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Abstract

The aim of this work is to present a new program written in Sage which allows us to visualize
the attraction basins associated to the end points of a discrete semi-flow induced by a rational
function on the Riemann sphere by using its geometry and complex structure. One interesting
novelty brought by the developed program is that it is able to plot fractals not only in a
determined rectangular area of the complex plane, but also on the whole surface of the Riemann
sphere. Another advantage of the program is that it permits us to visualize not only the
attraction basins of fixed points, but also the basins of end points associated with periodic
points. In addition, some applications of the described algorithms to Numerical Analysis and
Fractal Geometry are suggested.

Introduction

Visualization and graphic techniques are powerful tools that can be used to reach different proposals.
One of its possible applications is to promote advances in some mathematical subjects: Numerical
Analysis, Dynamical Systems, Fractal Geometry, et cetera. Some researchers have claimed the
design of visualization tools that can be used either to validate the theoretical results obtained or
to perform some graphic experiments that can help guessing new conjectures and theorems.

For example, in Numerical Analysis some authors [5, 7, 8, 9] have developed graphic algorithms
to study the attraction basin of a root when a numerical method is employed. Although some of
these algorithms have been implemented in commercial software (Mathematica, Matlab, Maple), it
would be desirable to have implementations in open source software (Sage) that provide free access
to mathematicians and other interested researchers.

In this context, our work has a twofold objective: firstly, it aims to improve some aspects of
existing programs for the visualization of attraction basins and Julia sets associated to rational
functions on the Riemann sphere and, secondly, we want to implement new programs in Sage; this
will allow to dispose many computational resources provided by Sage environment as well as to
have free access to them.

For an interesting example on how visualization tools can be used in Numerical Analysis, we refer
the reader to J. L. Varona [9]. In this paper, several iterative methods are compared graphically by
representing the basins of attraction associated to the roots of a given complex polynomial which
have been generated by each method. In his work, Varona also develops a program written in
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Mathematica that is able to plot fractals on a rectangular piece of the plain of complex numbers
C chosen by the user, employing one of the three strategies which will be shown in paragraph
2.6.1. However, it cannot manage possible overflows and underflows (actually, it just turns off error
messages) and the complex function has to be defined inside the program code (it is not an input
parameter).

In the literature, there are many other similar computational programs devoted to plot attraction
basins. For instance, O. Lewis [5] uses Matlab and C++ in order to generate Newton basins for
polynomials and speed up computation, respectively; nevertheless, the fractals can only be plotted
on a rectangle in C and the program provides just one color assignment strategy (according to the
fixed point to which each point converges).

M. McClure [7] develops a program written in Mathematica that, like the algorithms of Varona
and Lewis, is able to draw fractals induced by Newton’s method only on a rectangle, but it also
assigns colors to the points in C taking into account both the fixed point to which their trajectories
converge and the speed of convergence; moreover, it highlights all the fixed points of the induced
rational functions (next versions of our program will do that) and seeks that the user has total
control upon the palette employed to color each complex point (it provides just one color map,
though). However, McClure’s program cannot detect basins of end points associated to n-cycles.

W. T. Shaw [8] presents a software developed in Mathematica that gives the possibility of
drawing the attraction basin of a unique end point. It provides the same color strategy as McClure’s
algorithm and several color maps. In addition, it can build “fractal planets” by mapping the plane
C onto the unit 2-sphere S2, but truncating the value of the polar coordinates at the North and
South pole to avoid kernel complaints about singular behavior. The advantage provided by Shaw’s
algorithm is that it is quite quick.

Finally, we remark that programs like Fractal Domains, which is described in [2], permit to
plot Julia and Mandelbrot sets on local rectangles in a very fast way, but no more mathematical
information such as multiplicators, coordinates of fixed points, etc. can be obtained.

In the present article, we present a collection of algorithms based on the canonical bijection of
the complex projective line and C ∪ {∞} which give us the following advantages:

(i) the use of homogeneous coordinates which permits us to work at the point at infinity ∞ ∈
C ∪ {∞},

(ii) the representation of a rational function by a pair of homogeneous polynomials of two variables
and with the same degree that allows us to compute the numerical value of the function at
any pole point and at the point at infinity,

(iii) the calculus of multiplicators which enables the usual classification of fixed points: super-
attracting, attracting, indifferent or repelling,

(iv) the use of normalized homogeneous coordinates that avoids overflow and underflow errors in
our algorithms.

Other of our subroutines are based on the stereographic bijection from the unit 2-sphere to
C ∪ {∞}, and it permits us:
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(v) to compute the distance from an ordinary point to the point at infinity using the chordal
metric on the 2-sphere,

(vi) to plot 3D-spherical global versions of the attraction basins,

(vii) to draw global attraction basins using two discs that correspond to the south and north
hemispheres of the 2-sphere.

In the present paper, a new notion of end point is given, which provides us the possibility of
studying attraction basins not only of fixed points, but also of periodic points. For a given positive
integer n, our algorithms allow us:

(viii) to plot the attraction basins of end points associated to n-periodic points.

Although the authors in [6] have developed an implementation of some of these algorithms
in Mathematica, the possibility of having open access to these programs for workers on Numeri-
cal Analysis or Fractal Geometry has been the main motivation for developing this new version
implemented in Sage.

We note that some of these new facts increase the computational cost and, for this very reason,
the authors are studying the possibility of using Cython to improve the execution speed of some
algorithms. On the other hand, the authors are also working on raising the quality of the obtained
graphics with Sage.

The present article is divided into four parts. In section 1, a mathematical theoretical basis for
our program is given. Section 2 describes the tasks and source codes of our algorithms. Section 3
includes a brief user manual that explains how to use the developed software properly. In the end,
section 4 shows some applications of our algorithms to certain mathematical fields and some future
implementations are suggested.

1 Mathematical framework and theoretical justification of the
algorithms

In order to create a theoretical basis to hold and justify the correct construction of our algorithms
for the representation of basins of end points corresponding to rational maps, we shall use the
mathematical techniques described below in this section. This study will be developed within the
theoretical framework of complex dynamics on the Riemann sphere.

1.1 Discrete semi-flows

Firstly, we recall some basic notions about discrete semi-flows.

Definition 1.1. A discrete semi-flow on a (topological space) set X is a (continuous) map
ϕ : N×X → X such that:

(i) ϕ(0, p) = p, ∀p ∈ X.

(ii) ϕ(n, ϕ(m, p)) = ϕ(n+m, p), ∀p ∈ X, ∀n,m ∈ N.

We shall use n · x = ϕ(n, x) for short.
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Given a discrete semi-flow ϕ : N×X → X, n0 ∈ N, x0 ∈ X, we have the induced maps ϕn0 : X →
X, ϕn0(x) = ϕ(n0, x), and the trajectory of x0 given by ϕx0 : N → X, ϕx0(n) = ϕ(n, x0). Note
that a discrete semi-flow ϕ : N×X → X induces a map ϕ1 : X → X and, conversely, a (continuous)
map f : X → X induces a discrete semi-flow ϕ : N ×X → X given by ϕ(n, x) = fn(x), where fn

denotes the function composition f ◦ . . .︸︷︷︸
n times

◦f and f0 = IdX . The discrete semi-flow induced by f

will be denoted by (X, f) or X for short.

Definition 1.2. Let X be a discrete semi-flow and x be a point of X.

(i) x is said to be a fixed point if, for all n ∈ N, n · x = x.

(ii) x is said to be a periodic point if there exists n ∈ N, n 6= 0, such that n · x = x.

The subset of fixed points of a discrete semi-flow will be denoted by Fix(X) and the subset of
periodic points by P (X).

1.2 End points associated to a discrete semi-flow

Let (X, d) be a metric space with metric d. Given a discrete semi-flow induced by a continuous
map f : X → X, the triple (X, d, f) will be called metric discrete semi-flow.

Next we introduce a notion of end point based on the existence of the metric d; for other notions
of end point of a dynamical system, we refer the reader to [4].

Definition 1.3. Given a metric discrete semi-flow X = (X, d, f), the end point space of X is
defined as the quotient set

Π(X) =
{(fn(x))n∈N | x ∈ X}

∼
,

where, given x, y ∈ X, (fn(x)) ∼ (fn(y)) if and only if

(d(fn(x), fn(y)))
n→∞

// 0.

An element a = [(fn(x))] ∈ Π(X) is called an end point of the metric discrete semi-flow.

Note that, if y ∈ Fix(X), we can interpret that y is an end point of the form y = [(y)] =
[(y, y, . . . )] ∈ Π(X). We can define the natural map

ω : X → Π(X)

given by ω(x) = [(fn(x))] = [(x, f(x), f2(x), . . . )]. The map ω allows to decompose any metric
discrete semi-flow in the way shown below.

Definition 1.4. Let X be a metric discrete semi-flow. The subset denoted by

Xa = ω−1(a), a ∈ Π(X)

is called the basin of the end point a.
There is an induced partition of X given by

X =
⊔

a∈Π(X,d)

Xa,

which will be called ω-decomposition of the metric discrete semi-flow X.
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1.3 Smooth and complex structures on C ∪ {∞}
Let S2 = {(r1, r2, r3) ∈ R3 | r2

1 + r2
2 + r2

3 = 1} be the unit 2-sphere and let N = (0, 0, 1) be
the north pole. Consider the stereographic atlas {x̂, ŷ} for S2, where x̂ : S2 \ {N} → R2 and
ŷ : S2 \ {−N} → R2 are both charts given by

x̂(r1, r2, r3) =

(
r1

1− r3
,

r2

1− r3

)
,

ŷ(r1, r2, r3) =

(
r1

1 + r3
,

r2

1 + r3

)
.

The stereographic atlas gives a 2-dimensional smooth structure to S2.

We can consider in a natural way a bijection θ̃ : S2 → C ∪ {∞} given as follows:

θ̃(r1, r2, r3) =

{
r1

1−r3 + i r2
1−r3 , if r3 < 1,

∞, if r3 = 1.

In this way, we can also regard C∪{∞} as a 2-dimensional smooth manifold by using the bijection
θ̃.

Take the following equivalence relation on C2\{(0, 0)}: (z, t) ∼ (z′, t′) if there exists a λ ∈ C\{0}
such that (z, t) = (λz′, λt′). The equivalence class of (z, t) is denoted by [z, t] and the quotient set
is denoted by P1(C) and it is called the complex projective line.

Let x and y be functions from P1(C) to C with domains Domx = {[z, t] ∈ P1(C) | t 6= 0}
and Dom y = {[z, t] ∈ P1(C) | z 6= 0} given by x([z, t]) = z/t and y([z, t]) = t/z. Then, the
atlas {x, y} provides P1(C) with a 1-dimensional complex structure. Given a point [z, t] ∈ P1(C),
the coordinates (z, t) are called the homogeneous coordinates of the point and t/z (or z/t where
appropriate) are the absolute coordinates of that point. In our study, we often use normalized
homogeneous coordinates for any point in P1(C), which are given as follows:

[z, t] =

{
[z/t, 1] if |t| ≥ |z|,
[1, t/z] if |t| < |z|,

where |t| and |z| represent the absolute value (or modulus) of the complex numbers t and z,
respectively.

We also have the induced bijection θ : P1(C)→ C ∪ {∞} given by

θ([z, t]) =

{
z/t, if t 6= 0,

∞, if t = 0.

All the bijections above induce a new bijection θ−1θ̃ : S2 → P1(C), which can be defined as follows:

θ−1θ̃(r1, r2, r3) = [r1 + ir2, 1− r3].
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The inverse map of this bijection θ̃−1θ : P1(C)→ S2 is given by the following formula:

θ̃−1θ([z, t]) =

(
z̄t+ zt̄

t̄t+ zz̄
,
i(z̄t− zt̄)
t̄t+ zz̄

,
−t̄t+ zz̄

t̄t+ zz̄

)
.

We recall that a surface with a 1-dimensional complex structure is said to be a Riemann
surface and a Riemann surface of genus 0 is said to be a Riemann sphere. Using the bijections
defined above, we have that S2 and C ∪ {∞} are Riemann spheres.

Remark 1.5. We notice that the homogeneous coordinates presented in this subsection allow us
to represent the point at infinity, and the use of normalized coordinates will avoid overflow and
underflow errors in our computer programs.

1.4 Complex rational maps

Consider a rational function h : C → C of the form h(u) = a
F (u)

G(u)
, where u, a ∈ C, a 6= 0, F (u) =

(u − z1) · · · (u − zp) and G(u) = (u − l1) · · · (u − lq). Suppose that {z1, . . . , zp} ∩ {l1, . . . , lq} = ∅.
Then, the function h induces an extension map h+ : C ∪ {∞} → C ∪ {∞}, where h+(li) = ∞ and
h+(∞) is given as follows:

h+(∞) =


∞, if q < p,

0, if q > p,

a, if q = p.

Observe that the bijection
θ : P1(C)→ C ∪ {∞}

induces the map h1 : P1(C)→ P1(C) defined by h1 = θ−1h+θ, which is expressed in homogeneous
coordinates as follows:

h1([z, t]) =

{
[a(z − tz1) · · · (z − tzp), tp−q(z − tl1) · · · (z − tlq)], if p ≥ q,
[atq−p(z − tz1) · · · (z − tzp), (z − tl1) · · · (z − tlq)], if p ≤ q.

In this context, it is important to notice that, in the case that we take u = z/t and n = max{p, q}
in the expression

a(up + a1u
p−1 + · · ·+ ap)

(uq + b1uq−1 + · · ·+ bq)
,

we have
a(zptn−p + a1z

p−1tn−p+1 + · · ·+ apt
n)

zqtn−q + b1zq−1tn−q+1 + · · ·+ bqtn
.

Now, take the following homogeneous polynomials of degree n in the variables z, t:

F1(z, t) = a(zptn−p + a1z
p−1tn−p+1 + · · ·+ apt

n),

G1(z, t) = zqtn−q + b1z
q−1tn−q+1 + · · ·+ bqt

n;

by using these polynomials, one has that

h1([z, t]) = [F1(z, t), G1(z, t)].
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Conversely, if A(z, t) and B(z, t) are homogeneous polynomials of degree n, then A(λz, λt) =
λnA(z, t) and B(λz, λt) = λnB(z, t). This implies that the pair of homogeneous polynomials
A(z, t) and B(z, t) induces the map f : P1(C)→ P1(C) defined as follows:

f([z, t]) = [A(z, t), B(z, t)].

The associated rational map is given by F (z) = A(z, 1) and G(z) = B(z, 1).

The next lemma discuss how to find all the fixed points of any rational map which is represented
by a pair of coprime homogeneous polynomials, even if it is composed with itself a certain number
of times.

Lemma 1.6. Let f be a rational map represented by a pair of coprime homogeneous polynomials
A(z, t), B(z, t) of degree n. Then:

(i) the set {[z1, t1], . . . , [zn+1, tn+1]} of roots of A(z, t)t−B(z, t)z is the set of fixed points of f ,

(ii) fr is a rational map of degree nr which has nr + 1 fixed points (taking into account its
multiplicity).

Remark 1.7. The representation of a rational function with a pair of homogeneous polynomials
of two variables with the same degree combined with normalized homogeneous coordinates permits
to work with poles and the point at infinity, as well as to avoid overflows and underflows in our
algorithms.

1.5 Metrics on S2 ∼= C ∪ {∞} ∼= P1(C)

We have two natural metrics on S2: since S2 is a subspace of R3, the usual Euclidean metric
of R3 induces a Euclidean metric dE on S2; on the other hand, we have as well that S2 inheres
a Riemannian metric dR from the canonical Riemannian structure of S2 ⊂ R3. The connection
between Riemannian metric dR and Euclidean metric dE on S2 is given by the expression:

dE((r1, r2, r3), (r′1, r
′
2, r
′
3)) = 2 sin

(
dR((r1, r2, r3), (r′1, r

′
2, r
′
3))

2

)
.

Using the bijection θ̃−1θ : P1(C)→ S2, we can translate the metric structures from S2 to P1(C)
with the following formulas:

dE1 ([z, t], [z′, t′]) = dE(θ̃−1θ([z, t]), θ̃−1θ([z′, t′])),

dR1 ([z, t], [z′, t′]) = dR(θ̃−1θ([z, t]), θ̃−1θ([z′, t′])).

An explicit formula for the chordal metric dE1 is given by:
dE1 ([z, t], [z′, t′]) =((
z̄t+zt̄
t̄t+zz̄ −

z̄′t′+zt̄′

t̄′t′+z′z̄′

)2

+
(

i(z̄t−zt̄)
t̄t+zz̄ −

i(z̄′t′−z′ t̄′)
t̄′t′+z′z̄′

)2

+
(
−t̄t+zz̄
t̄t+zz̄ −

−t̄′t′+z′z̄′

t̄′t′+z′z̄′

)2
) 1

2

.



78 L. J. Hernández, M. Marañón, M. T. Rivas

1.6 Tangent map of a rational map

Given an analytic map f : P1(C)→ P1(C) and a point p = [z, t] ∈ P1(C), there is an induced map
between the tangent spaces

Tpf : Tp(P1(C))→ Tf(p)(P
1(C)).

Taking the bases ∂
∂x if |t| ≥ |z| and ∂

∂y if |t| < |z| of the complex tangent space and writing

f(p) = [z′, t′], we have four cases when giving the 1× 1 Jacobian matrix of Tpf :

Jx,x
p =

(
(xfx−1)′(z/t)

)
, if |t| ≥ |z| and |t′| ≥ |z′|,

Jy,x
p =

(
(yfx−1)′(z/t)

)
, if |t| ≥ |z| and |t′| < |z′|,

Jx,y
p =

(
(xfy−1)′(t/z)

)
, if |t| < |z| and |t′| ≥ |z′|,

Jy,y
p =

(
(yfy−1)′(t/z)

)
, if |t| < |z| and |t′| < |z′|.

Notice that if f is a rational map induced by polynomials A(z, t), B(z, t), then the coordinate
representations of f with respect to the corresponding pairs of charts are given by

xfx−1(z) = A(z, 1)/B(z, 1),

yfx−1(z) = B(z, 1)/A(z, 1),

xfy−1(t) = A(1, t)/B(1, t),

yfy−1(t) = B(1, t)/A(1, t),

so that we can consider its corresponding derivatives:

d(A(z, 1)/B(z, 1))

dz
,

d(B(z, 1)/A(z, 1))

dz
,

d(A(1, t)/B(1, t))

dt
,

d(B(1, t)/A(1, t))

dt
.

Hence, the norm of the tangent function at p, taking into account the metrics of Tp(P1(C)) and
Tf(p)(P

1(C)), is given by the formula:

|Jp(f)| =


1+zz̄

1+z′z̄′ Abs((xfx−1)′(z)), if t = 1, t′ = 1,
1+zz̄
1+t′ t̄′

Abs((yfx−1)′(z)), if t = 1, z′ = 1,
1+tt̄

1+z′z̄′ Abs((xfy−1)′(t)), if z = 1, t′ = 1,
1+tt̄

1+t′ t̄′
Abs((yfy−1)′(t)), if z = 1, z′ = 1.
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We remark that, in the case of a fixed point p = f(p) = [z, t] and using normalized homogeneous
coordinates, we only have two cases for the 1× 1 Jacobian matrix:

Jx,x
p =

(
(xfx−1)′(z)

)
if t = 1,

Jy,y
p =

(
(yfy−1)′(t)

)
if z = 1.

We can use the norm of the tangent map to give the following definition:

Definition 1.8. Let f : P1(C) → P1(C) be an analytic function and p ∈ P1(C) a fixed point.
Then, p is said to be a super-attracting, attracting, indifferent or repelling fixed point if the
norm (absolute value) of the tangent map at that point is zero, lower than 1, equal to 1 or greater
than 1, respectively.

Then, in order to know if a fixed point is super-attracting, attracting, indifferent or repelling,
it suffices to check if

|Jp(f)| =

{
Abs((xfx−1)′(z)), if t = 1, t′ = 1,

Abs((yfy−1)′(t)), if z = 1, z′ = 1,

is zero, lower than, equal to or greater than 1.

Knowing if a fixed point is super-attracting, attracting indifferent or repelling will be helpful
later. In general, the attraction basins of super-attracting and attracting fixed points are “easily
visible”; however, for repelling fixed points it may be necessary to apply some zooms on suitable
local rectangles in order to see their attraction basins.

1.7 Basins of end points induced by a rational function on C ∪ {∞}

Let z ∈ C and consider a function h : C → C of the form h(z) = a
P (z)

Q(z)
, where a ∈ C, a 6= 0

and P (z), Q(z) is a pair of irreducible polynomials of degree p, q, respectively. We have seen in
subsection 1.4 that h induces a new map f = h+ on C∪{∞}, which gives to C∪{∞} the structure
of a discrete semi-flow by the formula n · p = fn(p). We also have the canonical map

ω : C ∪ {∞} → Π(C ∪ {∞})

given by ω(p) = [(p, f(p), f2(p), . . . )].

Next, we shall study a particular example of discrete semi-flow induced by a rational function.
Consider h(z) = P (z)/Q(z), where P (z) = 1 + 4z5 and Q(z) = 5z4. In this case, the induced map
f = h+ has six fixed points:

p0 =∞, p1 = −0.809017− 0.587785i, p2 = −0.809017 + 0.587785i,

p3 = 0.309017− 0.951057i, p4 = 0.309017 + 0.951057i, p5 = 1.

Therefore, the space X is divided into seven regions:

X = (X \D) tD∞ tDp1
tDp2

tDp3
tDp4

tDp5
,

where D = D∞ ∪Dp1
∪Dp2

∪Dp3
∪Dp4

∪Dp5
. We can associate each one with a different color,

as we see in Table 1. It is shown, moreover, which kind of fixed point (super-attracting, attracting,
indifferent, or repelling) corresponds to every attraction basin.
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Region Color Type of associated fixed point

X \D 0
D∞ = ω−1ω(p0) 1 Repelling
Dp1

= ω−1ω(p1) 2 Super-attracting
Dp2

= ω−1ω(p2) 3 Super-attracting
Dp3 = ω−1ω(p3) 4 Super-attracting
Dp4

= ω−1ω(p4) 5 Super-attracting
Dp5

= ω−1ω(p5) 6 Super-attracting

Table 1. Relationship between regions, colors and fixed points.

In region X \D, we can find points whose attraction basin corresponds to an end point which
is not associated to any fixed point (for example, end points associated to a 2-cycle) or even points
such that, after doing a prefixed limited number of iterations, belong to a sequence that did not
converge to any fixed point yet (modulo a determined precision fixed beforehand). The rest of
colors correspond to points which belong to the attraction basin of an end point (and they are
associated to a certain fixed point).

Figure 1. 3D fractal on sphere S2 plotted with Sage. The image on the left represents those regions
which are near the origin of coordinates (south pole of the sphere) and the image on the right shows regions
which are close to the point at infinity (north pole of the sphere).

Figure 1 illustrates the particular example that we have considered in this subsection. It is clear
that the basins of the points {p1, p2, p3, p4, p5} corresponds to colors {2, 3, 4, 5, 6}. The properties
of the points of regions of color 0 (red) and 1 (yellow) is a little more complicated. Note that the
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points colored in yellow belong to the basin of a repelling fixed point. In this case, since we have
chosen neither a high precision nor a high maximum number of iterations, some of these yellow
points are not actually in the basin of the repelling fixed point ∞. The red points correspond to
basins of end points induced by cycles and points that, with the specified maximum number of
iterations and the given precision, are not close to a fixed point yet.

2 Description of the employed algorithms

Along previous subsections, we have introduced some mathematical techniques and developed basic
theoretical aspects necessary to build computer programs with the ability of representing attraction
basins of end points associated to a determined rational function. As usual in this work, a rational
function f on C ∪ {∞} will be represented by a pair of homogeneous polynomials A(z, t), B(z, t)
of the same degree (see subsection 1.4). We shall show in the next lines the algorithms which have
been developed to study the basins induced by f .

2.1 Calculation of the fixed points of f

By Lemma 1.6, the set of roots
{[z1, t1], . . . , [zn+1, tn+1]}

of A(z, t)t−B(z, t)z = 0 coincides with the set of fixed points of f .

• If t = 0 is a root of B(1, t) and z1, . . . , zn are the roots of A(z, 1)−B(z, 1)z = 0, then the set
of fixed points of f is {[1, 0], [z1, 1], . . . , [zn, 1]}.

• If t = 0 is not a root of B(1, t) and z1, . . . , zn, zn+1 are the roots of A(z, 1) − B(z, 1)z = 0,
{[z1, 1], . . . , [zn, 1], [zn+1, 1]} is the set of fixed points of f .

A function called fixedPointsZeros(A,B) has been built in Sage. This function returns a list
containing all the fixed points of a given rational function f induced by A,B.

The following is an example of use: let

P.<z,t> = PolynomialRing(CC,2)

A=t**4+3*z**4

B=4*t*z**3

If we take as input

fixedPointsZeros(A,B),

the obtained output is

[(1, 0), (-1.000, 1), (1.000, 1), (-1.000*I, 1), (1.000*I, 1)]

Note that every point in the output is given in normalized homogeneous coordinates. In this case,
the first point represents ∞.

The developed algorithm is:



82 L. J. Hernández, M. Marañón, M. T. Rivas

def fixedPointsZeros (U, V) :

U = U + 0*I

V = V + 0*I

L = CC[z]

if (expand(U(t=1) - V(t=1)*z)!=0):

con = V(z=1, t=0)

solaux = (L(U(t=1) - V(t=1)*z)).roots()

sol1 = [homogeneousNormalization((t[0], 1))

for t in solaux]

if (con == 0): sol1.insert(0, (1, 0))

else:

sol1 = []

print "There was a problem when solving equation

f(x)=x: cannot solve equation 0=0."

return sol1

Observe that the subroutine homogeneousNormalization is used within the algorithm. Its
implementation is:

def homogeneousNormalization(twotuple):

if abs(twotuple[0]) < abs(twotuple[1]):

return (twotuple[0] / twotuple[1], 1)

else:

return (1, twotuple[1] / twotuple[0])

This subroutine allows to obtain the normalized homogeneous coordinates of any point of C∪{∞}.

2.2 Distance between two points

The chordal distance between any two points in P1(C) can be obtained by using the bijection from
P1(C) to S2 which appeared in subsection 1.5 and the Euclidean metric on S2. To that end, the
following functions were developed in Sage (an example of use is given):

sphereBijection((1,0))

(0,0,1)

chordalMetric((1,0),(1,1))

1.41421356237310

Function chordalMetric uses the Euclidean metric dE to calculate distances between pairs of
points in S2, instead of the Riemannian metric. This is because its computational cost would be
greater and it would be more inefficient if it employed the metric dR, since in that case it would use
inverse trigonometric functions to do the appropriate calculations. In fact, chordalMetric makes
use of the map dE1 defined in subsection 1.5.

An implementation in Sage of the functions that we have just presented is shown below:

def sphereBijection(twotuple):

z = twotuple[0]
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t = twotuple[1]

return ((conjugate(z)*t + conjugate(t)*z) /

(conjugate(t)*t + conjugate(z)*z),

(I*(conjugate(z)*t - conjugate(t)*z)) /

(conjugate(t)*t + conjugate(z)*z),

(-conjugate(t)*t + conjugate(z)*z) /

(conjugate(t)*t + conjugate(z)*z))

def chordalMetric(twotuple, twotuple1):

t1 = sphereBijection(twotuple)

t2 = sphereBijection(twotuple1)

m1 = Matrix([[t1[0], t1[1], t1[2]]]);

m2 = Matrix([[t2[0], t2[1], t2[2]]]);

return n(norm(m1-m2))

2.3 Iteration of the rational map f

With a view to find an end point associated to a point x ∈ P1(C), the rational map f must be
iterated to obtain a finite sequence

(x, f(x), f2(x), f3(x), . . . , fk−1(x), fk(x)).

In this context, remind that a maximum number of iterations l must be considered and a certain
precision c must be prefixed to determine when to stop the iterative process while programming the
function which returns such sequence. That is why we shall always work with sequences in which
k < l.

After each iteration, there will be two possible cases:

1) If the chordal distance from fk−1(x) to fk(x) is lower than 10−c, then take as output the list
[fk(x), k]; otherwise, case 2) is applied.

2) If k < l, a new iteration is done and case 1) is applied again; otherwise (if k = l), then the
output [f l(x), l] is taken.

The following implementation, newstep, was developed in Sage according to what was intended
(an example of use is given):

newstep(A,B,4,25,(0,1))

[(1,1),2]

The source code of the function is:

def newstep(U, V, iter, precision, pointinternumber):

point = pointinternumber

number = 0

imagepoint = rationalFunction(U, V, point)

while (chordalMetric(point, imagepoint) > 10.**(-precision))
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and (number < iter):

point = imagepoint

imagepoint = rationalFunction(U, V, point)

number = number + 1

return [imagepoint, number]

Observe that newstep uses the subroutine rationalFunction in order to calculate after each
iteration the image by the given rational map of the corresponding point and to normalize its
coordinates. The source code of the subroutine is shown below:

def rationalFunction(U, V, twotuple):

m = twotuple[0]

n = twotuple[1]

return homogeneousNormalization((U(m, n), V(m, n)))

2.4 Determination of the fixed point to which an iteration sequence converges and
number of iterations until convergence

Consider the ordered sequence of fixed points {x1, x2, . . . , xn+1} associated to a rational map. In
the same way, given a point x ∈ C ∪ {∞}, consider the iteration sequence

(x, f(x), f2(x), f3(x), . . . , fk−1(x), fk(x)).

If there exists an i ∈ {1, . . . , n + 1} such that the chordal distance from fk(x) to the fixed point
xi is lower than 10−c, then the function positionIterationNumber described below must return
[i, k]. Otherwise, k = l and the output must be [0, l], where l is the maximum number of iterations
which was prefixed beforehand. Examples of use:

positionIterationNumber(A,B,fixedPointsZeros(A,B),25,4,(-0.1-0.1*i,1))

[0,25]

positionIterationNumber(A,B,fixedPointsZeros(A,B),25,4,(-0.1-0.09*i,1))

[5,23]

The input parameter fixedpointlist is assigned to the list of fixed points associated to the
given rational map, which will have been previously created within the function fixedPointsZeros.

The implementation of positionIterationNumber is:

def positionIterationNumber(U, V, fixedpointlist, iter,

precision, twotuple):

result = newstep(U, V, iter, precision, twotuple)

if (result[1] != iter):

return [position(fixedpointlist, precision, result[0]),

result[1]]

else:

return [0, result[1]]
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The subroutine position, which appears in the subprogram above, returns the exact position within
the list fixedpointlist where the fixed point to which the iteration sequence converges is found;
in case that such sequence does not converge to any fixed point, it returns 0. An implementation
of this subroutine is shown in the next lines:

def position(fixedPointList, precision, twotuple):

pos = -1

iter = 0

le = len(fixedPointList)

while (iter < le) and (pos == -1):

if (chordalMetric(twotuple, fixedPointList[iter]) <

10.**(-precision)):

pos = iter

else:

iter = iter + 1

else:

return pos + 1

2.5 Derivative of a rational function at a fixed point

In order to know if a fixed point is super-attracting, attracting, indifferent or repelling (see sub-
section 1.6), the derivative of the corresponding rational function can be calculated by using the
following algorithm (an example of use is given):

fixedPointsTangentMapNorm(A,B,(1,0))

((1,0),1.33333333333333)

Suppose that A(z, t), B(z, t) are homogeneous polynomials and that [z, t] is a fixed point repre-
sented in normalized homogeneous coordinates. Then, the subprogram fixedPointsTangentMapNorm

returns a list containing two elements: the considered fixed point [z, t] and the absolute value of
the derivative of the rational function at that point.

The implementation of the described algorithm, developed in Sage, is given by:

def fixedPointsTangentMapNorm(A, B, twotuple):

a, b = var(’a, b’)

nor = homogeneousNormalization(twotuple)

if (nor[1] == 1):

return (nor, abs(derivative(A(a, 1)/B(a, 1),a)(a = nor[0])))

else:

return (nor, abs(derivative(B(1, b)/A(1, b),b)(b = nor[1])))

2.6 Fractal plotting

Next we shall show the algorithms and subroutines which have been developed with the aim of
representing basins of end points associated to a rational function on C ∪ {∞} and even on S2, as
well as the strategies employed to build those subprograms which have been followed in order to
plot the corresponding fractals.
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2.6.1 Strategies

We shall plot a fractal by using the pair given by the fixed point to which the iteration sequence
converges (maybe such point does not exist) and the number of iterations until convergence, together
with one of the following strategies:

1) Fixed point to which the iteration sequence converges: A color is assigned to each point x in

C∪{∞} according to the fixed point to which the trajectory (fk(x))k∈N converges. That point
is drawn with another different color if the trajectory did not converge yet after a determined
number of iterations. In this way, attraction basins can be distinguished by their colors. The
algorithm which sets the color of each point in C ∪ {∞} is:

def onlyPosition(U, V, fixedpointlist, iter, precision,

twotuple):

return (positionIterationNumber(U, V, fixedpointlist,

iter, precision, twotuple)[0])

2) Number of iterations until convergence: Instead of assigning a color to each point taking into
account the reached fixed point, that color is assigned in accordance with the number of
needed iterations until convergence, given a prefixed precision. Eye-catching drawings may
be generated with this strategy, too. The subroutine which allows to find the number of
iterations associated to a given point is:

def onlyConvergence(U, V, fixedpointlist, iter, precision,

twotuple):

return (positionIterationNumber(U, V, fixedpointlist,

iter, precision, twotuple)[1])

3) Combination of the both previous strategies: In this case, a color is assigned to each attrac-
tion basin, but making it lighter or darker depending on the number of needed iterations
until convergence. An implemented subprogram in Sage which satisfies this strategy is shown
below:

def positionPlusConvergence(U, V, fixedpointlist, iter,

precision, twotuple):

pair = positionIterationNumber(U, V, fixedpointlist, iter,

precision, twotuple)

if(pair[0] == 0):

away = 0

else:

away = pair[1]

return n(pair[0] + away / iter * 3/4)
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Our program uses specific color palettes to plot fractals, based on the color maps of Sage.
If we are working with strategy 1) and the homogeneous polynomials which induce the rational
function are of degree n, then a palette with n+ 2 colors will be used: the first color of the palette
will be associated to points belonging to a basin of an end point which corresponds to no fixed
points (for example, end points associated to 2-cycle points) or points whose induced trajectories
did not converge to any fixed point yet, after a prefixed finite number of iterations; the other
colors are related to points which are in the attraction basin of an end point associated to a fixed
point. If strategy 2) is considered, a palette with l+ 1 colors will be used (where l is the number of
predefined maximum iterations), being the first color reserved for those points whose corresponding
trajectory does not converge to any fixed point (because of any of the reasons explained above in
this paragraph) and being the rest of colors associated to each one of the possible numbers of
iterations k ∈ {0, 1, . . . , l−1}. On the other hand, if strategy 3) is chosen, then a graduated palette
constructed from a specified color map of Sage will be given. Figure 2 shows some examples of
such color palettes.

Figure 2. Different color palettes associated to the same color map of Sage (‘hsv’, in this case). The
images correspond respectively to the strategies 1), 2) and 3) shown above.

2.6.2 Algorithms

The subprograms developed in Sage responsible for plotting fractals corresponding to basins of end
points associated to rational functions are the following: fractalPlotInsideOutside, fractalPlot,
spherePlot and cubicSpherePlot:

• Function fractalPlotInsideOutside returns two disks: one of them represents the inter-
section between the attraction basins and the unit disk, and the other shows by means of the
inversion method the intersection of that basins with the complementary of the unit disk on
C ∪ {∞} (see Figure 3).

• With function fractalPlot, a colored fractal in a rectangular region is obtained (see Figure
4).

• A 3D fractal in the unit sphere is obtained with spherePlot, showing all the fixed points in
a bigger size than the others. An example of what we can get with this function was shown
in Figure 1, and another one can be found in Figure 5.



88 L. J. Hernández, M. Marañón, M. T. Rivas

Figure 3. Fractal plotted by the algorithm fractalPlotInsideOutside, obtained applying strategy 3).

Figure 4. Fractals plotted by the algorithm fractalPlot. The image on the left corresponds to strategy
1) and the image on the right was drawn applying strategy 2).

• The program cubicSpherePlot returns the same as spherePlot, but the sphere obtained
with the former function is a bit different from the one returned by the latter, since its
points are distributed all over its surface in a different way (by projecting the boundary of a
subdivided cube onto the unit sphere). A comparison between both functions is established
in Figure 6.

In all cases above, a list containing the fixed points of the rational map, the absolute values
of the derivative of the rational function at that fixed points (which allows to know if every fixed
point is super-attracting, attracting, repelling or indifferent) and a color palette associated to the
attraction basins are returned as well.

fractalPlotInsideOutside, spherePlot and cubicSpherePlot always have the numerator
and denominator of a rational function as input parameters, whereas that fractalPlot have in
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Figure 5. Fractals plotted by the algorithm spherePlot by considering strategies 2) and 3), respectively.
Both fractals were obtained from the same rational function.

Figure 6. Comparison between output plots obtained with spherePlot (on the top) and cubicSpherePlot

(on the bottom). The algorithm cubicSpherePlot projects points belonging to the faces of a cube onto
the unit sphere.

addition as optional input parameters the points which delimit the rectangular area where the
fractal will be plotted. Furthermore, all the plotting algorithms described also have several other
optional input parameters: precision, maximum number of iterations, plot points, coloring strategy,
color map (except spherePlot and cubicSpherePlot) and number of compositions of the given
rational function f with itself.
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This latter parameter allows to work with polynomials associated to f2, f3,. . . As an example
of what it is useful for, note that the attraction basins of the fixed points of f2 = f ◦ f correspond,
together, to basins of fixed points and 2-cycle points of f ; that is, if two fixed points of f2 form
a 2-cycle, its associated attraction basin is the union of the basins of these two fixed points. This
fact can be generalized to any number of iterations.

The subprogram responsible for composing n times a given rational function f/g with itself and
obtaining a homogeneous rational map from it is:

composeHomogenize(f,g,n).

An implementation in Sage of this subprogram is given:

def composeHomogenize(f, g, n):

x = var(’x’)

if(g.degree() == 0):

comp = compose(f, n)

homo = homogenize(comp, g)

else:

h = f/g;

comp = compose(h, n)

comp1 = (comp+0*I).simplify_rational(’simple’)

S = P.fraction_field()

comp2 = S(sage_eval(repr(comp1),locals=locals()))

num = comp2.numerator(); den = comp2.denominator()

homo = homogenize(num, den)

A = homo[0]; B = homo[1]

return [A, B]

Observe that subroutines compose(h,num) and homogenize(f,g) are used in the subprogram
above. The first of these subroutines composes a rational function h with itself a number of
times indicated by the input parameter num (option simplify_rational(’simple’) is passed
to preserve the composed rational function in the form of a quotient of polynomials) whereas the
second one homogenizes a given rational function f/g. Their implementations developed in Sage
are the following:

def compose(h, num):

H = h

if (num < 1):

print("Rational function must be composed once at least.")

for cont in range(num-1): H = h.subs(x = H)

return H

def homogenize(f, g):

z = var(’z’)

P.<x,t> = PolynomialRing(CC,2)

fdeg = f.degree(); gdeg = g.degree()
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deg = max(fdeg, gdeg)

f = f.homogenize(’t’); g = g.homogenize(’t’)

if (fdeg > gdeg): g = g*t**(fdeg - gdeg)

else: f = f*t**(gdeg - fdeg)

F = f.subs(x = z); G = g.subs(x = z)

return [F, G]

To conclude, the source codes of the plotting algorithms we have just presented are shown below.

from sage.plot.density_plot import DensityPlot

def fractalPlotInsideOutside(M,N,points=100,function=onlyPosition,

iter=25,prec=3,ncomp=1,reflection=-1,colorfunction=’spectral’):

ch=composeHomogenize(M,N,ncomp)

A=ch[0];B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if(function==onlyConvergence): range=iter+1

else: range=grad+1.99

x,y=var(’x,y’)

def f(x,y):

if(x**2+y**2>1): return 0

else: return function(A,B,p,iter,prec,(x+y*I,1))

def f1(x,y):

if(x**2+y**2>1): return 0

else:

return function(A,B,p,iter,prec,

(1,x+reflection*y*I))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

if(function!=positionPlusConvergence):

return density_plot(f,(x,-1,1),(y,-1,1),

cmap=colorfunction,plot_points=points),

density_plot(f1,(x,-1,1),(y,-1,1),

cmap=colorfunction,plot_points=points),

density_plot(floor(x),(x,0,range),(y,0,1),

cmap=colorfunction,

plot_points=100).show(ticks=[None,[]]),

table

else:

return density_plot(f,(x,-1,1),(y,-1,1),

cmap=colorfunction,plot_points=points),

density_plot(f1,(x,-1,1),(y,-1,1),

cmap=colorfunction,plot_points=points),

density_plot(x,(x,0,range),(y,0,1),

cmap=colorfunction,

plot_points=100).show(ticks=[None,[]],

gridlines=["minor",None]),

table

def fractalPlot(M,N,xmin,xmax,ymin,ymax,points=100,
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function=onlyPosition,iter=25,prec=3,ncomp=1,

colorfunction=’spectral’):

ch=composeHomogenize(M,N,ncomp)

A=ch[0];B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if(function==onlyConvergence):

range=iter+1

else:

range=grad+1.99

x,y=var(’x,y’)

def f(x,y):

return function(A,B,p,iter,prec,(x+y*I,1))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

if(function!=positionPlusConvergence):

return density_plot(f,(x,xmin,xmax),(y,ymin,ymax),

cmap=colorfunction,plot_points=points),

density_plot(floor(x),(x,0,range),(y,0,1),

cmap=colorfunction,

plot_points=100).show(ticks=[None,[]]),

table

else:

return density_plot(f,(x,xmin,xmax),(y,ymin,ymax),

cmap=colorfunction,plot_points=points),

density_plot(x,(x,0,range),(y,0,1),

cmap=colorfunction,

plot_points=100).show(ticks=[None,[]],

gridlines=["minor",None]),

table

def spherePlot(M,N,function=onlyPosition,rotzoom=((0,0,0),1),points=100,

ncomp=1,view=’tachyon’,iter=25,prec=3):

ch=composeHomogenize(M,N,ncomp)

A=ch[0];B=ch[1]

p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if(function==onlyConvergence): ran=iter+1

else: ran=grad+2

x,y,twot=var(’x,y,twot’)

def f(x,y,twot):

if(sphereBijection(twot)[2]>0):

return function(A,B,p,iter,prec,(1,x-y*I))

else:

return function(A,B,p,iter,prec,(x+y*I,1))

def g(x,y):

if(x**2+y**2<=1):

return point3d(sphereBijection((1,x-y*I)),
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color=hue(f(x,y,(1,x-y*I))/ran))

def g1(x,y):

if(x**2+y**2<=1):

return point3d(sphereBijection((x+y*I,1)),

color=hue(f(x,y,(x+y*I,1))/ran))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p]

l=[(n(k/(points//2))) for k in range(1,(points//2)+1)]

for k in range((points//2)):

l.append(n((-1)*l[k]))

l.append(0)

pl=[g(u,v) for u in l for v in l]

for u in l:

for v in l:

pl.append(g1(u,v))

if(function!=onlyConvergence):

for ind in range(ran-1):

pl.append(point3d(sphereBijection(p[ind]),size=15,

color=hue((ind+1)/ran)))

if(function!=positionPlusConvergence):

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],

zoom=rotzoom[1]),

density_plot(floor(x),(x,0,ran),(y,0,1),

cmap=’hsv’,plot_points=100).show(ticks=[None,[]]),

table

else:

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],

zoom=rotzoom[1]),

density_plot(x,(x,0,ran),(y,0,1),

cmap=’hsv’,plot_points=100).show(ticks=[None,[]],

gridlines=["minor",None]),

table

def cubicSpherePlot(M,N,function=onlyPosition,rotzoom=((0,0,0),1),numdiv=40,

ncomp=1,view=’tachyon’,iter=25,prec=3):

ch=composeHomogenize(M,N,ncomp);A=ch[0];B=ch[1];p=fixedPointsZeros(A,B)

if len(p)>0:

grad=len(p)-1

if(function==onlyConvergence): ran=iter+1

else: ran=grad+2

cube=[]

for y1 in range(numdiv):

for x1 in range(numdiv):

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2,-1))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2,1))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

-1,((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

1,((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((-1,((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

cube.append((1,((2*x1/numdiv-1)+(2*(x1+1)/numdiv-1))/2,



94 L. J. Hernández, M. Marañón, M. T. Rivas

((2*y1/numdiv-1)+(2*(y1+1)/numdiv-1))/2))

def cubeSphere(p):

root=sqrt(p[0]**2+p[1]**2+p[2]**2)

return (n(p[0]/root),n(p[1]/root),n(p[2]/root))

def sphereComplexProjLine(p):

if(p[2]==1): return (1,0)

else: return (p[0]/(1-p[2])+I*p[1]/(1-p[2]),1)

pl=[]

for k in cube:

spherePoint=cubeSphere(k)

pl.append(point3d(spherePoint,color=hue(function(A,B,p,iter,

prec,sphereComplexProjLine(spherePoint))/ran)))

if(function!=onlyConvergence):

for ind in range(ran-1):

pl.append(point3d(sphereBijection(p[ind]),size=15,

color=hue((ind+1)/ran)))

table=[fixedPointsTangentMapNorm(A,B,t) for t in p];x,y=var(’x,y’)

if(function!=positionPlusConvergence):

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],

zoom=rotzoom[1]),

density_plot(floor(x),(x,0,ran),(y,0,1),

cmap=’hsv’,plot_points=100).show(ticks=[None,[]]),table

else:

return sum(pl,sphere(color=’black’)).rotateX(rotzoom[0][0])

.rotateY(rotzoom[0][1]).rotateZ(rotzoom[0][2])

.show(frame=False,viewer=view,aspect_ratio=[1,1,1],

zoom=rotzoom[1]),

density_plot(x,(x,0,ran),(y,0,1),

cmap=’hsv’,plot_points=100).show(ticks=[None,[]],

gridlines=["minor",None]),table

3 User manual

The program is really easy to use. In order to plot the fractal associated to a given rational function,
it suffices to specify the polynomials which form its numerator and denominator in variable x and
execute one of the following subroutines, depending on what kind of fractal we want to draw: either
fractalPlotInsideOutside or fractalPlot or spherePlot or cubicSpherePlot (see paragraph

2.6.2). For example, the fractal plotted in Figure 3, whose associated rational function is
4x5 + 1

5x4
,

was obtained simply by typing the following sequence in Sage:

P.<x,t> = PolynomialRing(CC,2)

M=4*x**5+1; N=5*x**4

fractalPlotInsideOutside(M,N,100,positionPlusConvergence)

Next we show the input parameters of the plotting functions that are supported:

• fractalPlotInsideOutside(M, N, points = 100, function = onlyPosition, ncomp = 1, col-
orfunction = ‘spectral’, iter = 25, prec = 3, reflection = -1)
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– M,N are the numerator and the denominator of the given rational function in variable x,
respectively.

– points is an integer (default: 100) that represents the number of points to plot in each
direction of the grid.

– function indicates the strategy employed in order to plot the fractal: onlyPosition

(which is set by default), onlyConvergence or positionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– colorfunction is a colormap of Sage that is used to assign a color to each complex
point. The colormap set by default is spectral.

– iter is an integer (default: 25) that represents the maximum number of iterations of
the rational function.

– prec is an integer (default: 3) such that, if the distance between two points is lower than
10−prec, then the developed algorithm considers those points as if they were the same.

– reflection is a number either equal to 1 or to −1 that indicates the sign of the reflection
of the inversion method.

• fractalPlot(M, N, xmin, xmax, ymin, ymax, points = 100, function = onlyPosition, ncomp
= 1, colorfunction = ’spectral’, iter = 25, prec = 3)

– M,N are the numerator and the denominator of the given rational function in variable x,
respectively.

– The tuple given by xmin,xmax,ymin,ymax represents the vertices of the rectangle in
which the fractal will be plotted.

– points is an integer (default: 100) that represents the number of points to plot in each
direction of the grid.

– function indicates the strategy employed in order to plot the fractal: onlyPosition

(which is set by default), onlyConvergence or positionPlusConvergence.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– colorfunction is a colormap of Sage that is used to assign a color to each complex
point.

– iter is an integer (default: 25) that represents the maximum number of iterations of
the rational function.

– prec is an integer (default: 3) such that, if the distance between two points is lower than
10−prec, then the developed algorithm considers those points as if they were the same.

• spherePlot(M, N, function = onlyPosition, rotzoom = ((0,0,0),1), points = 100, ncomp =
1, view = ’tachyon’, iter = 25, prec = 3)

– M,N are the numerator and the denominator of the given rational function in variable x,
respectively.
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– function indicates the strategy employed in order to plot the fractal: onlyPosition

(which is set by default), onlyConvergence or positionPlusConvergence.

– rotzoom is a tuple given by two elements: a 3-tuple (xrot, yrot, zrot) and a positive real
number z. Due to this parameter, the algorithm returns the sphere zoomed z times
and self-rotated about the x-axis, y-axis and z-axis by the angles xrot, yrot and zrot,
respectively.

– points is an integer (default: 100) that represents the number of points to plot in each
direction of the grid.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– view is a string that indicates the viewer which will be used in order to see the plot.
Possible values: ’jmol’, ’tachyon’ (by default), ’java3d’ and ’canvas3d’.

– iter is an integer (default: 25) that represents the maximum number of iterations of
the rational function.

– prec is an integer (default: 3) such that, if the distance between two points is lower than
10−prec, then the developed algorithm considers those points as if they were the same.

• cubicSpherePlot(M, N, function = onlyPosition, rotzoom = ((0,0,0),1), numdiv = 40,
ncomp = 1, view = ’tachyon’, iter = 25, prec = 3)

– M,N are the numerator and the denominator of the given rational function in variable x,
respectively.

– function indicates the strategy employed in order to plot the fractal: onlyPosition

(which is set by default), onlyConvergence or positionPlusConvergence.

– rotzoom is a tuple given by two elements: a 3-tuple (xrot, yrot, zrot) and a positive real
number z. Due to this parameter, the algorithm returns the sphere zoomed z times
and self-rotated about the x-axis, y-axis and z-axis by the angles xrot, yrot and zrot,
respectively.

– numdiv is an integer (default: 40) that indicates the number of subdivisions of the faces
of the cube which is projected upon the unit sphere.

– ncomp is an integer (default: 1) which represents the number of times that the rational
function has to be composed with itself.

– view is a string that indicates the viewer which will be used in order to see the plot.
Possible values: ’jmol’, ’tachyon’ (by default), ’java3d’ and ’canvas3d’.

– iter is an integer (default: 25) that represents the maximum number of iterations of
the rational function.

– prec is an integer (default: 3) such that, if the distance between two points is lower than
10−prec, then the developed algorithm considers those points as if they were the same.
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4 Applications of the algorithms

4.1 Rational functions induced by iterative numerical methods

In the next paragraph, we shall show how to apply the algorithms described above to iterative
numerical processes (like Newton or Chebyshev methods) which are used in the search of complex
polynomial roots.

Consider the Taylor expansion of a polynomial f : C→ C:

f(x) = f(xn) + f ′(xn)(x− xn) +
f ′′(xn)

2
(x− xn)2 + · · ·

If this expansion is truncated at the second (linear) term and evaluated at xn+1, it follows that:

f(xn+1) ' f(xn) + f ′(xn)(xn+1 − xn).

Moreover, if it is supposed that f(xn+1) ' 0 (that is, xn+1 approaches a root of f), we obtain the
expression:

xn+1 = xn −
f(xn)

f ′(xn)
,

which is known as Newton-Raphson algorithm. Taking this into account, the rational function
induced by this method is:

Nf (x) = x− f(x)

f ′(x)
=
xf ′(x)− f(x)

f ′(x)
.

Therefore, if we start from the polynomial f(x) = x5 − 1, this process induces the rational
function

Nf (x) =
xf ′(x)− f(x)

f ′(x)
=

4x5 + 1

5x4
,

which is exactly the function considered in the last section. That means that, in this work, we
have actually found the roots of the polynomial f(x) = x5 − 1 by calculating the fixed points of

the rational function
4x5 + 1

5x4
.

In general, the roots of a complex polynomial are fixed points of the rational function obtained
with the most usual iterative numerical methods. As indicated in subsection 1.2, each fixed point
of a rational function can be directly regarded as an end point. Thus, every attraction basin of a
complex polynomial root is just the attraction basin of its associated end point.

If p is a root of the original complex polynomial, the meaning that a point x is in the attraction
basin corresponding to the fixed point p is that, when applying the rational function associated to
the considered numerical method to the point x, the trajectory is approaching the root p of the
given polynomial. The designed programs are able to calculate graphically those attraction basins
and, in addition, to indicate the number of iterations until convergence, which will be useful to
know the speed of convergence of a point that belongs to the basin of a determined root.

There are many other iterative methods that, like Newton-Raphson method, induce a rational
function which can be used to find the roots of a complex polynomial. Several of them can be found
in [9], where a visual comparison of the fractal pictures that appear when the different iterative
methods for solving a unique equation are applied is given. For a general study about iteration of
complex rational functions, see [1].
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4.2 Connections with Fractal Geometry

This work is closely connected to some aspects of Fractal Geometry, like Fatou set and Julia set;
we shall remind briefly these both notions in order to relate them to what we are studying.

For a rational function f of degree greater than or equal to 2, the Julia set J(f) can be
described as:

J(f) = {x ∈ X | x is a periodic repelling point}.

The corresponding Fatou set is precisely the complementary set of J(f) in X. Intuitively, we can
say that a point x ∈ X belongs to the Fatou set if there exists an open neighborhood U of x such
that ω(x) = ω(y), ∀y ∈ U (that is, if the basin of an end point associated to any point which is
close to x is the same as the basin of the end point to which x belongs).

As we can read in [3], the Julia set J(f) is an uncountable compact set containing no isolated
points and it is the boundary of the basin of attraction of each attractive fixed point of f , including
∞, and J(f) = J(fp) for each positive integer p. Consequently, in the present case, we could
consider that the Julia set is formed by points which are in the boundary of the basins of attractive
points (and hence, the rest of points of X are in the Fatou set).

4.3 Future applications

Our algorithms may be employed with the aim of giving a numerical estimate of the areas of the
attraction basins associated to each root of a polynomial, as well as the probability of an initial
point x0 ∈ C ∪ {∞} being in one region or another. This purpose becomes possible by adding the
surface areas of all the small spherical quadrilaterals projected from a cube onto the unit sphere
(that is the same idea as we used in subroutine cubicSpherePlot), grouping them by their colors.
All these considerations may be important in the context of some future research directions in the
field of Numerical Analysis.

Furthermore, some portions of the algorithms could also be useful to make a detailed study of
the Julia sets of the obtained fractals by calculating their fractal dimension and Betti numbers,
which would allow us to know the number of connected components, topological holes, etc.
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