 2-groupoid structures. Thus 2-groupoids form a category which is denoted by 2GPD [11].

We recall an action of groupoids and crossed modules over groupoids as given in [6, 9]. Let G =
(X,G) and H = (X,H) be groupoids over the same object set and let H be totally disconnected.
An action of G onH is a partially defined map

• : G×H → H, (g, h) 7→ g • h

such that the following conditions holds
AG1. g • h is defined iff t(h) = s(g), and t(g • h) = t(g),
AG2. (g2 ◦ g1) • h = g2 • (g1 • h),
AG3. g • (h2 ◦ h1) = (g • h2) ◦ (g • h1), for h1, h2 ∈ H(x, x) and g ∈ G(x, y),
AG4. 1x • h = h, for h ∈ H(x, x).
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Let G = (X,G) and H = (X,H) be groupoids and let H be totally disconnected. A crossed
module K = (H,G, ∂, •) of groupoids consists of a morphism ∂ = (1, ∂) : H → G of groupoids
which is the identity on objects together with an action • : G×H → H of groupoids which satisfy
CMG1. ∂(g • h) = g ◦ ∂(h) ◦ g
CMG2. ∂(h) • h1 = h ◦ h1 ◦ h, for h, h1 ∈ H(x, x) and g ∈ G(x, y).

Let K = (H,G, ∂, •) and K ′ = (H′,G′, ∂′, •′) be crossed modules of groupoids. Recall from
[6, 9] that a morphism of crossed modules of groupoids is a triple λ = (λ0, λ1, λ2) : K → K ′ such that
(λ0, λ1) : H → H′ and (λ0, λ2) : G → G′ are morphisms of groupoids which satisfy λ2∂ = ∂′λ1 and
λ1(g • h) = λ2(g) •′ λ1(h).

3 Crossed Semimodules of Categories and Schreier 2-categories
To define a crossed semimodule over categories we first define the notion of action of categories,
similarly to the notion of action of groupoids.

Definition 3.1. Let C = (X,C) andD = (X,D) be categories over the same object set and letD be totally
disconnected. An action of C on D is a partially defined map • : C ×D → D, (c, d) 7→ c • d such that the
following conditions holds
AC1. c • d is defined if and only if t(d) = s(c), and t(c • d) = t(c),
AC2. (c2 ◦ c1) • d = c2 • (c1 • d),
AC3. c • (d2 ◦ d1) = (c • d2) ◦ (c • d1), for d1, d2 ∈ D(x, x) and c ∈ C(x, y),
AC4. 1x • d = d, for d ∈ D(x, x).

The following definition is due to Porter [13]:

Definition 3.2. Let C = (X,C) and D = (X,D) be categories over the same object set and let D be
totally disconnected. A crossed semimodule of categories K = (D, C, ∂, •) consists of a functor ∂ : D → C
of categories which is the identity on objects together with an action • : C × D → D of categories which
satisfy
CSC1. ∂(c • d) ◦ c = c ◦ ∂(d)
CSC2.

(
∂(d) • d1

)
◦ d = d ◦ d1 for d, d1 ∈ D(x, x) and c ∈ C(x, y).

Definition 3.3. Let K = (D, C, ∂, •),K ′ = (D′, C′, ∂′, •′) be crossed semimodules over categories. A
morphism of crossed semimodules of categories is a mapping λ = (λ2, λ1, λ0) : K → K ′ such that
(λ0, λ1) : D → D′ and (λ0, λ2) : C → C′ are functors which satisfy λ2∂ = ∂′λ1 and λ1(c • d) =
λ2(c) •′ λ1(d). Hence crossed semimodules of categories and their morphisms form a category which we
denoted by CSC.

The following definition is due to Porter [13]. Although this condition is given under the name
Condition (B) in [13], we will call this condition ”Schreier” inspired by Patchkoria’s paper [12]
since every Schreier internal category in MON can be viewed as a Schreier 2-category with a single
object. We will mention this special kind of Schreier 2-categories in section 4.

Definition 3.4. A Schreier 2-category C = (C0, C1, C2) is a 2-category which satisfies the Schreier condi-
tion: for any α ∈ C2 there exists a unique α̃ whose source is the identity 1-morphism such that

α = α̃ ◦h εvsv(α).
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Example 3.5. Consider any monoid (M,+) and any group (G, ·). We assume that triples (m, g1, n) and
(m, g2, n) are 1-morphisms from m to m+ n and a 4-tuple (m, g1, g2, n) is a 2-morphism from (m, g1, n)
to (m, g2, n) as follows

m

(m,g1,n)
,,

(m,g2,n)

22��(m,g1,g2,n) m+ n

for m,n ∈M and g1, g2 ∈ G. Hence we can construct a Schreier 2-category when compositions are defined
as follows

• (m+ n, h1, p) ◦ (m, g1, n) = (m,h1 · g1, n+ p)

• (m+ n, h1, h2, p) ◦h (m, g1, g2, n) = (m,h1 · g1, h2 · g2, n+ p)

• (m, g2, g3, n) ◦v (m, g1, g2, n) = (m, g1, g3, n).

Since (m, g1, g2, n) = (m+ n, eG, g2 · g−1
1 , eM ) ◦h (m, g1, g1, n), the Schreier condition is satisfied for all

2-morphisms.

Proposition 3.6. In a Schreier 2-category, the vertical composition of 2-morphisms can be written
in terms of the horizontal composition as follows

β ◦v α = β̃ ◦h α̃ ◦h εvsv(α)

whenever compositions are defined.

Proof: Let x

f

���� α

DD

h

�� β
g // y . Due to Schreier condition, we write

β = β̃ ◦h εvsv(β) = β̃ ◦h εvtv(α) = β̃ ◦h εvtv(α̃ ◦h εvsv(α)) = β̃ ◦h εvtv(α̃) ◦h εvsv(α).

Then

β ◦v α =
(
β̃ ◦h εvtv(α̃) ◦h εvsv(α)

)
◦v
(
α̃ ◦h εvsv(α)

)
=

((
β̃ ◦h εvtv(α̃)

)
◦v α̃

)
◦h
(
εvsv(α) ◦v εvsv(α)

)
=

((
β̃ ◦h εvtv(α̃)

)
◦v (εhth(α̃) ◦h α̃)

)
◦h εvsv(α)

=
((
β̃ ◦v εhth(α̃)

)
◦h (εvtv(α̃) ◦v α̃)

)
◦h εvsv(α)

= β̃ ◦h α̃ ◦h εvsv(α)
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Definition 3.7. Let C = (C0, C1, C2) and C′ = (C ′0, C
′
1, C

′
2) be Schreier 2-categories. A morphism of

Schreier 2-categories is a 2-functor F = (F0, F1, F2) : C → C′. Therefore Schreier 2-categories form a
category which we denote by S2CAT.

Theorem 3.8. The category of Schreier 2-categories is equivalent to the category of crossed semi-
modules of categories.

Proof: Given any Schreier 2-category C = (C0, C1, C2), we know that N = (C0, C1, s, t, ε, ◦) is
a category. Let M(x) = {α ∈ C2|sv(α) = ε(x)}, for x ∈ C0. ThenM = (C0,M, sh, th, εh, ◦h) is a
category where M = {M(x)}x∈C0

. Now we can define a functor γ : S2CAT → CSC as equivalence
of categories such that γ(C) = (M,N , ∂, •) when

∂ : M→N , ∂(α) = tv(α)

and
• : C1 ×M →M

such that
(f • α) ◦h εv(f) = εv(f) ◦h α

x

f

((

f

66�� 1f y

1y

((

∂(f•α)

66�� f•α y := x

1x

((

∂(α)

66�� α x

f

((

f

66�� 1f y

We will verify that • is an action of N onM.
AC1. f • α is defined iff th(α) = s(f), and th(f • α) = t(f),
AC2. Since(

(f1 ◦ f) • α
)
◦h 1f1◦f = 1f1◦f ◦h α = 1f1 ◦h 1f ◦h α = 1f1 ◦h (f • α) ◦h 1f

= (f1 • (f • α)) ◦h 1f1 ◦h 1f

= (f1 • (f • α)) ◦h 1f1◦f ,

under the Schreier condition
(f1 ◦ f) • α = f1 • (f • α)

whenever f1 ◦ f is defined.
AC3. Since(

f • (β ◦h α)
)
◦h 1f = 1f ◦h β ◦h α = (f • β) ◦h 1f ◦h α = (f • β) ◦h (f • α) ◦h 1f

under the Schreier condition
f • (β ◦h α) = (f • β) ◦h (f • α)

whenever sv(β) = sv(α).
AC4. Since (1x • α) ◦h 11x = 11x ◦h α = α ◦h 11x , we obtain 1x • α = α.

It is obvious that ∂(f • α) ◦ f = f ◦ ∂(α) and
(
∂(α) • α1

)
◦h α = α ◦h α1, for f ∈ C1(x, y) and

α, α1 ∈M(x). Thus γ(C) is a crossed semimodule of categories.
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Let F = (F0, F1, F2) be a morphism of Schreier 2-categories. Then γ(F ) = (F2

∣∣
M
, F1, F0) is a

morphism of crossed semimodules over categories.

Now, let us define a functor θ : CSC → S2CAT which is a weak inverse for λ. Given a crossed
semimodule K = (M,N , ∂, •) over categories M = (X,M) and N = (X,N), then a Schreier
2-category θ(K) = (X,N,N n M) can be constructed as in the following way where the set of
2-morphisms is N nM = {(n,m)|n ∈ N,m ∈M, s(m) = t(m) = t(n)}. We suppose that if

x
n // y , y

m // y ,

then (n,m) is a 2-morphisms as follows

x

n

((

∂(m)◦n

66�� (n,m) y

where the source and the target maps are defined by sv(n,m) = n, tv(n,m) = ∂(m)◦n, respectively,
the identity map is defined by εv(n) = (n, εt(n)) and the vertical composition of 2-morphisms is
defined by (

(∂(m) ◦ n),m′
)
◦v (n,m) = (n,m′ ◦m)

when y
m′
// y . For the horizontal composition, the source and the target maps are defined by

sh(n,m) = s(n), th(n,m) = t(n), respectively, the identity map is defined by εh(x) = (ε(x), ε(x))
where the horizontal composition of 2-morphisms is defined by

(n1,m1) ◦h (n,m) = (n1 ◦ n,m1 ◦ (n1 •m))

when compositions are defined. It is easy to check that the vertical composition and the horizontal
composition satisfy the usual interchange rule. Since

(n,m) = (εt(n),m) ◦h (n, εt(n)),

all 2-morphisms satisfy the Schreier condition. Now we will verify that the horizontal and vertical
compositions are associative and satisfy the interchange rule.

(n2,m2) ◦h
(

(n1,m1) ◦h (n,m)
)

= (n2,m2) ◦h (n1 ◦ n,m1 ◦ (n1 •m))

=
(
n2 ◦ (n1 ◦ n),m2 ◦ (n2 • (m1 ◦ (n1 •m)))

)
=

(
(n2 ◦ n1) ◦ n,m2 ◦ (n2 •m1) ◦ (n2 • (n1 •m))

)
=

(
n2 ◦ n1,m2 ◦ (n2 •m1)

)
◦h (n,m)

=
(

(n2,m2) ◦h (n1,m1)
)
◦h (n,m),
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(
∂(m′ ◦m) ◦ n,m′′

)
◦v

[(
(∂(m) ◦ n),m′

)
◦v (n,m)

]
=

(
∂(m′ ◦m) ◦ n,m′′

)
◦v (n,m′ ◦m)

= (n,m′′ ◦m′ ◦m)

= (∂(m) ◦ n,m′′ ◦m′) ◦v (n,m)

=

[(
∂(m′ ◦m) ◦ n,m′′

)
◦v
(

(∂(m) ◦ n),m′
)]
◦v (n,m)

and

[(
(∂(m1) ◦ n1),m′1

)
◦h
(
∂(m) ◦ n,m′

)]
◦v

[
(n1,m1) ◦h (n,m)

]
=

[
∂(m1) ◦ n1 ◦ ∂(m) ◦ n,m′1 ◦

(
(∂(m1) ◦ n1) •m′

)]
◦v
[
n1 ◦ n,m1 ◦ (n1 •m)

]
=

(
n1 ◦ n,m′1 ◦

(
∂(m1) • (n1 •m′)

)
◦m1 ◦ (n1 •m)

)
=

(
n1 ◦ n,m′1 ◦m1 ◦ (n1 •m′) ◦ (n1 •m)

)
=

(
n1 ◦ n,m′1 ◦m1 ◦ (n1 • (m′ ◦m))

)
= (n1,m

′
1 ◦m1) ◦h (n,m′ ◦m)

=

[(
(∂(m1) ◦ n1),m′1

)
◦v (n1,m1)

]
◦h

[(
(∂(m) ◦ n),m′

)
◦v (n,m)

]
whenever all compositions are defined.

Let λ = (λ2, λ1, λ0) be a morphism of crossed semimodules of categories. Then θ(λ) = (λ0, λ2, λ2×
λ1) is morphism of Schreier 2-categories.

To define a natural equivalence S : θγ → 1S2CAT, a mapping SC : θγ(C) → C is defined to be
identity on objects and on 1-morphisms, on 2-morphisms is defined by α 7→ (sv(α), α̃). Since

SC(β ◦h α) = SC(β̃ ◦h εvsv(β) ◦h α̃ ◦h εvsv(α))

= SC(β̃ ◦h (sv(β) • α̃) ◦h εvsv(β) ◦h εvsv(α))

= (sv(β ◦h α), β̃ ◦h (sv(β) • α̃))

= (sv(β), β̃) ◦h (sv(α), α̃)

= SC(β) ◦h SC(α)

and

SC(δ ◦v α) = SC(δ̃ ◦h α̃ ◦h εvsv(α)) = (sv(α), δ̃ ◦h α̃) = (sv(δ), δ̃) ◦v (sv(α), α̃)

= SC(δ) ◦v SC(α),
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SC preserves the compositions, whenever all above compositions are defined.

For a crossed semimodule K = (M,N , ∂, •) over categories, a natural equivalence T : 1CSC →
γθ is given by a map TK : K → γθ(K) which is defined to be identity on objects, while on N and
on M is defined by m 7→ (εs(m),m). Clearly TK is an isomorphism of crossed semimodules over
categories.

If a Schreier 2-category satifies the following condition, the theorem of [13] is obtained: for
each α ∈M , the horizontal and the vertical inverses are related by

αv = εvsv(α) ◦h αh

Note that this condition is called Condition (A) in [13].

The following corollary is the theorem of [9].

Corollary 3.9. The category of 2-groupoids is equivalent to the category of crossed modules of
groupoids.

Proof: The vertical inverse of (n,m) is defined by (n,m)
v

= (∂(m) ◦ n,m) and the horizontal

inverse of (n,m) is defined by (n,m)
h

= (n, n •m).

4 Schreier internal categories in MON as Schreier 2-categories
We have mentioned that a Schreier internal category in MON is an internal category in MON which
satisfies the Schreier condition, see [12]. However, a different approach is to think of a Schreier
internal category in MON as a Schreier 2-category with a single object using similar method of [1].
To understand this, we can think a monoidM as a category with a single object ?. Hence, elements
of M can be thought as morphisms and composition of morphisms is defined by multiplication of
M :

?
x // ?

x′
// ? = ?

x′·x // ?

Then, we can think a Schreier internal categoryM in MON as a 2-category with a single object ?.
Here 2-morphisms labeled by morphisms of M, and the horizontal composition defined by the
multiplication of M :

?

x

((

y

66�� f ?

x′

((

y′

66�� f
′ ? = ?

x′·x
((

y′·y

66�� f
′·f ?

Thus, the Schreier condition for 2-categories is expressed by f = f̃ · εvsv(f) where f̃ ∈ Kersv . For
more details, see the references [15, 1].

References
[1] Baez, J.C., Baratin, A., Freidel, L. and Wise, D.K., Infinite-Dimensional Representations of

2-Groups, Memoirs of the American Mathematical Society, Volume 219, Number 1032, (2012)
.



Crossed Semimodules of Categories and Schreier 2-Categories 57

[2] Baez, J.C., Lauda, A.D., Higher-dimensional algebra V: 2-groups, Theory Appl. Categ. 12,
423-491 (2004) .

[3] Bénabou, J., Introduction to bicategories, Reports of the Midwest Category Seminar Lecture
Notes in Mathematics Volume 47, pp 1-77 (1967).

[4] Brown, R. and Higgins, P.J., Crossed Complexes and non-Abelian Extensions, Georgian
Mathematical Journal, Vol. 962, No. 6, 39-50 (1981).

[5] Brown, R. and Higgins, P.J., Tensor Products and Homotopies for ω−groupoids and crossed
complexes, J. Pure and Appl. Algebra, 47, 1-33 (1987).

[6] Brown, R. and Icen, I, Homotopies and Automorphisms of Crossed Module Over Groupoids,
Appl. Categorical Structure, 11, 185-206 (2003).

[7] Brown, R., Spencer, C.B., G-groupoids, crossed modules and the fundamental groupoid of a
topological group. Proc. Konn. Ned. Akad. 1976; 79: 296-302.

[8] Gursoy, M.H., Icen, I. and Ozcan, A.F., The Equivalence of Topological 2-Groupoids an Topo-
logical Crossed Modules, Algebras Groups and Geometries, 22, 447-456 (2005).

[9] Icen, I., The Equivalence of 2-Groupoids an Crossed Modules, Commun. Fac. Sci. Univ. Ank.
Series A1, Vol:49, 39-48 (2000).

[10] Maclane, S., Categories for the Working Mathematician, Graduate Text in Mathematics, Vol-
ume 5. Springer-Verlag, New York (1971).

[11] Noohi, B. , Notes on 2-Groupoids, 2-Groups and Crossed Modules, Homology Homotopy
Appl. Volume 9, Number 1, 75-106 (2007).

[12] Patchkoria, A., Crossed Semimodules and Schreier Internal Categories In The Category of
Monoids, Georgian Mathematical Journal, Vol. 5, No. 6, 575-581 (1998).

[13] Porter, T., Crossed Modules in Cat and a Brown-Spencer Theorem for 2-Categories, Cahiers
de Topologie et Geometrie Differentielle Categoriques, Vol. XXVI-4 (1985).

[14] Porter, T., Extensions, Crossed Modules and Internal Categories in Categories of Groups With
Operations, Proceedings of the Edinburgh Mathematical Society 30, 371-381 (1987).

[15] Temel, S., Topological Crossed Semimodules and Schreier Internal Categories in the Category
of Topological Monoids, Gazi University Journal of Science, 29(4):915-921 (2016).

[16] Whitehead, J.H.C., Combinatorial homotopy II, Bull. Amer. Math. Soc. 55,453-496(1949).

[17] Whitehead, J.H.C., Note on a previous paper entitled ”On adding relations to homotopy
group”, Ann. Math. 47, 806810 (1946).


	Crossed Semimodules of Categories and Schreier 2-Categories Sedat Temel
	Introduction
	Preliminaries
	Crossed Semimodules of Categories and Schreier 2-categories
	Schreier internal categories in Mon as Schreier 2-categories


