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Abstract

We characterize from a functional analytic point of view almost pe-
riodicity of operators on `1 given by infinite column-stochastic ma-
trices. Some of the equivalent properties occur, under the name of
Foster’s condition, in the theory of stochastic processes. The results
are applied to flows in infinite networks.
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1 Introduction

Stochastic operators on `1, i.e., positive operators which preserve the norm
of positive elements, arise, e.g., as transition matrices of Markov processes
with countably infinitely many states (e.g., [4, 6, 13, 15, 24]) or as adjacency
matrices of (infinite) weighted directed graphs (e.g., [3, 5, 13]). They can
be represented as infinite column-stochastic matrices

A = (pji)i,j∈N

with 0 ≤ pji, i, j ∈ N, and
∑
i∈N pji = 1, j ∈ N.

A central theme in the theory of these operators is to describe the
(asymptotic) behavior of the powers An, n ∈ N. A simple functional ana-
lytic property is the basis for such an analysis (cf., e.g., [18, § 2.4] or [2, 21]).

Definition 1.1. A bounded linear operator A on a Banach space X is
almost periodic if the set {An | n ∈ N0} is relatively compact for the strong
operator topology, i.e., if for all x ∈ X the orbit {Anx | n ∈ N0} is relatively
compact in X.

We shall frequently use that, if A is power-bounded, then it suffices that
{Anx | n ∈ N0} is relatively compact for all x in some dense subset of X
(cf. [10, Corollary A.5]).
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In this paper we analyze this property in the case of stochastic opera-
tors on X = `1 and give a list of equivalent properties (cf. Theorems 2.11
and Theorem 3.7). These properties occur (and are known) in stochastic
processes or graph theory, but our functional analytic approach yields a
unifying view and new perspectives.

As a first step we show that, in our situation, weak almost periodicity
(defined in analogy to Definition 1.1) coincides with almost periodicity.

Lemma 1.2. For an operator A ∈ L(`1) the set {An | n ∈ N0} is relatively
compact in the weak operator topology if and only if it is relatively compact
in the strong operator topology.

Proof. If {An | n ∈ N0} is relatively compact in the weak operator topol-
ogy, then for all x ∈ `1 the weak closure of the orbit {Anx | n ∈ N0} is
weakly compact. By Eberlein’s theorem (e.g., [23, Corollary 2 to Theorem
11.1]) it is weakly sequentially compact, hence every sequence (Ankx)k∈N
has a weakly convergent subsequence. Since in `1 weakly convergent se-
quences converge in norm ([1, p. 137] or [16, p. 283/284]), we obtain that
the orbit {Anx | n ∈ N0} is relatively norm-compact. This means relative
compactness of {An | n ∈ N0} in the strong operator topology.
The converse implication is trivially true. q.e.d.

Almost periodicity allows the application of the Jacobs-Glicksberg-
deLeeuw decomposition theorem in which case the “convergence to a group”
occurs in the strong operator topology.

Theorem 1.3. Suppose that the column-(sub-)stochastic operator A ∈
L(`1) is almost periodic. Then there is a positive, contractive projection
Q ∈ L(`1) such that the decomposition

`1 = Q`1 ⊕ kerQ

is A-invariant and

Q`1 = Yr := lin{y ∈ `1 | Ay = λy, |λ| = 1},
kerQ = Ys := {y ∈ `1 | ‖Any‖ → 0}.

Moreover, Yr is a closed sublattice of `1 and the restriction R := A|Yr is
invertible with positive contractive inverse.

This result is well-known and can be found e.g. in [8, Lemma 4] (a general
reference is [18, Chapter 2, Theorems 4.4 & 4.5]).

In Section 2 we begin with the irreducible case, and our main result
characterizing almost periodicity is Theorem 2.11.
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In Section 3 we treat the general case and show (Theorem 3.7) that
almost periodicity of A means that A can be written as

A =
(
A B
0 D

)
,

where A is a direct sum of countably many irreducible stochastic matrices
Aj with Aj almost periodic, while Dn → 0 strongly. This can be thought
of as a generalization of the normal form of positive finite matrices given in
[22, Proposition II.8.8].

We conclude with an application of the results to the asymptotics of the
C0-semigroup belonging to a difference equation on L1([0, 1], `1), generaliz-
ing results on flows in infinite networks proved in of [8].

2 The irreducible case

In this section, we discuss almost periodicity of an irreducible, infinite,
column-stochastic matrix A ∈ L(`1). Here we use the notion of (ideal)
irreducibility as in [22, Definition III.8.1] which in our situation means that
for all i, j ∈ N there exists n ∈ N such that (An)i,j = 〈Anej , ei〉 > 0 (use
[22, Proposition III.8.3]), where ej denotes the canonical basis vector with
jth entry 1 and 0 else.

2.1 Spectral characterization
Based on the Jacobs-Glicksberg-deLeeuw-decomposition stated in Theorem
1.3, we find the following first characterization of almost periodicity.

Proposition 2.1. If A ∈ L(`1) is irreducible and column-stochastic, then
the following assertions are equivalent.

(i) Pσ(A) ∩ Γ 6= ∅ (Γ denotes the unit circle).

(i’) 1 is an eigenvalue of A.

(i”) There exists a strictly positive fixed vector 0� x ∈ `1 of A.

(ii) {An | n ∈ N0} is relatively strongly/weakly compact, i.e., A is almost
periodic.

Without the assumption of irreducibility, the implications (i”) ⇒ (ii) ⇒
(i)⇐⇒ (i’) still hold.

Proof. Suppose (i) with Ay = λy for some 0 6= y ∈ `1, |λ| = 1. By positivity,
|y| ≤ A|y| and ‖A|y|‖ ≤ ‖y‖ since A is contractive. Hence |y| is a positive
fixed vector, and we have (i’).

Arguing as before, existence of some non-zero fixed vector y as supposed
in (i’) implies existence of a positive fixed vector x := |y| of A, which, by
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irreducibility, must be a sequence of strictly positive numbers (compare [22,
Theorem V.5.2]), which is (i”).

Starting with (i”), strict positivity of x yields that the order interval
[−x, x] spans a dense subspace of `1. For all −x ≤ y ≤ x the orbit {Any :
n ∈ N0} is contained in [−x, x], which is compact. Therefore, for all y ∈
lin[−x, x] the orbit is relatively compact. Since A is power-bounded, we
obtain (ii).

For (ii) ⇒ (i), note that Pσ(A) ∩ Γ = ∅ implies, by Theorem 1.3, that
the powers of A converge strongly to 0. This is impossible since ‖Anei‖ = 1
for all n, i ∈ N. q.e.d.

For the action of A on Yr, we note that there is a Perron-Frobenius
result saying that an irreducible stochastic matrix has at most finitely many
unimodular eigenvalues forming a subgroup of the circle group (cf., e.g., [8,
Corollary 6] or [25], [28, Theorem 2.2] in a stochastic context).

Corollary 2.2. If A is irreducible, column-stochastic and almost periodic,
then there is m ∈ N such that (in the notation of Theorem 1.3)

Pσ(A) ∩ Γ = Pσ(R) =
{

1, e
2πi
m , . . . , e

2πi(m−1)
m

}
,

and
‖Anmy −Qy‖L1([0, 1], `1) n→∞−−−−→ 0 for all y ∈ `1.

It can be shown, using graph theoretical terms, that the number m
depends only on the zero/non-zero-pattern of the entries of A (compare [8,
Lemma 8]).

2.2 A summability condition
We now split the matrix A into a block matrix

A =

(
Ã1 Ã2

Ã3 Ã4

)
, (2.1)

where Ã1 ∈ M|F |×|F |(R), Ã2 ∈ M|F |×∞(R), and Ã3 ∈ M∞×|F |(R), accord-
ing to a given finite index set F (and after a relabelling of the indices if
necessary). Considering the blocks Ãi as operators Ai on `1, A is of the
form

A = K +A4

for positive contractions A4 and K := A1 +A2 +A3.
Since K is of finite rank (note that the range of A1 and A2 is a subset of

〈e1, . . . , e|F |〉, and A3 has only finitely many columns), A can be considered
as a perturbation of A4 by the compact operator K. We ask for a condition
on the “cut” matrix A4 (relative to A3) needed to ensure almost periodicity
of A.
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Proposition 2.3. For an irreducible, infinite stochastic matrix A the fol-
lowing assertions are equivalent.

(i) A is almost periodic.

(ii) For one/all finite sets F ⊂ N and A decomposed as in (2.1) the series∑∞
k=0A

k
4A3ej converges absolutely in `1 for all basis vectors ej , j ∈ F .

(ii’) For one/all finite sets F ⊂ N and A decomposed as in (2.1) the series∑∞
k=0A

k
4A3ej and

∑∞
k=0A

k
4ej converge absolutely in `1 for all basis

vectors ej , j ∈ N.

Without irreducibility, (ii’) (for some fixed F ) implies (i).

The key to the proof is the following expansion for the powers of A.

Lemma 2.4. For all n ≥ 2 we have

An = An−1
4 A +

n−2∑
k=0

Ak4(KAn−1−k). (2.2)

Proof. For n = 2 we have A2 = (A4 +K)A = A2−1
4 A+

∑0
k=0A

k
4(KA2−1−k).

For the induction it suffices to apply the formula for n to the second term
of the expansion An+1 = (K +A4)An = KAn +A4An. q.e.d.

Proof of Proposition 2.3. By Proposition 2.1, (i) implies the existence of a
strictly positive fixed vector x. We consider (2.2) applied to x, i.e.,

x = Anx = An−1
4 x+

n−2∑
k=0

Ak4Kx, n ≥ 2. (2.3)

From 0 ≤ An4y ≤ Anx = x for y ∈ [0, x] we see that the orbit {An4y : n ∈ N}
is contained in the compact order interval [0, x], hence is relatively compact.
By strict positivity of x and as in the proof of Proposition 2.1, {An4 | n ∈ N}
is relatively compact in the strong operator topology.

If Pσ(A4) ∩ Γ 6= ∅, there is again a fixed vector 0 < (0, y)> of A4 (y is
supported in F c). Since An = (A4 +K)n = An4 + Sn for some Sn ≥ 0,

An
(

0
y

)
=
(

0
y

)
+ Sn

(
0
y

)
for all n ∈ N.

Since A is irreducible, there has to be n with Sn(0, y)> > 0 and thus
An(0, y)> > (0, y)>, which contradicts ‖A‖ ≤ 1. Hence Pσ(A4) ∩ Γ = ∅,
and Theorem 1.3 implies that the first term in (2.3) converges strongly to 0.
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Consequently, the second term in (2.3) must converge to x as n → ∞.
This implies convergence of

∑∞
k=1A

k
4Kej =

∑∞
k=1A

k
4A3ej for all j ∈ F .

Clearly, the additivity of the 1-norm on positive elements implies absolute
convergence of the series in question.

For (ii)⇒ (ii’) we note that convergence of
∑∞
k=0A

k
4A31F implies that∑∞

k=0A
k
4ej converges for all those j ∈ F c such that (Ak04 A31F )j > 0 for

some k0 ∈ N. Since A is irreducible, this is actually true for every j ∈ F c.
In fact, by (2.2) and irreducibility,

0 < (An1F )j =
(
An−1

4 A31F
)
j

+
n−2∑
k=1

(
Ak4A31F

)
j

for some n ≥ 2. Hence there is k0 ∈ N such that (Ak04 A31F )j > 0, and∑∞
k=0A

k
4ej converges.

In order to show (ii’) ⇒ (i), we use that all (A1 + A2)Am are positive
contractions with range living on the first |F | entries, hence the estimate

(A1 +A2)Amej ≤ 1F and A3Amej = A3(A1 +A2)Am−1ej ≤ A31F

holds for all m ∈ N. Property (ii) implies convergence of convergence of∑∞
k=1A

k
4A31F , and for z :=

∑∞
k=1A

k
4A31F we can estimate

0 ≤
n−2∑
k=0

Ak4(KAn−1−k)ej = (A1 +A2)An−1ej +
n−2∑
k=1

Ak4(A3An−1−k)ej

≤ 1F +
n−2∑
k=1

Ak4A31F ≤ 1F + z.

Hence
{∑n−2

k=0 A
k
4(KAn−1−k)ej | 2 ≤ n ∈ N

}
is uniformly order bounded.

Order intervals in `1 are compact, so we obtain relative strong compactness
of
{∑n−2

k=0 A
k
4(KAn−1−k)ej | n ≥ 2

}
.

The convergence of
∑∞
k=0A

k
4ej for all j implies strong stability of Ak4 ,

i.e., ‖Ak4y‖ → 0 for all y ∈ `1 as k → ∞. Hence the first term of (2.2)
applied to ej , j 6∈ F , converges to 0 as n→∞, and (i) holds.

Since (i) is independent of the choice of F , the equivalences hold for
every choice of F . q.e.d.

2.3 Positive recurrence
We now relate the summability condition on the blocks of the above matrix
decomposition to some stochastic concepts.

An infinite stochastic matrix A can be regarded as the (transposed)
transition matrix of a discrete-time homogeneous Markov chain with count-
ably many states (cf., e.g., [24, Chapter 5]). Here, the entries (A)i,j = pji,
i, j ∈ N, are the one-step transition probabilities.
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In this context, a non-zero positive fixed vector is called a finite invariant
measure (or stationary distribution) or, if normalized, invariant probability
measure. In stochastic processes, the existence of such an invariant proba-
bility measure is related to positive recurrence.

Definition 2.5. An index j ∈ N is called

(a) recurrent if the probability of ever returning to j is equal to 1, i.e.,

∞∑
n=1

Fnj = 1,

where Fnj denotes the probability of returning to j for the first time
in the nth step;

(b) positive recurrent if j is recurrent and the expected “first return time”∑∞
n=1 nF

n
j is finite.

An irreducible (Markov chain defined by) A is called (positive) recurrent if
one/all states are (positive) recurrent (compare our Proposition 2.6 and [24,
Theorem 5.2]).

As in [26, Lemma 4.1] we obtain the following characterization.

Proposition 2.6. An irreducible, infinite stochastic matrix A is almost
periodic if and only if j is positive recurrent for one/all j ∈ N.

Proof. By Proposition 2.3, almost periodicity of A and
∑∞
k=0 ‖Ak4A3ej‖ <

∞ are equivalent, where A is splitted as in (2.1) according to F = {j}, for
one/all j ∈ N.

Almost periodicity of A implies that for fixed F = {j} and A splitted
accordingly the series

∑∞
k=0 ‖Ak4A3ej‖ converges.

In particular, the sequence ‖Ak−1
4 A3ej‖ converges to 0. Since the quan-

tity ‖Ak−1
4 A3ej‖ expresses the probability of not having re-entered j during

the first k steps given that the random walk started in j, the probability of
re-entering j during the first k steps equals

1− ‖Ak−1
4 A3ej‖ =

k∑
n=1

Fn.

Therefore, the probability of eventually re-entering j is given by

lim
k→∞

(
1− ‖Ak−1

4 A3ej‖
)
≤ 1

which by ‖Ak−1
4 A3ej‖ → 0 must be equal to 1. By definition, this means

that j is recurrent.
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It remains to show that
∑∞
n=1 nF

n is finite. For every k ≥ 2 we have
0 ≤ ‖Ak−2

4 A3ej‖ = 1 −
∑k−1
n=1 F

n and, since ‖Ak−2
4 A3ej‖ → 0 as k → ∞,∑∞

n=1 F
n = 1. Thus

∞∑
n=k

Fn = 1−
k−1∑
n=1

Fn = ‖Ak−2
4 A3ej‖ for all k ≥ 2. (2.4)

Therefore,
∞∑
n=1

nFn =
∞∑
k=1

∞∑
n=k

Fn
(2.4)
= 1 +

∞∑
k=2

‖Ak−2
4 A3ej‖ (2.5)

is finite and j is positive recurrent.
Conversely, recurrence of j implies, by the above arguments, first that

1 − ‖Ak−1
4 A3ej‖ converges to 1, hence ‖Ak−1

4 A3ej‖ → 0. Then we have
(2.4) and read (2.5) backwards in order to see that positive recurrence of j
yields that

∑∞
k=2 ‖A

k−2
4 A3e1‖ exists. q.e.d.

The following consequences are well-known in the stochastic context.

Remark 2.7. In the case that A is irreducible,

(1) positive recurrence holds for one index if and only if it holds for all
indices ([24, Theorem 5.2]),

(2) positive recurrence is equivalent to the existence of a finite invariant
measure ([24, Theorem 5.5 & Corollary]) which by our Proposition
2.1 means almost periodicity of A.

2.4 A Lyapunov-type inequality
The summability condition obtained in Proposition 2.3 results in a matrix-
vector inequality.

Proposition 2.8. For a column-stochastic matrix A ∈ L(`1), decomposed
as in (2.1), the following assertions are equivalent.

(i) There exist ε > 0 and a sequence 0 ≤ h = (hi)i∈N with h|F = 0,
satisfying

(1−A>4 )h ≥ ε1F c , (2.6a)

(A>3 h)j <∞ ∀ j ∈ N. (2.6b)

(i’) There exists a sequence 0 ≤ h = (hi)i∈N with h|F = 0, satisfying

(1−A>4 )h = 1F c , (2.7a)

(A>3 h)j <∞ ∀ j ∈ N. (2.7b)
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(ii) The series
∑∞
k=0A

k
4ej and

∑∞
k=0A

k
4A3ej converge (absolutely) in `1

for all basis vectors ej , j ∈ N.

Proof. (i)⇒ (ii): We assume that (2.6a) and (2.6b) are satisfied, hence
n∑
k=0

A>4
k
1F c =

1
ε

n∑
k=0

A>4
k
ε1F c

(2.6a)

≤ 1
ε

n∑
k=0

A>4
k
(1−A>4 )h

=
1
ε

(
h−A>4

n+1
h
)
≤ 1
ε
h for all n ∈ N. (2.8)

This means that the left hand side is bounded coordinatewise while it in-
creases monotonically with n, thus

∑∞
k=0A

>
4
k
1F c converges coordinatewise.

Similarly,
n∑
k=0

A>3 A
>
4

k
1F c ≤

1
ε
A>3 h ,

where the right hand side is a vector with finite entries by assumption (2.6b),
hence we obtain the coordinatewise convergence of the series.

Since for positive elements 0 ≤ y ∈ `1 we have ‖y‖ = 〈y,1〉, this coordi-
natewise convergence expresses just that

∞∑
k=0

〈ej , A>4
n
1F c〉 =

∞∑
k=0

〈An4 ej , 1F c〉 =
∞∑
k=0

‖An4 ej‖1 (2.9)

exists for all j ∈ F c, and analogously for the series with A3.
(ii)⇒ (i’): If coordinatewise convergence holds, we define

h :=
∞∑
k=0

A>4
k
1F c , (2.10)

and obtain, by the same calculation as above,

(1−A>4 )
∞∑
k=0

A>4
k
1F c =

∞∑
k=0

A>4
k
1F c −

∞∑
k=1

A>4
k
1F c = 1F c

coordinatewise, so (2.7a) holds. Moreover, (2.7b) follows from the conver-
gence of the other series, since coordinatewise

A>3 h = A>3

∞∑
k=0

A>4
k
1F c =

∞∑
k=0

A>3 A
>
4

k
1F c <∞ .

The implication (i’)⇒ (i) is obvious. q.e.d.
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Remark 2.9. The condition consisting of (2.6a) and (2.6b) appears in an
equivalent form in a stochastic result known as Foster’s Theorem (e.g., [4,
Chapter 5, Theorem 1.1] or [11, 2.2.3] (there stated as a characterization)).
Foster’s motivation was an application in queueing theory [12].

In fact, considering (2.6) coordinatewise, one directly obtains the fol-
lowing equivalent condition (note that A>3 h1 ≥ 0 can be dropped, and that
A>1 h1 is finite anyway).

Definition 2.10. For some infinite, column-stochastic A = (pji)i,j∈N Fos-
ter’s condition is

∃F ⊂ N finite, ε > 0 and h : N→ [0,∞) such that

h(i)−
∑
j∈N

pijh(j) ≥ ε for all i 6∈ F, (2.11a)

∑
j∈N

pijh(j) <∞ for all i ∈ F. (2.11b)

The benefit of Foster’s condition or the Lyapunov inequality consists
in the use of the one-step transition probabilities only, i.e., one can work
directly with the entries of the matrix A. The difficulty is to find a suitable
function h, sometimes called Lyapunov function (e.g., in [4, 11]) or Foster-
Lyapunov function.

Foster’s condition is a drift condition if h is interpreted as a function
measuring the distance from the finite center F . Then (2.11a) means that
after one random step the expected distance strictly decreases by a uniform
portion ε, while (2.11b) limits the drift away from F .

For a discussion of examples of positive recurrent irreducible Markov
chains we refer to [8], where they appear, with corresponding illustrations,
in the context of networks.

2.5 The final characterization
We now collect the previous arguments in our characterization of almost
periodicity.

Theorem 2.11. Suppose A ∈ L(`1) is an infinite, column-stochastic ma-
trix. If A is irreducible, then for one (hence for any) decomposition of A
as in (2.1), each of the following assertions characterizes almost periodicity
of A.

(i) The Foster conditions (2.11a) and (2.11b) hold.

(ii) There exist ε > 0 and a sequence 0 ≤ h = (hi)i∈N with h|F = 0
satisfying (2.6a) and (2.6b).
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(ii’) There exists a sequence 0 ≤ h = (hi)i∈N with h|F = 0 satisfying (2.7a)
and (2.7b).

(iii) The series
∑∞
k=0A

k
4ej and

∑∞
k=0A

k
4A3ej converge (absolutely) in `1

for all basis vectors ej , j ∈ N.

(iii’) The associated Markov chain is positive recurrent.

(iv) 1 is an eigenvalue of A.

(iv’) There exists a strictly positive fixed vector 0� x ∈ `1 of A.

Without irreducibility, for every fixed decomposition of A the implications
(i) ⇐⇒ (ii) ⇐⇒ (ii’) ⇒ (iii) ⇒ A almost periodic ⇒ (iv) hold (while the
other implications do not hold in general).

In the stochastic literature it has also been observed, e.g., by [27], that
Foster’s condition implies positive recurrence of all indices without any (ad-
ditional) irreducibility assumption.

Remark 2.12. Since for irreducible A the concrete choice of F is irrelevant,
we can always achieve |F | = 1 (i.e., F = {j} for a single j ∈ N). It is also
possible to take ε = 1 with equality in (2.6a) or (2.11a) (as stated in (ii’)),
if we take h defined by (2.10), which is by (2.8) the minimal solution (with
ε = 1).

For the sake of completeness, we mention another classical criterion for
the stronger compactness condition of quasi-compactness (for this property,
cf. [18, Chapter 2, Definition 2.3], [9, §VIII.8]) and a corresponding list of
equivalences.

Theorem 2.13. Suppose A ∈ L(`1) is a positive, column-stochastic infinite
matrix. If A is irreducible, then the following assertions are equivalent.

(i) Doeblin’s Condition holds, i.e.,

∃F ⊂ N finite, δ > 0, and L ∈ N such that (2.12)
∀ j ∈ N the probability of reaching F in exactly L steps is ≥ δ.

(ii) There exist F ⊂ N finite, ε > 0, and a bounded sequence 0 ≤ h =
(hi)i∈N satisfying (2.11a) and (2.11b) (or (2.6a) and (2.6b)).

(iii) For A decomposed as in (2.1) the series
∑∞
k=0A

k
4 converges in operator

norm.

(iv) A is quasi-compact.
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Proof. By the argument in [7, Proposition 4.8], quasi-compactness of A is
equivalent to the existence of some L ∈ N, 0 < δ < 1 and a finite set F ,
such that for A splitted accordingly as in (2.1) one has ‖AL4 ‖ ≤ 1− δ < 1.

This implies first that (iv) is equivalent to (i) if we use the stochastic
meaning of ‖AL4 ej‖ as the probability of not reaching F for the first L steps
when starting in j ∈ F c.

Second, (iv) means ‖AL4 ‖ ≤ 1 − δ < 1, thus ‖AnL4 ‖ ≤ (1 − δ)n for all
n ∈ N, and the series

∑∞
k=0A

k
4 converges in operator norm, i.e., (iii) holds.

By (iii),
∑∞
k=0A

k
4ej and

∑∞
k=0A

k
4A3ej converge uniformly for all j ∈ N.

Hence the minimal solution h with ε = 1 of (2.11a) and (2.11b), defined by
(2.10), satisfies for some c > 0

〈ej , h〉 = 〈ej ,
∞∑
k=0

A>4
k
1F c〉 ≤ c for all j ∈ N.

This yields a bounded solution to (2.6a) and (2.6b), hence (ii) holds.
If we suppose (ii), then, a forteriori, the minimal solution (2.10) is

bounded, and
∑∞
k=0A

>
4
k
1F c defines an element in `∞. Considering this

coordinatewise, we see that
∑∞
k=0 ‖Ak4ej‖ is uniformly bounded for all j.

Since the summands ‖Ak4ej‖ also decrease monotonically with k, for some
(any) fixed 0 < δ < 1 there is L ∈ N with

‖AL4 ej‖ ≤ 1− δ for all j ∈ N,

which yields (iv). q.e.d.

3 The general case

Based on the irreducible case above, we now characterize almost periodicity
of A in general. The starting point is to bring the infinite matrix into a block
matrix form similar to the normal form of positive finite matrices given in
[22, Proposition II.8.8].

As a first step we assume that A is a direct sum of (countably many)
irreducible blocks. Then we can apply Theorem 2.11.

Corollary 3.1. Assume that up to relabelling A is of the form

A =

A1

A2

. . .


with irreducible blocks Aj := A|Ij acting on pairwise disjoint A-invariant
ideals Ij , j ∈ J , whose 1-sum equals `1. Then the following are equivalent.

(i) A is almost periodic.
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(ii) {Anj | n ∈ N0} is relatively strongly compact for each j ∈ J .

(iii) 1 ∈ Pσ(Aj) for each j ∈ J .

(iv) Foster’s condition (2.11a) and (2.11b) is satisfied for each Aj , j ∈ J .

(v) There exist a set F ⊂ N with F ∩Nj finite for all j ∈ J , ε > 0 and a
sequence 0 ≤ h = (hi)i∈N with h|F = 0 such that (2.11a) and (2.11b)
hold.

Proof. If we assume (ii), then we have relative strong compactness of {An |
n ∈ N0} on the dense subset lin{Ij | j ∈ J} of `1. The uniform boundedness
of {An | n ∈ N0} yields (i). Conversely, the relative strong compactness of
{An | n ∈ N0} is inherited by each block by the A-invariance of Ij . Theorem
2.11 applied independently to the irreducible blocks proves the rest. For
(iv)⇒ (v) note that we can always achieve ε = 1 in (2.11a). q.e.d.

A general almost periodic A can always be decomposed into the following
block form (compare [22, Proposition II.8.8]).

Lemma 3.2. Assume that A is an infinite, column-stochastic matrix which
is almost periodic.

Then there are A-invariant ideals Ij with disjoint supports Nj ⊂ N,
j ∈ J , with Aj := A|Ij , and a band projection I−P onto `1(N∞), N∞ := N\⋃
j∈J Nj , such that the resulting block matrix (after a suitable relabelling)

A =


A1

A2 PA(I − P)
. . .

0 (I − P)A(I − P)

 =:
(
A B
0 D

)
(3.1)

has the following properties.

(i) Ij is a minimal A-invariant closed ideal for every j ∈ J , i.e., Aj is an
irreducible stochastic matrix,

(ii) A = diag(Aj)j∈J satisfies one of the equivalent conditions of Corollary
3.1,

(iii) N∞ = ∅ (i.e., A is completely reducible) or Dn → 0 strongly.

The form (3.1) with properties (i)-(iii) is unique up to permutations.
In addition, if Foster’s condition (2.11a) and (2.11b) holds, then there

are only finitely many irreducible blocks A1, . . . , An.



118 V. Keicher

Proof. We start from the Jacobs-Glicksberg-deLeeuw decomposition

Y = Yr ⊕ Ys = Q`1 ⊕ kerQ

as stated in Theorem 1.3.
By, e.g., [8, Lemma 5], the sublattice Yr is atomic with normalized atoms

aj = Qej , j ∈ suppYr. The lattice isomorphismR := A|Yr on Yr maps atoms
to atoms (compare [8, Proposition 6]), and the group action of (Rn)n∈Z
on Yr decomposes these atoms into disjoint orbits Baj indexed by some
countable set J .

Each orbit Baj is finite: otherwise, as an infinite sequence of disjoint,
normalized atoms, it is not relatively compact.

Clearly, the closed ideals Ij generated by Baj are A-invariant and pair-
wise disjoint, with restriction Aj := A|Ij , and define Nj as the support of
the ideal Ij = `1(Nj).

We now show that each Aj is irreducible. Fix arbitrary i, p ∈ suppBaj .
We already know that Baj is finite and consists of mj atoms R`aj cyclically
permuted by R with period mj . The element Qep is one of these atoms and
equals R`aj for some `. Pick k ∈ N such that i is in the support of the atom
Rk(R`aj). Hence the representation of Ys in Theorem 1.3 yields

‖Anmj+kj ep−Rk(R`aj)‖ = ‖Anmj+kj ep−A
nmj+k
j Qep‖L1([0, 1], `1) n→∞−−−−→ 0.

Thus for n large enough (Anmj+kj )i,p = 〈Anmj+kj ep, ei〉 > 0. Hence Aj is
irreducible and (i) holds.

For (ii), we note that every Ij is A-invariant, hence Aj inherits almost
periodicity from A. Note also that the support of every unimodular eigen-
vector is in

⋃
j∈J Nj by our construction via the Jacobs-Glicksberg-deLeeuw

decomposition.
To verify (iii), we assume N∞ 6= ∅ and use the domination

0 ≤ Dn = (I − P)An(I − P) ≤ (I − P)An for all n ∈ N.

By the relative compactness of {An | n ∈ N0} each orbit contains a subse-
quence that approaches an element in Q`1. Since (I−P)Q = 0 by definition,
we obtain that (I − P)An(I − P) converges strongly to 0. Hence (iii) holds.

Assume that there is another such decomposition with properties (i)-
(iii), indicated by the tilde sign, .̃ If for j ∈ J we have

Ij ∩ Ĩi = {0} for all i ∈ J̃ ,

then Ij ⊂ `1(Ñ∞). But this means that A acts as D̃ on Ij . Since D̃n

converges strongly to 0 by (iii), this contradicts the stochasticity of A.
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Hence for every j ∈ J there is i ∈ J̃ such that Ij ∩ Ĩi 6= {0}. Then
Ij = Ĩi, because both Ij and Ĩi are minimal A-invariant closed ideals. The
same arguments applied to i ∈ J̃ show that there is j ∈ J such that Ĩi = Ij ,
and we obtain uniqueness.

It remains to show that under Foster’s condition there are only finitely
many irreducible invariant blocks. In fact, for every j ∈ N there are finitely
many successive states leading from j to F ; since all intermediary states
must belong to the same invariant set, it intersects F in at least one state.
Since F is finite, we conclude that there are only finitely many minimal
invariant ideals which are disjoint. q.e.d.

Before showing the converse of Lemma 3.2, we first give some remarks
on the previous result.

Remark 3.3. In the language of stochastics, by the argument of Proposi-
tion 2.6, the quantity

lim
n→∞

1− ‖(I − P)An(I − P)ej‖ = 1

expresses the positive probability to reach
⋃
Nj from j ∈ N∞. In particular,

all indices in N∞ are inessential, i.e., there is a state i (∈
⋃
Nj) which can

be reached from j but there is no return to j.
Thus Lemma 3.2 shows that for almost periodicity of {An | n ∈ N0} all

indices are positive recurrent or inessential.
The matrix decomposition (2.1) is a special form of a Doeblin decompo-

sition (e.g., [20]).

From Lemma 3.2 we draw the following conclusion on the long-term
behavior of An (compare Theorem 4.2 below).

Theorem 3.4. An infinite, column-stochastic matrix A is almost periodic
if and only if there are positive, contractive projections Qj , j ∈ J , which
have pairwise disjoint ranges Qj`1 on which the restrictions Aj of A are
periodic and∥∥∥∥Any − (∑

j∈J
AnjQjy

)∥∥∥∥L1([0, 1], `1) n→∞−−−−→ 0 for all y ∈ `1.

Now we show that the block matrix decomposition (3.1) with properties
(i)-(iii) obtained in Lemma 3.2 for almost periodic A conversely implies
almost periodicity of A. This will need a more technical proof.

Theorem 3.5. Let A be an infinite, column-stochastic matrix. Then A is
almost periodic if and only if A is (up to relabelling) of the form (3.1) as in
Lemma 3.2 with properties (i)-(iii).
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Proof. By Lemma 3.2, we only have to prove the converse direction. We
adopt the notation of Lemma 3.2 and denote by PN the band projection
onto lin{Ij | j > N}.

By Corollary 3.1 it clearly suffices to find for fixed x ∈ `1(N∞) = ker P,
‖x‖ ≤ 1, and each sequence nk↑∞, a subsequence (nk`)`∈N such that PAnk`x
converges. We construct (nk`)`∈N recursively.

For ` = 1 we choose first a subsequence
(
n

(1)
k

)
k∈N with n(1)

k −n
(1)
k0
∈ m1Z

for all k0 (where m1 for A1 as in Corollary 2.2). This is possible because at
least one of the m1 many sets

m1N, 1 +m1N, . . . , (m1 − 1) +m1N,

must contain a subsequence (n(1)
k )k∈N of nk, and n

(1)
k − n

(1)
k0
∈ m1N. (This

is needed in the next step in order to keep E1,1 fixed.)
Then we choose nk1 := n

(1)
k0
∈ {n(1)

k | k ∈ N} such that ‖(I−P)Ank1x‖ ≤
2
3 = 1

3·2−1 , which is possible by (iii) for nk1 large enough. Define

E1 := PAnk1x ∈ ran P, R0 := R1 := 0.

Decomposing E1 = E1,1 + E1,2 disjointly with E1,1 ∈ I1, we have that

PAnk1x = R1 + E1,1 + E1,2,

with
E1,1 ∈ I1, ‖E1,1‖ ≤ 1 ≤ 1

21−4
, ‖E1,2‖ ≤ 1 ≤ 1

3 · 21−3
.

Set N1 := 1, and take N2 ≥ N1 such that ‖PN2E1,2‖ ≤ 1
32·22−3 (to reduce

the “error” in the next step we cut E1,2 and keep only PN2E1,2 in the error
term).

In the `+ 1-st step we start with given

• N` ≤ N`+1 ∈ N,

• a subsequence (n(`)
k )k∈N − nk` ⊂MN`Z where

MN := lcm{m1, . . . ,mN} ∈ N,

mj for Aj as in Corollary 2.2, and

• E` = E`,2 + E`,2 and R` such that

PAnk`x = R` + E`,1 + E`,2 (3.2)

with E`,1 ∈ lin{Ij | 1 ≤ j ≤ N`}, ‖E`,1‖ ≤ 1
2`−4 , E`,2 ∈ lin{Ij | j >

N`}, ‖E`,2‖ ≤ 1
3·2`−3 , ‖PN`+1E`,2‖ ≤ 1

32·2`+1−3 , R` ∈ lin{QjIj | 1 ≤
j ≤ N`}, and ‖R` −R`−1‖ ≤ ‖E`−1‖.
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For the finitely many ideals Ij , 1 ≤ j ≤ N`, we can apply Corollary 2.2
simultaneously. Since by construction (n(`)

k )k∈N − nk` ⊂ mjZ for all 1 ≤
j ≤ N`, Ank`+1−nk` acts as the identiy on QjIj , 1 ≤ j ≤ N`, and thus leaves
R` fixed. We also obtain for E`,1 ∈ lin{Ij | 1 ≤ j ≤ N`}

‖An
(`)
k −nk`E`,1 −QE`,1‖L1([0, 1], `1) k→∞−−−−→ 0.

In the ` + 1-st step we first pick a new subsequence (n(`+1)
k )k∈N of

(n(`)
k )k∈N with

n
(`+1)
k − nk` ∈MN`+1N + p for some p ∈ N,

using again the same argument as for ` = 1.
Then we choose nk`+1 > nk` large enough with nk`+1 ∈ {n

(`+1)
k | k ∈ N}

such that
‖Ank`+1−nk`E`,1 −QE`,1‖ ≤

1
32 · 2`+1−3

.

By Lemma 3.2(iii), we can simultaneously achieve (by possibly increasing
nk`+1)

‖(I − P)Ank`+1x‖ ≤ 1
32 · 2`+1−3

.

We note that (as needed for the `+ 2nd step)

n
(`+1)
k − nk`+1 = n

(`+1)
k − nk` − (nk`+1 − nk`) ∈MN`+1N + p− p = MN`+1N.

We use the splitting

PAnk`+1x = PAnk`+1−nk`Ank`x
= Ank`+1−nk`PAnk`x+ PAnk`+1−nk` (I − P)Ank`x

to see how PAnk`+1x depends on PAnk`x. Inserting PAnk`x = R`+E`,1+E`,2
and using that R` is kept fixed, we obtain

PAnk`+1x = Ank`+1−nk`E`,2 + Ank`+1−nk`E`,1 −QE`,1 +
+PAnk`+1−nk` (I − P)Ank`x+QE`,1 +Rl.

So we obtain (3.2) for `+ 1 if we define the new “error” and “fixed” terms
as

E`+1 := Ank`+1−nk`E`,1 −QE`,1 + Ank`+1−nk`E`,2 +
+PAnk`+1−nk` (I − P)Ank`x,

E`+1,2 := PN`+1E`+1,

E`+1,1 := E`+1 − E`+1,2 ∈ lin{Ij | 1 ≤ j ≤ N`+1},

N`+1 ≤ N`+2 s.t. ‖PN`+2E`,2‖ ≤
1

32 · 2`+2−3
,

R`+1 := QE`,1 +R`.
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The estimate ‖R`+1 −R`‖ = ‖QE`,1‖ ≤ ‖E`,1‖ is obvious. By construction
we have reduced the “error” because

‖E`+1‖ ≤ ‖Ank`+1−nk`E`,1 −QE`,1‖+ ‖E`,2‖+ ‖(I − P)Ank`x‖

≤ 1
32 · 2`+1−3

+
1

3 · 2`+1−4
+

1
32 · 2`+1−3

≤ 1
2`+1−4

as claimed in (3.2), with even smaller “tail” (outside Ij , 1 ≤ j ≤ N`+1)

‖E`+1,2‖ ≤ ‖Ank`+1−nk`E`,1 −QE`,1‖+ ‖PN`+1E`,2‖+
1

32 · 2`+1−3
‖(I − P)Ank`x‖

≤ 1
32 · 2`+1−3

+
1

32 · 2`+1−3
+

1
32 · 2`+1−3

≤ 1
3 · 2`+1−3

.

This closes the recursion.
The properties given in (3.2) for all ` imply that R` converges to some

R, and E`,1 + E`,2 → 0 as `→∞. Hence

PAnk`x = R` + E`,1 + E`,2 → R

converges in norm, as desired. q.e.d.

In analogy to (and using the) result in the irreducible case, we now look
for a generalized matrix-vector inequality of Lyapunov type, or a generalized
drift condition corresponding to almost periodicity of A. To this aim we
quote the following result from stochastics (cf. [11, Theorem 2.2.1] or [19,
Theorem 1] with proofs (and [24, Theorem 5.2])).

Theorem 3.6. Suppose A = (pji)i,j∈N is irreducible. Then one/all indices
are recurrent if and only if for one (and then for any) finite F ⊂ N there is
h : N→ [0,∞), h|F = 0, with

h(j)→∞, (for j →∞)

such that h(i)−
∑
j∈N

pijh(j) ≥ 0 for all i 6∈ F. (3.3)

Thus we can add a drift condition to our final characterization.

Theorem 3.7. Let A = (pji)i,j∈N be an infinite, column-stochastic matrix.
Then the following are equivalent.

(i) A is almost periodic, i.e., {An | n ∈ N0} is relatively weakly/strongly
compact.
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(ii) A is (up to relabelling) of the form

A =
(
A B
0 D

)
, (3.4)

where A = diag(Aj)j∈J with Aj irreducible and satisfying one of the
equivalent conditions of Corollary 3.1, and Dn → 0 strongly.

(iii) A is in block form (3.4), with

(a) A = diag(Aj) where each Aj satisfies (2.6a) and (2.6b) for some
splitting of A as in (2.1),

(b) D (with support N∞) can be extended (adding one column and
row) to an irreducible stochastic matrix, and there is h∞ : N∞ →
[0,∞), h∞(n)→∞ as N∞ 3 n→∞, such that

(1−D>)h∞ ≥ 0.

(iv) There are A-invariant sets Nj ⊂ N, j ∈ J , such that the following
drift condition holds:

(a) Foster’s condition (2.11a) and (2.11b) holds on each Nj , and

(b) For all k ∈ N∞ := N \
⋃
j∈J Nj there is a positive probability to

eventually reach
⋃
j∈J Nj , and there is h∞ : N∞ → [0,∞),

h∞(n)→∞ as N∞ 3 n→∞, such that

h∞(i)−
∑
k∈N∞

pikh∞(k) ≥ 0 for all i ∈ N∞.

Proof. Based on Theorem 3.5 it remains to show (ii)⇒ (iv) and (iv)⇒ (i)
(the equivalence of (iv) and (iii) follows from their proof and the reformula-
tion as matrix-vector inequality as done before). We consider the auxiliary
matrix

Ã :=


0 p1 p2 . . .
q1

q2 (I − P)A(I − P)
...

 , (3.5)

where (qn) is any strictly positive vector in `1 of norm 1 and pj ≥ 0 are
chosen such that Ã becomes column-stochastic. This effectuates a decom-
position of Ã as in (2.1) with (I − P)A(I − P) in the role of A4.

This means that we merge all the states corresponding to the irreducible
invariant blocks into one absorbing state {0}, and then introduce an artificial
feedback to N∞.
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In each implication, we obtain that Ã is irreducible and then use the
characterization of recurrence of Theorem 3.6.

Starting from (ii), as in Remark 3.3 (which shows that the states in N∞
are inessential) we conclude from

‖(I − P)An(I − P)ej‖ → 0 for all j ∈ N∞

that for all j there is an n such that Ãn has a non-zero entry in its first row
(i.e., j leads to the added state {0} with probability > 0). On the other
hand, each ideal whose support includes {0} also includes N∞, because the
first column of Ã has been chosen strictly positive. Hence Ã is irreducible.

Moreover, the strong stability of (I − P)An(I − P) implies, by the proof
of Proposition 2.6, that {0} is a recurrent index of Ã. Consequently, the
characterization of Theorem 3.6 (with F = {0}) yields the asserted drift on
N∞. The irreducible blocks Aj are almost periodic by assumption, hence
satisfy (mutually independent) Foster conditions on the irreducible blocks.
We obtain (iv).

Conversely, assume that (iv) holds. By (iv)(b), for any k ∈ N∞ it is
possible to escape to the state {0} after finitely many steps. Arguing as
before, this implies irreducibility of the matrix Ã. So Theorem 3.6 can
be applied, and yields recurrence of {0}. Thus, together with the proof of
Proposition 2.6 (and strict positivity of (qj)), (I−P)An(I−P)→ 0 strongly.

Moreover, Foster’s condition (iv)(a) for the stochastic blocks Aj corre-
sponding to the invariant sets Nj implies by Theorem 2.11 relative strong
compactness of {Anj | n ∈ N}. Applying Lemma 3.2 to Aj , we obtain, after
a suitable relabelling of the indices, a block matrix as in Lemma 3.2. So
without loss of generality, the given decomposition of N yields irreducible
blocks Aj each satisfying Foster’s condition. This is (ii). q.e.d.

4 Application

Almost periodicity of an irreducible infinite stochastic matrix B ∈ L(`1) has
been used in [8] in the context of flows in infinite networks.

By [7], such a flow can be described, on an abstract level, on the Banach
space X := L1([0, 1], `1) by the C0-semigroup (T (t))t≥0 given by

T (t)f(s) = Bnf(t+ s− n) if n ≤ t+ s < n+ 1, n ∈ N0, (4.1)

for all t ≥ 0, f ∈ X and almost all s ∈ [0, 1]. This semigroup has generator

A :=
d

ds
, D(A) := {f ∈W 1,1([0, 1], `1) | f(1) = Bf(0)}. (4.2)

In the network interpretation, B is the weighted, transposed adjacency ma-
trix of the line graph and column stochastic. Cf. [7] for details.
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Under the assumption of irreducibility (of B or (T (t))t≥0 equivalently),
the long-term behavior of the semigroup orbits {T (t)x | t ≥ 0} as t → ∞
has been studied in [7] with respect to the uniform and in [8] with respect to
the strong operator topology. The aim in each case was to show asymptotic
periodicity, i.e., convergence to a periodic rotation group on L1(Γ), Γ the
unit circle, in the sense of [7, Theorem 4.10] and [8, Theorem 1], respectively.

It turned out that in each case the asymptotic behavior is governed by
properties of the infinite matrix B. In fact, the necessary and sufficient
condition for asymptotic periodicity was 1 ∈ Pσ(B), which, since B was
assumed to be irreducible, means almost periodicity of B.

Lemma 4.1. The semigroup (T (t))t≥0 is irreducible if and only if B is
irreducible; the semigroup (T (t))t≥0 is relatively strongly compact if and
only if {Bn | n ∈ N0} is relatively (strongly) compact, i.e., B is almost
periodic.

The proof can be found in [7, Proposition 4.9] and [14], respectively.
We drop the irreducibility assumption and work with the form (3.4) of

B from the previous section, and use the results in the irreducible case from
[8] (in particular [8, Theorem 16]). Compare the approach of [17, Theorem
4.10] for finite, non-strongly connected networks.

We obtain the following abstract characterization of (generalized) asym-
ptotic periodicity of (T (t))t≥0.

Theorem 4.2. For an infinite, column-stochastic matrix B the following
are equivalent.

(i) B satisfies one of the equivalent assertions of Theorem 3.7.

(ii) {Bn | n ∈ N0} is relatively (strongly) compact.

(iii) (T (t))t≥0 given by (4.1) is relatively strongly compact.

(iv) (T (t))t≥0 given by (4.1) converges strongly to a sum of irreducible
periodic semigroups in the following sense: There are a positive pro-
jection P and pairwise disjoint positive projections Pj , j ∈ J ⊂ N, all
commuting with (T (t))t≥0, such that

(iv.1) PjX, j ∈ J , is a closed sublattice of X isomorphic to L1(Γ);
(iv.2) the semigroups (Rj(t)) := (Tj(t)Pj) restricted to PjX are peri-

odic and irreducible and similar to the rotation group on L1(Γ)
of the same period;

(iv.3) for all f ∈ L1([0, 1], `1) we have

‖T (t)f−T (t)Pf‖ =
∥∥∥∥T (t)f−

(∑
j∈J

Rj(t)PjPf
)∥∥∥∥ t→∞−−−→ 0. (4.3)
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Proof. (i)⇐⇒ (ii) is contained in Theorem 3.7 while (ii)⇐⇒ (iii) holds by
Lemma 4.1.

If we assume (iii), then we have the Jacobs-Glicksberg-deLeeuw decom-
position X = Xr ⊕ Xs = PX ⊕ kerP for (T (t))t≥0 with properties as
described in [10, Theorem V.2.14] (compare [8, Lemma 11]). In particular,

PX = lin{f ∈ D(A) | Af = iαf, α ∈ R},

and the difference T (t)− T (t)P converges strongly to 0.
Furthermore, by the already established equivalence of (i) and (iii) we

may assume that B has the form as in Lemma 3.2, with irreducible, almost
periodic restrictions Bj of B to the B-invariant ideals Ij . The B-invariant
ideals Ij = `1(Nj) with support sets Nj ⊂ N lead (by (4.1)) to (T (t))t≥0-
invariance of the closed ideals

Ij := L1([0, 1]×Nj)

of X = L1
(
[0, 1], `1

) ∼= L1([0, 1] × N). We denote the restricted semigroup
by (Tj(t))t≥0. Since the restriction Bj of B to `1(Nj) is irreducible, so is
(Tj(t))t≥0 (by [7, Proposition 4.9]).

By Proposition 2.1 we have 1 ∈ Pσ(Bj), thus [8, Theorem 16] implies
strong asymptotic periodicity of (Tj(t))t≥0 and (iv.1) and (iv.2) are satisfied
with Jacobs-Glicksberg-deLeeuw projection Pj . We still write Pj for the
composition of Pj with the band projection onto Ij .

Using that P and Pj are the Jacobs-Glicksberg-deLeeuw projections with
respect to (T (t))t≥0 on X and (Tj(t))t≥0 on Ij , respectively, we now show
that

Pf =
∑
j∈J

PjPf for all f ∈ X. (4.4)

Suppose f = Pf is an eigenvector to a purely imaginary eigenvalue iα of A.
Then T (t)f = eiαtf for all t ≥ 0, in particular T (n)f = eiαnf for all n ∈ N.
By (4.1), f(s) ∈ `1 and Bf(s) = eiαnf(s) for almost all s ∈ [0, 1]. Since by
Lemma 3.2 all eigenvectors of B corresponding to unimodular eigenvalues
have their support in

⋃
j∈J Nj , we obtain f(s) =

∑
j∈J fj(s) with fj(s) ∈ Ij

for almost all s ∈ [0, 1], i.e., f =
∑
j∈J fj .

By (T (t))t≥0-invariance and disjointness of the Ij , every fj is an eigen-
vector of A, hence

fj ∈ PjX = lin{f ∈ D(A) ∩ Ij | Af = iαf, α ∈ R} = PX ∩ Ij

and thus fj = Pjfj = PjPf for all j ∈ J . The claim (4.4) follows by totality
of these eigenvectors in PX.

Hence we have

T (t)Pf −
∑
j∈J

(T (t)Pj)Pf = T (t)
(
Pf −

∑
j∈J

PjPf
)

= 0 for all f ∈ X
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Figure 1.

and obtain the assertion from T (t)− T (t)P → 0 strongly.
(iv)⇒ (iii): Since (Tj(t))t≥0 is periodic on PjX, it is relatively strongly

compact for every j ∈ J . Hence by linearity and density, every

f ∈ ranP = lin
(⋃
j∈J

PjX
)

has relatively compact orbit. Then the orbit of f ∈ X is contained in the
sum of the relatively strongly compact orbits T (·)Pf and T (·)(1 − P )f =
T (·)f − T (·)Pf , which is strongly stable, hence T (·)f is relatively strongly
compact. q.e.d.

In the line of the network papers [7, 8] we obtain the following interpre-
tations.

Remark 4.3. The transport process described by (4.1) can be considered
as a flow on an infinite, directed, weighted graph G = (V,E) where mass
is transported along the edges ej ∈ E in the given directions, and is re-
distributed into the vertices vi ∈ V to the outgoing edges according to
their weights. Then B is the weighted, transposed adjacency matrix of the
line graph, and its entries are the weights, where non-zero entries express
connections between the edges. Cf. [7] and [8] for details.
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We call a weighted graph essentially positive recurrent if its adjacency
matrix B satisfies one of the equivalent conditions of Theorem 3.7. Thus,
by Theorem 4.2, the graph is essentially positive recurrent if and only if
(T (t))t≥0 converges strongly to a sum of irreducible periodic groups
(Rj(t))t≥0 where j ∈ J .

We show that distinct invariant strongly connected components (Vj , Ej)
of the underlying graph lead to disjoint minimal (T (t))t≥0-invariant ideals
and vice versa.

First, every invariant strongly connected component (Vj , Ej) of the graph
figures as support set of a minimal B-invariant ideal `1(Nj) where

Nj := {k ∈ N | ek ∈ Ej}.

As in the proof of Theorem 4.2, Ij = L1([0, 1] × Nj) yields a minimal
(T (t))t≥0-invariant ideal. Since distinct invariant strongly connected com-
ponents do not intersect, the ideals are disjoint.

Second, a minimal (T (t))t≥0-invariant ideal Ij = L1([0, 1]×Nj), Nj ⊂ N,
is in particular invariant under T (1). Thus (4.1) shows that `1(Nj) is in-
variant under the adjacency matrix B, hence the subgraph (Vj , Ej), with
Ej := {ek | k ∈ Nj} and the needed vertices, has no outgoing edges. By
irreducibility of (T (t))t≥0 on Ij , the restriction of the adjacency matrix to
`1(Nj) is irreducible and the subgraph is strongly connected (by [7, Propo-
sition 4.9]).

Thus for any essentially positive recurrent graph (T (t))t≥0 converges
strongly to a sum of irreducible periodic groups (Rj(t))t≥0, j ∈ J , each
supported by an invariant strongly connected component (Vj , Ej) of the
graph. These groups can be identified with the rotation groups acting on
|J | disjoint polygons.

Furthermore, using the results from the irreducible case in [8, Theorem
16], the period of each rotation group (Rj(t)) is determined by the greatest
common divisor of all cycle lengths occurring in the strongly connected
component Gj = (Vj , Ej). More precisely, the period of the rotation group
(Rj(t)) is

pj = gcd{ l | there is a directed cycle of length l in Gj},

and (T (t))t≥0 converges strongly to a periodic group of period

p = lcm{ pj | j ∈ J} (4.5)

if and only if (4.5) is finite.

We now give an example of an infinite, weighted, directed graph which
is essentially positive recurrrent with an adjacency matrix B exhausting the
most general form (Theorem 3.7).
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Example 4.4. In Figure 1 the horizontal strings (∗) are the invariant
strongly connected components.

On the weights of the jth string we impose a drift condition which is
well-known in the theory of birth-and-death processes (cf., e.g., [11, Theorem
1.4.1]). Foster’s condition holds on the jth string if we require(

p
(j)
1,2 · . . . · p

(j)
n,n+1

p
(j)
2,1 · . . . · p

(j)
n+1,n

)
n∈N

∈ `1 (4.6)

(compare [8, Example 1]).
All remaining vertices have paths leading to the strongly connected com-

ponents, with weights as indicated in the picture. It is easy to see that the
generalized drift condition Theorem 3.7(iii) is satisfied, while Foster’s con-
dition does not hold (not even in the version defined in Corollary 3.1(v)).

By Theorem 4.2 and (4.5) in the above remarks, the flow semigroup
given by (4.1) is asymptotically periodic with asymptotic period 2, since in
the strongly connected components the directed cycles have length 2, 4, . . .
as depicted in Figure 1.
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