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Abstract

Our “long term and large scale” aim is to characterize the first order
theories T (at least the countable ones) such that for every ordinal
α there are λ, M1, M2 such that M1 and M2 are non-isomorphic
models of T of cardinality λ which are EF+

α,λ-equivalent. We expect
that as in the main gap [11, XII], we get a strong dichotomy, i.e.,
on the non-structure side we have stronger, better examples, and on
the structure side we have an analogue of [11, XIII]. We presently
prove the consistency of the non-structure side for T which is ℵ0-
independent (= not strongly dependent), even for PC(T1, T ).
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1 Introduction

1.1 Motivation
We first give some an introduction for non-model theorists. A major theme
in the author’s work in model theory is to find “main gap theorems”. This
means finding a dichotomy for the family of elementary classes (e.g., the
classes of the form ModT = {M ; M |= T} for some (complete) first order
theory T ) such that each such class is either “very simple” or “very compli-
cated”. The motivation for this is that we expect to have much knowledge
to gain on the “very simple” ones.

Of course, this depends on the criterion for “very simple”. The main
theorem of [11] does this essentially for countable T , with “very compli-
cated” interpreted as “the number of models in ModT of cardinality λ is
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maximal, i.e., 2λ, for every λ”.1 Here we are interested with interpret-
ing “very complicated” as “for arbitrarily large cardinals, there are models
M1,M2 ∈ ModT of cardinality λ which are very similar but not isomorphic”,
where “very similar” is interpreted as equivalent in the sense of Ehrenfeucht-
Fräıssé games: These games have two players, the isomorphism player and
the anti-isomorphism player. The isomorphism player constructs during
the play, partial isomorphism of cardinality < λ, in each move the anti-
isomorphism player demands some elements to be in the domain or the
range, the isomorphism player has to extend the partial isomorphism ac-
cordingly; in the play there are α moves, α < λ; and the isomorphism player
wins the play if he has a legal move in each stage (cf. Definitions 2.3 and
2.5).

In the present paper we aim at finding the right variant of Ehrenfeucht-
Fräıssé game that allows us to interpret “very complicated” as intended
(cf. the discussion after Definition 2.3); we then give quite weak sufficient
conditions for ModT being complicated. Let T ⊆ T1 be complete first
order theories. We denote by PC(T1, T ) the set of reducts of models of
T1 in the language of T . We aim to show: If T is not strongly stable, α
is an ordinal and λ > |T | (or at least for many such λs) then there are
M1,M2 ∈ PC(T1, T ) of cardinality λ which are EF+

α,λ-equivalent for every
α < λ but not isomorphic.2

1.2 Related Work
This paper continues the work of [13] and [1]. For a history of this research
area, cf. [19]. Recently, the author gave a new construction in [14] covering
also ℵ1; but, whereas it applies to every regular uncountable λ, it seems less
amenable to generalizations.

By [11], for a countable complete first order theory T , we essentially
know when there are L∞,λ(τT )-equivalent non-isomorphic models of T of
cardinality λ for some λ: this is exactly when T is superstable with the
NDOP and the NOTOP.3 Instead of the property “L∞,λ(τT )-equivalent
non-isomorphic”, we can consider “EFα,λ-equivalent non-isomorphic”. This
investigation was started by Hyttinen and Tuuri [5], and continued by Hyt-
tinen and the present author [2, 3, 4]. In this paper, we shall replace
“EFα,λ-equivalent non-isomorphic” by a technical variant “EF+

α,λ-equiva-
lent non-isomorphic” (cf. Definition 2.5). By [2], if T is a stable, unsuper-

1More information on the mentioned theorem can be found, e.g., in [17].
2For the definition of EF+

α,λ, cf. Definition 2.5 below. This is a somewhat stronger

relative of the standard notion of being EFα,λ-equivalent.
3Cf. § 5 and [9]. In this paper, we shall be referring regularly to the standard no-

tions of classification theory, the “dimensional order property” (DOP) and the “omitting
types order property” (OTOP). Theories without these properties are called NDOP and
NOTOP, respectively. Definitions will be given in § 1.3.
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stable, complete first order theory, λ = µ+, µ = cf(µ) ≥ |T |, then there are
EFµ×ω,λ-equivalent non-isomorphic models of T (even in PC(T1, T )) of car-
dinality λ. By our new variant EF+

α,λ-equivalent, such results are excluded;
by it we define our choice test problem the version of being fat/lean, cf. the
definitions in § 1.3.

Among the variants of strongly dependent theories (cf. [6, §3], [7, 18] and
[7, §5]), the best relative for us is “strongly4 dependent”. We define this
below (Definition 3.6), but we delay the treatment to a subsequent paper,
[8], where we also deal with the relevant logics and more.

We prove here that if T is not strongly stable then T is consistently
fat. More specifically, for every µ = µ<µ > |T | there is a µ-complete class
forcing notion P such that in VP the theory T is fat. The result holds even
for PC(T1, T ). This gives new cases even for PC(T ) by Example 1.1.

Also if T is unstable or has the DOP or OTOP (cf. the definitions in
§ 1.3 or [11]) then it is fat, i.e., already in V.

Of course, it is not optimal to have to force the example, but note that
such a result is certainly enough for proving there is no positive theory.
Hence it gives us an upper bound on the relevant dividing lines.

1.3 Notation and basic definitions
Let us fix our model-theoretic notation. We fix a first-order theory T . By
ModT (λ) = ECT (λ) we denote the class of models of T of cardinality λ;
ModT = ECT :=

⋃
{ECT (λ) : λ a cardinality}. If T is a theory or a

sentence in a vocabulary τT ⊇ τ , we write PCτ (T ) = {M�τ : M a model
of T} (and if τ = τT we may omit τ). If T ⊆ T1 are complete first order
theories then PC(T1, T ) = PCτ(T )(T1).

If ā is a sequence, we denote its length by lh(ā); by ā E b̄ we mean that
ā is an initial segment of b̄; and by ā�α we denote the unique initial segment
of ā of length α for α ≤ lh(ā).

For regular λ > ℵ0, we say that (E, u) is a witness for S if (a) E
is a club of the regular cardinal λ; (b) u = 〈uα : α < λ〉, aα ⊆ α and
β ∈ aα ⇒ aβ = β ∩ aα; and (c) for every δ ∈ E ∩ S, uδ is an unbounded
subset of δ of order-type < δ (and δ is a limit ordinal). For a regular
uncountable cardinal λ let Ǐ[λ] = {S ⊆ λ : some pair (E, ā) is a witness for
S}.

If I is a linearly ordered set, we let incrα(I) := {ρ : ρ is an increasing
sequence of length α of members of I}; similarly incr<α(I) :=

⋃
{incrβ(I) :

β < α}. So instead of [I]<ℵ0 we may use incr<ω(I).
For a model M, ā ∈ αM,B ⊆ M and ∆ a set of formulas, we are in-

terested in formulas of the form ϕ(x̄, ȳ), x̄ = 〈xi : i < α〉. Here, α may
be infinite, but the formulas are normally first order, so all but finitely
many of the xi’s are dummy variables. We write tp∆(ā, B,M) := {ϕ(x̄, ā) :
ϕ(x̄, ȳ) ∈ ∆ and b̄ ∈ lh(ȳ)A and M |= ϕ[ā, b̄]}.
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Let ∆qf be the set of quantifier-free formulas in L(τM ) and write tpqf

instead of tp∆qf . By İ(λ, T ) we denote the number of isomorphism types of
models of T of cardinality λ; by İτ (λ, T ) we denote the number of isomor-
phism types of M�τ for a model M |= T of cardinality λ; and by İĖτ (λ, T )
we denote the supremum of {|K| : K ⊆ PCτ (T ), all M ∈ K have cardinal-
ity λ, and no M ∈ K has an elementary embedding into any N ∈ K\{M}};
finally, we write İĖτ (λ, T ) =+ χ if the supremum is obtained if not said
otherwise. We let İĖ(λ, T ) := İĖτ(T )(λ, T ).

Let T be a first order complete theory. We say that T has the OTOP
(“omitting types order property”) when T is stable and for some n,m letting
x̄ = 〈x` : ` < n〉, ȳ = 〈y` : ` < n〉, z̄ = 〈z` : ` < m〉, there are complete
types p(x̄, ȳ, z̄) such that for every λ there is a model M of T and āα ∈ nM
for α < λ such that 〈āα : α < λ〉 is an indiscernible set and for α 6= β < λ
the type p(āα, āb, z̄) is realized in M iff α < β. We say that T has the
NOTOP when it is stable but fails to have the OTOP.

We say that T has the DOP (“dimensional order property”) when T is
stable and we can find |T |+-saturated models M` of T for ` ≤ 3 such that
M0 ≺ M` ≺ M3 for ` = 1, 2 and tp(M1,M2) does not fork over M0,M3

is |T |+-prime over M1 ∪M2 but not |T |+-minimal over it; equivalently for
every c̄ ∈ ω>(M3) the type tp(c̄,M1 ∪M2,M3) is |T |+-isolated but there is
no infinite I ⊆M3 which is indiscernible over M1 ∪M2. We say that T has
NDOP when T is stable and fails to have the DOP.

Furthermore, we say T is fat when for every ordinal κ, for some (regular)
cardinality λ > κ there are non-isomorphic models M1,M2 of T of cardi-
nality λ which are EF+

β,κ,κ,λ-equivalent for every β < λ (cf. Definition 2.5
below). If T is not fat, we say it is lean. We say the pair (T, T1) is fat/lean
when (T1 ⊇ T is a first order theory and) PC(T1, T ) := {M�τT : M a
model of T1} is as above. We write that (T, ∗) is fat when for every first
order T1 ⊇ T the pair (T, T1) is fat. We say that (T, ∗) is lean otherwise.

The results in this paper (mainly Theorem 4.1) seem to cover cases of
stable T with the NDOP and the NOTOP. But there are more examples
(cf. [7, §5] for details):

Example 1.1.

1. There is a stable countable complete theory with the NDOP and
the NOTOP which is not strongly dependent; (moreover not is not
strongly4 stable), cf. [7, §5](G).

2. T = Th(ω1(Z2), En)n<ω is as above where Z2 = Z/2Z as an additive
group, En = {(η, ν) : η, ν ∈ ω1(Z2) are such that η�(ωn) = ν�(ωn)
where we interpret Z2 as the additive group (so (Z/2Z,+, 0)) and
ω1(Z2) as its ω1-th power as an abelian group.
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Definition 1.2. For a complete first order theory T , we say that ψ is a
(µ, κ, T )-candidate if

1. ψ ∈ Lκ+,ω(τ∗) for some vocabulary τ∗ ⊇ τT of cardinality ≤ κ,

2. PCτ(T )(ψ) ⊆ EC(T ),

3. for some Φ ∈ Υω-tr
κ satisfying τΦ ⊇ τψ and EM(ω≥λ,Φ) |= ψ for

every (equivalent some) λ and Φ witness T is not superstable (for a
definition of Υω-tr

κ , cf. Definition 3.2).

Recall that by [11, VII]:

Claim 1.3. If a first order complete theory T is not superstable then for
some Φ ∈ Υω-tr

τ2 (cf. Definition 3.2) and τ2 ⊇ τ(ψ) of cardinality κ, Φ
witnesses that T is not superstable, i.e., for some formulas ϕn(x, ȳn) ∈
L(τT ), if I = ωλ, M = EM(I,Φ) then for η ∈ ωλ, n < ω and α < λ we have
M |= ϕn[āη, a(η�n)a〈α〉] iff α = η(n).

Definition 1.4. Fix a structure I.

1. We say that 〈āt : t ∈ I〉 is indiscernible (in the model C, over A,
if A = ∅ we may omit it) when (āt ∈ lh(āt)C and) lh(āt), which
is not necessarily finite depends only on the quantifier-free type of
t in I and if n < ω and s̄ = 〈s0, s1, . . . , sn−1〉, t̄ = 〈t0, . . . , tn−1〉
realize the same quantifier-free type in I then āt̄ := āt0

a . . .aātn−1

and ās̄ = ās0
a . . .aāsn−1 realize the same type (over A) in C.

2. We say that 〈āu : u ∈ [I]<ℵ0〉 is indiscernible (in C, over A) if n <
ω,w0, . . . , wm−1 ⊆ {0, . . . , n−1} and s̄ = 〈s` : ` < n〉, t̄ = 〈t` : ` < n〉
realize the same quantifier-free types in I and u` = {sk : k ∈ w`}, v` =
{tk : k ∈ w`} then āu0

a . . .aāun−1 , āv0
a . . .aāvn−1 realize the same

type in C (over A).

2 Games, equivalences and questions

We shall define a new notion of equivalence of models below, EF+
α,λ-equi-

valence. Why do we use this particular notion of equivalence? Consider
for various γs the game Gγλ(M1,M2) where M1,M2 ∈ ModT (λ) and T is
a complete first order L(τ)-theory (cf. Definition 2.3). During a play we
can consider dependence relations on “short” sequences from M` (where
≤ 2|τ |+ℵ0 is the default value), definable in a suitable sense. So if T is a well
understood unsuperstable theory like Th(ωω,En)n<ω with En := {(η, ν) :
η, ν ∈ ωω and η�n = ν�n}, then even for γ = ω+2 we have E+

γ,λ-equivalence
implies being isomorphic. This fits the thesis:
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The desirable dichotomy characterized, on the family of first order
T , by the property “M1,M2 ∈ ModT (λ) are long game EF-equiva-
lent iff they are isomorphic”, is quite similar to the one in [11, XIII];
the structure side is, e.g., T is stable and every M ∈ ModT is prime
over some

⋃
{Mη : η ∈ I}, where T is a subtree of κr(T )>‖M‖

and η / ν ⇒ Mη ≺ Mν ≺ M, ‖Mη‖ ≤ 2|T | and η / ν ∈ I implies
tp(Mν ,

⋃
{Mρ : ρ ∈ T, ρ�(lh(ν) + 1) 6= η�(lh(ν) + 1)) does not fork

over Mν , i.e., M̄ = 〈Mη : η ∈ T 〉 is a non-forking tree of models with
≤ κr(T ) many levels.

We think the right (variant of the) question is described as follows. In
[11], the original question was about the function λ 7→ İ(λ, T ), but the
answer is more transparent for the function λ 7→ İĖ(λ, T ). If λ = µ+, µ =
µ|T | = cf(µ), T = Th(ωω,En)n<ω then (by [2, Th4.4]) for γ ≥ µω, we get
that equivalence implies isomorphism, but not for γ < µω; now our Theorem
2.6 is parallel to that. This seems to indicate that EF+

γ,λ is suitable for the
questions we are asking: it uses the game EF+, which is more complicated
but the length of the game is much “smaller” in the relevant results.

Question 2.1. Classify first order complete T , or at least the countable
ones by:

Version (A)1. For every ordinal α, there are a cardinal λ and non-isomorphic
M1,M2 ∈ ModT (λ) which are EF+

α,λ-equivalent (at least, e.g. in some
VP,P is (2|T |+|α|)+-complete forcing notion).

Version (A)0. Similar version for EFα,λ.

Version (B)1. For every cardinal κ > |T | and vocabulary τ1 ⊇ τT and
ψ ∈ Lκ,ω(τ1) such that PCτ (ψ) ⊆ ECT has members of arbitrarily
large cardinality we have (a)⇒ (b) where

(a) for every cardinal µ in PCτ (ψ) := {M�τ : M a model of ψ}
there is a µ-saturated member, and

(b) for arbitrarily large α < λ there are M1,M2 ∈ PCτ (ψ) of cardi-
nality λ with non-isomorphic τ -reducts which are EF+

α,λ-equiva-
lent.

Version (B)0. Like (B)1 for EFα,λ.

Version (C)1. Like (B)1 using ψ =
∧
T1 where T1 ⊇ T is a first order

theory.

Version (C)0. Like (B)0 using ψ =
∧
T1 where T1 ⊇ T is a first order

theory.
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If the reader is interested to know the reasons to prefer version (B) over
version (C), we refer him or her to [17]. Now by the works quoted above,
(cf. [3, 3.19] quoted in Theorem 5.1 below), we get that T satisfies (A)0

iff T is a superstable theory with NDOP and OTOP iff (B)0. Of course,
if we change the order of the quantifier (to “for arbitrarily large some λ
for every α < λ...”) this fails, but we believe solving (A)1 and/or (B)1 will
eventually be useful for this case as well. We sum all of this up in the
following conjecture.

Conjecture 2.2. For a complete (first order) T the following are equiva-
lent:

(a) for every ordinal α there is some λ and there are non-isomorphic,
EF+

α,λ-equivalent models M1,M2 ∈ ECT (λ),

(b) for arbitrarily large λ and for every α < λ there are non-isomorphic,
EF+

α,λ-equivalent models M1,M2 ∈ ECT (λ),

(c) for every sufficiently large regular λ there are non-isomorphicM1,M2 ∈
ECT (λ) which are EF+

α,λ-equivalent for every α < λ.

And similarly for “some T1 ⊇ T , PC(T1, T ) is lean.”

We conjecture that we can prove Conjecture 2.2 if we prove that a (count-
able) fat T is close enough to superstable. Such a result will enable us to
generalize proofs in [11, XII] (only now the tree has ≤ ω1 levels rather than
ω levels).

Definition 2.3. If M1,M2 are models with the same vocabulary and α
is an ordinal and µ is a cardinals, and if f is a partial isomorphism from
M1 to M2, we define the game Gαµ (f,M1,M2) between the players ISO, the
isomorphism player and AIS, the anti-isomorphism player as follows:

(a) A play lasts α moves.

(b) After β moves a partial isomorphism fβ from M1 into M2 is chosen,
increasing continuously with β.

(c) In the (β + 1)st move, the player AIS chooses Aβ,1 ⊆M1, Aβ,2 ⊆M2

such that |Aβ,1| + |Aβ,2| < 1 + µ and then the player ISO chooses
fβ+1 ⊇ fβ such that Aβ,1 ⊆ Dom(fβ+1) and Aβ,2 ⊆ Rang(fβ+1).

(d) If β = 0, ISO chooses f0 = f ; if β is a limit ordinal ISO chooses
fβ =

⋃
{fγ : γ < β}.
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Player ISO loses if he had no legal move for some β < α, otherwise he
wins the play.

A few notational conventions: Replacing α by <α means “for every
β < α”. If µ is 1, we may omit it, and we may write ≤ µ instead of µ+.
Furthermore, if f = ∅ we may write Gαµ (M1,M2).

Based on Definition 2.3, we now say that M1,M2 are EFα-equivalent
if the isomorphism player has a winning strategy in the game Gα1 (M1,M2),
and M1,M2 are EFα,µ-equivalent or Gαµ -equivalent if the isomorphism player
has a winning strategy in the game Gαµ (M1,M2) defined below.

Let us discuss why we need a more complicated notion EF+ at all? First,
if we like a parallel of [11, XIII], i.e., a game in which set of small cardinality
are chosen (e.g., |T | or 2|T |) rather than just < λ = ‖M`‖, clearly EFα,µ
cannot help.

Also, consider λ = µ+, µ = cf(µ) > |T | and an ordinal α < λ and
ask for which T : “Does EFα,λ-equivalence imply isomorphism for any two
models M1,M2 of T of cardinality λ?” Now we know (by earlier works, cf.
Corollary 5.7) for countable T that if α ∈ [ω, µ×ω] that the answer (for the
pair (α, λ)) is as in the main gap for İĖ (T superstable with NDOP and
NOTOP). But for larger α < λ this is not so, as, e.g., for the prototypical
stable unsuperstable T for α = µ × (ω + 2) we get the answer “yes, it is
low”.

Let us consider the reasons for this. In other words, why do we need
µ × (ω + 2) moves, not (ω + 2) moves? Based on this question, we shall
now formulate EF+. We think that with EF+

α,θ,µ,λ for small α, θ, µ and just
λ = ‖M`‖ we get the desired dichotomy. In general, we expect the results
will be robust under choosing such an exact game; and will resolve the case
α ∈ (µ× (ω, 2), λ) above.

More specifically, the reason why EFα,λ-equivalence does not imply iso-
morphism for M1,M2 ∈ ECλ(T ), even in the case T = Th(ωω,En)n<ω,
is the following: Fix a winning strategy st for Gα,λ(M1,M2). If we let
〈a`α/E

M`
1 : α < λ〉 list M`/E

M`
1 and R = {(α, β) : in some short initial

segment x of a play of Gα,λ(M1,M2) in which the player ISO uses the strat-
egy st, we have fx

α(a1
α)EM2

1 a2
β}, we have to find a function h from λ onto

λ whose graph is ⊆ R. Now being in a winning position is only enough to
show the existence of such h when the game is long enough. For EF+

α,θ this
changes.

Definition 2.4. We call subsets R ⊆ [X]<ℵ0 pre-dependence relations on
X. We say Y ⊆ X is R-independent when [Y ]<ℵ0 ∩R = ∅; of course, an
index set with repetitions is considered dependent. We say R or (X,R)
has character ≤ κ when for every R-independent Y ⊆ X and {x} ⊆ X for
some Z ∈ [Y ]<κ the set (Y \Z)∪ {x} is R-independent. We say that R is a
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k-dependence relation on X (if k = 1 we may omit it) when R is a subset of
[X]<ℵ0 , if k = 0 then R = [X]<ℵ0 , if k = 2 then R-independence satisfies
the exchange principle (so dimension is well defined, as for regular types),
and if k = 1 then R is trivial. We say R is trivial when for every Y ⊆ X,Y is
R-independent iff every Z ⊆ [Y ]≤2, is R-independent. For a 1-dependence
relation R, let ER = {{x1, x2} : x1 = x2 ∈ X or {x1}, {x2} ∈ R or
{x1, x2} ∈ R ∧ {x1} /∈ R ∧ {x2} /∈ R} is an equivalence relation on X;
pedantically we should write EX,R.

Definition 2.5. For an ordinal γ, cardinals θ ≤ µ, vocabulary τ and τ -
models M1,M2 and partial isomorphism f from M1 to M2, we define a
game G+,k

γ,θ,µ,λ(f,M1,M2), between the player ISO (isomorphism) and AIS
(anti-isomorphism).

A play last γ moves; in the βth move a partial isomorphism fβ from
M1 to M2 is chosen by ISO, extending fα for α < β such that f0 = f and
for limit β we have fβ =

⋃
{fα : α < β} and for every β < α the set

Dom(fβ+1)\Dom(fβ) has cardinality < 1 + µ; let f `β be fβ if ` = 1, f−1
β if

` = 2. During a play, the player ISO loses if he has no legal move and he
wins in the end of the play iff he always had a legal move. In the (β + 1)st
move, the AIS player does one of the following cases:
Case 1. The AIS player chooses A` = A`β ⊆ M` for ` = 1, 2 such that
|A1| + |A2| < 1 + µ and then ISO chooses fβ as above such that A` ⊆
Dom(f `β) for ` = 1, 2.

Case 2. First the AIS player chooses4 a pre-dependence relation R` on
θ>(M`) and A` ⊆ θ>(M`) of cardinality ≤ λ for ` = 1, 2 such that:

(a) if k = 0 then R` = [θ>(M`)]<ℵ0 , so really an empty case

(b) if k = 1, 2 then R` is a k-dependence relation

(c) if k = 1, 2 and ` = 1, 2 and n < ω and ā0, . . . , ān−1 ∈ θ>(M`) then the
truth value of {ā0, . . . , ān−1} ∈ R` depends just on the complete first
order type which 〈ā0, . . . , ān−1〉 realizes on Dom(f `β) inside the model
M`.

After that, player ISO does one of the following:
Subcase 2A. First, assume k = 2. The player ISO chooses 〈(ā1

ζ , ā
2
ζ) : ζ <

λ〉 such that for ` = 1, 2:

(α) for each ζ < λ there is some ε < θ such that ā`ζ ∈ ε(M`)

4Note that for k = 0, 1 we require “L(τT )-definable R` such that f maps the definition
of R1 to the one of R2”; moreover we expect that we can demand it is as in the case of
using regular types.
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(β) 〈ā`ζ : ζ < λ〉 is independent for R`

(γ) each ā ∈ A` does R`-depend on {ā`ζ : ζ < λ}.

Then AIS chooses ζ < λ and ISO chooses fβ+1 ⊇ fβ such that fβ(ā1
ζ) = ā2

ζ .
Now assume k = 1. Then player ISO chooses equivalence relations E`

on θ>(M`) which refine the relations ER`
(cf. Definition 2.4) and equality of

length, and chooses a function h from the family of E1-equivalence classes
onto the family of E2-equivalence classes which preserve cardinality up to
λ; that is, if h(ā1/E1) = ā2/E2 then lh(ā1) = lh(ā2),min{dim(ā1/E1), λ) =
min{dim(ā2/E2), λ}.

Then the AIS player chooses a pair (ā1, ā2) such that ā` ∈ θ>(M`) for
` = 1, 2 such that h(ā1/E1) = (ā2/E2) and ISO has to choose fβ+1 ⊇ fβ
such that f(ā1) = ā2.
Subcase 2B. The player ISO chooses fβ+1 ⊇ fβ as required such that
for some n < ω and ā1

` ∈ εDom(fβ) for ` ≤ n we have: {ā1
0, . . . , ā

1
n−1} is

R1-dependent iff {fβ(ā1
0), . . . , fβ(ā1

n−1)} is not R2-dependent.

Based on Definition 2.5, we say that models M1,M2 are EF+,k
γ,θ,µ,λ-

equivalent (k ∈ {0, 1, 2}) if the player ISO has a winning strategy in the
game Gkγ,θ,µ,λ(M1,M2). In this, we always assume ℵ0 ≤ θ ≤ µ. If µ =
min{‖M1‖, ‖M2‖}, k = 1, or θ = (2|τ(M`)|+ℵ0)+, we may omit these param-
eters.

Theorem 2.6. Let T = Th(ωω,En)n<ω with En = {(η, ν) : η ∈ ωω, ν ∈
ωω and η�n = ν�n}. Then if M1 and M2 are models of T of cardinality λ
that are EF+

ω+2,ℵ0,ℵ0,λ
-equivalent, they are isomorphic.

Proof. We choose a winning strategy st of the isomorphism player in the
game Gω+2,ℵ0,ℵ0,λ(M1,M2).
Step A. By the choice of T for ` = 1, 2 we can find T`, ā` such that T` is a
subtree of ω>λ, ā` = 〈a`η : η ∈ T`〉, a`η ∈ M`, and if η ∈ T` and lh(η) = n

then 〈a`ν/E
M`
n+1 : ν ∈ sucT`(η)〉 lists {b/EM`

n+1 : b ∈ M` and b ∈ a`η/EM`
n }

without repetitions. Let T`,n = {η ∈ T` : lh(η) = n} and let T`,ω = {η ∈
ωλ : η�n ∈ T` for every n < ω}. Lastly, let µ̄` = 〈µ`η : η ∈ T`,ω〉, where

µ`η = |{b ∈M` : b ∈ a`η�n/EM` for every n < ω}|.

Step B. Clearly M1,M2 are isomorphic if and only if there is an isomor-
phism h from T1 onto T2 (i.e., h maps T1,n onto T2,n, h preserves the length,
η / ν and η 6 ν) such that letting hn = h�T1,n and hω be the mapping from
T1,ω onto T2,ω which h induces (so hω(η) =

⋃
n<ω hn(η�n)) we have that

η ∈ T1,ω implies µ1
η = µ2

h(η).
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Step C. By induction on n we choose hn, x̄n such that hn is a one-to-one
mapping from T1,n onto T2,n, if m < n and η ∈ T1,n then hm(η�m) =
(hn(η))�m, x̄n = 〈xnη : η ∈ T1,n〉, and

1. (a) xnη is an initial segment of a play of the game aω+2,ℵ0,ℵ0,λ(M1,M2),

(b) in xnη only finitely many moves have been played (can specify),
the last one is m(xnη ),

(c) in xnη , the player ISO uses his winning strategy st.

2. If η1 ∈ T1,n and η2 = hn(η1) then for some b1 ∈ Dom(f
xnη
m(xnη )) we have

b1 ∈ a1
η/E

M1
n and f

xnη
m(xnη )(b1) ∈ a2

hn(η)/E
M2
n .

3. If ν / η ∈ T1,n then xlh(ν)
ν is an initial segment of xnη .

Why does the induction work? Note that h0 is uniquely determined. As
for x0

∅, any x as in 1. is fine, as long as at least one move was done (note
that EM`

0 has one and only one equivalence class). In the successor step,
n = m+ 1, hm, x̄m has been chosen. Let η1 ∈ T1,m and let η2 = hm(η1) and
Fη1 := {(ν1, ν2) : ν1 ∈ sucT1(η1), ν2 ∈ sucT2(η2) and there is x as in 1. such
that xmη1 is an initial segment of x and for some b1 ∈ Dom(fx

m(x)) we have
b1 ∈ a1

ν1/E
M1
n and fx(b1) ∈ a2

ν2/E
M2
n }. Now to do the induction step, it

suffices to prove that: if η1 ∈ T1,m then there is a one-to-one function hn,η1
from sucT1(η1) onto sucT2(η2) such that ν ∈ sucT1(η1)⇒ (ν, hn,η1(ν)) ∈ Fη1 .
However by Case 2 in Definition 2.5 this holds.
Step D. So we can find 〈hn : n < ω〉, 〈xη : η ∈ T1〉 as in Step C. Let
h :=

⋃
{hn : n < ω}, clearly it is an isomorphism from T1 onto T2 and hω

is well defined (cf. Step B). So it is enough to check the sufficient condition
for M1

∼= M2 there, i.e., η ∈ T1,ω ⇒ µ1,η = µ2,hω(η). But if η ∈ T1,ω then
〈xη�n : n < ω〉 is a sequence of initial segments of a play of G with ISO
using his winning strategy st, increasing with n, each with finitely many
moves. So xη, defined as the limit 〈xη�n : n < ω〉, is an initial segment of
the play G, with ≤ ω moves and f

xη
m(xη) =

⋃
{fxη�n
m(xη�n)

: n < ω}.
Clearly if n < ω, then f(a1

η�n)EM2
n a2

hn(η�n). As we have one move left
and can use Case 2 in Definition 2.5 we are done. q.e.d.

The following claim says that the games in Definitions 2.3 and 2.5 are
equivalent, i.e., the ISO player wins one iff he wins the other (when λ =
µ+, α < λ divisible enough).

Theorem 2.7. Let M1,M2 are τ -models, λ = λ+
1 , λ1 ≥ µ and θ ≤ µ ≤ λ

and γ ≤ µ and cf(µ) < µ⇒ λ1 > µ and λ ∈ Ǐ[λ]. Define γ(∗) := λ1 × γ.
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1. Assume that M1,M2 are EFγ(∗),µ-equivalent and that ‖M`‖ = λ =
λ<θ for ` = 1, 2. Then M1,M2 are EF+

γ,θ,µ,λ-equivalent.

2. If M1,M2 are EF+
γ,θ,µ,λ-equivalent, they are EFγ,µ-equivalent.

3. If γ1 ≤ γ2, θ1 ≤ θ2, µ1 ≤ µ2, λ1 ≤ λ2 and M1,M2 are EF+
γ2,θ2,µ2,λ2

-
equivalent, they are EF+

γ1,θ1,µ1,λ1
-equivalent.

Proof. To show 1., let us assume γ(∗) = λ1 × λ1 × γ. Let st be a winning
strategy of the player ISO in the game Gγ(∗)

µ . We try to use it as a winning
strategy of the ISO player in the game Gγ,θ,µ,λ(M1,M0). Well, the fx

α

may have too large a domain, so in the βth move ISO plays as auxiliary
moves xβ for Gγ,θ,µ,λ and A1

β ⊆ Dom(fxβ ) of cardinality < µ (or ≤ µ if
µ > cf(µ) ∧ β ≥ cf(µ)) and he actually plays fxβ �A1

β , i.e., is an initial
segment of a play of Gγ,µ of length β in which the ISO player uses the
strategy st such that [β1 < β ⇒ xβ1 is an initial segment of xβ ].

The only problem is when β = α + 1 and if Case 2 of Definition 2.5
occurs, i.e., with player AIS choosing R1

β ,R
2
β . We may for notational sim-

plicity choose ε < θ and deal only with A` ∩ ε(M`) for ` = 1, 2.
We can consider xβ extending xα; if it is as required in Subcase 2B

of Definition 2.5 we are done. Let F1
β := {(ā1, ā2) : for some ε < θ,

ā` ∈ ε(M`) for ` = 1, 2 and there is a candidate xβ for the βth move
such that fxβ (ā1) = ā2}. Let F2

β = {(ā2, ā1) : (ā1, ā2) ∈ F1
β}, A1

` = A`,
A2
` = {ā ∈ A` : the number of b̄ such that (ā, b̄) ∈ F`β is ≤ λ}, and
A3
` = A2

` ∪ {ā : for some b̄ ∈ A2
3−` we have (ā, b̄) ∈ F`β}. So |A3

` | ≤ λ by
the assumption and let 〈ā`ζ : ζ < λ〉 list A3

` possibly with repetitions. Then
by the basic properties of dependence relations, it is enough to take care of
A3
` ∩ A` for ` = 1, 2. So we can continue.

Let S be the set of limit ordinals δ < λ such that: for a club of δ∗ ∈
[δ, λ) of cofinality ℵ0 we can find 〈b̄`ζ : ζ ∈ [δ, δ∗)〉 for ` = 1, 2 such that
b̄`ζ ∈ {ā`ξ : ξ ∈ [δ, δ∗)}, (b̄1ζ , b̄

2
ζ) ∈ F1

β , 〈b̄`ζ : ζ ∈ [δ, δ∗)〉 is R`-independent
over {ā`ζ : ζ < δ}, and if ζ < δ∗ and ā`ζ ∈ A` then ā`ζ does R`-depend on
{ā`ζ : ζ < δ} ∪ {b̄`ζ : ζ ∈ [δ, δ∗)}.

If S is not stationary we can easily finish (we start by playing ω moves
in Gγµ). So assume S is stationary, hence for some regular σ ≤ λ1 the set
S′ = {δ ∈ S : cf(δ) = σ} is stationary. By playing σ + ω moves (recalling
λ ∈ Ǐ[λ]) we get a contradiction to the definition of S.
Claims 2. and 3. are obvious. q.e.d.

In Theorem 2.7, Claim 1., to get the exact γ(∗), we combine partial
isomorphisms. So we simulate two plays and use the composition of the
fxiβ ’s from two plays where each player ISO uses a winning strategy st.
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Proposition 2.8. Define a variant of Definition 2.5 as follows: in Case 2
use a dependence relation R` on κ × θ>(M`) (or equivalently C × θ>(M`)
for a set C of cardinality ≤ κ). If κ ≤ 2<θ we get an equivalent game.

In Proposition 2.8, we can replace 2<θ by a larger cardinal for “interest-
ing” cases of M1,M2.

Proof. Without loss of generality, ‖M`‖ > 1, now let 〈ηα : α < κ〉 be a
sequence of pairwise distinct members of κ>2. now we define F` : θ>(M`)→
θ>(M`) as follows: for ā ∈ θ>(M`) let i(ā) = min{i : 2i ≥ lh(ā) or 2i+ 1 <
lh(ā) ∧ a2i 6= a2i+1} and ηā = 〈tv(a2i(ā)+2+2j = a2i(ā)+2+2j+1) : j ≥
0 and 2i(ā) + 2 + 2j + 1 < lh(ā)〉 (where tv stands for “truth value”), and
α(ā) = Min{α ≤ κ : if α < κ then ηα = ηā}. Finally, let F`(ā) be
(α(ā), 〈a2j : j < i(ā)〉) if i(a) < lh(ā) ∧ α(ā) < κ, and (0, ā) otherwise.
Define R′` := {A : A ⊆ θ>(M`) and {F (ā) : ā ∈ A} ∈ R or for some ā′ 6=
ā′′ ∈ A we have F (ā′) = ā′′}. Now check. q.e.d.

Proposition 2.9. Let K be a class of τ0-structures and Φ ∈ Υ[K] (cf.
Definition 3.2), used here for the class K = Kor of linear orders and Koi (cf.
Definition 3.1). Suppose that the structures I1, I2 are EF+

γ,θ,µ,λ-equivalent,
that M` = EMτ (I`,Φ) for ` = 1, 2 for some τ ⊆ τΦ, and that µ ≥ ℵ0 and
|τΦ| < θ. Then M1,M2 are EF+

γ,θ,µ,λ-equivalent.

Proof. Let st be a winning strategy of player ISO in the game G+
γ,θ,µ,λ(I1, I2).

We define a strategy st∗ of player ISO in the game G+
γ,θ,µ,λ(M1,M2) as fol-

lows.
During a play of it after β moves a partial isomorphism f∗α from M1 to

M2 has been chosen, but player ISO also simulates a play of G+
γ,θ,µ,λ(I1, I2)

in which we call the function hα, and in which he uses the winning strategy
st and fα ⊆ ĥα where ĥα is defined by

ĥα(σM1(at0 , . . . , atn−1)) = σM`(ahα(t0), . . . , ahα(tn−1))

for n < ω, a term σ(x0, . . . , xn−1) of τΦ, and t0, . . . , tn−1 ∈ Dom(hα).
Why can ISO follow this strategy st∗? Suppose we arrive in the βth

move. The point to check is Case 2 in Definition 2.5, so the AIS player has
chosen R1,R2,A1,A2 as there. Let {σ̄ζ(x̄ζ) : ζ < 2<θ〉 list {σ̄(x̄) : σ̄(x̄) =
〈σi(x̄) : i < lh(σ̄)〉, lh(σ̄) < θ, lh(x̄) < θ and each σi is a τK-term. Clearly
θ>(M`) = {σ̄M`

ζ (t̄) : ζ < 2<θ and t̄ ∈ lh(x̄ζ)(I`)}, so by Proposition 2.8, we
can assume “R` is a dependence relation on {(ζ, t̄ζ) : ζ < 2<θ, t̄ζ ∈ θ(Iθ)
and lh(t̄) = lh(t̄ζ)}”. I.e., R′` = {u : {σM`

ζ (t̄) : (ζ, t̄) ∈ u} ∈ R` or there
are (ζ1, t̄1) 6= (ζ2, t̄2) from u such that σM`

ζ1
(āt̄1) = σM`

ζ2
(āt̄2)}. The rest is

clear. q.e.d.
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3 The properties of T and relevant indiscernibility

In [11, VIII], [15, VI] we use as indiscernible sets trees with ω + 1 levels,
suitable for dealing with unsuperstable (complete first order) theories. Here
instead we use a linear order and family of ω-sequences from it, suitable for
our case. In the following, the letters “oi” stands for “order” and “increas-
ing” (ω-sequences).

Definition 3.1. We let Koi
λ be the class of structures J of the form

(J,Q, P <, Fn)n<ω = (|J|, PJ, QJ, <J, FJ
n ),

where J = |J| is a set of cardinality λ,<J a linear order on QJ ⊆ J, PJ =
|J| \QJ, FJ

n a unary function, FJ
n �Q

J = the identity and a ∈ J \QI implies
FJ
n (a) ∈ QJ, n 6= m implies FJ

n (a) 6= FJ
m(a), and for simplicity a 6= b ∈ PM

implies
∨
n<ω Fn(a) 6= Fn(b); lastly, we add that n < m implies FJ

n (a) <J

FJ
m(a) (there is a small price). We stipulate FJ

ω = the identity on |J| and
IJ = (QJ, <J). We write Koi :=

⋃
{Koi

λ : λ a cardinal}.
For a linear order I and S ⊆ incrω(I) (cf. Definition 1.4), we let J = JI,S

be the derived member of Koi which means: |J| = I ∪ S, (Q|J|, <J) =
I, FJ

n (η) = η(n) for n < ω, FJ
n (t) = t for t ∈ I.

Finally, Kor
λ is the class of linear order of cardinality λ and Kor =⋃

{Kor
λ : λ a cardinal}.

Definition 3.2. For a vocabulary τ1 let Υoi
τ1 be the class of functions Φ

with domain {tpqf(t̄,∅,J) : t̄ ∈ ω>|J|,J ∈ Koi} and if q(x0, . . . , sm−1) ∈
Dom(Φ) then Φ(q) is a complete quantifier free n-type in L(τ1) with the
natural compatibility functions.

Let Υoi
κ = {Φ : Φ ∈ Υoi

τ1 for some vocabulary τ1 of cardinality κ}. For
Φ ∈ Υoi

κ let τ(Φ) = τΦ be the vocabulary τ1 such that Φ ∈ Υoi
τ1 .

For Φ ∈ Υoi
κ and J ∈ Koi let EM(J,Φ) be “the” τΦ-model M1 generated

by {at : t ∈ J} such that

tpqf(〈at0 , . . . , atn−1〉,∅,M1) = Φ(tpqf(〈t0, . . . , tn−1〉,∅,J)

for all n < ω and t̄ ∈ nJ. If τ ⊆ τΦ then EMτ (J,Φ) is the τ -reduct of
EM(J,Φ).

In the above, we can replace Koi by any class K of τK-structures. For
instance, for K = Kor, the class of linear orders, we get Υor

τ1 , Υor
κ and

EM(I,Φ), EMτ (I,Φ); for K = Kω-tr, the class of trees with ω + 1 levels
(with a linear order on the successor of any member of level < ω), we get
Υω-tr
τ1 , Υω-tr

κ and EM(I,Φ), EMτ (I,Φ).

The following definitions are from from [6, §3]; cf. [7, §1].



Theories with EF equivalent non-isomorphic models 147

Definition 3.3. A (complete first order) T is ℵ0-independent (or, not
strongly dependent) if there is a sequence ϕ̄ = 〈ϕn(x, ȳn) : n < ω〉, of (first
order) formulas5 such that T is consistent with Γλ for some (equivalently,
every) λ ≥ ℵ0 where

Γλ = {ϕn(xη, ȳnα)if(α=η(n)) : η ∈ ωλ, α < λ, n < ω}.

A theory T is strongly stable if it is stable and strongly dependent.

Proposition 3.4. If T is a complete first order theory which is not strongly
dependent, and T1 ⊇ T is another complete first order theory (without loss
of generality with Skolem functions), then we can find ϕ̄ = 〈ϕn(x, ȳn) : n <
ω〉, ȳn E ȳn+1 and ϕn(x, ȳn) ∈ L(τT ) for n < ω such that for any J ∈ Koi

we can find M, 〈āt : t ∈ J〉 such that

• M is the Skolem hull of {āt : t ∈ J},

• āt ∈ ωM for t ∈ IJ, āη = 〈aη〉 ∈M1 for η ∈ PJ,

• for η ∈ PJ, t ∈ QJ and n < ω we have M |= ϕn[āη, āt] iff Fn(η) = t;
(pedantically we should write ϕn(aη, āt�lh(ȳn))),

• 〈āt : t ∈ J〉 is indiscernible in M for the index model J,

• M is a model of T1, and

• in fact (not actually used, cf. Definition 3.2) there is Φ ∈ Υoi
|T1| de-

pending on T1, ϕ̄ only such that M = EM(J,Φ), in fact if n < ω, t̄ =
〈t` : ` < n〉 ∈ J then tpqf(āt0

a . . .aātn−1 ,∅,M) = Φ(tpqf(t̄,∅,J)).

Proof. Let I = (QJ, <J). By assumption (cf. Definition 3.3) there is a
sequence 〈ϕ′n(x, ȳn) : n < ω〉. Let kn = lh(ȳn).

Let I be an infinite linear order. Easily we can find M1 |= T1 and a
sequence 〈āt : t ∈ I〉 with āt ∈ ω(M1) such that for every η ∈ ωI, the set
{ϕn(x̄, āt)if(η(n)=t) : t ∈ I, n < ω} is a type, i.e., finitely satisfiable in M1.

Now by Ramsey’s theorem, without loss of generality, 〈āt : t ∈ I〉 is an
indiscernible sequence in M1. Without loss of generality M1 is λ+-saturated,
we then expand M1 to M+

1 by function F
M+

1
n (n < ω), (of finite arity)

such that for t0 <J . . . <J tn−1 from QJ the element Fn(āt0 , āt1 , . . . ātn−1)
or more exactly Fn(āt0�k0, āt1�k1, . . . , ātn−1�kn−1) realizes in M1 the type
{ϕ`(x, āt)if(η(`)=t) : t ∈ I, ` < n}. Let M+

2 be an expansion of M+
1 by

Skolem functions such that |τM+
2
| = |T1|, (natural, though not strictly re-

quired). Without loss of generality 〈āt : t ∈ I〉 is an indiscernible sequence
also in M+

2 .
5We may use finite x̄ as usual. This does not matter by [7, 2.1].
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Let D be a non-principal ultrafilter on ω and in M+
3 = (M+

2 )ω/D, we
let ā′t = 〈āt : n < ω〉/D for t ∈ I, and ā′η = 〈Fn(āη(0), āη(1), . . . , āη(n−1)) :
n < ω〉/D for η ∈ incrω(I) and ā′t = ā′<FJ

n (t) :n<ω> for t ∈ PJ.
Let M+

4 be the submodel of M+
3 generated by {ā′t : t ∈ J} and M be

M+
4 �τ(T1). Now M, 〈āt : t ∈ J〉 are as required. q.e.d.

Proposition 3.5. Assume J` ∈ Koi, and that M`, ϕ̄, T1, and T are as in
Proposition 3.4 for ` = 1, 2. Suppose that the following holds:

If f is a function from J1 (i.e., its universe) into M|T1|,ℵ0(J2) (i.e., the
free algebra generated by {xt : t ∈ J2} in the vocabulary τ|T1|,ℵ0 = {Fnα :
n < ω and α < |T1|}, Fnα has arity n, cf. [15, III,§1] = [16]), we can find
t ∈ PJ1 , n < ω, and s1, s2 ∈ QJ1 and k, σ, r`i (` = 1, 2 and i < k),m, σ∗ such
that:

• FJ1
n (t) = s1 6= s2,

• for ` ∈ {1, 2} we have f(s`) = σ(r`0, . . . , r
`
k−1) so k < ω, r`t ∈ J2 for

i < k and σ is a τ|T1|,ℵ0 -term not dependent on `,

• f(t) = σ∗(r0, . . . , rm−1), σ∗ is a τ|T1|,ℵ0-term and r0, . . . , rm−1 ∈ J2,

• the sequences 〈r1
i : i < k〉a〈ri : i < m〉 and 〈r2

i : i < k〉a〈ri : i < m〉
realize the same quantifier free type in J2.6

Then M1�τT �M2�τT .

Proof. Straightforward (or as in [15, Ch.III] = [16]). q.e.d.

We could have replaced QJ by the disjoint union of 〈QJ
n : n < ω〉, where

<J linearly orders each QJ
n and <J=

⋃
{< �QJ1

n : n < ω}. In this case, use
Qn to index parameters for ϕn(x, ȳn)). This plays no role in the present
paper. For our present purpose, we can replace “not strongly stable” by
a weaker demand. We present this briefly without detail. Recall (from [7,
§5]) the following definition:

Definition 3.6. A (complete first order) theory T is not strongly4 depen-
dent if there is a sequence ϕ̄ = 〈ϕn(x̄, ȳn) : n < ω〉, (finite x̄ of length
m < ω, as usual) of (first order) formulas from L(τT ), an infinite linear
order I, a sequence 〈āη : η ∈ incr<ω(I)〉 indiscernible in M with lh(āη) ≤ ω
and letting B =

⋃
{āη : η ∈ incr<ω(I)〉 for some m < ω and p ∈ Sm(B,M)

6We should close by the FJ2
n ’s, but no need to iterate as FJ2

n �QJ2 is the identity so
quantifier free type mean the truth value of the inequalities Fn1 (r′) 6= Fn2 (r′) (including
Fω) and the order between those terms.
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for every k < ω there is n < ω, satisfying: for no linear order I+ extending
I and subset I0 of I+ with ≤ k members, do we have:

if t̄1, t̄2 are increasing sequences from I of the same length n realizing
the same quantifier free type over I0 in I+ and for i = 1, 2 we
let b̄i = (. . .a(ā〈ti

η(`) : `<lh(η)〉�n)a . . .)η∈incr<ω(n) then ` < n ∧ u ⊆
lh(b̄1) ∧ |u| = lh(ȳ`) implies ϕ`(x, b̄1�u) ∈ p⇔ ϕ`(x̄, b̄2�u) ∈ p.

(⊗)

In the above, without loss of generality, ȳn / ȳn+1 for n < ω. A theory
T is strongly4 stable if it is stable and strongly dependent.

We can write the condition in Definition 3.6 without I+ speaking about
finite sets as done in (∗) in the proof of Proposition 3.7 below. We further-
more can get such 〈ā′ρ : ρ ∈ incr<ω(I ′)〉 for any infinite linear order I ′ by
compactness.

Next we deduce a consequence of being non-strongly4-dependent helpful
in proving non-structure results.

Proposition 3.7. If T1 ⊇ T are complete first order theories, without loss
of generality with Skolem functions and T is not strongly4 dependent as
witnessed by ϕ̄ = 〈ϕn(x̄, ȳn) : n < ω〉, i.e., as in Definition 3.6, then there
is τ1 ⊇ τT1 , |τ1| = |T1| and σ̄n(z̄n) = 〈σn,`(z̄n) : ` < lh(σ̄n)〉, σn,` is a τ1-
term such that: if I,S and J = JI,S are as in Definition 3.1(2), then there
are M1 and 〈āt : t ∈ I〉 and 〈āη : η ∈ S〉 such that:

(α) M1 is a τ1-model and is the Skolem hull of {āt : t ∈ I}∪{āη : η ∈ S}
(we write āt for t ∈ S ⊆ J for uniformity),

(β) 〈āt : t ∈ J〉 is indiscernible in M1,

(γ) if η ∈ S and k < ω then for large enough n(∗), if u ⊆ n(∗), |u| ≤ k,
then we can find s̄, t̄ and n∗ < n(∗) and σ̄ such that

– s̄, t̄ are sequences of members of {FJ
n (η) : n < n(∗)},

– lh(s̄) = lh(t̄) ≤ n(∗),
– si <I sj ⇔ ti <I tj for i, j < lh(s̄),

– if i < lh(s̄) = lh(t̄) then (∀n ∈ u)(FJ
n (η) ≤I si ≡ FJ

n (η) ≤I ti),
– σ̄ = 〈σi(ȳ) : i < lh(ȳn∗)〉, σi a τ1-term,

– M1 |= ϕn∗ [āη, . . . , σ
M1
i (āt0 , āt1 , . . .), . . .]i<lh(ȳn∗ ) ≡ ¬ϕn∗ [āη, . . . ,

σM1
i (ās0 , ās1 , . . .), . . .]i<lh(ȳn∗ ),

(δ) M1 is a model of T1 so τM1 ⊇ τT1 .
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Proof. Fix I,S; without loss of generality, I is dense with neither first
nor last element and is ℵ1-homogeneous hence there are infinite increasing
sequences of members of I.

Let I, 〈ϕn(x̄, ȳn) : n < ω〉, 〈āη : η ∈ incr<ω(I)〉 and p ∈ Sm(
⋃
{āη :

η ∈ incr<ω(I)}) exemplify T is not strongly4 dependent, i.e., be as in the
Definition so m = lh(x̄). For notational simplicity (and even without loss
of generality, by [7, §5]) assume m = 1.
Now in Definition 3.6 we can add (by compactness) that

there is a sequence 〈(nk,mk, I
∗
k) : k < ω〉 such that k < nk <

mk,mk < mk+1, I
∗
k ⊆ I has mk members, for no I0 ⊆ I∗k with ≤ k

members does (⊗) from Definition 3.6 hold for t̄1, t̄2 ∈ incr<nk(I∗k)
and (k, nk) here standing for k, n.

(∗)

Without loss of generality, I is the reduct to the vocabulary {<}, i.e., to
just a linear order of an ordered field F and tq ∈ F for q ∈ Q are such that
0 <F tq, (tq1)2 <F tq2 for q1 <F q2 (hence n < ω ⇒ n <F t

n
q1 <F tq2). By

easy manipulation, without loss of generality, I∗k = {ti : i = 0, 1, . . . ,mk}.
Now for each m < ω and η ∈ incrm(I) we can choose cη such that if

m = mk then for some automorphism h of I mapping I∗k onto Rang(η),
letting ĥ be an automorphism of M1 mapping āν to āh(ν) for ν ∈ incr<ω(I),
the element cη realizes ĥ(p) and 〈cη : η ∈ incr<ω(I)〉 is without repetitions.

Now, without loss of generality,
〈
〈cη〉aāη : η ∈ incr<ω(I)

〉
is an indis-

cernible sequence and let at = c<t> be such that M0 be a model of T1

satisfying
⋃
{〈cη〉aāη : η ∈ incr<ω(I)} ⊆ M0�τ ≺ C. Without loss of gen-

erality 〈〈cη〉ˆāη : η ∈ incr<ω(I)〉 is indiscernible in M0 and we can find an
expansion M1 of M0 such that |τM1 | = |T1|,

āη = 〈Flh(η),i(āη(0), . . . , āη(n−1)) : i < lh(āη)〉, and

cη = Flh(η)(āη(0), . . . , āη(n−1)) if η ∈ incrn(I), and M1 has Skolem functions.
By manipulating I, without loss of generality, we can find I∗ ⊆ I of

order type ω. So for some Hn ∈ τ1 for n < ω, if t0 < t1 < . . . list I∗, for
every k < ω large enough, for every u ⊆ n(∗) satisfying |u| ≤ k for every n
large enough HM1

n (āt0 , āt1 , . . . , ātn−1) satisfies the demand (on the singleton
āη from clause (γ) in the claim).

Let D be a non-principal ultrafilter on ω such that {mk : k < ω} ∈ D,
let M2 be isomorphic to Mω

1 /D over M1, i.e., M1 ≺ M2 and there is an
isomorphism f from M2 onto Mω

1 /D extending the canonical embedding.
If η is an increasing ω-sequence of members of I, we let

anη = HM1
n (āη(0), . . . , āη(n−1)) ∈M1

and let
aη = f−1(〈a0

η, a
1
η, . . . , a

n
η , . . . : n < ω〉/D) ∈M2.
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Let M ′2 be the Skolem hull of {āt : t ∈ I} ∪ {aη : η ∈ S} inside M2. It is
easy to check that it is as required. q.e.d.

It is helpful to have a sufficient condition for the non-isomorphism of
two such models:

Proposition 3.8. Assume J` ∈ Koi, and M`, ϕ̄, T1, T as in Proposition
3.7 for ` = 1, 2. Suppose that the following holds: if f is a function from
J1 (i.e., its universe) into M|T1|,ℵ0(J2) (i.e., the free algebra generated by
{xt : t ∈ J1} the vocabulary τ|T1|,ℵ0 = {Fnα : n < ω and α < |T1|}, Fnα has
arity n, we can find t ∈ PJ1 and k∗ < ω such that for every n∗ < ω we can
find s̄1, s̄2 such that

• s̄1, s̄2 ∈ kI are increasing, s̄1 = 〈FJ
n (t) : n < n∗〉 and n < k∗ ⇒ s2,n =

s1,n and s1,n∗−1 <I s2,k∗ ,

• f(s̄`) = σ̄(r`0, . . . , r
`
k−1) so k < ω, r`t ∈ J2 for i < k so σ is a τ|T1|,ℵ0-

term not dependent on `,

• f(t) = σ∗(r0, . . . , rm−1), σ∗ is a τ|T1|,ℵ0-term and r0, . . . , rm−1 ∈ J2,

• the sequences 〈r1
i : i < k〉a〈ri : i < m〉 and 〈r2

i : i < k〉a〈ri : i < m〉
realize the same quantifier free type in J2 (note: we should close by the
FJ2
n , so type mean the truth value of the inequalities Fn1(r′) 6= Fn2(r′)

(including Fω) and the order between those terms).

Then M1 �M2.

Proof. As in [10, III] or better in [15, III] = [16], called unembeddability.
q.e.d.

4 Forcing EF+-equivalent Consistency non-isomorphic
models

The following result is not optimal, but it is enough to prove necessary
conditions on T for being lean and even on (T, ∗). As for unstable T , cf.
below in § 5.

Theorem 4.1. Assume (ϕ̄, T, T1,Φ) is as in Proposition 3.4, T stable and
λ = λ<λ ≥ ℵ1 + |T1| and µ = λ+ > λ. Then for some λ-complete λ+-
c.c. forcing notion Q we have that 
Q “there are models M1,M2 of T
of cardinality λ+ such that M1�τ(T ),M2�τ(T ) are EF+

α,λ,λ+ -equivalent for
every α < λ but are not isomorphic”.

We expect that we can improve Theorem 4.1 by allowing α < λ+ and
replacing forcing by assuming, e.g., 2λ = λ+,λ = λ<λ. We shall continue
this line of research in [12].
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Proof. We define a partial order Q. A condition p is in Q if it consists of
the following objects satisfying the following conditions:

(a) u = up ∈ [µ]<λ such that if α+ i ∈ u and i < λ, then α ∈ u;

(b) <p a linear order of u such that if α, β ∈ u and α + λ ≤ β, then
α <p β;

(c) for ` = 1, 2, Sp
` is a subset of {η ∈ ωu : η(n)+λ ≤ η(n+1) for n < ω}

such that η 6= ν ∈ Sp
` ⇒ Rang(η) ∩ Rang(ν) is finite; note that in

particular η ∈ Sp
` is without repetitions and is <p-increasing;

(d) Λp a set of < λ increasing sequences of ordinals from {α ∈ up : λ|α}
hence of length < λ;

(e) f̄p = 〈fpρ : ρ ∈ Λp〉 such that

1. fpρ is a partial automorphism of the linear order (up, <p) such
that α ∈ Dom(fpρ ) ⇒ α + λ = fpρ (α) + λ and we let f1,p

ρ =
fpρ , f

2,p
ρ = (fpρ )−1;

2. if η ∈ Sp
` , ρ ∈ Λp, ` ∈ {1, 2} then Rang(η) is included in Dom(f `,pρ )

or is almost disjoint to it (i.e., except finitely many “errors”);

3. if ρ / % ∈ Λp then ρ ∈ Λp and fpρ ⊆ fp%
4. f `,p∅ is the empty function and if ρ ∈ Λp has limit length then
fpρ = ∪{fpρ�i : i < lh(ρ)}.

5. if ρ ∈ Λp has length i+ 1 then Dom(f `,pρ ) ⊆ ρ(i) for ` = 1, 2;

6. if ρ ∈ Λp and η ∈ ω(Dom(fpρ )) then η ∈ Sp
1 ⇔ 〈fpρ (η(n)) : n <

ω〉 ∈ Sp
2;

7. if ρn ∈ Λp for n < ω and ρn / ρn+1 and λ > ℵ0 then
⋃
{ρn : n <

ω} ∈ Λ.

We now define the order ≤=≤Q on Q. We fix p, q ∈ Q and let p ≤ q if
up ⊆ uq, ≤p=≤q �up, Sp

` ⊆ Sq
` (for ` = 1, 2), Λp ⊆ Λq, and the following

conditions hold:

(a) if ρ ∈ Λp then fpρ ⊆ fqρ ;

(b) if η ∈ Sq
` \Sp

` then Rang(η) ∩ up is finite;

(c) if ρ ∈ Λp and fpρ 6= fqρ then up∩sup Rang(ρ) ⊆ Dom(f `,qρ ) for ` = 1, 2;
and

(d) if ρ ∈ Λp and ` ∈ {1, 2}, α ∈ up \ Dom(f `,pρ ) and α ∈ Dom(f `,qρ ) then
f `,pρ (α) /∈ up.
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Having defined the forcing notion Q, we can now start to investigate it. We
obviously have that Q is a partial order of cardinality µ<λ = λ+.

Claim 4.2. If p̄ = 〈pi : i < δ〉 is ≤Q-increasing, δ a limit ordinal < λ of
uncountable cofinality then pδ :=

⋃
{pi : i < δ} defined naturally is an

upper bound of p̄.

Proof. Think about it, or consider the proof of Claim 4.3. The case cf(δ) >
ℵ0 is easier because of clauses (e4) and (e7). q.e.d.

Claim 4.3. If δ < λ is a limit ordinal of cofinality ℵ0 and the sequence
p̄ = 〈pi : i < δ〉 is increasing (in Q), then it has an upper bound.

Proof. We define pδ ∈ Q as follows: upδ =
⋃
{upi : i < δ}, <pδ=

⋃
{<pi :

i < δ},Λpδ =
⋃
{Λpi : i < δ} ∪ {ρ : ρ is an increasing sequence of ordinals

from upδ of length a limit ordinal of cofinality ℵ0 such that ρ�ε ∈ ∪{Λpi :
i < δ}} for all ε < lh(ρ).

Let f̄pδ = 〈fpδρ : ρ ∈ Λq〉 be such that if i < δ and ρ ∈ Λpi\
⋃
{Λpj : j <

i}, then fqρ =
⋃
{fpjρ : j ∈ [i, δ)} and if ρ ∈ Λpδ\{Λpi : i < δ} then fpδρ =⋃

{fpδρ�ε : ε < lh(ρ)} is well defined as ε < lh(ρ) ⇒ ρa〈ε〉 ∈
⋃
{Λpj ; j < δ}.

Clearly clauses (a), (b), (d), (e1), (e3), (e4), (e5), and (e7) for pδ ∈ Q hold.
Lastly, let Spδ

` =
⋃
{Spα

` : α < δ} for ` = 1, 2.

Subclaim 4.4. If ρ ∈ Λpδ\
⋃
{Λpα : α < δ} then Dom(fpδρ ) = upδ ∩

sup Rang(ρ) = Rang(fpδρ ) and for every α < δ for some β < δ we have
fpδρ �u

pα ⊆ fpβρ�i for some i < lh(ρ).

Proof. Clearly, cf(lh(ρ)) = ℵ0. Assume α < δ and i < lh(ρ). Clearly for
some β ∈ (α, δ) we have ρ�i ∈ Λpβ . Also the set {j < lh(ρ) : ρ�j ∈ Λpβ} is
an initial segment of lh(ρ) and cannot be lh(ρ) because ρ /∈ Λpβ by clause
(e7) of the definition of Q. So for some j < lh(ρ) we have ρ�j /∈ Λpβ but
by the choice of ρ for some γ < δ we have ρ�j ∈ Λpγ , so necessarily β < γ.
As pα ≤Q pβ ≤Q pγ by clause (c) of the definition of ≤Q, as ρ�i ∈ Λpγ\Λpβ
we know that upβ ∩ sup Rang(ρ�i) is included in Dom(f `,pγρ�i ) for ` = 1, 2

by pα ≤Q pβ hence upα ∩ sup Rang(ρ�i) is included in Dom(f `,pγρ�iα
) which ⊆

Dom(f `,pδρ�i ) for ` = 1, 2.
As this holds for any α < δ and i < lh(ρ) and upδ ∩ sup Rang(ρ�i) =⋃
{upα ∩ sup Rang(ρ) : α < δ} it follows that for ` = 1, 2 we have that

ε ∈ upδ ∩ sup Rang(ρ) implies (∃α < δ)(ε ∈ upα ∩ sup Rang(ρ)). That
implies (∃β < δ)[ε ∈ Dom(f `,pδρ )], and this finally implies ε ∈ Dom(f `,pδρ ),
so are done. q.e.d.

Subclaim 4.5. If ρ ∈
⋃
{Λpα : α < δ} then exactly one of the following

occurs:
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(a) There is a unique α = α(ρ) < δ such that ρ ∈ Λpα , (∀β)(α ≤ β < δ ⇒
f
pβ
ρ = fpαρ ) and (∀β < α)(ρ ∈ Λpβ → f

pβ
ρ 6= fpαρ ).

(b) Dom(fpδρ ) = upδ ∩ sup Rang(ρ) = Rang(fpδρ ) and (∀α < δ)(∃β <

δ)(fpδρ �u
pα ⊆ fpβρ ).

Proof. Similar to the proof of Subclaim 4.4. q.e.d.

In order to finish the proof of pδ ∈ Q, it remains to check clauses (c),
(e2), and (e6).

Clause (c). Obvious by the choice of Spδ
1 .

Clause (e2). So let η ∈ Spδ
` , ρ ∈ Λpδ where ` ∈ {1, 2} and we should prove

that Rang(η) ⊆ Dom(f `,p,δρ ) or Rang(η) ∩ Dom(f `,pρ ) is finite. For
some α < δ we have η ∈ Spα

` . If ρ ∈
⋃
{Λpβ : β < δ} then we apply

Subclaim 4.5, now if clause (a) there holds so α = α(ρ) < δ is well
defined and we use pα ∈ Q and if clause (b) there holds then trivially
Rang(η) ⊆ upδ ⊆ Dom(f `,pδρ ) so assume ρ ∈ Λpδ\

⋃
{Λpβ : β < δ}.

By Subclaim 4.4 we finish as in the case if (b) from Subclaim 4.5 holds.

Clause (e6). By the choice of Spδ and the proof of clause (e2).

We now have to check that for α < δ, the pair (pα, pδ) satisfies the
definition of ≤Q which is straightforward. q.e.d. (Claim 4.3)

Claim 4.6. If α < µ then I1
α := {p ∈ Q : α ∈ up} is dense and open as

well as I∗ = {p ∈ Q: if δ ∈ up, λ|δ and cf(δ) < λ then δ = sup(δ ∩ u)}.

Proof. The proof is straightforward. For the claim about I1
α, given p ∈ Q

we define q ∈ Q by uq := up
⋃
{β ≤ α : β+λ = α+λ}, α1 < α2 iff α1 <

p α2

or α1 < α2 ∧ {α1, α2} * up ∧ {α1, α2} ⊆ uq, Sq
` = Sp

` for ` = 1, 2, Λq = Λp,
and fqρ = fpρ for ρ ∈ Λq. Now check. For the second claim about I∗ use the
first part and Claim 4.3. q.e.d.

Claim 4.7. If % ∈ Λ∗ := {ρ : ρ is an increasing sequence of ordinals < λ+

divisible by λ of length < λ} then I2
% = {p ∈ Q : % ∈ Λp} is dense open.

Proof. Let p ∈ Q, by Claims 4.6 and 4.3 there is q ≥ p (from Q) such that
Rang(%) ⊆ uq. If % ∈ Λq we are done, otherwise define q′ as follows: uq

′
=

uq, <q
′
=<q,Sq′

` = Sq
` ,Λ

q′ = Λq∪{%�ε : ε ≤ lh(%} and if i ≤ lh(%), %�i /∈ Λq

then we let fq
′

%�i = ∪{fqρ : ρ ∈ Λq and ρ / %�i}. We should check all the
clauses in the definition of Q and, e.g., clause (e6) holds because q satisfies
clause (e7). Then we should check all the clauses of “q ≤Q q′”. q.e.d.
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Claim 4.8. If % is as in Claim 4.9 and α < λ+ and ` ∈ {1, 2} then

I3
%,α,` = {p ∈ Q : α ∈ Dom(f `,p% ) so % ∈ Λp, α ∈ up} is dense open.

Proof. By Claims 4.6 and 4.7. q.e.d.

Claim 4.9. If p ∈ Q and % ∈ Λp then for some q we have p ≤Q q ∧ fq% 6=
fp% ∧ {α+ λ : α ∈ uq} = {α+ λ : α ∈ up}.

Proof. For each δ ∈ u ∩ sup Rang(%) divisible by λ let uδ = u ∩ [δ, δ + λ).
So gδ := fpρ �uδ is a partial function from uδ into uδ and fpρ =

⋃
{gδ : δ

as above}. Now, for δ as above we can find fδ such that fδ is a one-to-
one function, gδ = fp% �uδ ⊆ fδ, α ∈ Dom(fδ) iff α ∈ uδ ∨ fδ(α) ∈ uδ,
Dom(fδ)\uδ is an initial segment [α1

δ , α
2
δ) of [δ, δ + λ)\uδ, Rang(fδ)\u is

an initial segment [α2
δ , α

3
δ) of [δ, δ + λ)\u\Dom(fδ), fδ maps [α1

δ , α
2
δ) onto

uδ\Rang(fp% �uδ), and fδ maps uδ\Dom(fp% �u1) onto [α2
δ , α

3
δ). Now we can

find a linear order <1 on uδ ∪ [α1
δ , α

3
δ ] such that fδ is order preserving (as

the class of linear orders has amalgamation).
Lastly, we define q by uq = up ∪ {[α1

δ , α
3
δ) : δ as above}, α <q β iff

(∃δ)(α <δ β) or α + λ ≤ β, Λq = Λp, and Sq
` = Sp

` ∪ {〈f3−`
ρ (η(n)) : n <

ω〉 : ` ∈ {1, 2}, ρ ∈ Λp and η ∈ Sp
3−`}.

Now we have to check that q ∈ Q. This is straightforward; e.g. for clause
(c), assume η 6= ν ∈ Sq

` and we have to prove that Rang(η) ∩ Rang(ν) is
finite.

Now we have four cases: first η, ν ∈ Sp
` , so use clause (c) for `. Second,

η, ν ∈ Sq
`\S

p
` , so η, ν are images by f3−`,q

ρ of members of Sp
3−`, as this

function is one-to-one, this follows from p,Sp
3−` satisfying clause (c). Third,

η ∈ Sp
` ∧ ν ∈ Sq

`\S
p
` , then ν = 〈f3−`,q

ρ (ν′(n)) : n < ω〉 for some ν′ ∈
Sp

3−` satisfying Rang(ν′) * Dom(f3−`,p
ρ ), hence for some n∗, n ∈ [n∗, ω)⇒

ν′(n) /∈ Dom(f3−`,p
ρ ) ⇒ ν(n) /∈ up but Rang(η) ⊆ up so we are done.

Fourth, η ∈ Sq
`\S

p
` ∧ ν ∈ Sp

` the proof is dual. The proof of clause (e2) is
similar.

Also we have to check that p ≤Q q. This is straightforward, clause (b)
is proved as in the proof of (c) of the definition of Q above and clause (d)
holds by our choice of the fδ’s. Now check that q is as required. q.e.d.

Let Q+ = {p ∈ Q: if ` ∈ {1, 2} and ρ ∈ Λp then Dom(f `,pρ ) = up ∩
sup Rang(ρ)}.

Claim 4.10. Q+ is a dense subset of Q, moreover (∀p ∈ Q)(∃q ∈ Q+)(p ≤
q ∧

⋃
{α+ λ : α ∈ uq} =

⋃
{α+ λ : α ∈ up}].

Proof. Let p ∈ Q, κ = |Λ|, δ = κ × κ and {ρi : i < i∗ < λ} list Λp each
appearing unboundedly often. We choose pi by induction on i ≤ δ such
that pi ∈ Q, j < i implies pi ≤Q pj , p0 = p, Λpi = Λp, fpi+1

ρi 6= fpiρi , and
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⋃
{α+λ : α ∈ upi} =

⋃
{α+λ : α ∈ up}. For i = 0, use p0 = p; for i limit,

use Claim 4.3; for i = j + 1, use Claim 4.9. Now pδ is as required. q.e.d.

Claim 4.11. For p ∈ Q and δ < λ+ divisible by λ, p�δ is naturally defined,
belongs to Q and up ⊆ δ implies p�δ = p and p�δ ≤Q p, where q = p�δ
be defined by uq = up ∩ δ, <q=<p �δ, Sq

` = {η ∈ Sp
` : Rang(η) ⊆ δ},

Λq = {ρ ∈ Λp : sup Rang(ρ) ≤ δ}, and f̄q = 〈fqρ : ρ ∈ Λq〉 where fqρ = fpρ .

Proof. Why? Check. q.e.d.

Claim 4.12. If δ < λ+ is divisible by λ, p ∈ Q+ and (p�δ) ≤Q q ∈ Q+ but
uq ⊆ δ then p, q are compatible in Q, moreover has a common upper bound
r = p+ q such that r�δ = q ∧ ur = up ∪ uq.

Proof. Note that if ρ ∈ Λp ∩ Λq then sup Rang(ρ) ≤ δ by clauses (e4) and
(e5) of the definition of Q; also Λp∩Λq = Λp�δ. We define r by ur = up∪uq,
for α, β ∈ ur we have α <2 β iff α + λ ≤ β or α <q β or α <p β, Sr

` is
Sp
` ∪Sq

` for ` = 1, 2, Λr = Λp ∪ Λq, and f̄r = 〈frρ : ρ ∈ Λr〉 where

frρ :=
{

fqρ if ρ ∈ Λq

fpρ ∪
⋃
{fqρ�i : i ≤ lh(ρ) and ρ�i ∈ Λq} if ρ ∈ Λp\Λq.

Why is r ∈ Q? We should check all the clauses in the definition which
are easy. E.g., in clause (c), η 6= ν ∈ Sr

` ⇒ ℵ0 > |Rang(η) ∩ Rang(ν)|,
the only new case is η ∈ Sp

` ⇔ ν /∈ Sp
` so, without loss of generality,

η ∈ Sp
`\S

q
` ∧ ν ∈ Sq

` , hence sup(η) > δ hence Rang(η) ∩ δ is finite but
Rang(ν) ⊆ uq ⊆ δ.

Also clauses (e2) and (e6) should be checked only when frρ is new so
necessarily ρ ∈ Λp so frρ = fpρ ∪

⋃
{fqρ�i : ρ�i ∈ Λq}, but recalling that any

η ∈ Sr
` is an increasing ω-sequence, clearly if sup Rang(η) > δ we use “p

satisfies clauses (e2) and (e6)” and if sup Rang(η) ≤ δ we use “q satisfies
clauses (e2), (e6), and (e7)”.

Why do p ≤Q r and p ≤Q r hold? We should check all the clauses in the
definition of ≤Q for both pairs. They are easy, e.g., clause (b) holds because
if η ∈ Sr

`\S
q
` then η ∈ Sp

`\S
q
` hence sup Rang(η) > δ and it should be

clear; if η ∈ Sr
`\S

p
` then η ∈ Sq

`\S
p
` and we can use p�δ ≤Q q, i.e., clause

(b) for this pair.
Concerning clause (c) for p ≤Q r, recall that p, q ∈ Q+ so if ` ∈ {1, 2}

and ρ ∈ Λp then up = Dom(f `,pρ ) ⊆ Dom(f `,rρ ), so clause (c) is satisfied,
and similarly clause (c) for q ≤Q r. q.e.d.

Claim 4.13. Q satisfies the λ+-c.c.

Proof. Let pα ∈ Q for α < λ+, so by Claim 4.10 there are qα such that
pα ≤Q qα ∈ Q+, now use the ∆-system lemma: Sλ

+

λ = {δ < λ+ : cf(δ) = λ};
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now if δ ∈ Sλ+

λ then p�δ ∈ Q∧ sup(up�δ) < δ and λ ≥ |{p ∈ Q : up = u} for
any u. Hence for some stationary S ⊆ Sλ

+

λ and some p∗ and for any δ ∈ S
and δ1 < δ2 ∈ S, we get qδ�δ = p∗ and sup(uqδ2 ) < δ2. So for any δ2 < δ2
from S by Claim 4.12 the condition qδ1 , qδ2 are compatible. q.e.d.

Define aQ-name J
˜
` ∈ Koi

µ , as follows: Q
J
˜
` = µ, S

J
˜
` = ∪{Sp

` : p ∈ G
˜

Q},

<
J
˜
`= ∪{<p : p ∈ G

˜
Q}, F

J
˜
`

n is a unary function, the identity on λ+ and

η ∈ S
J
˜
` implies F

J
˜
n

n (η) = η(n). Now for ` ∈ {1, 2} and p ∈ Q let Jp` ∈ Koi

be defined as follows: Jp` has universe up ∪ Sp
` , <

J`=<p, QJp` = up, and

F
Jp`
n (η) = η(n).

Claim 4.14.

(a) 
Q “J
˜
` ∈ Koi

λ+”,

(b) 
Q “for each δ < λ+ divisible by λ the linear order ([δ, δ + λ), <
J
˜
`

�(δ, δ+λ)) is a saturated linear order and α+λ ≤ β < λ+ ⇒ α <
J
˜
`
β”,

and

(c) p ∈ Q⇒ p 
Q “Jp` ⊆ J
˜
` for ` = 1, 2”.

Proof. Why? Think! q.e.d.

Claim 4.15. If δ < λ+ is divisible by λ then 
 “J
˜
`�δ ∈ Koi

λ ” where J`�δ =

((δ ∪ (PJ` ∩ ωδ), QJ` ∩ δ, PJ`�δ, FJ`
n �(δ ∪ (PJ` ∩ ωδ)))n<ω”.

Claim 4.16. 
Q “EMτ(T )(J
˜

1,Φ),EMτ(T )(J
˜

2,Φ) are EF+
λ,λ+ -equivalent (so

the games are of length < λ, and the player AIS chooses sets of cardinality
< λ+).

Proof. To show the EF+
λ,λ+ -equivalence, it suffices to show that 
Q “J

˜
1,J2

are EFλ,λ+ -equivalent” by Proposition 2.9 as λ ≥ ℵ1+|T1|. From Claim 4.7,
recall Λ∗ = {ρ : ρ is an increasing sequence of ordinals < λ+ divisible by
λ of length < λ}, (is the same in V and VQ). For ρ ∈ Λ∗ let f

˜
ρ =

⋃
{fpρ :

ρ ∈ G
˜
, p ∈ Λp} and by clauses (e1) and (e5) in the definition of Q and (a)

in the definition of ≤Q, we easily get 
Q “f
˜
ρ a partial isomorphism from

J
˜

1�sup Rang(ρ) into J
˜

2�sup Rang(ρ)” (cf. the definition in Claim 4.15).

Now 
Q “Dom(f
˜
ρ) = sup Rang(ρ)” as if G

˜
⊆ Q is generic over V, for

any α < sup Rang(ρ) for some p ∈ G we have α ∈ up∧ρ ∈ Λp by Claim 4.8,
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and there is q such that p ≤ q ∈ G, p 6= q by Claim 4.9, so recalling (c) from
the definition of ≤Q we are done. Similarly 
Q “Rang(f

˜
ρ) = sup Rang(ρ)”.

Also ρ / % implies 
Q f
˜
ρ ⊆ f

˜
%. For the EF+-version we have to analyze

dependence relations, which is straightforward as in the proof of Theorem
5.2. So 〈fρ : ρ ∈ Λ∗〉 exemplifies the equivalence. q.e.d.

Claim 4.17. 
Q “M
˜

1 = EMτ(T )(J
˜

1,Φ),M
˜

2 = EMτ(T )(J
˜

2,Φ) are not iso-

morphic”.

Proof. Let M
˜

+
` = EM(J

˜
`,Φ) so M

˜

+
` �τ(T ) = M

˜
` for ` = 1, 2, and assume

towards a contradiction that p ∈ Q, and p 
Q “g
˜

is an isomorphism from

M
˜

1 onto M
˜

2”. For each δ ∈ Sλ
+

λ := {δ < λ+ : cf(δ) = λ} by Claims

4.2 and 4.3 we can find pδ ∈ Q above p and gδ such that p ≤ pδ, δ ∈ upδ ,
pδ 
 “gδ is g

˜
�EM(Jpδ1 ,Φ)”, and gδ is an isomorphism from EMτ(T )(J

p
1,Φ)

onto EMτ(T )(J
p
2,Φ).

We can find stationary S ⊆ Sλ
+

λ and p∗ such that pδ�δ, defined in
Claim 4.11 is p∗ for δ ∈ S, for δ1, δ2 ∈ S, upδ1 , upδ2 has the same order
type and the order preserving mapping πδ1,δ2 from upδ2 onto upδ1 induce an
isomorphism from pδ2 onto pδ1 , and if δ1 < δ2 ∈ S then sup(upδ1 ) < δ2.

Now choose η∗ = 〈δ∗n : n < ω〉 such that δ∗n < δ∗n+1, δ∗n = sup(S ∩ δ∗n)
and δ∗n ∈ S, and let δ∗ = sup{δ∗n : n < ω}.

We can now define q ∈ Q as follows uq =
⋃
{pδ∗n : n < ω}, <q= {(α, β) :

α <pδ∗n β for some n or α + λ ≤ β ∧ {α, β} ⊆ uq, equivalently for some
m < n,α ∈ upδ∗m \ δ∗m and β ∈ upδ∗n \ δ∗n}, Sq

1 =
⋃
{S

pδ∗n
1 : n < ω} ∪ {η∗},

Sq
2 =

⋃
{S

pδ∗n
2 : n < ω}, Λq = ∪{Λpδ∗n : n < u}, and fqρ = f

pδ∗n
ρ if ρ ∈ Λpδ∗n .

So there is a pair (q∗, g+) such that q ≤Q q∗, q∗ 
Q “g+ = g
˜
�EM(Jq∗1 ,Φ),

and g+ is an automorphism of EMτ(T )(Jq∗ ,Φ). So g+(aη∗) ∈ EM(Jq∗2 ,Φ)
hence is of the form σM

+
2 (at0 , . . . , atn−1) for some t0, . . . , tn−1 ∈ Jq∗2 and a

τΦ-term σ(x0, . . . , xn−1). Note that by the definition of ≤Q:

Subclaim 4.18. If η ∈ Sq∗
2 then Rang(η) ∩ uq is bounded in δ∗.

Proof. If η ∈ Sq
2 this holds by our choice of q and if η ∈ Sq∗

2 \S
q
2 then

Rang(η) ∩ uq is finite so as uq ⊆ δ it follows that Rang(η) ∩ uq is bounded
in δ∗. q.e.d.

We can find n(∗) < ω such that for each k < n and ` < n we have

(a) if t` ∈ QJq∗2 , i.e., t` ∈ uq∗ ⊆ λ+ then t` ≤q δ∗n(∗), and
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(b) if t` ∈ PJq∗2 , i.e., t` ∈ Sq∗
2 then {FJq∗2

n (t`) : n < ω} is disjoint to
[δ∗n(∗), δ

∗) ∩ uq,

using “T is stable”. The rest of the proof is exactly as in Propositions 3.5
and 3.7. q.e.d. (Claim 4.17)

q.e.d. (Theorem 4.1)

5 Theories with order

Recall from [3, 3.19]:

Theorem 5.1. If λ = µ+, cf(µ), λ = λ<κ, κ = cf(κ) < κ(T ) and T is
unstable, then there are EFµ×κ,λ+ -equivalent non-isomorphic models of T
of cardinality λ.

The new point in the following Theorem 5.2 is the use of EF+ rather
than EF.

Theorem 5.2. Assume λ = λ<θ and λ is regular uncountable, T ⊆ T1 are
complete first order theories of cardinality < λ.

1. If T is unstable then there are models M1,M2 of T1 of cardinality λ+,
EF+

λ,θ,λ+ -equivalent with non-isomorphic τT -reducts.

2. Assume Φ ∈ Υor
κ is proper for linear orders, σ̄ = 〈σi(x) : i < i(∗)〉

a sequence of terms from τΦ, x̄
` = 〈x`i : i < i(∗)〉, i(∗) < λ,ϕ(x̄1, x̄2)

is a formula in L(τT ), τ ≤ τT (any logic) and for every linear order
I letting M = EM(I,Φ), b̄t = 〈σMi (at) : i < i(∗)〉 we have (M�τ) |=
ϕ[b̄s, b̄t]if(s<t) for every s, t ∈ I. Then there are linear orders I1, I2
of cardinality λ+ such that M1,M2 are EF+

λ,θ,λ+ -equivalent but not
isomorphic where M` = EMτ (I`,Φ) for ` = 1, 2.

3. If every EMτ (I,Φ) is a model of T1 then in 2., the models M1,M2 are
in PC(T1, T ).

Proof. To see 1., let ϕ(x̄, ȳ) ∈ L(τT ) order some infinite subset of mM for
some M |= T . Let Φ be as in Definition 3.3, i.e., proper for linear orders
such that τT1 ⊆ τ(Φ), |τ(Φ)| = |T1| and for every linear order I,EM(I,Φ)
(we allow the skeleton to consist of m-tuples rather than elements) is a
model of T1 satisfying ϕ[ās, āt] iff s <I t. Now we can apply part 2. with
i(∗) = m.

In order to prove 2., we choose I such that I is a linear order of cardinal-
ity λ (yes, not λ+), if α, β ∈ (1, λ] then (I ×α) + (I × β)∗ ∼= I (equivalently
every α, β ∈ [1, λ+)), I is isomorphic to its inverse, and I has cofinality λ.
For every S ⊆ Sλ

+

λ = {δ < λ+ : cf(δ) = λ} we define IS =
∑
α<λ+ IS,α
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where IS,α is isomorphic to I if α ∈ λ+\S and isomorphic to the inverse of
I × ω otherwise.

Claim 5.3. If S1, S2 ⊆ Sλ
+

λ then the models EM(IS2 ,Φ), EM(IS1 ,Φ) are
EF+

λ,θ,λ+ -equivalent.

Proof. Let J`,γ =
∑
α<γ IS`,α. Let F := {f : for some non-zero ordinal

γ < λ+, f ∈ Fγ and [γ ∈ S1 ⇔ γ ∈ S2]} where Fγ := {f is an isomorphism
from

∑
α<γ IS1,α onto

∑
α<γ IS2,α}. Then we have:

• Fγ 6= ∅ for γ < λ+.

• If f ∈ Fγ and [γ ∈ S1 ≡ γ ∈ S2] and γ < β < λ then f can be
extended to some g ∈ Fβ}.

• If γ < λ,X` ⊆ I` has cardinality < λ+ for ` = 1, 2 then for some
successor β, γ < β < λ+ and X` ⊆ J`,β for ` = 1, 2.

• If γi ∈ S1 ⇔ γi ∈ S2 for i < δ, δ a limit ordinal < λ and 〈γi : i < δ〉
is increasing then γδ :=

⋃
{γi : i < δ} satisfies γδ ∈ S1 ≡ γδ ∈ S1.

Lastly, we have to deal with Case 2 in Definition 2.5, so let us assume
that f∗ ∈ Fγ∗ , [γ∗ ∈ S1 ≡ γ∗ ∈ S2] and R` ⊆ θ>(M`) for ` = 1, 2 are
as there for f∗. This holds because the strategy is simple, e.g., with no
memory. Now if f does not map the definition of R1 in M1 to the definition
of R2 in M2 we can use Subcase 2B there, so we assume this does not
occur. Let ` ∈ {1, 2}, and get:

• Let e` = {(s̄, t̄) : s̄, t̄ ∈ θ>(I`) and some automorphism of I` over I`,γ∗
maps s̄ to t̄}.

• Let Y` be the set of e`-equivalence classes.

Note that for ` ∈ {1, 2}, n < ω and y0, . . . ,yn ∈ Y` the following are equi-
valent:

(a) some ā ∈ yn depend (by R1) on y0 ∪ . . . ∪ yn−1, and

(b) every ā ∈ yn depends (by R1) on y0 ∪ . . . ∪ yn−1.

So R1 induce a 1-dependence relation on Y1, so let 〈yi : i < i(∗)〉 be a
maximal independent subset of Y1. Therefore, it is enough to deal with one
yi. Now we can find t̄i,γ ∈ yi such that Rang(t̄i,γ)\I`,γ∗ ⊆ I`,γ+2\I`,γ+1

for each γ ∈ [γ∗, λ+) as I1 has enough automorphisms. If {t̄i,γ : γ ∈
[γ∗, λ+)} is not R1-independent, then dim(yi) is finite, in fact 1 or 0. So
we choose β∗ such that γ∗ < β∗ < λ+ and β∗ ∈ S1 ≡ β∗ ∈ S2 and for every
i < i(∗), if dim(Xyi) is finite then yi has a maximal R1-independent set
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included in ε(yi)(J1,β∗). [Why is this possible? Because for any such β∗ is
an automorphism of I2 over J1,γ∗ mapping Iβ∗+2 onto Iγ∗+2.]

Let g ∈ Fβ∗ extend f ; using it we can choose 〈(ā1
ζ , ā

2
ζ) : ζ < ζ∗〉 as

required. q.e.d. (Claim 5.3)

Claim 5.4. If S1, S2 ⊆ Sλ
+

λ and S1\S2 is stationary, then EMτ (IS1 ,Φ),
EMτ (IS2 ,Φ) are not isomorphic.

Proof. This is similar to the proof in [10, III,§3] (or [15, III,§3] = [16, §3]),
only easier. In fact, imitating it we can represent the invariants from there.

q.e.d.

Part 3. of Theorem 5.2 is obvious. q.e.d. (Theorem 5.2)

Corollary 5.5. Assume T is a (first order complete) theory.

1. If T is unstable, then (T, ∗) is fat.

2. If T is unstable or stable with DOP, or stable with OTOP, then T is
fat.

3. For every µ there is a µ-complete, class forcing P such that in VP we
have: if T is not strongly dependent or just not strongly stable, then
T is fat, moreover (T, ∗) is fat.

Proof. We get 1. by Theorem 5.2. The proof of 2. is similar,the only differ-
ence is that the formula defining the “order” is not first order and the length
of the relevant sequences may be infinite but still ≤ |T | (cf. [11, XIII]).

Now, by 1. and 2., we should consider only stable, not strongly stable
T . Choose a class C of regular cardinals such that λ ∈ C ⇒ (2<λ)+ <
Min(C\λ+) and Min(C) > µ. We iterate with full support 〈Pµ,Q

˜
µ : µ ∈ C〉

with Q
˜
µ as in Theorem 4.1. q.e.d.

Proposition 5.6. Assume T ⊆ T1, λ = λκ is not necessary regular and
κ = cf(κ) < κ(T ), e.g. T is unstable. Then there are EF+

λ×κ,λ,λ+ -equivalent
non-isomorphic models from PC(T1, T ) of cardinality λ+.

Proof. As in [3], following the proof of Theorem 5.2. q.e.d.

We get the following corollaries via old results, as mentioned in the
introduction. Note that Corollary 5.7 is on elementary classes and Corollary
5.8 on small enough pseudo elementary classes.

Corollary 5.7 (ZFC). For first order countable complete first order theory
T the following conditions are equivalent:
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(A) The theory T is superstable with NDOP and NOTOP.

(B)1 If λ = cf(λ) > |T | and M1,M2 ∈ ModT (λ) are L∞,λ(τT )-equivalent
then M1,M2 are isomorphic.

(B)2 Like (B)1 for some λ = cf(λ) > |T |.

(C) If λ = cf(λ) > |T | and M1,M2 ∈ ModT (λ+) are EFω,λ-equivalent then
M1,M2 are isomorphic.

(D) For some regular λ > |T |, if M1,M2 ∈ ModT (λ+) are EFλ,λ+ -equiva-
lent then they are isomorphic.

Proof. Clauses (A), (B)1, and (B)2 are equivalent: in [11, XIII,Th.1.11], we
proved (A) ⇒ (B)1 ∧ (B)2, and the other implication holds by [9]. Now by
the definitions trivially (B)1 ⇒ (C)⇒ (D). Lastly, by Theorem 5.1 we have
¬(A) ⇒ ¬(D), i.e., (D) ⇒ (A) so we have the circle. q.e.d.

Corollary 5.7 tells us what we know about (A)0 and (B)0 of Question 2.1.

Corollary 5.8 (ZFC). For first order countable complete first order theory
T and κ ≥ 2ℵ0 the following conditions are equivalent:

(A) T is unsuperstable,

(B)κ for every λ > κ ≥ |T | and (κ, T )-candidate ψ (cf. Definition 1.2), and
ordinal α < λ satisfying |α|+ = λ ⇒ |α ≤ |α| × ω, there are EFα,λ-
equivalent non-isomorphic models M1,M2 ∈ PCτ(T )(ψ) of cardinality
λ,

(C)κ for some λ > κ ≥ |T |, for no (κ, T )-candidate ψ is the class PCτ(T )(ψ)
categorical in λ.

Proof. First, assume T is superstable, so clause (A) holds. By the proofs of
[11, VI,§4] there is a (κ, T )-candidate ψ such that PCτ(T )(ψ) is the class of
saturated models of T , (in details, if n < ω, ā ∈ nC, tp(b, ā,C) is stationary,
q = tp(b̄,∅,C), p = p(x, ȳ) = tp(〈a〉ab̄,∅,C) then let ψp,q be such that
M |= ψp,q iff for every b̄′ ∈ nM realizing the type q(ȳ), the function c 7→
FMp,q(c, b̄

′) is one-to-one and if k < ω, c0, . . . , ck ∈ M are pairwise distinct
then tpL(τ(T ))(FMp,q(ck), {FMp,q(c0), . . . , FMp,q(ck−1)} ∪ b̄′,M) extends p(x, b̄′)
and does not fork over M . Lastly, ψ =

∧
{ψp,q : p, q as above} so ∈ Lκ+,ω.

So in the present case also (B)κ and (C)κ hold.
Secondly, assume T is not superstable, so clause (A) does not hold and

we shall prove the rest. Let ψ be a (κ, T )-candidate. Take Φ ∈ Υω1-tr
κ

witnessing unsuperstability and use Claim 1.3 and Theorem 5.1. q.e.d.
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