Almost periodicity of stochastic operators on $\ell^{1}(\mathbb{N})$

Vera Keicher*
Arbeitsgemeinschaft Funktionalanalysis, Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
E-mail: veke@fa.uni-tuebingen.de

Abstract

We characterize from a functional analytic point of view almost periodicity of operators on ℓ^{1} given by infinite column-stochastic matrices. Some of the equivalent properties occur, under the name of Foster's condition, in the theory of stochastic processes. The results are applied to flows in infinite networks.

2000 Mathematics Subject Classification. 47B65. 47D07 60J10.
Keywords. Almost periodicity, infinite stochastic matrices, Jacobs-Glicksberg-deLeeuw decomposition, Foster's condition, flows in infinite networks.

1 Introduction

Stochastic operators on ℓ^{1}, i.e., positive operators which preserve the norm of positive elements, arise, e.g., as transition matrices of Markov processes with countably infinitely many states (e.g., $[4,6,13,15,24]$) or as adjacency matrices of (infinite) weighted directed graphs (e.g., [3, 5, 13]). They can be represented as infinite column-stochastic matrices

$$
\mathbb{A}=\left(p_{j i}\right)_{i, j \in \mathbb{N}}
$$

with $0 \leq p_{j i}, i, j \in \mathbb{N}$, and $\sum_{i \in \mathbb{N}} p_{j i}=1, j \in \mathbb{N}$.
A central theme in the theory of these operators is to describe the (asymptotic) behavior of the powers $\mathbb{A}^{n}, n \in \mathbb{N}$. A simple functional analytic property is the basis for such an analysis (cf., e.g., [18, § 2.4] or [2, 21]).

Definition 1.1. A bounded linear operator \mathbb{A} on a Banach space X is almost periodic if the set $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively compact for the strong operator topology, i.e., if for all $x \in X$ the orbit $\left\{\mathbb{A}^{n} x \mid n \in \mathbb{N}_{0}\right\}$ is relatively compact in X.

We shall frequently use that, if \mathbb{A} is power-bounded, then it suffices that $\left\{\mathbb{A}^{n} x \mid n \in \mathbb{N}_{0}\right\}$ is relatively compact for all x in some dense subset of X (cf. [10, Corollary A.5]).

[^0]In this paper we analyze this property in the case of stochastic operators on $X=\ell^{1}$ and give a list of equivalent properties (cf. Theorems 2.11 and Theorem 3.7). These properties occur (and are known) in stochastic processes or graph theory, but our functional analytic approach yields a unifying view and new perspectives.

As a first step we show that, in our situation, weak almost periodicity (defined in analogy to Definition 1.1) coincides with almost periodicity.

Lemma 1.2. For an operator $\mathbb{A} \in \mathcal{L}\left(\ell^{1}\right)$ the set $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively compact in the weak operator topology if and only if it is relatively compact in the strong operator topology.

Proof. If $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively compact in the weak operator topology, then for all $x \in \ell^{1}$ the weak closure of the orbit $\left\{\mathbb{A}^{n} x \mid n \in \mathbb{N}_{0}\right\}$ is weakly compact. By Eberlein's theorem (e.g., [23, Corollary 2 to Theorem $11.1])$ it is weakly sequentially compact, hence every sequence $\left(\mathbb{A}^{n_{k}} x\right)_{k \in \mathbb{N}}$ has a weakly convergent subsequence. Since in ℓ^{1} weakly convergent sequences converge in norm ([1, p. 137] or [16, p. 283/284]), we obtain that the orbit $\left\{\mathbb{A}^{n} x \mid n \in \mathbb{N}_{0}\right\}$ is relatively norm-compact. This means relative compactness of $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ in the strong operator topology.
The converse implication is trivially true.
Q.E.D.

Almost periodicity allows the application of the Jacobs-GlicksbergdeLeeuw decomposition theorem in which case the "convergence to a group" occurs in the strong operator topology.

Theorem 1.3. Suppose that the column-(sub-)stochastic operator $\mathbb{A} \in$ $\mathcal{L}\left(\ell^{1}\right)$ is almost periodic. Then there is a positive, contractive projection $Q \in \mathcal{L}\left(\ell^{1}\right)$ such that the decomposition

$$
\ell^{1}=Q \ell^{1} \oplus \operatorname{ker} Q
$$

is \mathbb{A}-invariant and

$$
\begin{aligned}
Q \ell^{1}=Y_{r} & :=\quad \operatorname{lin}\left\{y \in \ell^{1}|\mathbb{A} y=\lambda y,|\lambda|=1\}\right. \\
\operatorname{ker} Q & =Y_{s}
\end{aligned}:=\left\{y \in \ell^{1} \mid\left\|\mathbb{A}^{n} y\right\| \rightarrow 0\right\} .
$$

Moreover, Y_{r} is a closed sublattice of ℓ^{1} and the restriction $R:=\mathbb{A}_{\mid Y_{r}}$ is invertible with positive contractive inverse.

This result is well-known and can be found e.g. in [8, Lemma 4] (a general reference is [18, Chapter 2, Theorems $4.4 \& 4.5]$).

In Section 2 we begin with the irreducible case, and our main result characterizing almost periodicity is Theorem 2.11.

In Section 3 we treat the general case and show (Theorem 3.7) that almost periodicity of \mathbb{A} means that \mathbb{A} can be written as

$$
\mathbb{A}=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)
$$

where A is a direct sum of countably many irreducible stochastic matrices A_{j} with A_{j} almost periodic, while $D^{n} \rightarrow 0$ strongly. This can be thought of as a generalization of the normal form of positive finite matrices given in [22, Proposition II.8.8].

We conclude with an application of the results to the asymptotics of the C_{0}-semigroup belonging to a difference equation on $L^{1}\left([0,1], \ell^{1}\right)$, generalizing results on flows in infinite networks proved in of [8].

2 The irreducible case

In this section, we discuss almost periodicity of an irreducible, infinite, column-stochastic matrix $\mathbb{A} \in \mathcal{L}\left(\ell^{1}\right)$. Here we use the notion of (ideal) irreducibility as in [22, Definition III.8.1] which in our situation means that for all $i, j \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that $\left(\mathbb{A}^{n}\right)_{i, j}=\left\langle\mathbb{A}^{n} e_{j}, e_{i}\right\rangle>0$ (use [22, Proposition III.8.3]), where e_{j} denotes the canonical basis vector with j th entry 1 and 0 else.

2.1 Spectral characterization

Based on the Jacobs-Glicksberg-deLeeuw-decomposition stated in Theorem 1.3 , we find the following first characterization of almost periodicity.

Proposition 2.1. If $\mathbb{A} \in \mathcal{L}\left(\ell^{1}\right)$ is irreducible and column-stochastic, then the following assertions are equivalent.
(i) $\operatorname{P} \sigma(\mathbb{A}) \cap \Gamma \neq \varnothing(\Gamma$ denotes the unit circle $)$.
(i') 1 is an eigenvalue of \mathbb{A}.
(i") There exists a strictly positive fixed vector $0 \ll x \in \ell^{1}$ of \mathbb{A}.
(ii) $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively strongly/weakly compact, i.e., \mathbb{A} is almost periodic.

Without the assumption of irreducibility, the implications (i") \Rightarrow (ii) \Rightarrow (i) \Longleftrightarrow (i') still hold.

Proof. Suppose (i) with $\mathbb{A} y=\lambda y$ for some $0 \neq y \in \ell^{1},|\lambda|=1$. By positivity, $|y| \leq \mathbb{A}|y|$ and $\|\mathbb{A}|y|\| \leq\|y\|$ since \mathbb{A} is contractive. Hence $|y|$ is a positive fixed vector, and we have (i').

Arguing as before, existence of some non-zero fixed vector y as supposed in (i') implies existence of a positive fixed vector $x:=|y|$ of \mathbb{A}, which, by
irreducibility, must be a sequence of strictly positive numbers (compare [22, Theorem V.5.2]), which is (i").

Starting with (i"), strict positivity of x yields that the order interval $[-x, x]$ spans a dense subspace of ℓ^{1}. For all $-x \leq y \leq x$ the orbit $\left\{\mathbb{A}^{n} y\right.$: $\left.n \in \mathbb{N}_{0}\right\}$ is contained in $[-x, x]$, which is compact. Therefore, for all $y \in$ $\operatorname{lin}[-x, x]$ the orbit is relatively compact. Since \mathbb{A} is power-bounded, we obtain (ii).

For (ii) $\Rightarrow(\mathrm{i})$, note that $\mathrm{P} \sigma(\mathbb{A}) \cap \Gamma=\varnothing$ implies, by Theorem 1.3, that the powers of \mathbb{A} converge strongly to 0 . This is impossible since $\left\|\mathbb{A}^{n} e_{i}\right\|=1$ for all $n, i \in \mathbb{N}$.
Q.E.D.

For the action of \mathbb{A} on Y_{r}, we note that there is a Perron-Frobenius result saying that an irreducible stochastic matrix has at most finitely many unimodular eigenvalues forming a subgroup of the circle group (cf., e.g., [8, Corollary 6] or [25], [28, Theorem 2.2] in a stochastic context).

Corollary 2.2. If \mathbb{A} is irreducible, column-stochastic and almost periodic, then there is $m \in \mathbb{N}$ such that (in the notation of Theorem 1.3)

$$
\operatorname{P} \sigma(\mathbb{A}) \cap \Gamma=\operatorname{P} \sigma(R)=\left\{1, e^{\frac{2 \pi i}{m}}, \ldots, e^{\frac{2 \pi i(m-1)}{m}}\right\}
$$

and

$$
\left\|\mathbb{A}^{n m} y-Q y\right\| L^{1}\left([0,1], \ell^{1}\right) \xrightarrow{n \rightarrow \infty} 0 \quad \text { for all } y \in \ell^{1} .
$$

It can be shown, using graph theoretical terms, that the number m depends only on the zero/non-zero-pattern of the entries of \mathbb{A} (compare [8, Lemma 8]).

2.2 A summability condition

We now split the matrix \mathbb{A} into a block matrix

$$
\mathbb{A}=\left(\begin{array}{ll}
\widetilde{A}_{1} & \widetilde{A}_{2} \tag{2.1}\\
\widetilde{A}_{3} & \widetilde{A}_{4}
\end{array}\right)
$$

where $\widetilde{A}_{1} \in M_{|F| \times|F|}(\mathbb{R}), \widetilde{A}_{2} \in M_{|F| \times \infty}(\mathbb{R})$, and $\widetilde{A}_{3} \in M_{\infty \times|F|}(\mathbb{R})$, according to a given finite index set F (and after a relabelling of the indices if necessary). Considering the blocks \widetilde{A}_{i} as operators A_{i} on ℓ^{1}, \mathbb{A} is of the form

$$
\mathbb{A}=K+A_{4}
$$

for positive contractions A_{4} and $K:=A_{1}+A_{2}+A_{3}$.
Since K is of finite rank (note that the range of A_{1} and A_{2} is a subset of $\left\langle e_{1}, \ldots, e_{|F|}\right\rangle$, and A_{3} has only finitely many columns), \mathbb{A} can be considered as a perturbation of A_{4} by the compact operator K. We ask for a condition on the "cut" matrix A_{4} (relative to A_{3}) needed to ensure almost periodicity of \mathbb{A}.

Proposition 2.3. For an irreducible, infinite stochastic matrix \mathbb{A} the following assertions are equivalent.
(i) \mathbb{A} is almost periodic.
(ii) For one/all finite sets $F \subset \mathbb{N}$ and \mathbb{A} decomposed as in (2.1) the series $\sum_{k=0}^{\infty} A_{4}^{k} A_{3} e_{j}$ converges absolutely in ℓ^{1} for all basis vectors $e_{j}, j \in F$.
(ii') For one/all finite sets $F \subset \mathbb{N}$ and \mathbb{A} decomposed as in (2.1) the series $\sum_{k=0}^{\infty} A_{4}^{k} A_{3} e_{j}$ and $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ converge absolutely in ℓ^{1} for all basis vectors $e_{j}, j \in \mathbb{N}$.

Without irreducibility, (ii') (for some fixed F) implies (i).
The key to the proof is the following expansion for the powers of \mathbb{A}.
Lemma 2.4. For all $n \geq 2$ we have

$$
\begin{equation*}
\mathbb{A}^{n}=A_{4}^{n-1} \mathbb{A}+\sum_{k=0}^{n-2} A_{4}^{k}\left(K \mathbb{A}^{n-1-k}\right) \tag{2.2}
\end{equation*}
$$

Proof. For $n=2$ we have $\mathbb{A}^{2}=\left(A_{4}+K\right) \mathbb{A}=A_{4}^{2-1} \mathbb{A}+\sum_{k=0}^{0} A_{4}^{k}\left(K \mathbb{A}^{2-1-k}\right)$. For the induction it suffices to apply the formula for n to the second term of the expansion $\mathbb{A}^{n+1}=\left(K+A_{4}\right) \mathbb{A}^{n}=K \mathbb{A}^{n}+A_{4} \mathbb{A}^{n}$.
Q.E.D.

Proof of Proposition 2.3. By Proposition 2.1, (i) implies the existence of a strictly positive fixed vector x. We consider (2.2) applied to x, i.e.,

$$
\begin{equation*}
x=\mathbb{A}^{n} x=A_{4}^{n-1} x+\sum_{k=0}^{n-2} A_{4}^{k} K x, \quad n \geq 2 \tag{2.3}
\end{equation*}
$$

From $0 \leq A_{4}^{n} y \leq \mathbb{A}^{n} x=x$ for $y \in[0, x]$ we see that the orbit $\left\{A_{4}^{n} y: n \in \mathbb{N}\right\}$ is contained in the compact order interval $[0, x]$, hence is relatively compact. By strict positivity of x and as in the proof of Proposition 2.1, $\left\{A_{4}^{n} \mid n \in \mathbb{N}\right\}$ is relatively compact in the strong operator topology.

If $\mathrm{P} \sigma\left(A_{4}\right) \cap \Gamma \neq \varnothing$, there is again a fixed vector $0<(0, y)^{\top}$ of A_{4} (y is supported in F^{c}). Since $\mathbb{A}^{n}=\left(A_{4}+K\right)^{n}=A_{4}^{n}+S_{n}$ for some $S_{n} \geq 0$,

$$
\mathbb{A}^{n}\binom{0}{y}=\binom{0}{y}+S_{n}\binom{0}{y} \quad \text { for all } n \in \mathbb{N} .
$$

Since \mathbb{A} is irreducible, there has to be n with $S_{n}(0, y)^{\top}>0$ and thus $\mathbb{A}^{n}(0, y)^{\top}>(0, y)^{\top}$, which contradicts $\|\mathbb{A}\| \leq 1$. Hence $\operatorname{P} \sigma\left(A_{4}\right) \cap \Gamma=\varnothing$, and Theorem 1.3 implies that the first term in (2.3) converges strongly to 0.

Consequently, the second term in (2.3) must converge to x as $n \rightarrow \infty$. This implies convergence of $\sum_{k=1}^{\infty} A_{4}^{k} K e_{j}=\sum_{k=1}^{\infty} A_{4}^{k} A_{3} e_{j}$ for all $j \in F$. Clearly, the additivity of the 1-norm on positive elements implies absolute convergence of the series in question.

For (ii) \Rightarrow (ii') we note that convergence of $\sum_{k=0}^{\infty} A_{4}^{k} A_{3} \mathbb{1}_{F}$ implies that $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ converges for all those $j \in F^{c}$ such that $\left(A_{4}^{k_{0}} A_{3} \mathbb{1}_{F}\right)_{j}>0$ for some $k_{0} \in \mathbb{N}$. Since \mathbb{A} is irreducible, this is actually true for every $j \in F^{c}$. In fact, by (2.2) and irreducibility,

$$
0<\left(\mathbb{A}^{n} \mathbb{1}_{F}\right)_{j}=\left(A_{4}^{n-1} A_{3} \mathbb{1}_{F}\right)_{j}+\sum_{k=1}^{n-2}\left(A_{4}^{k} A_{3} \mathbb{1}_{F}\right)_{j}
$$

for some $n \geq 2$. Hence there is $k_{0} \in \mathbb{N}$ such that $\left(A_{4}^{k_{0}} A_{3} \mathbb{1}_{F}\right)_{j}>0$, and $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ converges.

In order to show (ii' $) \Rightarrow(\mathrm{i})$, we use that all $\left(A_{1}+A_{2}\right) \mathbb{A}^{m}$ are positive contractions with range living on the first $|F|$ entries, hence the estimate

$$
\left(A_{1}+A_{2}\right) \mathbb{A}^{m} e_{j} \leq \mathbb{1}_{F} \quad \text { and } \quad A_{3} \mathbb{A}^{m} e_{j}=A_{3}\left(A_{1}+A_{2}\right) \mathbb{A}^{m-1} e_{j} \leq A_{3} \mathbb{1}_{F}
$$

holds for all $m \in \mathbb{N}$. Property (ii) implies convergence of convergence of $\sum_{k=1}^{\infty} A_{4}^{k} A_{3} \mathbb{1}_{F}$, and for $z:=\sum_{k=1}^{\infty} A_{4}^{k} A_{3} \mathbb{1}_{F}$ we can estimate

$$
\begin{aligned}
0 \leq \sum_{k=0}^{n-2} A_{4}^{k}\left(K \mathbb{A}^{n-1-k}\right) e_{j} & =\left(A_{1}+A_{2}\right) \mathbb{A}^{n-1} e_{j}+\sum_{k=1}^{n-2} A_{4}^{k}\left(A_{3} \mathbb{A}^{n-1-k}\right) e_{j} \\
& \leq \mathbb{1}_{F}+\sum_{k=1}^{n-2} A_{4}^{k} A_{3} \mathbb{1}_{F} \leq \mathbb{1}_{F}+z
\end{aligned}
$$

Hence $\left\{\sum_{k=0}^{n-2} A_{4}^{k}\left(K \mathbb{A}^{n-1-k}\right) e_{j} \mid 2 \leq n \in \mathbb{N}\right\}$ is uniformly order bounded. Order intervals in ℓ^{1} are compact, so we obtain relative strong compactness of $\left\{\sum_{k=0}^{n-2} A_{4}^{k}\left(K \mathbb{A}^{n-1-k}\right) e_{j} \mid n \geq 2\right\}$.

The convergence of $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ for all j implies strong stability of A_{4}^{k}, i.e., $\left\|A_{4}^{k} y\right\| \rightarrow 0$ for all $y \in \ell^{1}$ as $k \rightarrow \infty$. Hence the first term of (2.2) applied to $e_{j}, j \notin F$, converges to 0 as $n \rightarrow \infty$, and (i) holds.

Since (i) is independent of the choice of F, the equivalences hold for every choice of F.
Q.E.D.

2.3 Positive recurrence

We now relate the summability condition on the blocks of the above matrix decomposition to some stochastic concepts.

An infinite stochastic matrix \mathbb{A} can be regarded as the (transposed) transition matrix of a discrete-time homogeneous Markov chain with countably many states (cf., e.g., [24, Chapter 5]). Here, the entries $(\mathbb{A})_{i, j}=p_{j i}$, $i, j \in \mathbb{N}$, are the one-step transition probabilities.

In this context, a non-zero positive fixed vector is called a finite invariant measure (or stationary distribution) or, if normalized, invariant probability measure. In stochastic processes, the existence of such an invariant probability measure is related to positive recurrence.

Definition 2.5. An index $j \in \mathbb{N}$ is called
(a) recurrent if the probability of ever returning to j is equal to 1 , i.e.,

$$
\sum_{n=1}^{\infty} F_{j}^{n}=1,
$$

where F_{j}^{n} denotes the probability of returning to j for the first time in the nth step;
(b) positive recurrent if j is recurrent and the expected "first return time" $\sum_{n=1}^{\infty} n F_{j}^{n}$ is finite.

An irreducible (Markov chain defined by) \mathbb{A} is called (positive) recurrent if one/all states are (positive) recurrent (compare our Proposition 2.6 and [24, Theorem 5.2]).

As in [26, Lemma 4.1] we obtain the following characterization.
Proposition 2.6. An irreducible, infinite stochastic matrix \mathbb{A} is almost periodic if and only if j is positive recurrent for one/all $j \in \mathbb{N}$.

Proof. By Proposition 2.3, almost periodicity of \mathbb{A} and $\sum_{k=0}^{\infty}\left\|A_{4}^{k} A_{3} e_{j}\right\|<$ ∞ are equivalent, where \mathbb{A} is splitted as in (2.1) according to $F=\{j\}$, for one/all $j \in \mathbb{N}$.

Almost periodicity of \mathbb{A} implies that for fixed $F=\{j\}$ and \mathbb{A} splitted accordingly the series $\sum_{k=0}^{\infty}\left\|A_{4}^{k} A_{3} e_{j}\right\|$ converges.

In particular, the sequence $\left\|A_{4}^{k-1} A_{3} e_{j}\right\|$ converges to 0 . Since the quantity $\left\|A_{4}^{k-1} A_{3} e_{j}\right\|$ expresses the probability of not having re-entered j during the first k steps given that the random walk started in j, the probability of re-entering j during the first k steps equals

$$
1-\left\|A_{4}^{k-1} A_{3} e_{j}\right\|=\sum_{n=1}^{k} F^{n} .
$$

Therefore, the probability of eventually re-entering j is given by

$$
\lim _{k \rightarrow \infty}\left(1-\left\|A_{4}^{k-1} A_{3} e_{j}\right\|\right) \leq 1
$$

which by $\left\|A_{4}^{k-1} A_{3} e_{j}\right\| \rightarrow 0$ must be equal to 1 . By definition, this means that j is recurrent.

It remains to show that $\sum_{n=1}^{\infty} n F^{n}$ is finite. For every $k \geq 2$ we have $0 \leq\left\|A_{4}^{k-2} A_{3} e_{j}\right\|=1-\sum_{n=1}^{k-1} F^{n}$ and, since $\left\|A_{4}^{k-2} A_{3} e_{j}\right\| \rightarrow 0$ as $k \rightarrow \infty$, $\sum_{n=1}^{\infty} F^{n}=1$. Thus

$$
\begin{equation*}
\sum_{n=k}^{\infty} F^{n}=1-\sum_{n=1}^{k-1} F^{n}=\left\|A_{4}^{k-2} A_{3} e_{j}\right\| \quad \text { for all } k \geq 2 \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n F^{n}=\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} F^{n} \stackrel{(2.4)}{=} 1+\sum_{k=2}^{\infty}\left\|A_{4}^{k-2} A_{3} e_{j}\right\| \tag{2.5}
\end{equation*}
$$

is finite and j is positive recurrent.
Conversely, recurrence of j implies, by the above arguments, first that $1-\left\|A_{4}^{k-1} A_{3} e_{j}\right\|$ converges to 1 , hence $\left\|A_{4}^{k-1} A_{3} e_{j}\right\| \rightarrow 0$. Then we have (2.4) and read (2.5) backwards in order to see that positive recurrence of j yields that $\sum_{k=2}^{\infty}\left\|A_{4}^{k-2} A_{3} e_{1}\right\|$ exists.

The following consequences are well-known in the stochastic context.
Remark 2.7. In the case that \mathbb{A} is irreducible,
(1) positive recurrence holds for one index if and only if it holds for all indices ([24, Theorem 5.2]),
(2) positive recurrence is equivalent to the existence of a finite invariant measure ([24, Theorem 5.5 \& Corollary]) which by our Proposition 2.1 means almost periodicity of \mathbb{A}.

2.4 A Lyapunov-type inequality

The summability condition obtained in Proposition 2.3 results in a matrixvector inequality.

Proposition 2.8. For a column-stochastic matrix $\mathbb{A} \in \mathcal{L}\left(\ell^{1}\right)$, decomposed as in (2.1), the following assertions are equivalent.
(i) There exist $\varepsilon>0$ and a sequence $0 \leq h=\left(h_{i}\right)_{i \in \mathbb{N}}$ with $h_{\mid F}=0$, satisfying

$$
\begin{align*}
\left(1-A_{4}^{\top}\right) h & \geq \varepsilon \mathbb{1}_{F^{c}}, \tag{2.6a}\\
\left(A_{3}^{\top} h\right)_{j} & <\infty \quad \forall j \in \mathbb{N} . \tag{2.6b}
\end{align*}
$$

(i') There exists a sequence $0 \leq h=\left(h_{i}\right)_{i \in \mathbb{N}}$ with $h_{\mid F}=0$, satisfying

$$
\begin{align*}
\left(1-A_{4}^{\top}\right) h & =\mathbb{1}_{F^{c}}, \tag{2.7a}\\
\quad\left(A_{3}^{\top} h\right)_{j} & <\infty \quad \forall j \in \mathbb{N} . \tag{2.7b}
\end{align*}
$$

(ii) The series $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ and $\sum_{k=0}^{\infty} A_{4}^{k} A_{3} e_{j}$ converge (absolutely) in ℓ^{1} for all basis vectors $e_{j}, j \in \mathbb{N}$.

Proof. (i) \Rightarrow (ii): We assume that (2.6a) and (2.6b) are satisfied, hence

$$
\begin{align*}
\sum_{k=0}^{n} A_{4}^{\top k} \mathbb{1}_{F^{c}} & =\frac{1}{\varepsilon} \sum_{k=0}^{n} A_{4}^{\top k} \varepsilon \mathbb{1}_{F^{c}} \\
& \stackrel{(2.6 \mathrm{aa})}{\leq} \frac{1}{\varepsilon} \sum_{k=0}^{n} A_{4}^{\top k}\left(1-A_{4}^{\top}\right) h \\
& =\frac{1}{\varepsilon}\left(h-A_{4}^{\top n+1} h\right) \leq \frac{1}{\varepsilon} h \quad \text { for all } n \in \mathbb{N} . \tag{2.8}
\end{align*}
$$

This means that the left hand side is bounded coordinatewise while it increases monotonically with n, thus $\sum_{k=0}^{\infty} A_{4}^{\top k} \mathbb{1}_{F^{c}}$ converges coordinatewise. Similarly,

$$
\sum_{k=0}^{n} A_{3}^{\top} A_{4}^{\top} \mathbb{1}_{F^{c}} \leq \frac{1}{\varepsilon} A_{3}^{\top} h,
$$

where the right hand side is a vector with finite entries by assumption (2.6b), hence we obtain the coordinatewise convergence of the series.

Since for positive elements $0 \leq y \in \ell^{1}$ we have $\|y\|=\langle y, \mathbb{1}\rangle$, this coordinatewise convergence expresses just that

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\langle e_{j}, A_{4}^{\top n} \mathbb{1}_{F^{c}}\right\rangle=\sum_{k=0}^{\infty}\left\langle A_{4}^{n} e_{j}, \mathbb{1}_{F^{c}}\right\rangle=\sum_{k=0}^{\infty}\left\|A_{4}^{n} e_{j}\right\|_{1} \tag{2.9}
\end{equation*}
$$

exists for all $j \in F^{c}$, and analogously for the series with A_{3}.
(ii) \Rightarrow (i'): If coordinatewise convergence holds, we define

$$
\begin{equation*}
h:=\sum_{k=0}^{\infty} A_{4}^{\top k} \mathbb{1}_{F^{c}}, \tag{2.10}
\end{equation*}
$$

and obtain, by the same calculation as above,

$$
\left(1-A_{4}^{\top}\right) \sum_{k=0}^{\infty} A_{4}^{\top k} \mathbb{1}_{F^{c}}=\sum_{k=0}^{\infty} A_{4}^{{ }^{k}} \mathbb{1}_{F^{c}}-\sum_{k=1}^{\infty} A_{4}^{\top k} \mathbb{1}_{F^{c}}=\mathbb{1}_{F^{c}}
$$

coordinatewise, so (2.7a) holds. Moreover, (2.7b) follows from the convergence of the other series, since coordinatewise

$$
A_{3}^{\top} h=A_{3}^{\top} \sum_{k=0}^{\infty} A_{4}^{\top^{k}} \mathbb{1}_{F^{c}}=\sum_{k=0}^{\infty} A_{3}^{\top} A_{4}^{\top k} \mathbb{1}_{F^{c}}<\infty .
$$

The implication (i') \Rightarrow (i) is obvious.
Q.E.D.

Remark 2.9. The condition consisting of (2.6a) and (2.6b) appears in an equivalent form in a stochastic result known as Foster's Theorem (e.g., [4, Chapter 5, Theorem 1.1] or [11, 2.2.3] (there stated as a characterization)). Foster's motivation was an application in queueing theory [12].

In fact, considering (2.6) coordinatewise, one directly obtains the following equivalent condition (note that $A_{3}^{\top} h_{1} \geq 0$ can be dropped, and that $A_{1}^{\top} h_{1}$ is finite anyway).

Definition 2.10. For some infinite, column-stochastic $\mathbb{A}=\left(p_{j i}\right)_{i, j \in \mathbb{N}}$ Foster's condition is
$\exists F \subset \mathbb{N}$ finite, $\varepsilon>0$ and $h: \mathbb{N} \rightarrow[0, \infty)$ such that

$$
\begin{array}{ll}
h(i)-\sum_{j \in \mathbb{N}} p_{i j} h(j) \geq \varepsilon & \text { for all } i \notin F,(2.11 \mathrm{a}) \\
\sum_{j \in \mathbb{N}} p_{i j} h(j)<\infty & \text { for all } i \in F .(2.11 \mathrm{~b})
\end{array}
$$

The benefit of Foster's condition or the Lyapunov inequality consists in the use of the one-step transition probabilities only, i.e., one can work directly with the entries of the matrix \mathbb{A}. The difficulty is to find a suitable function h, sometimes called Lyapunov function (e.g., in [4, 11]) or FosterLyapunov function.

Foster's condition is a drift condition if h is interpreted as a function measuring the distance from the finite center F. Then (2.11a) means that after one random step the expected distance strictly decreases by a uniform portion ε, while (2.11b) limits the drift away from F.

For a discussion of examples of positive recurrent irreducible Markov chains we refer to [8], where they appear, with corresponding illustrations, in the context of networks.

2.5 The final characterization

We now collect the previous arguments in our characterization of almost periodicity.

Theorem 2.11. Suppose $\mathbb{A} \in \mathcal{L}\left(\ell^{1}\right)$ is an infinite, column-stochastic matrix. If \mathbb{A} is irreducible, then for one (hence for any) decomposition of \mathbb{A} as in (2.1), each of the following assertions characterizes almost periodicity of \mathbb{A}.
(i) The Foster conditions (2.11a) and (2.11b) hold.
(ii) There exist $\varepsilon>0$ and a sequence $0 \leq h=\left(h_{i}\right)_{i \in \mathbb{N}}$ with $h_{\mid F}=0$ satisfying (2.6a) and (2.6b).
(ii') There exists a sequence $0 \leq h=\left(h_{i}\right)_{i \in \mathbb{N}}$ with $h_{\mid F}=0$ satisfying (2.7a) and $(2.7 \mathrm{~b})$.
(iii) The series $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ and $\sum_{k=0}^{\infty} A_{4}^{k} A_{3} e_{j}$ converge (absolutely) in ℓ^{1} for all basis vectors $e_{j}, j \in \mathbb{N}$.
(iii') The associated Markov chain is positive recurrent.
(iv) 1 is an eigenvalue of \mathbb{A}.
(iv') There exists a strictly positive fixed vector $0 \ll x \in \ell^{1}$ of \mathbb{A}.
Without irreducibility, for every fixed decomposition of \mathbb{A} the implications (i) \Longleftrightarrow (ii) $\Longleftrightarrow($ ii' $) \Rightarrow($ iii $) \Rightarrow \mathbb{A}$ almost periodic \Rightarrow (iv) hold (while the other implications do not hold in general).

In the stochastic literature it has also been observed, e.g., by [27], that Foster's condition implies positive recurrence of all indices without any (additional) irreducibility assumption.

Remark 2.12. Since for irreducible \mathbb{A} the concrete choice of F is irrelevant, we can always achieve $|F|=1$ (i.e., $F=\{j\}$ for a single $j \in \mathbb{N}$). It is also possible to take $\varepsilon=1$ with equality in (2.6a) or (2.11a) (as stated in (ii')), if we take h defined by (2.10), which is by (2.8) the minimal solution (with $\varepsilon=1$).

For the sake of completeness, we mention another classical criterion for the stronger compactness condition of quasi-compactness (for this property, cf. [18, Chapter 2, Definition 2.3], [9, § VIII.8]) and a corresponding list of equivalences.

Theorem 2.13. Suppose $\mathbb{A} \in \mathcal{L}\left(\ell^{1}\right)$ is a positive, column-stochastic infinite matrix. If \mathbb{A} is irreducible, then the following assertions are equivalent.
(i) Doeblin's Condition holds, i.e.,
$\exists F \subset \mathbb{N}$ finite, $\delta>0$, and $L \in \mathbb{N}$ such that
$\forall j \in \mathbb{N}$ the probability of reaching F in exactly L steps is $\geq \delta$.
(ii) There exist $F \subset \mathbb{N}$ finite, $\varepsilon>0$, and a bounded sequence $0 \leq h=$ $\left(h_{i}\right)_{i \in \mathbb{N}}$ satisfying (2.11a) and (2.11b) (or (2.6a) and (2.6b)).
(iii) For \mathbb{A} decomposed as in (2.1) the series $\sum_{k=0}^{\infty} A_{4}^{k}$ converges in operator norm.
(iv) \mathbb{A} is quasi-compact.

Proof. By the argument in [7, Proposition 4.8], quasi-compactness of \mathbb{A} is equivalent to the existence of some $L \in \mathbb{N}, 0<\delta<1$ and a finite set F, such that for \mathbb{A} splitted accordingly as in (2.1) one has $\left\|A_{4}^{L}\right\| \leq 1-\delta<1$.

This implies first that (iv) is equivalent to (i) if we use the stochastic meaning of $\left\|A_{4}^{L} e_{j}\right\|$ as the probability of not reaching F for the first L steps when starting in $j \in F^{c}$.

Second, (iv) means $\left\|A_{4}^{L}\right\| \leq 1-\delta<1$, thus $\left\|A_{4}^{n L}\right\| \leq(1-\delta)^{n}$ for all $n \in \mathbb{N}$, and the series $\sum_{k=0}^{\infty} A_{4}^{k}$ converges in operator norm, i.e., (iii) holds.

By (iii), $\sum_{k=0}^{\infty} A_{4}^{k} e_{j}$ and $\sum_{k=0}^{\infty} A_{4}^{k} A_{3} e_{j}$ converge uniformly for all $j \in \mathbb{N}$. Hence the minimal solution h with $\varepsilon=1$ of (2.11a) and (2.11b), defined by (2.10), satisfies for some $c>0$

$$
\left\langle e_{j}, h\right\rangle=\left\langle e_{j}, \sum_{k=0}^{\infty} A_{4}^{\top k} \mathbb{1}_{F^{c}}\right\rangle \leq c \quad \text { for all } j \in \mathbb{N}
$$

This yields a bounded solution to (2.6a) and (2.6b), hence (ii) holds.
If we suppose (ii), then, a forteriori, the minimal solution (2.10) is bounded, and $\sum_{k=0}^{\infty} A_{4}^{{ }^{k}} \mathbb{1}_{F^{c}}$ defines an element in ℓ^{∞}. Considering this coordinatewise, we see that $\sum_{k=0}^{\infty}\left\|A_{4}^{k} e_{j}\right\|$ is uniformly bounded for all j. Since the summands $\left\|A_{4}^{k} e_{j}\right\|$ also decrease monotonically with k, for some (any) fixed $0<\delta<1$ there is $L \in \mathbb{N}$ with

$$
\left\|A_{4}^{L} e_{j}\right\| \leq 1-\delta \quad \text { for all } j \in \mathbb{N}
$$

which yields (iv).
Q.E.D.

3 The general case

Based on the irreducible case above, we now characterize almost periodicity of \mathbb{A} in general. The starting point is to bring the infinite matrix into a block matrix form similar to the normal form of positive finite matrices given in [22, Proposition II.8.8].

As a first step we assume that \mathbb{A} is a direct sum of (countably many) irreducible blocks. Then we can apply Theorem 2.11.
Corollary 3.1. Assume that up to relabelling \mathbb{A} is of the form

$$
\mathbb{A}=\left(\begin{array}{lll}
A_{1} & & \\
& A_{2} & \\
& & \ddots
\end{array}\right)
$$

with irreducible blocks $A_{j}:=\mathbb{A}_{\mid I_{j}}$ acting on pairwise disjoint \mathbb{A}-invariant ideals $I_{j}, j \in J$, whose 1 -sum equals ℓ^{1}. Then the following are equivalent.
(i) \mathbb{A} is almost periodic.
(ii) $\left\{A_{j}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively strongly compact for each $j \in J$.
(iii) $1 \in \mathrm{P} \sigma\left(A_{j}\right)$ for each $j \in J$.
(iv) Foster's condition (2.11a) and (2.11b) is satisfied for each $A_{j}, j \in J$.
(v) There exist a set $F \subset \mathbb{N}$ with $F \cap N_{j}$ finite for all $j \in J, \varepsilon>0$ and a sequence $0 \leq h=\left(h_{i}\right)_{i \in \mathbb{N}}$ with $h_{\mid F}=0$ such that (2.11a) and (2.11b) hold.

Proof. If we assume (ii), then we have relative strong compactness of $\left\{\mathbb{A}^{n} \mid\right.$ $\left.n \in \mathbb{N}_{0}\right\}$ on the dense subset $\operatorname{lin}\left\{I_{j} \mid j \in J\right\}$ of ℓ^{1}. The uniform boundedness of $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ yields (i). Conversely, the relative strong compactness of $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is inherited by each block by the \mathbb{A}-invariance of I_{j}. Theorem 2.11 applied independently to the irreducible blocks proves the rest. For (iv) \Rightarrow (v) note that we can always achieve $\varepsilon=1$ in (2.11a). Q.E.D.

A general almost periodic \mathbb{A} can always be decomposed into the following block form (compare [22, Proposition II.8.8]).

Lemma 3.2. Assume that \mathbb{A} is an infinite, column-stochastic matrix which is almost periodic.

Then there are \mathbb{A}-invariant ideals I_{j} with disjoint supports $N_{j} \subset \mathbb{N}$, $j \in J$, with $A_{j}:=\mathbb{A}_{\mid I_{j}}$, and a band projection $I-\mathbb{P}$ onto $\ell^{1}\left(N_{\infty}\right), N_{\infty}:=\mathbb{N} \backslash$ $\bigcup_{j \in J} N_{j}$, such that the resulting block matrix (after a suitable relabelling)

$$
\mathbb{A}=\left(\begin{array}{ccc|c}
A_{1} & & & \tag{3.1}\\
& A_{2} & & \mathbb{P} \mathbb{A}(I-\mathbb{P}) \\
& & \ddots & \\
\hline 0 & & (I-\mathbb{P}) \mathbb{A}(I-\mathbb{P})
\end{array}\right)=:\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)
$$

has the following properties.
(i) I_{j} is a minimal \mathbb{A}-invariant closed ideal for every $j \in J$, i.e., A_{j} is an irreducible stochastic matrix,
(ii) $A=\operatorname{diag}\left(A_{j}\right)_{j \in J}$ satisfies one of the equivalent conditions of Corollary 3.1,
(iii) $N_{\infty}=\varnothing$ (i.e., \mathbb{A} is completely reducible) or $D^{n} \rightarrow 0$ strongly.

The form (3.1) with properties (i)-(iii) is unique up to permutations.
In addition, if Foster's condition (2.11a) and (2.11b) holds, then there are only finitely many irreducible blocks A_{1}, \ldots, A_{n}.

Proof. We start from the Jacobs-Glicksberg-deLeeuw decomposition

$$
Y=Y_{r} \oplus Y_{s}=Q \ell^{1} \oplus \operatorname{ker} Q
$$

as stated in Theorem 1.3.
By, e.g., [8, Lemma 5], the sublattice Y_{r} is atomic with normalized atoms $a_{j}=Q e_{j}, j \in \operatorname{supp} Y_{r}$. The lattice isomorphism $R:=\mathbb{A}_{Y_{r}}$ on Y_{r} maps atoms to atoms (compare [8, Proposition 6]), and the group action of $\left(R^{n}\right)_{n \in \mathbb{Z}}$ on Y_{r} decomposes these atoms into disjoint orbits $B_{a_{j}}$ indexed by some countable set J.

Each orbit $B_{a_{j}}$ is finite: otherwise, as an infinite sequence of disjoint, normalized atoms, it is not relatively compact.

Clearly, the closed ideals I_{j} generated by $B_{a_{j}}$ are \mathbb{A}-invariant and pairwise disjoint, with restriction $A_{j}:=\mathbb{A}_{I_{j}}$, and define N_{j} as the support of the ideal $I_{j}=\ell^{1}\left(N_{j}\right)$.

We now show that each A_{j} is irreducible. Fix arbitrary $i, p \in \operatorname{supp} B_{a_{j}}$. We already know that $B_{a_{j}}$ is finite and consists of m_{j} atoms $R^{\ell} a_{j}$ cyclically permuted by R with period m_{j}. The element $Q e_{p}$ is one of these atoms and equals $R^{\ell} a_{j}$ for some ℓ. Pick $k \in \mathbb{N}$ such that i is in the support of the atom $R^{k}\left(R^{\ell} a_{j}\right)$. Hence the representation of Y_{s} in Theorem 1.3 yields
$\left\|A_{j}^{n m_{j}+k} e_{p}-R^{k}\left(R^{\ell} a_{j}\right)\right\|=\left\|A_{j}^{n m_{j}+k} e_{p}-A_{j}^{n m_{j}+k} Q e_{p}\right\| L^{1}\left([0,1], \ell^{1}\right) \xrightarrow{n \rightarrow \infty} 0$.
Thus for n large enough $\left(A_{j}^{n m_{j}+k}\right)_{i, p}=\left\langle A_{j}^{n m_{j}+k} e_{p}, e_{i}\right\rangle>0$. Hence A_{j} is irreducible and (i) holds.

For (ii), we note that every I_{j} is \mathbb{A}-invariant, hence A_{j} inherits almost periodicity from \mathbb{A}. Note also that the support of every unimodular eigenvector is in $\bigcup_{j \in J} N_{j}$ by our construction via the Jacobs-Glicksberg-deLeeuw decomposition.

To verify (iii), we assume $N_{\infty} \neq \varnothing$ and use the domination

$$
0 \leq D^{n}=(I-\mathbb{P}) \mathbb{A}^{n}(I-\mathbb{P}) \leq(I-\mathbb{P}) \mathbb{A}^{n} \quad \text { for all } n \in \mathbb{N}
$$

By the relative compactness of $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ each orbit contains a subsequence that approaches an element in $Q \ell^{1}$. Since $(I-\mathbb{P}) Q=0$ by definition, we obtain that $(I-\mathbb{P}) \mathbb{A}^{n}(I-\mathbb{P})$ converges strongly to 0 . Hence (iii) holds.

Assume that there is another such decomposition with properties (i)(iii), indicated by the tilde sign, \sim. If for $j \in J$ we have

$$
I_{j} \cap \widetilde{I}_{i}=\{0\} \quad \text { for all } i \in \widetilde{J}
$$

then $I_{j} \subset \ell^{1}\left(\widetilde{N}_{\infty}\right)$. But this means that \mathbb{A} acts as \widetilde{D} on I_{j}. Since \widetilde{D}^{n} converges strongly to 0 by (iii), this contradicts the stochasticity of \mathbb{A}.

Hence for every $j \in J$ there is $i \in \widetilde{J}$ such that $I_{j} \cap \widetilde{I}_{i} \neq\{0\}$. Then $I_{j}=\widetilde{I}_{i}$, because both I_{j} and \widetilde{I}_{i} are minimal \mathbb{A}-invariant closed ideals. The same arguments applied to $i \in \widetilde{J}$ show that there is $j \in J$ such that $\widetilde{I}_{i}=I_{j}$, and we obtain uniqueness.

It remains to show that under Foster's condition there are only finitely many irreducible invariant blocks. In fact, for every $j \in \mathbb{N}$ there are finitely many successive states leading from j to F; since all intermediary states must belong to the same invariant set, it intersects F in at least one state. Since F is finite, we conclude that there are only finitely many minimal invariant ideals which are disjoint.
Q.E.D.

Before showing the converse of Lemma 3.2, we first give some remarks on the previous result.

Remark 3.3. In the language of stochastics, by the argument of Proposition 2.6, the quantity

$$
\lim _{n \rightarrow \infty} 1-\left\|(I-\mathbb{P}) \mathbb{A}^{n}(I-\mathbb{P}) e_{j}\right\|=1
$$

expresses the positive probability to reach $\bigcup N_{j}$ from $j \in N_{\infty}$. In particular, all indices in N_{∞} are inessential, i.e., there is a state $i\left(\in \bigcup N_{j}\right)$ which can be reached from j but there is no return to j.

Thus Lemma 3.2 shows that for almost periodicity of $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ all indices are positive recurrent or inessential.

The matrix decomposition (2.1) is a special form of a Doeblin decomposition (e.g., [20]).

From Lemma 3.2 we draw the following conclusion on the long-term behavior of \mathbb{A}^{n} (compare Theorem 4.2 below).

Theorem 3.4. An infinite, column-stochastic matrix \mathbb{A} is almost periodic if and only if there are positive, contractive projections $Q_{j}, j \in J$, which have pairwise disjoint ranges $Q_{j} \ell^{1}$ on which the restrictions A_{j} of \mathbb{A} are periodic and

$$
\left\|\mathbb{A}^{n} y-\left(\sum_{j \in J} A_{j}^{n} Q_{j} y\right)\right\| L^{1}\left([0,1], \ell^{1}\right) \xrightarrow{n \rightarrow \infty} 0 \quad \text { for all } y \in \ell^{1} .
$$

Now we show that the block matrix decomposition (3.1) with properties (i)-(iii) obtained in Lemma 3.2 for almost periodic \mathbb{A} conversely implies almost periodicity of \mathbb{A}. This will need a more technical proof.

Theorem 3.5. Let \mathbb{A} be an infinite, column-stochastic matrix. Then \mathbb{A} is almost periodic if and only if \mathbb{A} is (up to relabelling) of the form (3.1) as in Lemma 3.2 with properties (i)-(iii).

Proof. By Lemma 3.2, we only have to prove the converse direction. We adopt the notation of Lemma 3.2 and denote by P_{N} the band projection onto $\overline{\operatorname{lin}}\left\{I_{j} \mid j>N\right\}$.

By Corollary 3.1 it clearly suffices to find for fixed $x \in \ell^{1}\left(N_{\infty}\right)=\operatorname{ker} \mathbb{P}$, $\|x\| \leq 1$, and each sequence $n_{k} \uparrow \infty$, a subsequence $\left(n_{k_{\ell}}\right)_{\ell \in \mathbb{N}}$ such that $\mathbb{P}_{\mathbb{A}^{n_{k_{\ell}}} x}$ converges. We construct $\left(n_{k_{\ell}}\right)_{\ell \in \mathbb{N}}$ recursively.

For $\ell=1$ we choose first a subsequence $\left(n_{k}^{(1)}\right)_{k \in \mathbb{N}}$ with $n_{k}^{(1)}-n_{k_{0}}^{(1)} \in m_{1} \mathbb{Z}$ for all k_{0} (where m_{1} for A_{1} as in Corollary 2.2). This is possible because at least one of the m_{1} many sets

$$
m_{1} \mathbb{N}, 1+m_{1} \mathbb{N}, \ldots,\left(m_{1}-1\right)+m_{1} \mathbb{N}
$$

must contain a subsequence $\left(n_{k}^{(1)}\right)_{k \in \mathbb{N}}$ of n_{k}, and $n_{k}^{(1)}-n_{k_{0}}^{(1)} \in m_{1} \mathbb{N}$. (This is needed in the next step in order to keep $E_{1,1}$ fixed.)

Then we choose $n_{k_{1}}:=n_{k_{0}}^{(1)} \in\left\{n_{k}^{(1)} \mid k \in \mathbb{N}\right\}$ such that $\left\|(I-\mathbb{P}) \mathbb{A}^{n_{k_{1}}} x\right\| \leq$ $\frac{2}{3}=\frac{1}{3 \cdot 2^{-1}}$, which is possible by (iii) for $n_{k_{1}}$ large enough. Define

$$
E_{1}:=\mathbb{P}^{n_{k_{1}}} x \in \operatorname{ran} \mathbb{P}, \quad R_{0}:=R_{1}:=0
$$

Decomposing $E_{1}=E_{1,1}+E_{1,2}$ disjointly with $E_{1,1} \in I_{1}$, we have that

$$
\mathbb{P A}^{n_{k_{1}}} x=R_{1}+E_{1,1}+E_{1,2}
$$

with

$$
E_{1,1} \in I_{1},\left\|E_{1,1}\right\| \leq 1 \leq \frac{1}{2^{1-4}}, \quad\left\|E_{1,2}\right\| \leq 1 \leq \frac{1}{3 \cdot 2^{1-3}}
$$

Set $N_{1}:=1$, and take $N_{2} \geq N_{1}$ such that $\left\|P_{N_{2}} E_{1,2}\right\| \leq \frac{1}{3^{2} \cdot 2^{2-3}}$ (to reduce the "error" in the next step we cut $E_{1,2}$ and keep only $P_{N_{2}} E_{1,2}$ in the error term).

In the $\ell+1$-st step we start with given

- $N_{\ell} \leq N_{\ell+1} \in \mathbb{N}$,
- a subsequence $\left(n_{k}^{(\ell)}\right)_{k \in \mathbb{N}}-n_{k_{\ell}} \subset M_{N_{\ell}} \mathbb{Z}$ where

$$
M_{N}:=\operatorname{lcm}\left\{m_{1}, \ldots, m_{N}\right\} \in \mathbb{N}
$$

m_{j} for A_{j} as in Corollary 2.2, and

- $E_{\ell}=E_{\ell, 2}+E_{\ell, 2}$ and R_{ℓ} such that

$$
\begin{equation*}
\mathbb{P A}^{n_{k_{\ell}} x}=R_{\ell}+E_{\ell, 1}+E_{\ell, 2} \tag{3.2}
\end{equation*}
$$

with $E_{\ell, 1} \in \operatorname{lin}\left\{I_{j} \mid 1 \leq j \leq N_{\ell}\right\},\left\|E_{\ell, 1}\right\| \leq \frac{1}{2^{\ell-4}}, E_{\ell, 2} \in \overline{\operatorname{lin}}\left\{I_{j} \mid j>\right.$ $\left.N_{\ell}\right\},\left\|E_{\ell, 2}\right\| \leq \frac{1}{3 \cdot 2^{\ell-3}},\left\|P_{N_{\ell+1}} E_{\ell, 2}\right\| \leq \frac{1}{3^{2} \cdot 2^{\ell+1-3}}, R_{\ell} \in \operatorname{lin}\left\{Q_{j} I_{j} \mid 1 \leq\right.$ $\left.j \leq N_{\ell}\right\}$, and $\left\|R_{\ell}-R_{\ell-1}\right\| \leq\left\|E_{\ell-1}\right\|$.

For the finitely many ideals $I_{j}, 1 \leq j \leq N_{\ell}$, we can apply Corollary 2.2 simultaneously. Since by construction $\left(n_{k}^{(\ell)}\right)_{k \in \mathbb{N}}-n_{k_{\ell}} \subset m_{j} \mathbb{Z}$ for all $1 \leq$ $j \leq N_{\ell}, \mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}}$ acts as the identiy on $Q_{j} I_{j}, 1 \leq j \leq N_{\ell}$, and thus leaves R_{ℓ} fixed. We also obtain for $E_{\ell, 1} \in \operatorname{lin}\left\{I_{j} \mid 1 \leq j \leq N_{\ell}\right\}$

$$
\left\|\mathbb{A}^{n_{k}^{(\ell)}-n_{k_{\ell}}} E_{\ell, 1}-Q E_{\ell, 1}\right\| L^{1}\left([0,1], \ell^{1}\right) \xrightarrow{k \rightarrow \infty} 0 .
$$

In the $\ell+1$-st step we first pick a new subsequence $\left(n_{k}^{(\ell+1)}\right)_{k \in \mathbb{N}}$ of $\left(n_{k}^{(\ell)}\right)_{k \in \mathbb{N}}$ with

$$
n_{k}^{(\ell+1)}-n_{k_{\ell}} \in M_{N_{\ell+1}} \mathbb{N}+p \quad \text { for some } p \in \mathbb{N}
$$

using again the same argument as for $\ell=1$.
Then we choose $n_{k_{\ell+1}}>n_{k_{\ell}}$ large enough with $n_{k_{\ell+1}} \in\left\{n_{k}^{(\ell+1)} \mid k \in \mathbb{N}\right\}$ such that

$$
\left\|\mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 1}-Q E_{\ell, 1}\right\| \leq \frac{1}{3^{2} \cdot 2^{\ell+1-3}}
$$

By Lemma 3.2(iii), we can simultaneously achieve (by possibly increasing $n_{k_{\ell+1}}$)

$$
\left\|(I-\mathbb{P}) \mathbb{A}^{n_{k+1}} x\right\| \leq \frac{1}{3^{2} \cdot 2^{\ell+1-3}}
$$

We note that (as needed for the $\ell+2$ nd step)
$n_{k}^{(\ell+1)}-n_{k_{\ell+1}}=n_{k}^{(\ell+1)}-n_{k_{\ell}}-\left(n_{k_{\ell+1}}-n_{k_{\ell}}\right) \in M_{N_{\ell+1}} \mathbb{N}+p-p=M_{N_{\ell+1}} \mathbb{N}$.
We use the splitting

$$
\begin{aligned}
\mathbb{P}^{n_{k_{\ell+1}}} x & =\mathbb{P}^{n_{k_{\ell+1}}-n_{k_{\ell}}} \mathbb{A}^{n_{k_{\ell}}} x \\
& =\mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} \mathbb{P} \mathbb{A}^{n_{k_{\ell}}} x+\mathbb{P} \mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}}(I-\mathbb{P}) \mathbb{A}^{n_{k_{\ell}}} x
\end{aligned}
$$

to see how $\mathbb{P}^{\mathbb{A}^{n_{k_{\ell+1}}} x}$ depends on $\mathbb{P A}^{n_{k_{\ell}}} x$. Inserting $\mathbb{P}_{\mathbb{A}^{n_{k}}} x=R_{\ell}+E_{\ell, 1}+E_{\ell, 2}$ and using that R_{ℓ} is kept fixed, we obtain

$$
\begin{aligned}
\mathbb{P A}^{n_{k_{\ell+1}}} x= & \mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 2}+\mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 1}-Q E_{\ell, 1}+ \\
& +\mathbb{P} \mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}}(I-\mathbb{P}) \mathbb{A}^{n_{k_{\ell}}} x+Q E_{\ell, 1}+R_{l} .
\end{aligned}
$$

So we obtain (3.2) for $\ell+1$ if we define the new "error" and "fixed" terms as

$$
\begin{aligned}
& E_{\ell+1}:= \mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 1}-Q E_{\ell, 1}+\mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 2}+ \\
&+\mathbb{P}^{\mathbb{A}_{k_{\ell+1}}-n_{k_{\ell}}}(I-\mathbb{P}) \mathbb{A}^{n_{k}} x, \\
& E_{\ell+1,2}:= P_{N_{\ell+1}} E_{\ell+1}, \\
& E_{\ell+1,1}:= E_{\ell+1}-E_{\ell+1,2} \in \operatorname{lin}\left\{I_{j} \mid 1 \leq j \leq N_{\ell+1}\right\}, \\
& N_{\ell+1} \leq N_{\ell+2} \quad \text { s.t. } \quad\left\|P_{N_{\ell+2}} E_{\ell, 2}\right\| \leq \frac{1}{3^{2} \cdot 2^{\ell+2-3}}, \\
& R_{\ell+1} \quad:= Q E_{\ell, 1}+R_{\ell} .
\end{aligned}
$$

The estimate $\left\|R_{\ell+1}-R_{\ell}\right\|=\left\|Q E_{\ell, 1}\right\| \leq\left\|E_{\ell, 1}\right\|$ is obvious. By construction we have reduced the "error" because

$$
\begin{aligned}
\left\|E_{\ell+1}\right\| & \leq\left\|\mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 1}-Q E_{\ell, 1}\right\|+\left\|E_{\ell, 2}\right\|+\left\|(I-\mathbb{P}) \mathbb{A}^{n_{k_{\ell}}} x\right\| \\
& \leq \frac{1}{3^{2} \cdot 2^{\ell+1-3}}+\frac{1}{3 \cdot 2^{\ell+1-4}}+\frac{1}{3^{2} \cdot 2^{\ell+1-3}} \leq \frac{1}{2^{\ell+1-4}}
\end{aligned}
$$

as claimed in (3.2), with even smaller "tail" (outside $I_{j}, 1 \leq j \leq N_{\ell+1}$)

$$
\begin{aligned}
\left\|E_{\ell+1,2}\right\| \leq & \left\|\mathbb{A}^{n_{k_{\ell+1}}-n_{k_{\ell}}} E_{\ell, 1}-Q E_{\ell, 1}\right\|+\left\|P_{N_{\ell+1}} E_{\ell, 2}\right\|+ \\
& \frac{1}{3^{2} \cdot 2^{\ell+1-3}}\left\|(I-\mathbb{P}) \mathbb{A}^{n_{k}} x\right\| \\
\leq & \frac{1}{3^{2} \cdot 2^{\ell+1-3}}+\frac{1}{3^{2} \cdot 2^{\ell+1-3}}+\frac{1}{3^{2} \cdot 2^{\ell+1-3}} \leq \frac{1}{3 \cdot 2^{\ell+1-3}} .
\end{aligned}
$$

This closes the recursion.
The properties given in (3.2) for all ℓ imply that R_{ℓ} converges to some R, and $E_{\ell, 1}+E_{\ell, 2} \rightarrow 0$ as $\ell \rightarrow \infty$. Hence

$$
\mathbb{P}^{n^{n_{\ell}}} x=R_{\ell}+E_{\ell, 1}+E_{\ell, 2} \rightarrow R
$$

converges in norm, as desired.
Q.E.D.

In analogy to (and using the) result in the irreducible case, we now look for a generalized matrix-vector inequality of Lyapunov type, or a generalized drift condition corresponding to almost periodicity of \mathbb{A}. To this aim we quote the following result from stochastics (cf. [11, Theorem 2.2.1] or [19, Theorem 1] with proofs (and [24, Theorem 5.2])).

Theorem 3.6. Suppose $\mathbb{A}=\left(p_{j i}\right)_{i, j \in \mathbb{N}}$ is irreducible. Then one/all indices are recurrent if and only if for one (and then for any) finite $F \subset \mathbb{N}$ there is $h: \mathbb{N} \rightarrow[0, \infty), h_{\mid F}=0$, with

$$
\begin{array}{ll}
& h(j) \rightarrow \infty,
\end{array} \quad(\text { for } j \rightarrow \infty)
$$

Thus we can add a drift condition to our final characterization.
Theorem 3.7. Let $\mathbb{A}=\left(p_{j i}\right)_{i, j \in \mathbb{N}}$ be an infinite, column-stochastic matrix. Then the following are equivalent.
(i) \mathbb{A} is almost periodic, i.e., $\left\{\mathbb{A}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively weakly/strongly compact.
(ii) \mathbb{A} is (up to relabelling) of the form

$$
\mathbb{A}=\left(\begin{array}{ll}
A & B \tag{3.4}\\
0 & D
\end{array}\right)
$$

where $A=\operatorname{diag}\left(A_{j}\right)_{j \in J}$ with A_{j} irreducible and satisfying one of the equivalent conditions of Corollary 3.1, and $D^{n} \rightarrow 0$ strongly.
(iii) \mathbb{A} is in block form (3.4), with
(a) $A=\operatorname{diag}\left(A_{j}\right)$ where each A_{j} satisfies (2.6a) and (2.6b) for some splitting of \mathbb{A} as in (2.1),
(b) D (with support N_{∞}) can be extended (adding one column and row) to an irreducible stochastic matrix, and there is $h_{\infty}: N_{\infty} \rightarrow$ $[0, \infty), h_{\infty}(n) \rightarrow \infty$ as $N_{\infty} \ni n \rightarrow \infty$, such that

$$
\left(1-D^{\top}\right) h_{\infty} \geq 0
$$

(iv) There are \mathbb{A}-invariant sets $N_{j} \subset \mathbb{N}, j \in J$, such that the following drift condition holds:
(a) Foster's condition (2.11a) and (2.11b) holds on each N_{j}, and
(b) For all $k \in N_{\infty}:=\mathbb{N} \backslash \bigcup_{j \in J} N_{j}$ there is a positive probability to eventually reach $\bigcup_{j \in J} N_{j}$, and there is $h_{\infty}: N_{\infty} \rightarrow[0, \infty)$, $h_{\infty}(n) \rightarrow \infty$ as $N_{\infty} \ni n \rightarrow \infty$, such that

$$
h_{\infty}(i)-\sum_{k \in N_{\infty}} p_{i k} h_{\infty}(k) \geq 0 \quad \text { for all } i \in N_{\infty}
$$

Proof. Based on Theorem 3.5 it remains to show (ii) \Rightarrow (iv) and (iv) \Rightarrow (i) (the equivalence of (iv) and (iii) follows from their proof and the reformulation as matrix-vector inequality as done before). We consider the auxiliary matrix

$$
\widetilde{\mathbb{A}}:=\left(\begin{array}{c|ccc}
0 & p_{1} & p_{2} & \ldots \tag{3.5}\\
\hline q_{1} & & \\
q_{2} & & & (I-\mathbb{P}) \mathbb{A}(I-\mathbb{P}) \\
\vdots & & &
\end{array}\right)
$$

where $\left(q_{n}\right)$ is any strictly positive vector in ℓ^{1} of norm 1 and $p_{j} \geq 0$ are chosen such that $\widetilde{\mathbb{A}}$ becomes column-stochastic. This effectuates a decomposition of $\widetilde{\mathbb{A}}$ as in (2.1) with $(I-\mathbb{P}) \mathbb{A}(I-\mathbb{P})$ in the role of A_{4}.

This means that we merge all the states corresponding to the irreducible invariant blocks into one absorbing state $\{0\}$, and then introduce an artificial feedback to N_{∞}.

In each implication, we obtain that $\widetilde{\mathbb{A}}$ is irreducible and then use the characterization of recurrence of Theorem 3.6.

Starting from (ii), as in Remark 3.3 (which shows that the states in N_{∞} are inessential) we conclude from

$$
\left\|(I-\mathbb{P}) \mathbb{A}^{n}(I-\mathbb{P}) e_{j}\right\| \rightarrow 0 \quad \text { for all } j \in N_{\infty}
$$

that for all j there is an n such that $\widetilde{\mathbb{A}}^{n}$ has a non-zero entry in its first row (i.e., j leads to the added state $\{0\}$ with probability >0). On the other hand, each ideal whose support includes $\{0\}$ also includes N_{∞}, because the first column of $\widetilde{\mathbb{A}}$ has been chosen strictly positive. Hence $\widetilde{\mathbb{A}}$ is irreducible.

Moreover, the strong stability of $(I-\mathbb{P}) \mathbb{A}^{n}(I-\mathbb{P})$ implies, by the proof of Proposition 2.6, that $\{0\}$ is a recurrent index of $\widetilde{\mathbb{A}}$. Consequently, the characterization of Theorem 3.6 (with $F=\{0\}$) yields the asserted drift on N_{∞}. The irreducible blocks A_{j} are almost periodic by assumption, hence satisfy (mutually independent) Foster conditions on the irreducible blocks. We obtain (iv).

Conversely, assume that (iv) holds. By (iv)(b), for any $k \in N_{\infty}$ it is possible to escape to the state $\{0\}$ after finitely many steps. Arguing as before, this implies irreducibility of the matrix $\widetilde{\mathbb{A}}$. So Theorem 3.6 can be applied, and yields recurrence of $\{0\}$. Thus, together with the proof of Proposition 2.6 (and strict positivity of $\left.\left(q_{j}\right)\right),(I-\mathbb{P}) \mathbb{A}^{n}(I-\mathbb{P}) \rightarrow 0$ strongly.

Moreover, Foster's condition (iv)(a) for the stochastic blocks A_{j} corresponding to the invariant sets N_{j} implies by Theorem 2.11 relative strong compactness of $\left\{A_{j}^{n} \mid n \in \mathbb{N}\right\}$. Applying Lemma 3.2 to A_{j}, we obtain, after a suitable relabelling of the indices, a block matrix as in Lemma 3.2. So without loss of generality, the given decomposition of \mathbb{N} yields irreducible blocks A_{j} each satisfying Foster's condition. This is (ii).
Q.E.D.

4 Application

Almost periodicity of an irreducible infinite stochastic matrix $\mathbb{B} \in \mathcal{L}\left(\ell^{1}\right)$ has been used in [8] in the context of flows in infinite networks.

By [7], such a flow can be described, on an abstract level, on the Banach space $X:=L^{1}\left([0,1], \ell^{1}\right)$ by the C_{0}-semigroup $(T(t))_{t \geq 0}$ given by

$$
\begin{equation*}
T(t) f(s)=\mathbb{B}^{n} f(t+s-n) \text { if } n \leq t+s<n+1, n \in \mathbb{N}_{0} \tag{4.1}
\end{equation*}
$$

for all $t \geq 0, f \in X$ and almost all $s \in[0,1]$. This semigroup has generator

$$
\begin{equation*}
A:=\frac{d}{d s}, \quad D(A):=\left\{f \in W^{1,1}\left([0,1], \ell^{1}\right) \mid f(1)=\mathbb{B} f(0)\right\} . \tag{4.2}
\end{equation*}
$$

In the network interpretation, \mathbb{B} is the weighted, transposed adjacency matrix of the line graph and column stochastic. Cf. [7] for details.

Under the assumption of irreducibility (of \mathbb{B} or $(T(t))_{t \geq 0}$ equivalently), the long-term behavior of the semigroup orbits $\{T(t) x \mid t \geq 0\}$ as $t \rightarrow \infty$ has been studied in [7] with respect to the uniform and in [8] with respect to the strong operator topology. The aim in each case was to show asymptotic periodicity, i.e., convergence to a periodic rotation group on $L^{1}(\Gamma), \Gamma$ the unit circle, in the sense of [7, Theorem 4.10] and [8, Theorem 1], respectively.

It turned out that in each case the asymptotic behavior is governed by properties of the infinite matrix \mathbb{B}. In fact, the necessary and sufficient condition for asymptotic periodicity was $1 \in \mathrm{P} \sigma(\mathbb{B})$, which, since \mathbb{B} was assumed to be irreducible, means almost periodicity of \mathbb{B}.

Lemma 4.1. The semigroup $(T(t))_{t \geq 0}$ is irreducible if and only if \mathbb{B} is irreducible; the semigroup $(T(t))_{t \geq 0}$ is relatively strongly compact if and only if $\left\{\mathbb{B}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively (strongly) compact, i.e., \mathbb{B} is almost periodic.

The proof can be found in [7, Proposition 4.9] and [14], respectively.
We drop the irreducibility assumption and work with the form (3.4) of \mathbb{B} from the previous section, and use the results in the irreducible case from [8] (in particular [8, Theorem 16]). Compare the approach of [17, Theorem 4.10] for finite, non-strongly connected networks.

We obtain the following abstract characterization of (generalized) asymptotic periodicity of $(T(t))_{t \geq 0}$.

Theorem 4.2. For an infinite, column-stochastic matrix \mathbb{B} the following are equivalent.
(i) \mathbb{B} satisfies one of the equivalent assertions of Theorem 3.7.
(ii) $\left\{\mathbb{B}^{n} \mid n \in \mathbb{N}_{0}\right\}$ is relatively (strongly) compact.
(iii) $(T(t))_{t \geq 0}$ given by (4.1) is relatively strongly compact.
(iv) $(T(t))_{t \geq 0}$ given by (4.1) converges strongly to a sum of irreducible periodic semigroups in the following sense: There are a positive projection P and pairwise disjoint positive projections $P_{j}, j \in J \subset \mathbb{N}$, all commuting with $(T(t))_{t \geq 0}$, such that
(iv.1) $P_{j} X, j \in J$, is a closed sublattice of X isomorphic to $L^{1}(\Gamma)$;
(iv.2) the semigroups $\left(R_{j}(t)\right):=\left(T_{j}(t) P_{j}\right)$ restricted to $P_{j} X$ are periodic and irreducible and similar to the rotation group on $L^{1}(\Gamma)$ of the same period;
(iv.3) for all $f \in L^{1}\left([0,1], \ell^{1}\right)$ we have

$$
\begin{equation*}
\|T(t) f-T(t) P f\|=\left\|T(t) f-\left(\sum_{j \in J} R_{j}(t) P_{j} P f\right)\right\| \xrightarrow{t \rightarrow \infty} 0 \tag{4.3}
\end{equation*}
$$

Proof. (i) \Longleftrightarrow (ii) is contained in Theorem 3.7 while (ii) \Longleftrightarrow (iii) holds by Lemma 4.1.

If we assume (iii), then we have the Jacobs-Glicksberg-deLeeuw decomposition $X=X_{r} \oplus X_{s}=P X \oplus \operatorname{ker} P$ for $(T(t))_{t \geq 0}$ with properties as described in [10, Theorem V.2.14] (compare [8, Lemma 11]). In particular,

$$
P X=\varlimsup \overline{\operatorname{lin}}\{f \in D(A) \mid A f=i \alpha f, \alpha \in \mathbb{R}\}
$$

and the difference $T(t)-T(t) P$ converges strongly to 0 .
Furthermore, by the already established equivalence of (i) and (iii) we may assume that \mathbb{B} has the form as in Lemma 3.2, with irreducible, almost periodic restrictions B_{j} of \mathbb{B} to the \mathbb{B}-invariant ideals I_{j}. The \mathbb{B}-invariant ideals $I_{j}=\ell^{1}\left(N_{j}\right)$ with support sets $N_{j} \subset \mathbb{N}$ lead (by (4.1)) to $(T(t))_{t \geq 0^{-}}$ invariance of the closed ideals

$$
\mathcal{I}_{j}:=L^{1}\left([0,1] \times N_{j}\right)
$$

of $X=L^{1}\left([0,1], \ell^{1}\right) \cong L^{1}([0,1] \times \mathbb{N})$. We denote the restricted semigroup by $\left(T_{j}(t)\right)_{t \geq 0}$. Since the restriction B_{j} of \mathbb{B} to $\ell^{1}\left(N_{j}\right)$ is irreducible, so is $\left(T_{j}(t)\right)_{t \geq 0}($ by [7, Proposition 4.9]).

By Proposition 2.1 we have $1 \in \mathrm{P} \sigma\left(B_{j}\right)$, thus [8, Theorem 16] implies strong asymptotic periodicity of $\left(T_{j}(t)\right)_{t \geq 0}$ and (iv.1) and (iv.2) are satisfied with Jacobs-Glicksberg-deLeeuw projection P_{j}. We still write P_{j} for the composition of P_{j} with the band projection onto \mathcal{I}_{j}.

Using that P and P_{j} are the Jacobs-Glicksberg-deLeeuw projections with respect to $(T(t))_{t \geq 0}$ on X and $\left(T_{j}(t)\right)_{t \geq 0}$ on \mathcal{I}_{j}, respectively, we now show that

$$
\begin{equation*}
P f=\sum_{j \in J} P_{j} P f \quad \text { for all } f \in X \tag{4.4}
\end{equation*}
$$

Suppose $f=P f$ is an eigenvector to a purely imaginary eigenvalue $i \alpha$ of A. Then $T(t) f=e^{i \alpha t} f$ for all $t \geq 0$, in particular $T(n) f=e^{i \alpha n} f$ for all $n \in \mathbb{N}$. By (4.1), $f(s) \in \ell^{1}$ and $\mathbb{B} f(s)=e^{i \alpha n} f(s)$ for almost all $s \in[0,1]$. Since by Lemma 3.2 all eigenvectors of \mathbb{B} corresponding to unimodular eigenvalues have their support in $\bigcup_{j \in J} N_{j}$, we obtain $f(s)=\sum_{j \in J} f_{j}(s)$ with $f_{j}(s) \in I_{j}$ for almost all $s \in[0,1]$, i.e., $f=\sum_{j \in J} f_{j}$.

By $(T(t))_{t \geq 0}$-invariance and disjointness of the \mathcal{I}_{j}, every f_{j} is an eigenvector of A, hence

$$
f_{j} \in P_{j} X=\overline{\operatorname{lin}}\left\{f \in D(A) \cap \mathcal{I}_{j} \mid A f=i \alpha f, \alpha \in \mathbb{R}\right\}=P X \cap \mathcal{I}_{j}
$$

and thus $f_{j}=P_{j} f_{j}=P_{j} P f$ for all $j \in J$. The claim (4.4) follows by totality of these eigenvectors in $P X$.

Hence we have

$$
T(t) P f-\sum_{j \in J}\left(T(t) P_{j}\right) P f=T(t)\left(P f-\sum_{j \in J} P_{j} P f\right)=0 \quad \text { for all } f \in X
$$

(*)

Figure 1.
and obtain the assertion from $T(t)-T(t) P \rightarrow 0$ strongly.
(iv) \Rightarrow (iii): Since $\left(T_{j}(t)\right)_{t \geq 0}$ is periodic on $P_{j} X$, it is relatively strongly compact for every $j \in J$. Hence by linearity and density, every

$$
f \in \operatorname{ran} P=\overline{\operatorname{lin}}\left(\bigcup_{j \in J} P_{j} X\right)
$$

has relatively compact orbit. Then the orbit of $f \in X$ is contained in the sum of the relatively strongly compact orbits $T(\cdot) P f$ and $T(\cdot)(1-P) f=$ $T(\cdot) f-T(\cdot) P f$, which is strongly stable, hence $T(\cdot) f$ is relatively strongly compact.
Q.E.D.

In the line of the network papers $[7,8]$ we obtain the following interpretations.

Remark 4.3. The transport process described by (4.1) can be considered as a flow on an infinite, directed, weighted graph $G=(V, E)$ where mass is transported along the edges $\mathrm{e}_{j} \in E$ in the given directions, and is redistributed into the vertices $\mathrm{v}_{i} \in V$ to the outgoing edges according to their weights. Then \mathbb{B} is the weighted, transposed adjacency matrix of the line graph, and its entries are the weights, where non-zero entries express connections between the edges. Cf. [7] and [8] for details.

We call a weighted graph essentially positive recurrent if its adjacency matrix \mathbb{B} satisfies one of the equivalent conditions of Theorem 3.7. Thus, by Theorem 4.2 , the graph is essentially positive recurrent if and only if $(T(t))_{t \geq 0}$ converges strongly to a sum of irreducible periodic groups $\left(R_{j}(t)\right)_{t \geq 0}$ where $j \in J$.

We show that distinct invariant strongly connected components $\left(V_{j}, E_{j}\right)$ of the underlying graph lead to disjoint minimal $(T(t))_{t \geq 0}$-invariant ideals and vice versa.

First, every invariant strongly connected component $\left(V_{j}, E_{j}\right)$ of the graph figures as support set of a minimal \mathbb{B}-invariant ideal $\ell^{1}\left(N_{j}\right)$ where

$$
N_{j}:=\left\{k \in \mathbb{N} \mid \mathrm{e}_{k} \in E_{j}\right\} .
$$

As in the proof of Theorem $4.2, \mathcal{I}_{j}=L^{1}\left([0,1] \times N_{j}\right)$ yields a minimal $(T(t))_{t \geq 0}$-invariant ideal. Since distinct invariant strongly connected components do not intersect, the ideals are disjoint.

Second, a minimal $(T(t))_{t \geq 0}$-invariant ideal $\mathcal{I}_{j}=L^{1}\left([0,1] \times N_{j}\right), N_{j} \subset \mathbb{N}$, is in particular invariant under $T(1)$. Thus (4.1) shows that $\ell^{1}\left(N_{j}\right)$ is invariant under the adjacency matrix \mathbb{B}, hence the subgraph $\left(V_{j}, E_{j}\right)$, with $E_{j}:=\left\{\mathrm{e}_{k} \mid k \in N_{j}\right\}$ and the needed vertices, has no outgoing edges. By irreducibility of $(T(t))_{t \geq 0}$ on \mathcal{I}_{j}, the restriction of the adjacency matrix to $\ell^{1}\left(N_{j}\right)$ is irreducible and the subgraph is strongly connected (by [7, Proposition 4.9]).

Thus for any essentially positive recurrent graph $(T(t))_{t \geq 0}$ converges strongly to a sum of irreducible periodic groups $\left(R_{j}(t)\right)_{t \geq 0}, j \in J$, each supported by an invariant strongly connected component $\left(V_{j}, E_{j}\right)$ of the graph. These groups can be identified with the rotation groups acting on $|J|$ disjoint polygons.

Furthermore, using the results from the irreducible case in $[8$, Theorem 16], the period of each rotation group $\left(R_{j}(t)\right)$ is determined by the greatest common divisor of all cycle lengths occurring in the strongly connected component $G_{j}=\left(V_{j}, E_{j}\right)$. More precisely, the period of the rotation group $\left(R_{j}(t)\right)$ is

$$
p_{j}=\operatorname{gcd}\left\{l \mid \text { there is a directed cycle of length } l \text { in } G_{j}\right\}
$$

and $(T(t))_{t \geq 0}$ converges strongly to a periodic group of period

$$
\begin{equation*}
p=\operatorname{lcm}\left\{p_{j} \mid j \in J\right\} \tag{4.5}
\end{equation*}
$$

if and only if (4.5) is finite.
We now give an example of an infinite, weighted, directed graph which is essentially positive recurrrent with an adjacency matrix \mathbb{B} exhausting the most general form (Theorem 3.7).

Example 4.4. In Figure 1 the horizontal strings (*) are the invariant strongly connected components.

On the weights of the j th string we impose a drift condition which is well-known in the theory of birth-and-death processes (cf., e.g., [11, Theorem 1.4.1]). Foster's condition holds on the j th string if we require

$$
\begin{equation*}
\left(\frac{p_{1,2}^{(j)} \cdot \ldots \cdot p_{n, n+1}^{(j)}}{p_{2,1}^{(j)} \cdot \ldots \cdot p_{n+1, n}^{(j)}}\right)_{n \in \mathbb{N}} \in \ell^{1} \tag{4.6}
\end{equation*}
$$

(compare [8, Example 1]).
All remaining vertices have paths leading to the strongly connected components, with weights as indicated in the picture. It is easy to see that the generalized drift condition Theorem 3.7(iii) is satisfied, while Foster's condition does not hold (not even in the version defined in Corollary 3.1(v)).

By Theorem 4.2 and (4.5) in the above remarks, the flow semigroup given by (4.1) is asymptotically periodic with asymptotic period 2 , since in the strongly connected components the directed cycles have length $2,4, \ldots$ as depicted in Figure 1.

References

[1] S. Banach. Théorie des opérations linéaires, volume 1 of Monografie Matematyczne. Subwncji Funduszu Narodowej, Warsaw, 1932.
[2] J. F. Berglund, H. D. Junghenn, and P. Milnes. Analysis on semigroups: Function spaces, compactifications, representations. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley \& Sons Inc., New York, 1989.
[3] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1998.
[4] P. Brémaud. Markov chains, volume 31 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999. Gibbs fields, Monte Carlo simulation, and queues.
[5] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Translated from the 1996 German original.
[6] J. L. Doob. Stochastic processes. John Wiley \& Sons Inc., New York, 1953.
[7] B. Dorn. Semigroups for flows in infinite networks. Semigroup Forum, 76(2):341-356, 2008.
[8] B. Dorn, V. Keicher, and E. Sikolya. Asymptotic periodicity of recurrent flows in infinite networks. Mathematische Zeitschrift, to appear.
[9] N. Dunford and J. T. Schwartz. Linear Operators. I. General Theory. With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, 1958.
[10] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. SpringerVerlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.
[11] G. Fayolle, V. A. Malyshev, and M. V. Menc'shikov. Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge, 1995.
[12] F. G. Foster. On the stochastic matrices associated with certain queuing processes. Annals of Mathematical Statistics, 24(3):355-360, 1953.
[13] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[14] V. Keicher. Convergence of positive C_{0}-semigroups to rotation groups. PhD thesis, Eberhard-Karls-Universität Tübingen, 2008.
[15] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov chains, volume 40 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1976. With a chapter on Markov random fields, by David Griffeath.
[16] G. Köthe. Topologische lineare Räume. I, volume 107 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1960.
[17] M. Kramar and E. Sikolya. Spectral properties and asymptotic periodicity of flows in networks. Mathematische Zeitschrift, 249(1):139-162, 2005.
[18] U. Krengel. Ergodic theorems, volume 6 of de Gruyter Studies in Mathematics. Walter de Gruyter \& Co., Berlin, 1985. With a supplement by Antoine Brunel.
[19] J.-F. Mertens, E. Samuel-Cahn, and S. Zamir. Necessary and sufficient conditions for recurrence and transience of Markov chains, in terms of inequalities. Journal of Applied Probability, 15(4):848-851, 1978.
[20] S. P. Meyn and R. L. Tweedie. The Doeblin decomposition. In H. Cohn, editor, Doeblin and modern probability. Proceedings of the Conference "50 Years after Doeblin: Development in the Theory of Markov Chains, Markov Processes, and Sums of Random Variables" held at the University of Tingen, Blaubeuren, November 2-7, 1991, volume 149 of Contemporary Mathematics, pages 211-225, Providence, RI, 1993. American Mathematical Society.
[21] W. M. Ruess and W. H. Summers. Weakly almost periodic semigroups of operators. Pacific J. Math., 143(1):175-193, 1990.
[22] H. H. Schaefer. Banach lattices and positive operators, volume 215. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften.
[23] H. H. Schaefer and M. P. Wolff. Topological vector spaces, volume 3 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1999.
[24] E. Seneta. Non-negative matrices and Markov chains. Springer Series in Statistics. Springer, New York, 2006.
[25] Z. Šidák. Eigenvalues of operators in L_{p}-spaces in Markov chains with a general state space. Czechoslovak Mathematical Journal, 17:148-157, 1967.
[26] R. L. Tweedie. Criteria for classifying general Markov chains. Advances in Appl. Probability, 8(4):737-771, 1976.
[27] R. L. Tweedie. Invariant measures for Markov chains with no irreducibility assumptions. Journal of Applied Probability, 25A:275-285, 1988. A celebration of applied probability.
[28] D. Vere-Jones. Ergodic properties of nonnegative matrices. II. Pacific Journal of Mathematics, 26:601-620, 1968.

[^0]: *The author thanks Britta Dorn, Tanja Eisner and Rainer Nagel for many helpful discussions on the subject, the latter also for many improvements of the final version. Further thanks go to Martin Zerner for refering us to Foster's condition.

