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Abstract

For P a poset or lattice, let Id(P ) denote the poset, respectively,
lattice, of upward directed downsets in P, including the empty set,
and let id(P ) = Id(P )−{∅}. This note obtains various results to the
effect that Id(P ) is always, and id(P ) often, “essentially larger” than
P. In the first vein, we find that a poset P admits no <-respecting
map (and so in particular, no one-to-one isotone map) from Id(P )
into P, and, going the other way, that an upper semilattice P admits
no semilattice homomorphism from any subsemilattice of itself onto
Id(P ).

The slightly smaller object id(P ) is known to be isomorphic to P if
and only if P has ascending chain condition. This result is strength-
ened to say that the only posets P0 such that for every natural num-
ber n there exists a poset Pn with idn(Pn) ∼= P0 are those having
ascending chain condition. On the other hand, a wide class of cases
is noted where id(P ) is embeddable in P.

Counterexamples are given to many variants of the statements proved.
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1 Definitions.

Recall that a poset P is said to be upward directed if every pair of elements
of P is majorized by some common element, and that a downset in P means
a subset d such that x ≤ y ∈ d implies x ∈ d. The downset generated by
a subset X ⊆ P will be written P ↓ X = {y ∈ P | (∃x ∈ X) y ≤ x}. A
principal downset means a set of the form P ↓ {x} for some x ∈ P.

Definition 1.1. If P is a poset, an ideal of P will mean a (possibly empty)
upward directed downset in P. The set of all ideals of P, partially ordered
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by inclusion, will be denoted Id(P ), while we shall write id(P ) for the
subset of nonempty ideals.

The subposet of Id(P ), respectively id(P ), consisting of ideals gener-
ated by chains, respectively, nonempty chains, will be denoted ch-Id(P ),
respectively ch-id(P ).

This use of the term “ideal” is common in lattice theory, where an ideal of
a lattice L can be characterized as a subset (often required to be nonempty)
that is closed under internal joins, and under meets with arbitrary elements
of L. For general posets, “ideal” is used in some works, such as [6], with the
same meaning as here; in others, such as [13], “(order) ideal” simply means
downset, while in still others, such as [8] and [5], an “(order) ideal” means a
Frink ideal, which can be characterized as a directed union of intersections
of principal downsets. (We shall not consider Frink ideals here. In upper
semilattices, they are the same as our ideals. For a general study of classes
of downsets in posets, see [5].)

If S is an upper semilattice, its ideals are the closed sets with respect
to a closure operator, so Id(S) is a complete lattice.

If L is a lattice (or a downward directed upper semilattice), id(L) is a
sublattice of Id(L), though not a complete one unless L has a least element.
For S any upper semilattice, id(S) at least forms an upper subsemilattice
of the lattice Id(S).

In a poset P, the principal downsets (which we can now also call the
principal ideals) form a poset isomorphic to P. If P has ascending chain
condition, we see that every nonempty ideal is principal, so id(P ) ∼= P.
(This yields easy examples where Id(P ) is neither an upper nor a lower
semilattice.)

The operators ch-Id and ch-id are not as nicely behaved as Id and
id. Even for L a lattice, ch-Id(L) need be neither an upper nor a lower
semilattice. For instance, regarding ω and ω1 (the first infinite and the
first uncountable ordinals), with their standard total orderings, as lattices,
let L be the direct product lattice (ω + 1) × (ω1 + 1). (Recall that each
ordinal is taken to be the set of all lower ordinals. Thus, ω + 1 = ω ∪ {ω}
and ω1 +1 = ω1∪{ω1}.) Then the chains x0 = ω×{0} and x1 = {0}×ω1

belong to ch-Id(L), but their join in Id(L), namely ω×ω1, has no cofinal
subchain (because ω and ω1 have different cofinalities), hence does not lie
in ch-Id(L). Indeed, x0 and x1 have no least upper bound in ch-Id(L),
since their two common upper bounds y0 = L ↓ (ω × {ω1}) and y1 = L ↓
({ω}×ω1) intersect in the non-chain-generated ideal ω×ω1. One also sees
from this that the latter two elements, y0 and y1, have no greatest lower
bound in ch-Id(L).

Why are we considering these badly behaved operators? Because the
method of proof of our first result involves, not merely an ideal, but an ideal
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generated by a chain, and it seemed worthwhile to formulate the result so
as to capture the consequences of this fact. In a final section, §5, I shall
note some variants of these constructions that are better behaved.
We will also use

Definition 1.2. A map f : P → Q of posets will be called strictly isotone
if x < y in P implies f(x) < f(y) in Q.

Thus, the strictly isotone maps include the embeddings of posets, and
so in particular, the embeddings of lattices and of upper semilattices.

2 Nonembeddability results.

Stevo Todorčević has pointed out to me that my first result, Theorem 2.1
below, is a weakened version of an old result of -Duro Kurepa [11], which says
that the poset of well-ordered chains in any poset P, ordered by the relation
of one chain being an initial segment of another, cannot be mapped into P
by a strictly isotone map. (A still stronger version appears in Todorčević
[15].) One could say that the one contribution of Theorem 2.1, relative
to Kurepa’s result, is that by weakening this assertion about chains to one
about the downsets they generate, it gives us a statement about ideals of P.

All the versions of this result have essentially the same proof; it is short
and neat, so I include it. I give the result for posets; that statement implies,
of course, the corresponding statements for semilattices and lattices.

Theorem 2.1 (cf. [11, Théorème 1], [15, Theorem 5]). Let P be any
poset. Then there exists no strictly isotone map f : ch-Id(P ) → P. Hence
(weakening this statement in two ways) there exists no embedding of posets
f : Id(P )→ P.

Proof. Suppose f : ch-Id(P ) → P is strictly isotone. Let us construct a
chain of elements xα ∈ P, where α ranges over all ordinals of cardinality
≤ card(P ) (i.e., over the successor cardinal to card(P )), by the single
recursive rule

xα = f(P ↓ {xβ | β < α}). (2.1)

Given α, and assuming recursively that β 7→ xβ (β < α) is a strictly
isotone map α → P, we see that P ↓ {xβ | β < α} is a member of
ch-Id(P ), so (2.1) makes sense. We also see that for all β < α, the chain in
P occurring in the definition of xβ is a proper initial segment of the chain
in the definition of xα; so the strict isotonicity of f insures that xβ < xα,
and our recursive assumption carries over to α + 1. It is also clear that if
that assumption holds for all β less than a limit ordinal α, it holds for α
as well.
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This construction thus yields a chain of cardinality > card(P ) in P, a
contradiction, completing the proof. q.e.d.

In the above proof, we restricted (2.1) to ordinals α of cardinality
≤ card(P ) only so as to have a genuine set over which to do recursion.
The reader comfortable with recursion on the proper class of all ordinals
can drop that restriction, ending the proof with an all the more egregious
contradiction.

Theorem 2.1 is reminiscent of Cantor’s result that the power set of a
set X always has larger cardinality than X. (Cf. the title of [9], where a
similar result is proved with the poset of all downsets in place of the smaller
poset of ideals.) In some cases, for instance when P is the chain of rational
numbers, Id(P ) in fact has larger cardinality than P ; but in others, for
instance when P is the chain of integers, or of reals, it does not. For the
latter case, one can verify by induction that for every natural number n,
the result of iterating this construction n times, Idn(R), may be described
as the chain gotten by taking R × (n + 1), lexicographically ordered, and
attaching an extra copy of the chain n to each end. So the above theorem
yields the curious fact that the chain so obtained using a larger value of n
can never be embedded in the chain obtained using a smaller value. (The
copies of n at the top and bottom are irrelevant to this fact, since by
embedding R in, say, the interval (0, 1), one can get an identification of
Idn(R) with a “small” piece of itself, hence in particular, an embedding into
itself minus those add-ons.)

Since the proof of Theorem 2.1 is based on constructing chains, one may
ask whether ch-Id(P ) always contains a chain that cannot be embedded
in P. That is not so; to see this, let us form a disjoint union of chains
of finite lengths 1, 2, 3, . . . , with no order-relations between elements of
different chains, and – to make our example not only a poset but a lattice –
throw in a top element and a bottom element. The resulting lattice L has
ascending chain condition, hence Id(L), and so also ch-Id(L), consists of
the principal ideals and the empty ideal; in other words Id(L) = ch-Id(L)
is, up to isomorphism, the lattice obtained by attaching one new element to
the bottom of L. Hence, like L, it has chains of all natural number lengths
and no more, though as Theorem 2.1 shows (and a little experimenting
confirms), it cannot be mapped into L by any strictly isotone map.

In contrast to what Theorem 2.1 says about Id(P ), we noted in §1 that
id(P ) is canonically isomorphic to P whenever the latter has ascending
chain condition. Denis Higgs [10], answering a question of George Grätzer,
showed for lattices L that it is only in this case that id(L) can be iso-
morphic in any way to L, and Marcel Erné [6] (inter alia) generalized this
statement to arbitrary posets. But our next result, extending the trick of
the preceding paragraph, shows that the class of lattices L such that id(L)
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can be embedded as a lattice in L (and hence the class of posets P such
that id(P ) can be embedded as a poset in P ) is much larger.

Proposition 2.2. Every lattice L is embeddable as a lattice in a lattice
L′ such that id(L′) is embeddable as a lattice in L′.

Hence the same is true with “lattice” everywhere replaced by “upper
semilattice” or “poset”.

Proof. Without loss of generality, assume L nonempty. Let L′ be the poset
obtained by taking the disjoint union of the lattices L, id(L), . . . , idn(L),
. . . (n ∈ ω), with no order-relations among elements of distinct pieces, and
then throwing in a top element 1 and a bottom element 0. It is easy to see
that L′ is a lattice, and that every nonempty ideal of L′, other than L′

and {0}, contains elements of the sublattice idn(L) for one and only one
value of n. For each n, the ideals of this sort containing elements of idn(L)
form a sublattice of id(L′) isomorphic to id(idn(L)) = idn+1(L). One sees
from this that id(L′) is isomorphic to the sublattice of L′ obtained by
deleting the original copy of L.

This proves the assertion about lattices. The corresponding statements
for upper semilattices and for posets follow, since every semilattice or poset
can be embedded as a subsemilattice or subposet in a lattice; e.g., in its
lattice of ideals in the former case, in its lattice of downsets in the latter. (In
fact, there exist embeddings preserving all least upper bounds and greatest
lower bounds that exist in the given structures: [12], [4, Theorem V.21].)

q.e.d.

On the other hand, there are many posets P for which we can deduce
from Theorem 2.1 the nonembeddability of id(P ) in P.

Corollary 2.3 (to Theorem 2.1). Suppose P is a poset which admits a
strictly isotone map g into a nonmaximal principal up-set within itself,
i.e., into P ↑ x for some nonminimal x ∈ P. Then there exists no strictly
isotone map f : id(P )→ P. In particular for P the lattice of all subsets of
an infinite set, or of all equivalence relations on an infinite set, there is no
such f.

Proof. By assumption we have a strictly isotone map g : P → P ↑ x, where
x is not minimal. Take y < x in P. If there existed a strictly isotone map
f : id(P )→ P, then gf would be another such map, with image consisting
of elements > y. Hence we could extend it to Id(P ) by sending ∅ to y,
contradicting Theorem 2.1. This proves our general assertion.

If X is an infinite set, take distinct elements x0, x1 ∈ X. Then the
lattice of all subsets of X is isomorphic to its sublattice consisting of sub-
sets that contain x0, and the lattice of equivalence relations is isomorphic
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to its sublattice of equivalence relations that identify x0 with x1. Thus,
both lattices satisfy the hypothesis of our main assertion, giving the final
statement. q.e.d.

Friedrich Wehrung [16] shows that the lattice L of equivalence relations
on a set of infinite cardinality κ contains a coproduct of two copies of itself
(and hence, by results of [3], a coproduct of 2κ copies of itself). His proof
uses the description of L, up to isomorphism, as id(Lfin), where Lfin ⊆ L
is the sublattice of finitely generated equivalence relations. This led me to
wonder whether L might also contain a copy of id(L), and so initiated
the present investigation. The above corollary answers that question in the
negative.

3 Nonexistence of surjections.

Another version of the idea that a lattice L is essentially smaller than its
ideal lattice would be to say that there are no surjective homomorphisms
L → Id(L). The next theorem shows that this is true. We again get the
result for a wider class of objects than lattices, in this case upper semi-
lattices. We shall see that the result does not extend to general posets or
isotone maps, nor can we replace ideals by chain-generated ideals; in these
ways it is of a weaker sort than Theorem 2.1. On the other hand, it is
stronger in a different way.

Theorem 3.1. Let S be an upper semilattice. Then there exists no upper
semilattice homomorphism from any subsemilattice S0 ⊆ S onto Id(S).

Proof. Suppose f : S0 → Id(S) were such a surjective homomorphism.
Then we could map Id(Id(S)) to Id(S) by taking each I ∈ Id(Id(S))
to S ↓ f−1(I). Because f is onto, distinct ideals I of Id(Id(S)) yield
distinct ideals f−1(I) of S0, and these will generate distinct ideals of S.
This leads to an embedding Id(Id(S)) → Id(S) as posets, contradicting
Theorem 2.1. q.e.d.

We cannot replace the semilattice S and semilattice homomorphism f
in Theorem 3.1 by a poset and an isotone map, because the inverse image
of an ideal under an isotone map f need not be an ideal. Indeed, we can
get a counterexample to the resulting statement in which the given poset is
a lattice L, and f is a strictly isotone bijection L→ Id(L) : Let L consist
of a greatest element 1, a least element 0, and countably many mutually
incomparable elements an (n ∈ ω) between them, and let f act by

f(1) = L, f(an+1) = {an, 0} (n ∈ ω), f(a0) = {0}, f(0) = ∅. (3.1)

(If we try to apply the construction in the proof of Theorem 2.1 to the
map S ↓ f−1(−) from Id(Id(S)) to subsets of S, the values we get for
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x0, x1, x2, x3 are respectively ∅, {0}, {a0, 0}, and {a1, a0, 0}, of which
the last is not an ideal, so the construction cannot be continued further.)

We could, of course, get a version of Theorem 3.1 for posets by restricting
our morphisms to isotone maps under which inverse images of ideals are
ideals.

Alternatively, we can escape these difficulties if we are willing to replace
ideals by downsets, getting the first sentence of the next result. But in fact,
we can deduce using Theorem 3.1 a stronger statement, the second sentence.

Corollary 3.2. No isotone map from a subset P0 of a poset P to the
lattice Down(P ) of all downsets of P is surjective.

In fact, no isotone map f from a poset P0 to any upper semilattice
T containing Down(P0) as a subsemilattice has the property that f(P0)
generates T as an upper semilattice.

Sketch of proof. Clearly the first assertion is a case of the second. To prove
the latter, let us, for any poset P, write fdown(P ) for the upper semilattice
of finite nonempty unions of principal downsets of P. Then one can verify
that

fdown(P ) ∼= upper semilattice freely generated by the poset P. (3.2)

Down(P ) ∼= Id(fdown(P )). (3.3)

Now given a poset P0 and an upper semilattice T containing Down(P0),
we see from (3.2) with P0 for P that isotone maps f : P0 → T such that
f(P0) generates the semilattice T are equivalent to surjective semilattice
homomorphisms f ′ : fdown(P0) → T. Hence, given such a map f, if T
contains Down(P0) as a subsemilattice, then the inverse image under f ′ of
that subsemilattice will be a subsemilattice of fdown(P0) which f ′ maps
surjectively to Down(P0) ∼= Id(fdown(P0)). But this is impossible, by The-
orem 3.1 with S = fdown(P0). q.e.d.

We mentioned that one cannot replace Id(S) by ch-Id(S) in Theo-
rem 3.1. Indeed, even if we bypass the problem that ch-Id(S) is not in
general an upper semilattice, by restricting ourselves to cases where it is,
the proof of that theorem fails because f−1 of an ideal generated by a
chain need not be generated by a chain. Here is a counterexample to that
generalization of the theorem.

Lemma 3.3. Let κ be an infinite cardinal, and S the lattice of all finite
subsets of κ. Then ch-Id(S) forms a lattice, and if κ = λℵ0 for some cardi-
nal λ, then ch-Id(S) is a homomorphic image of S as an upper semilattice.
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Sketch of proof. Note that as an upper semilattice with 0, S is free on κ
generators, and that it has no uncountable chains. From the latter fact one
can verify that ch-id(S) is isomorphic to the poset of all countable subsets
of κ, which is again a lattice, and has cardinality κℵ0 . Hence ch-Id(S) is
also a lattice of that cardinality. If κ = λℵ0 , then κℵ0 = κ, so as an upper
semilattice, ch-Id(S) is a homomorphic image of the free upper-semilattice-
with-0 on κ generators, namely S. q.e.d.

But I do not know whether, if L is a lattice such that ch-Id(L) is again
a lattice, the latter can ever be a lattice-theoretic homomorphic image of L,
or of a sublattice thereof.

As another way of tweaking our results, we might go back to Theo-
rem 2.1, and try replacing P on the right side of the map f by an isotone
or (if P is a lattice or upper semilattice) a lattice- or semilattice-theoretic
homomorphic image of P – the dual of our use of a subsemilattice S0 on
the left-hand side of the map in Theorem 3.1. It turns out that the sort of
statements one can express in this way are weakened versions of statements
of the sort exemplified by Theorem 3.1. For to embed an algebraic struc-
ture A in a homomorphic image of a structure B is equivalent to giving
an isomorphism between A and a subalgebra of that homomorphic image
of B; and the subalgebras of homomorphic images of B are a subclass
of the homomorphic images of subalgebras of B, so we end up looking at
homomorphisms from subalgebras of B onto A, as in Theorem 3.1.

So, for instance, it follows from Theorem 3.1 that if we restrict The-
orem 2.1 to semilattices S and semilattice homomorphisms, and replace
ch-Id with Id, then we can replace the codomain S of our map by an
arbitrary semilattice homomorphic image of S. In the opposite direction,
Lemma 3.3 shows that if we keep the operator ch-Id in Theorem 2.1, and
again assume P and ch-Id(P ) to be semilattices and restrict f to be a
semilattice homomorphism, we cannot replace the codomain by such an
image of itself. (In this case, the distinction between “subalgebra of a ho-
momorphic image” and “homomorphic image of a subalgebra” makes no
difference, for two reasons: semilattices have the Congruence Extension
Property, and in that example, the subalgebra was the whole semilattice
anyway. So our counterexample to the statement modeled on Theorem 3.1
is indeed a counterexample to what would otherwise be the weaker state-
ment modeled on Theorem 2.1.)

For posets, one has many possible variants of our results, because of
the many sorts of poset maps one can define. E.g., we found it natural to
prove Theorem 2.1 for strictly isotone (but not necessarily one-to-one) maps;
while the authors of [9] show that no poset P admits a one-to-one map
Down(P ) → P that is either ≤-preserving (i.e., isotone), or 6≤-preserving.
By Lemma 3.3, one cannot, in Theorem 2.1, replace the codomain poset
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P by a general isotone image of itself; but such a result might be true for
images of other sorts.

4 P0
∼= . . . ∼= idn(Pn) ∼= . . . can only happen “in the

obvious way”.

We have mentioned that by Erné’s generalization [6] of a result of Higgs
[10], the only posets P admitting any isomorphism with id(P ) are those
for which the canonical embedding P → id(P ) is an isomorphism, namely
the posets with ascending chain condition. We prove below a further gener-
alization of this statement. Rather than assuming an isomorphism between
P and its own ideal poset, we shall see that it suffices to assume P simulta-
neously isomorphic to an ideal-poset id(P1), a double ideal-poset id2(P2),
and generally to an n-fold ideal-poset idn(Pn) for each n. I will give two
proofs: one based on the ideas of Higgs’ and Erné’s proofs, and one that
obtains the result from Erné’s (via a version of the trick of Proposition 2.2
above).

First, some terminology and notation. Generalizing slightly the language
of [7], let us call an element x of a poset P compact if for every directed
subset S ⊆ P which has a least upper bound

∨
S in P, and such that∨

S ≥ x, there is some y ∈ S which already majorizes x. For P any poset,
the compact elements of id(P ) are the principal ideals. (These are clearly
compact, while a nonprincipal ideal is the join of the directed system S of
its principal, hence proper, subideals.) Thus, defining dP : P → id(P ) by

dP (x) = P ↓ {x}, (4.1)

the map dP is an isomorphism between P and the poset of compact el-
ements of id(P ). Since the set of compact elements of a poset is deter-
mined by the order structure of the poset, this shows that P and the map
dP : P → id(P ), are recoverable, up to isomorphism, from the order struc-
ture of id(P ).

Lemma 4.1. Let us call the compact elements of a poset P the 1-compact
elements, and inductively define the n-compact elements of P to be the
elements of the subposet of n−1-compact elements that are compact in
that subposet. Then in a poset of the form idn(P ) where n > 1, every
non-compact element a0 yields a chain

a0 < a1 < . . . < an−1, (4.2)

where for i = 1, . . . , n − 1, ai is the least i-compact element of idn(P )
majorizing ai−1.

Proof. From our preceding observations, we see that the 1-compact elements
of idn(P ) are, in the notation of (4.1), the members of didn−1(P )(id

n−1(P )),
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the 2-compact elements are the members of didn−1(P )didn−2(P )(id
n−2(P )),

and so on, through the n-compact elements, which are the members of
didn−1(P ) . . . did(P )dP (P ).

Note also that for any poset Q, if I is a nonprincipal ideal of id(Q),
then d−1

Q (I) i.e., {x ∈ Q | dQ(x) ∈ I}, must be a nonprincipal ideal of
Q (though the converse is not true). Moreover, that ideal, regarded as a
member of id(Q), will majorize all members of I, and will be the least
element that does so; hence in id2(Q), the element did(Q)d

−1
Q (I) will be

the least compact element majorizing the noncompact element I. Thus, in
id2(Q), every noncompact element has a least compact element majorizing
it, and that compact element is again noncompact within the subposet of
compact elements.

Hence in the situation of the lemma, where a0 is a noncompact element
of an n-fold ideal poset idn(P ), we have a least compact element a1 ma-
jorizing it, which is the image under didn−1(P ) of a noncompact element of
idn−1(P ), for which we can repeat the argument if n − 1 > 1, giving the
desired chain (4.2). q.e.d.

Theorem 4.2 (cf. [10, 6]). Suppose P0 is a poset such that for each natural
number n there exists a poset Pn with P0

∼= idn(Pn). Then P0 has
ascending chain condition.

Proof 1. For notational simplicity, let us assume without loss of generality
that P0 = id(P1). If P0 does not have ascending chain condition, then
the poset P1 clearly cannot have ascending chain condition either; hence
it has a nonprincipal ideal, hence by Zorn’s Lemma we can find a maximal
nonprincipal ideal, so P0 will have a maximal noncompact element a0.
Applying the preceding lemma for all positive integers n, we get an infinite
chain

a0 < a1 < . . . < an < . . . . (4.3)

These form an infinite chain of ideals of P1 above a0, and the union of this
chain will be a nonprincipal ideal strictly larger than a0, contradicting the
assumed maximality. q.e.d.

Proof 2. By the observations at the beginning of the proof of Lemma 4.1,
for each n > 0 the posets of n−1-compact elements and of n-compact
elements of P0

∼= idn(Pn) are isomorphic respectively to id(Pn) and to
Pn; comparing these statements for two successive values of n, we conclude
that id(Pn) ∼= Pn−1. This suggests that we extend the sequence of posets
Pn to allow negative subscripts by writing idn(P0) = P−n. Now let Q be
the disjoint union

∐
n∈Z Pn, where elements from distinct posets Pn are
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taken to be incomparable. No ideal of Q can contain elements of more than
one of the Pn, hence

id(Q) =
∐
n∈Z id(Pn) ∼=

∐
n∈Z Pn−1

∼=
∐
m∈Z Pm = Q.

Hence by Erné’s result, Q has ascending chain condition; hence so does
P0 ⊆ Q. q.e.d.

It is interesting to compare the situation of the preceding theorem with
what we get if we start with any poset P with a nonprincipal ideal I, and
consider the posets

P → id(P ) → id2(P ) → . . . , (4.4)

with connecting maps didn−1(P ) : idn−1(P ) → idn(P ). Here I can be re-
garded as an element b1 ∈ id(P ), which is the least upper bound therein of
the set dP (I). On the other hand, the ideal of id(P ) generated by that set,
since it consists of elements < b1, can be regarded as an element b2 ∈ id2(P )
which is < did(P )(b1); this element in turn will strictly majorize all elements
of did(P )dP (I), and so the ideal generated by that set in id2(P ) will be an
element of id3(P ) which is < did2(P )(b2); and so on. Letting P∞ denote the
direct limit of (4.4), and writing d∞,n : idn(P )→ P∞ for the induced maps
to that object, we get a descending chain d∞,1(b1) > d∞,2(b2) > . . . above
the set d∞,0(I) in P∞. On the other hand, if we stop after n steps, and
consider the chain didn(P ) . . . did(P )(b1) > didn(P ) . . . did2(P )(b2) > · · · > bn,
this is essentially the finite chain described in Lemma 4.1, used there in
building up the ascending chain (4.3).

I don’t know whether the analog of Theorem 4.2 with ch-id in place of
id is true. (This seems related to the problem stated at the end of [6].)
The natural approach to adapting the above argument to that case would
start by defining an element x of a poset to be chain-compact if every
chain S having a least upper bound

∨
S which majorizes x contains an

element s that already does so. However, it turns out that elements of
dP (P ) ⊆ ch-id(P ) are not necessarily chain-compact: If, slightly modifying
the example by which we showed in §1 that ch-Id of a lattice need not be
a lattice, we let P = (ω × ω1) ∪ {(ω, ω1)}, i.e., that original example, with
the chains ω × {ω1} and {ω} × ω1 deleted, but the top element (ω, ω1)
retained, we find that ch-id(P ) can be identified with (ω + 1) × (ω1 + 1),
in which the image of that top element is the least upper bound of each
of the chains ω × {ω1} and {ω} × ω1, hence not chain-compact (though,
in fact, it was chain-compact in P ). This is related to the fact that the
inverse image under dP of the ideal generated by either of these chains is
a non-chain-generated ideal of P. One encounters similar phenomena on
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taking for P the poset of finite subsets of a set of cardinality ℵ1, together
with the improper subset.

These examples used uncountable chains; might the analog of Theo-
rem 4.2 hold with id replaced by the operator taking P to its poset of
nonempty ideals generated by countable chains; equivalently, nonempty ide-
als with countable cofinal subsets? [6, Example 3] shows that this, too, fails:
the poset P of that example, the totally ordered set ω1, is easily seen to
be isomorphic its own poset of countably generated ideals, equivalently,
bounded ideals (whether or not we include the empty ideal). The reason
Proof 1 of Theorem 4.2 fails to give a contradiction in this case lies not
in the phenomena sketched above (indeed, the inverse image in ω1 of a
bounded ideal of ch-id(ω1) will again be a bounded ideal), but in the fact
that Zorn’s lemma cannot produce a maximal bounded ideal.

A question suggested by juxtaposing the present considerations with
those of [2, §7] is: What can be said about lattices L such that id(L) is
(not necessarily equal to, but at least) finitely generated over its sublattice
dL(L); and similarly for upper semilattices? (In these questions it makes
no difference whether we refer to id(L) or Id(L).)

Since dropping the bottom element ∅ from Id(P ) makes such a differ-
ence in the properties we have studied, it might be interesting to investigate
the effect on these questions of dropping the top element, P, of id(P ) or
Id(P ) if P is a directed poset (e.g., a lattice or semilattice); or of adding an
extra top element; though these constructions are admittedly less natural
than that of dropping ∅. One might also investigate the variants of some
of the questions we have considered that one gets by using the opposite
structures, Id(P )op etc., in place of Id(P ) etc..

I will mention one other interesting result on the relation between L and
id(L) for any lattice L : It is shown in [1] that id(L) is a homomorphic
image of a sublattice of an ultrapower of L.

5 Tangential note on chains and products of chains.

We observed in §1 that for L a lattice, the poset ch-Id(L) of ideals of
L generated by chains need neither be an upper nor a lower semilattice;
our counterexample was based on the fact that a direct product of two
chains of distinct infinite cofinalities has no cofinal subchain. Let us put
this phenomenon in a more general light.

Lemma 5.1. Let X be a class of posets, and for any poset P, denote
by X-Down(P ) ⊆ Down(P ) the set of all downsets d ⊆ P of the form
d = P ↓ f(Q), for Q ∈ X and f : Q→ P an isotone map. Then

(i) The following conditions on X are equivalent.
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(i.a) X-Down(P ) ⊆ Id(P ) for all posets P.
(i.b) Every member of X is upward directed.

(ii) Among the following conditions on X, we have the implication (ii.a) =⇒
(ii.b), and, if the equivalent conditions of (i) above hold, also (ii.a) =⇒
(ii.c)∧ (ii.d).

(ii.a) For all Q, Q′ ∈ X, there exists R ∈ X which admits an isotone
map to the product poset Q×Q′, with cofinal image.

(ii.b) X-Down(S) is a lower subsemilattice of Down(S) for all lower
semilattices S.

(ii.c) X-Down(S) is an upper subsemilattice of Id(S) for all upper
semilattices S.

(ii.d) X-Down(L) is a sublattice of Id(L) for all lattices L.

Proof. Since an isotone image of an upward directed set is upward directed,
and the downset generated by an upward directed set is an ideal, we clearly
have (i.b) =⇒ (i.a). Conversely, if (i.b) fails, let Q ∈ X not be upward
directed. Then Q = (Q ↓ Q) ∈ X-Down(Q) is not an ideal, so (i.a) fails.

To get (ii), consider any Q, Q′ ∈ X, any poset P, and any isotone
maps f : Q → P, f ′ : Q′ → P. If our P is a lower semilattice, then the
intersection of downsets (P ↓ f(Q)) ∩ (P ↓ f ′(Q′)) can be described as
P ↓ {f(q) ∧ f ′(q′) | q ∈ Q, q′ ∈ Q′}, while if P is an upper semilattice
and P ↓ f(Q) and P ↓ f ′(Q′) are ideals, then their join in Id(P ) can be
described as P ↓ {f(q)∨ f ′(q′) | q ∈ Q, q′ ∈ Q′}. In these statements, note
that the sets {f(q) ∧ f ′(q′) | q ∈ Q, q′ ∈ Q′}, respectively {f(q) ∨ f ′(q′) |
q ∈ Q, q′ ∈ Q′}, are isotone images of the poset Q × Q′. Hence if X
contains a poset R which admits an isotone map g : R → Q × Q′ with
cofinal image, the composite of g with the above maps Q × Q′ → P are
maps R→ P whose images generate the indicated meet-downset and join-
ideal respectively. This gives (ii.a) =⇒ (ii.b), and, assuming (i.a), also
(ii.a) =⇒ (ii.c); together these give (ii.a) =⇒ (ii.d). q.e.d.

To avoid awkward statements, I have not attempted to formulate if-and-
only-if versions of the implications of (ii). That the converses to the present
statements do not hold arises from the fact that on members of X, we are
only assuming a poset structure, but we are mapping them into sets with
lattice or semilattice structure. For instance, since in a lower semilattice S
every downset is a connected poset, we see that the class C of all connected
posets satisfies C-Down(S) = Down(S); hence taking X = C ∪{Q}, where
Q is the disconnected poset consisting of two incomparable elements, we
find that X-Down(S) is still Down(S), so (ii.b) holds. But (ii.a) does not,
since no member of X can be mapped into Q × Q so as to have cofinal
image.
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However, the above lemma shows why the choice for X of the class of
all chains (or even the set consisting of the two chains ω and ω1) can fail
to have properties (ii.c) and (ii.d), and points to some variants that will
have those properties. Any class of upward directed posets closed under
taking pairwise products will satisfy (i.b) and (ii.a), and hence (ii.b)-(ii.d);
in particular, this will be true of the class of all finite products of chains
(cf. [14]). A singleton whose one member is a chain, Q, will also satisfy
these properties, since the diagonal image of Q in Q×Q is cofinal. Both
of these classes yield variants of the construction ch-Id that are, in this
respect, better behaved than that construction.
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[7] M. Erné. Compact generation in partially ordered sets. Journal of the
Australian Mathematical Society, Series A, 42:69–83, 1987.

[8] O. Frink. Ideals in partially ordered sets. American Mathematical
Monthly, 61:223–234, 1954.



On lattices and their ideal lattices 103

[9] A. M. Gleason and R. P. Dilworth. A generalized Cantor theorem.
Proceedings of the American Mathematical Society, 13:704–705, 1962.

[10] D. Higgs. Lattices isomorphic to their ideal lattices. Algebra Univer-
salis, 1:71–72, 1971.

[11] G. Kurepa. Ensembles ordonnés et leurs sous-ensembles bien ordonnés.
Comptes Rendus de l’Académie des Sciences, 242:2202–2203, 1956.

[12] H. M. MacNeille. Partially ordered sets. Transactions of the American
Mathematical Society, 42:416–460, 1937.

[13] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, lattices,
varieties. Vol. I. The Wadsworth & Brooks/Cole Mathematics Series.
Wadsworth & Brooks/Cole Advanced Books & Software, Monterey,
CA, 1987.

[14] M. Pouzet. Parties cofinales des ordres partiels ne contenant pas
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