
Undecidability of local structures of s-degrees
and Q-degrees

Maria Libera Affatato, Thomas F. Kent, Andrea Sorbi∗

Dipartimento di Scienze Matematiche e Informatiche “Roberto Magari”, Università degli
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Abstract

We show that the first order theory of the Σ0
2 s-degrees is undecid-

able. Via isomorphism of the s-degrees with the Q-degrees, this also
shows that the first order theory of the Π0

2 Q-degrees is undecidable.
Together with a result of Nies, the proof of the undecidability of the
Σ0

2 s-degrees yields a new proof of the known fact (due to Downey,
LaForte and Nies) that the first order theory of the c.e. Q-degrees is
undecidable.
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1 Introduction

In [6], Cooper asks to characterize the degree of the first order theory of
the Σ0

2 s-degrees. We are not able to fully answer this question, but we
are able to show that this theory is undecidable. Undecidability follows
from the following two facts, which hold in the Σ0

2 s-degrees: there is an
independent antichain which is first order definable with three parameters
(Theorem 2.2); and a suitable version of the Exact Degree Theorem of Nies
(Theorem 2.1). In addition, Theorem 2.2 together with another suitable
version of the Nies Exact Degree Theorem yields the undecidability of the
Π0

1 s-degrees. Via isomorphism of the s-degrees with the Q-degrees, this also
gives undecidability of the structure of the Π0

2 Q-degrees, and undecidability
of the c.e. Q-degrees (a result of Downey, LaForte and Nies from [7]).

Positive reducibilities formalize models of relative computability which
use only “positive ” oracle information. The most comprehensive positive
reducibility is enumeration reducibility, denoted by ≤e. Intuitively a set
A is enumeration reducible to a set B if there is some effective procedure
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for enumerating A given any enumeration of B. Following Friedberg and
Rogers [9], this is made mathematically precise by defining A ≤e B if there
exists a c.e. set Φ such that

A = {x : there is a finite F such that 〈x, F 〉 ∈ Φ & F ⊆ B}

(often denoted by A = ΦB) where finite sets are identified with their canoni-
cal indices. In this context a c.e. set Φ is also called an enumeration operator.
According to this definition, a computation may enumerate a number x in
A only upon retrieval of positive information about B, i.e., information of
the form F ⊆ B, for some pair 〈x, F 〉 ∈ Φ. Access to positive information
about B is made possible via some enumeration of B.

1.1 s-reducibility
It is clear that given a set B, an enumeration operator Φ, and a given x,
there is no bound to the number n of oracle questions which are needed
to enumerate x in ΦB , i.e. to the cardinality of a finite set F for which
we need F ⊆ B, in order to have x ∈ ΦB . One can therefore introduce
restricted versions of enumeration reducibility by requesting instead that
there be such a bound. Although extreme, the case n = 1, in which for
any given x we need at most one oracle question, is particularly interesting,
and occurs often in practical applications of enumeration reducibility. This
suggests the following definition:

Definition 1.1. An enumeration operator Φ is called an s-operator if for
every 〈x, F 〉 ∈ Φ, we have that F has at most one element.

It is straightforward to see that the s-operators (s stands for singleton)
can be effectively listed, and give rise to a reducibility (called s-reducibility),
denoted by ≤s. The corresponding degree structure, denoted by Ds, consists
of the equivalence classes, called s-degrees, of the subsets of ω under the
equivalence relation ≡s generated by ≤s. The s-degree of a set A will be
denoted by degs(A). The structure Ds is an upper semilattice with least
element 0s = degs(∅) consisting of the c.e. sets, and the operation of least
upper bound is given by degs(A)∪degs(B) = degs(A⊕B), where ⊕ denotes
the usual disjoint union of sets. The reducibility ≤s is properly contained
in ≤e: As shown by Zacharov, [23], every nonzero e-degree contains at least
two s-degrees. The reader is referred to the papers [5], [6], [19] for a survey
of results on s-reducibility.

1.2 Q-reducibility
An apparently different but intimately related reducibility is Q-reducibility
(due to Tennenbaum, as quoted by Rogers [20, p. 159]): A set A is quasi-
reducible (Q-reducible) to a set B, A ≤Q B, if and only if there exists
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a total computable function f such that A = {x : Wf(x) ⊆ B}. (When
dealing with ≤Q, the set ω should not be considered as lying in the universe
of the reducibility, as ω <Q A, for every set A 6= ω.) In the usual way,
the reducibility ≤Q gives rise to a degree structure, denoted by DQ; the
elements of DQ are called Q-degrees; the Q-degree of a set A 6= ω will be
denoted by degQ(A). The structure DQ is an upper semilattice with least
element 0Q = degQ(∅) consisting of the Π0

1 sets, and the usual operation
of least upper bound.

Several interesting applications of Q-reducibility to algebra are known.
One can for instance quote Dobritsa’s theorem (see [3]) stating that for every
set X there is a word problem having the same Q-degree of X. Belegradek,
[3], shows that a necessary condition for computably presented groups G
and H to have G a subgroup of every algebraically closed group of which H
is a subgroup, is that the word problem for G be Q-reducible to the word
problem of H. It is worth noticing that this condition is also sufficient,
[12], if ≤Q is replaced by ≤T. But then since on c.e. sets Turing reducibil-
ity implies Q-reducibility, for computably presented groups with c.e. word
problems the same condition is both necessary and sufficient. Q-reducibility
has also been studied in connection with abstract complexity theoretic ques-
tions: Blum and Marques in [4] introduced the notions of subcreative and
effectively speedable sets and they proved that a recursively enumerable set
is subcreative if and only if it is effectively speedable. Gill and Morris in
[10] gave a simple and interesting characterization of effectively speedable
sets in terms of Q-complete sets. They proved that a c.e. set is effectively
speedable if and only if it is Q-complete.

There is an extensive bibliography on Q-reducibility: For c.e. Q-degrees
see for instance [8], [7] and [18]; Arslanov and Omanadze in [2] study the
Q-degrees of n-c.e. sets.

1.3 s-reducibility or Q-reducibility?
The following is a useful result due to Gill and Morris [10] relating s-
reducibility to Q-reducibility, where given a set X ⊆ ω, X denotes its
complement.

Lemma 1.2 (Isomorphism Lemma). For any sets A and B 6= ω, A ≤Q B
if and only if A ≤s B.

Proof. Suppose A and B are given, with B 6= ω. If A ≤Q B via a com-
putable function f , then define

Γ = {〈x, {y}〉 : y ∈Wf(x)}.

Then Γ is an s-operator and A = ΓB .
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On the other hand, suppose that A ≤s B via the s-operator Γ. Let
b /∈ B, and let

Wf(x) =

{
{y : 〈x, {y}〉 ∈ Γ} if 〈x,∅〉 /∈ Γ,
{y : 〈x, {y}〉 ∈ Γ} ∪ {b} otherwise.

Then A ≤Q B via the computable function f . q.e.d.

Notwithstanding this isomorphism, s-reducibility and Q-reducibility have
lived so far quite independent lives. Most of the papers on s-reducibility
do not mention Q-reducibility, and viceversa most of the papers on Q-
reducibility do not mention s-reducibility. An additional bit of confusion
comes perhaps from an early unusual variety of approaches to s-reducibility:
Friedberg and Rogers originally defined A ≤s B if A = {x : Wf(x)∩B 6= ∅}
for some computable function f ; ≤s appears as ≤se in [13]; the branch fi-
nite version of ≤s (i.e., the reducibility given by s-operators Φ in which for
every x there are only finitely many axioms 〈x, F 〉 ∈ Φ) appears as ≤Q in
[15]. Our formalization of s-reducibility, and the notion of s-operator, derive
from [10].

Following [19], one can define a jump operation on the s-degrees, for
which the jump of the least element 0s is given by the s-degree 0′s = degs(K),
where K denotes the halting set. In the following, we denote Ls = Ds(≤s

0′s). The structure Ls is called the local structure of the s-degrees, studied
for instance in [19] and [22]. It is straightforward to show that for every set
A, A ≤s K if and only if A ∈ Σ0

2. Thus the elements of Ls are exactly the
Σ0

2 s-degrees, and consist only of Σ0
2 sets.

Via the isomorphism of Lemma 1.2, this gives also a jump operation on
the Q-degrees, so that for the first jump 0′Q we have 0′Q = degQ(K), and
the local structure of the Q degrees consists exactly of the Π0

2 Q-degrees.
Our notations and terminology for computability theory are standard,

and can be found in [16], [17], [20], and [21].

2 The theorems

The following result shows how to “code” any Σ0
4 set in an independent

family of s-degrees below 0′s = degs(K). Recall that in an upper semilattice
〈U,≤,∨〉, a countable A ⊆ U is called independent if for every a ∈ A and
any finite F ⊆ A, we have

a ≤
∨
F ⇒ a ∈ F.

Theorem 2.1 (Exact Degree Theorem for the Σ0
2 s-degrees). Suppose that

{Ai}i∈ω is a uniformly Σ0
2 sequence of sets such that the family {degs(Ai)}i∈ω
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is independent. Then, for each Σ0
4 set S, there exists a Σ0

2 set B such that

i ∈ S ⇔ Ai ≤s B.

Moreover, the result holds uniformly: a Σ0
2 index for B can be uniformly

found starting from any Σ0
4 index of S.

Proof. An examination of the proof by Nies in [14] of the Exact Degree
Theorem for Σ0

2 e-degrees shows that he actually proved that given S one
can uniformly find B such that

i ∈ S ⇒ Ai ≤m B

i /∈ S ⇒ Ai �e B.

Thus is it straightforward to adapt the proof to the Σ0
2 s-degrees. q.e.d.

The Exact Degree Theorem turns out to be quite useful. If we could
show that there exists a uniformly Σ0

2 sequence of sets whose s-degrees
form an independent family {ai}i∈ω of Σ0

2 s-degrees, which is first order
definable with parameters (in the language of partial orders), then this
would yield that the first order theory of the Σ0

2 s-degrees is undecidable.
This is done in the following manner. Assume that α(v, p) is a first order
relation with parameters p that defines the elements of an independent
family. By Theorem 2.1, every Σ0

4 set S can be uniformly associated with
an s-degree b such that

S = Sb = {i : ai ≤s b} .

Thus
Sb ⊆ Sc ⇔ Ls |= ∀a [(α(a,p) & a ≤ b)→ a ≤ c] .

Hence the first order theory of the poset 〈{A : A is Σ0
4},⊆〉 (which is

known to be hereditarily undecidable, see [11]) is elementarily definable with
parameters in the Σ0

2 s-degrees, giving undecidability of the local structure
Ls, as stated in Corollary 2.4.

Next theorem shows the existence of an independent set of Σ0
2 s-degrees

which is definable with parameters.

Theorem 2.2. There is an independent set of Σ0
2 s-degrees that is first or-

der definable with parameters. More specifically, there exist 2-c.e. s-degrees
{gi}i∈ω, g, a, b, such that the gi’s form an independent set and are the
minimal solutions of the inequalities

x ≤s g & a ≤s x ∪ b,

i.e., for every i, gi ≤s g, a ≤s gi ∪ b, and for every x,

x ≤s g & a ≤s x ∪ b⇒ (∃i)[gi ≤s x].
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Before proving this theorem, we state a few corollaries. We first recall
the following theorem.

Theorem 2.3 (Ambos-Spies, Nies & Shore; [1]). Let P = 〈P,≤,∨, 0〉 be
an upper semilattice such that, for some n ≥ 1, the partial order of Σ0

n sets
under inclusion is first order definable with parameters in P. Then the first
order theory of P is undecidable.

It now follows that

Corollary 2.4. The first order theory of the Σ0
2 s-degrees is undecidable.

Proof. This is clear from Theorem 2.3 and the discussion at the beginning
of this section. q.e.d.

Next, recall the following lemma:

Lemma 2.5 (Omanadze & Sorbi; [19]). For every 2-c.e. set C there exists
a Π0

1 set D such that C ≡s D.

Proof. See [19]. q.e.d.

As a consequence we have

Theorem 2.6. There is an independent set of Π0
1 s-degrees that is first

order definable with parameters. More specifically, there exist Π0
1 s-degrees

{gi}i∈ω, g, a, b, such that the gi’s form an independent set and are the
minimal solutions of the inequalities

x ≤s g & a ≤s x ∪ b

i.e., for every i, gi ≤s g, a ≤s gi ∪ b, and for every Π0
1 degree x,

x ≤s g & a ≤s x ∪ b⇒ (∃i)[gi ≤s x].

Proof. By Theorem 2.2, and Lemma 2.5. q.e.d.

Lastly, we recall the following version of the Exact Degree Theorem.

Theorem 2.7 (Nies; [14]). Let {Ai}i∈ω be a uniformly Π0
1 sequence of sets

such that their s-degrees form an independent family. Then for every Σ0
4

set S, there uniformly exists a Π0
1 set C such that, for every i,

i ∈ S ⇔ Ai ≤s C.
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Proof. Nies proves the Exact Degree Theorem for c.e. Q-degrees: Namely,
he shows that starting from any c.e. set G such that the Q-degrees of the
columns {G[i]}i∈ω of G form an independent family in the Q-degrees, then
for every Σ0

4 set S, one can uniformly find a c.e. set C such that, for every i,

i ∈ S ⇔ G[i] ≤Q C.

Then the result translates to an Exact Degree Theorem for Π0
1 s-degrees

by the isomorphism between c.e. Q-degrees and Π0
1 s-degrees established by

Lemma 1.2. q.e.d.

This gives us the last two corollaries.

Corollary 2.8. The Π0
1 s-degrees are undecidable.

Proof. By Theorem 2.6, and Theorem 2.7. q.e.d.

Hence, we get as a corollary a different proof of a result due to Downey,
LaForte and Nies, [7]:

Corollary 2.9 (Downey, Laforte & Nies; [7]). The first order of the c.e.
Q-degrees is undecidable.

Proof. Again, by the isomorphism between c.e. Q-degrees and Π0
1 s-degrees,

established by Lemma 1.2. q.e.d.

3 A first order definable independent antichain

In this section, we prove Theorem 2.2 which gives us a first order definable
independent set of Σ0

2 s-degrees.
We aim at constructing 2-c.e. sets A, B, and Gi, with i ∈ ω, such that the

following requirements are satisfied, where G =
⊕

iGi. We will guarantee
that Gi ⊆ ω[i], so that in fact G =

⊕
i∈ω Gi can be taken to be

⋃
i∈ω Gi.

The requirements. The construction aims at satisfying the following re-
quirements:

Di : (∃∆i)[A = ∆Gi⊕B
i ]

Ii,Φ : Gi 6= ΦG 6=i

MΦ,Ψ : A = ΦΨG⊕B ⇒ (∃i)(∃Γi)[Gi = ΓΨG

i ]

where Φ,Ψ are given s-operators, and ∆i,Γi are s-operators built by us, and
G6=i =

⊕
j 6=iGj . Then it is easy to show that the s-degrees g = degs(G),

gi = degs(Gi), a = degs(A), and b = degs(B) satisfy the claim.
Informal description of the strategies. Before giving the formal con-
struction we give some intuition underlying the strategies used to meet the
requirements.
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The strategy for requirement Di. The strategy here consists in con-
tributing to the definition of a correct s-operator ∆i such that A = ∆Gi⊕B

i .
Imagine we have placed this strategy on a tree of strategies: Let us call
this strategy α. (For the sake of definiteness, we employ here terminology
and notions concerning trees, which will be fully introduced later.) Then
strategy α defines suitable axioms of the form 〈x,∅⊕∅〉 ∈ ∆i

1 for all those
numbers x that higher priority strategies (i.e., strategies β < α) want to re-
strain in A. When α acts, it initializes all strategies β >L α, thus assuming
that any witness x used by any such β before its initialization will maintain
its A-membership state forever (i.e., x ∈ A if and only if currently x ∈ A),
and for any such witness x ∈ A, α defines the axiom 〈x,∅ ⊕ ∅〉 ∈ ∆i. Fi-
nally α lets strategies β ⊃ α maintain a correct definition of ∆i with respect
to the elements that these β’s are using: More specifically, such a β may
define an axiom of the form 〈x, {g} ⊕ ∅〉 ∈ ∆i defining g ∈ Gi, and then
later possibly an axiom of the form 〈x,∅ ⊕ {b}〉 ∈ ∆i defining b ∈ B. If
later β wants to extract x from A, then β also needs to extract g from Gi
and b from B. If β is initialized before ever extracting x, then α correctly
assumes that x ∈ A, and adds an axiom 〈x,∅⊕∅〉 ∈ ∆i.
The strategy for requirement Ii,Φ. This is a more or less obvious ver-
sion for s-reducibility of the classical Friedberg-Muchnick strategy:

1. Appoint a new witness g ∈ Gi;

2. Await g ∈ ΦG 6=i . If and when this happens, through say an axiom
〈g, F 〉 ∈ Φ, with F ⊆ G6=i, then extract g from Gi, and restrain
F ⊆ G6=i: This is possible since g /∈ F .

The strategy for requirement MΦ,Ψ. Suppose that Φ and Ψ are given
s-operators. At first we try to diagonalize, and to define A, G, and B in
such a way as to have, for some x, A(x) 6= ΦΨG⊕B(x). So the first attempt
consists in trying to execute the following actions:

1. Appoint a witness x, and temporarily let x ∈ A;

2. await x ∈ ΦΨG⊕B ; (this will be referred to as outcome w;)

3. extract x from A, and restrain x ∈ ΦΨG⊕B . (This will be referred to
as outcome d.)

Unfortunately, it might not be possible to proceed with item (3) of the pre-
vious naive strategy. Indeed, the following could happen, as a consequence
of the interaction of our strategy with D-strategies having higher priority:
Axioms of the form 〈x, {y} ⊕∅〉 ∈ Φ, and 〈y, {g}〉 ∈ Ψ might appear, with

1Note that ∅⊕∅ is just a more informative way of denoting the empty set ∅!
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g ∈ G, which makes x ∈ ΦΨG⊕B , but on the other hand there is a higher
priority strategy Di, with an axiom 〈x, {g}⊕∅〉 ∈ ∆i already defined, thus
with g ∈ Gi, so it is not possible to restrain g ∈ G (which would make
x ∈ ∆Gi⊕B

i ), and extract x from A, without injuring Di. So, unless later
axioms of a different form appear for y in Ψ (for instance: 〈y,∅〉 ∈ Ψ; or
〈y, {g′}〉 ∈ Ψ, with g′ 6= g such that g′ can be restrained without prevent-
ing Di from extracting x; or later axioms of the form 〈x,∅ ⊕ ∅〉 ∈ Φ, or
〈x,∅ ⊕ {b}〉 ∈ Φ with 〈x,∅ ⊕ {b}〉 /∈ ∆i), we do the following: We define
an s-operator Γi, by enumerating the axiom 〈g, {y}〉 ∈ Γi; and extract from
G all those numbers ĝ such that there are axioms 〈x, {ĝ} ⊕ ∅〉 ∈ ∆j for
all strategies Dj , with j 6= i, of higher priority than MΦ,Ψ. If a new axiom
〈y, {g′}〉 ∈ Ψ (with g′ ∈ G) as before appears, then g′ is different from g and
the ĝ’s, and we are free to diagonalize as explained above, by restraining
g′ ∈ G, extracting x from A, and mantaining all ∆j ’s correct. On the other
hand, if no new such axiom appears then we have g ∈ Gi if and only if
y ∈ ΨG, and thus g ∈ Gi if and only if g ∈ ΓΨG

i . The idea is then to “pass
on” g (through a sort of stream of elements) to lower priority strategies for
their own use. Whatever they do with g, they can not destroy correctness
of Γi at g. Unfortunately, if no further action is taken, this would make
x /∈ ∆Gj⊕B

j for j 6= i, even if x ∈ A. To set A(x) = ∆Gj⊕B
j (x) for all

relevant j, we select a new element b, define b ∈ B, and enumerate the
axiom 〈x,∅ ⊕ {b}〉 ∈ ∆j . Of course if later we are able to diagonalize by
extracting x from A, then we must extract b from B, together with g, in
order to preserve A(x) = ∆Gj⊕B

j (x).
Having lost x as a diagonalization witness, we then appoint a new witness

x′ in a new attempt at diagonalization as before. Proceeding as outlined
above, if all our attempts at diagonalization fail, then since there are only
finitely many strategies Dj having higher priority than MΦ,Ψ, the conclusion
must be that there is a least i such that we define infinitely many axioms of
the form 〈g, {y}〉 ∈ Γi, and the elements of the infinite set (stream) of these
g’s can be used as witnesses by lower priority strategies. There are of course
other stratagems that one has to employ here. In particular, Γi is a priori
correct only on the g’s that are in the stream. We must make sure that Γi
is correct also on numbers which are not in the stream. This is no problem
as regards numbers used as witnesses by higher priority strategies. On the
other hand when we define Γi we initialize all strategies of lower priority
that may use numbers not in the stream, and our strategy assumes that
these numbers will maintain their Gi-membership, thus defining an axiom
〈g′,∅〉 ∈ Γi for those relevant g′’s that are currently in Gi.
The tree of strategies. We work with a tree of strategies

T ⊆ (ω ∪ {d,w})<ω
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where the set of outcomes (i.e., the elements of ω ∪ {w, d}) are ordered as
follows:

d < 0 < 1 < · · · < w.

We use the standard notations and terminology on strings. In particular,
given strings α, β ∈ T : |α| denotes the length of α; α ⊆ β means that α
is an initial segment of β; α <L β means that there is a string γ such that
γ ⊂ α, β and α(|γ|) < β(|γ|); α ≤ β means α ⊆ β or α <L β; we say that α
has higher priority than β if α < β; the empty string is denoted by λ.

We will refer to some computable requirement assignment R of require-
ments to the elements of T (i.e., finite strings of outcomes; the strings in
T are also called nodes, or strategies), i.e., a function R mapping nodes to
requirements (we will denote by Rα the requirement assigned to node α), in
such a way that along any infinite path of T , R is in fact a bijection. We say
that a strategy α is a D-strategy (I-strategy, or M -strategy, respectively) if
Rα = Di for some i (Rα = Ii,Φ for some i and s-operator Φ, or Rα = MΦ,Ψ,
for some pair of s-operators Φ,Ψ, respectively). We assume that if β ⊂ β′

are D-strategies and Dβ = Di, Dβ′ = Di′ then i < i′. If β is a strategy
such that, e.g., Rβ = Di, then we also write Gβ for Gi; and similar other
abuses of notations will be allowed, hopefully without affecting clearness
and readability of the proof.

During the construction, we define approximations to the sets Gi, A,B.
We also define several additional parameters, including witnesses, auxiliary
sets, and s-operators. In particular:

- for every D-node α we define an s-operator ∆α; for every M -node α and
any i, an s-operator Γα,i;

- for every I-node we define a witness gα; for every M -node α we define
witnesses xα(0), xα(1), . . ., and parameters bα(0), bα(1), . . .;

- for every α we define a set (called stream) Sα, which is given, stage by
stage, by specifying its elements.

At stage s of the construction, in addition to the approximations Gi,s,
As, Bs to the sets Gi, A, B, respectively, we define approximations to the
above mentioned parameters, thus defining ∆α,s, Γα,i,s, gα,s, xα,s(t), bα,s(t),
Sα,s.
The desired sets Gi, A, B, and G will eventually be defined by

Gi = {y : (∃t)(∀s ≥ t)[y ∈ Gi,s]} ,
A = {y : (∃t)(∀s ≥ t)[y ∈ As]} ,
B = {y : (∃t)(∀s ≥ t)[y ∈ Bs]} ,

and, as already remarked, G =
⋃
i∈ω Gi.
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Definition 3.1. When we initialize a strategy α at stage s, we discard the
current version of the relative parameters, i.e., we set ∆α,s = Γα,i,s = Sα,s =
∅, gα,s =↑ (undefined), and xα,s(t) = bα,s(t) =↑ for any t. (Hence when
we initialize α we discard the current values of the parameters, waiting to
define new values if needed later. Notice that upon discarding the value of
a parameter, the construction will not change its current membership state,
thus for instance xα,s(t) will stay forever in A if currently in A, or it will be
forever xα,s(t) /∈ A if currently not in A, etc.)

In order to define Sα,s, we will in fact define S[j]
α,s, i.e., Sα,s ∩ ω[j], for

every j: The idea underlining the set S[j]
α is that the only elements that

strategies β ⊇ α may use in order to define Gj are taken from S
[j]
α .

Definition 3.2. During the construction we say that at a stage s + 1 a
number y is new for strategy α if either

1. y needs to be chosen to be enumerated into A or B, and y is bigger
than any number that has been used so far by any strategy; or

2. y needs to be chosen to be enumerated into Gi, for some i, and y ∈
S

[i]
α,s+1 − S

[i]
α,s.

In the construction below, any parameter retains the same value as at
the previous stage unless otherwise specified. Moreover, for any α if o is the
current outcome of α at stage s, any new element entering S[j]

α,s will also be
enumerated into S[j]

α_〈o〉,s unless otherwise specified.

The construction. By stages: We define at stage s a string δs, which is
the current approximation to what will be called the true path.
Step 0. Let δ0 = λ. Initialize all strategies.
Step s + 1. For the sake of simplicity we will often write p (where p is a
parameter) instead of ps, or ps+1, to denote the most recent value of p that
has been defined, or is being defined, during the construction. We will also
often omit the strategy to which the parameter refers, thus writing p for
pα, when the strategy is clearly understood from the context. Similarly, we
omit specifying s when writing x ∈ A, meaning x ∈ As, etc.

Suppose we have already defined α = δs+1 � n, and S
[j]
α , for every j,

having defined Sλ,s+1 = {〈x, y〉 : y ≤ s, x ∈ ω}.
We act on α according to the requirement Rα.
Rα = Di. For any x ∈ A enumerated into A by any β + α, or x ∈ A and
x enumerated by β ⊃ α which has been later initialized, add the axiom
〈x,∅⊕∅〉 ∈ ∆α. Let α_〈0〉 be eligible to act next.
Rα = Ii,Φ. We distinguish the following cases:
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1. There is no appointed witness: Appoint a new witness g, i.e., let
gα = g, define g ∈ Gi, and end the stage.

2. g = gα is defined and g ∈ Gi − ΦG 6=i : Let α_〈w〉 be eligible to act
next.

3. g ∈ ΦG 6=i : Define g /∈ Gi. If this is the first time we have taken this
case since the last initialization of α, end the stage. (This has the effect
of restraining g ∈ ΦG 6=i if α is never again initialized.) Otherwise, let
α_〈d〉 be eligible to act next.

Rα = MΦ,Ψ. We first give the following definition which allows us to
identify an x for which we can force x ∈ ΦΨG⊕B − A, and still make
A(x) = ∆Gβ⊕B

β (x) for each D-strategy β ⊂ α.

Definition 3.3. We say that a number x is eligible to act at α if one of the
following holds:

1. There is an axiom 〈x,∅⊕∅〉 ∈ Φ.

2. There is an axiom 〈x,∅⊕{b}〉 ∈ Φ such that b ∈ B, 〈x,∅⊕{b}〉 /∈ ∆β ,
for any β ⊂ α.

3. There is an axiom 〈x, {y} ⊕∅〉 ∈ Φ and an axiom 〈y,∅〉 ∈ Ψ.

4. There is an axiom 〈x, {y} ⊕ ∅〉 ∈ Φ and an axiom 〈y, {g}〉 ∈ Ψ with
g ∈ G, such that there is no D-node β ⊂ α, with the axiom 〈x, {g} ⊕
∅〉 ∈ ∆β .

We now proceed with the strategy. Suppose that since last initialization
of α we have already defined xα(t) and bα(t), with t < n. We distinguish
the following cases:

1. If some x = xα(t) is eligible to act, do the following actions: Extract x
from A, i.e., define x /∈ A. Correct ∆β for β ⊂ α: If 〈x, {g}⊕∅〉 ∈ ∆β

then extract g from Gβ , and if 〈x,∅ ⊕ {b}〉 ∈ ∆β then extract b
from B. If this is the first time we have taken this case since α’s last
initialization, end the current stage. Otherwise, let α_〈d〉 be eligible
to act next.

2. n > 0 and xα(n− 1) ∈ A−ΦΨG⊕B : let α_〈w〉 be eligible to act next.

3. n > 0 and xα(n − 1) ∈ ΦΨG⊕B ∩ A. Denote again for simplicity
x = xα(n− 1). We further distinguish two cases:
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(a) bα(n− 1) is undefined. Notice that there are only axioms of the
form 〈x, {y}⊕∅〉 ∈ Φ, such that for all axioms 〈y, {g}〉 ∈ Ψ there
are a D-node β ⊂ α, with g ∈ Gβ , and an axiom 〈x, {g} ⊕∅〉 ∈
∆β , so that we can not restrain g ∈ Gβ , and extract x from A

without making it impossible to achieve A(x) = ∆Gβ⊕B
β . Pick

the least such β, and suppose that Rβ = Di: For all D-strategies
β′ 6= β such that β′ ⊂ α, define g′ /∈ Gβ′,s+1, where g′ is such that
there is an axiom 〈x, {g′}⊕∅〉 ∈ ∆β′ . Pick a new b = bα(n− 1),
define b ∈ B, and add the axiom 〈x,∅ ⊕ {b}〉 ∈ ∆β′ , for any
D-node β′ ⊂ α.
Add the axiom 〈g, {y}〉 ∈ Γα,i. For each g′ such that g′ ∈ Gi and
g′ has been enumerated by some strategy β 6⊇ α_〈i〉, define the
axiom 〈g′,∅〉 ∈ Γα,i. Define S[i]

α_〈i〉,s+1 = S
[i]
α_〈i〉,s ∪ {g}, and let

α_〈i〉 be eligible to act next.

(b) b = bα(n − 1) is defined, or n = 0: Choose a new xα(n); define
xα(n) ∈ A; for every D-strategy β ⊂ α, with say Dβ = Dj ,
appoint a new number gj ∈ S[j]

α , define gj ∈ Gj , add the axiom
〈x, {gj} ⊕∅〉 ∈ ∆β , and end the stage.

4 Verification of the construction

Lemma 4.1. The sets Gi, A and B are 2-c.e.

Proof. A careful look at the construction shows that if X is any of the sets
Gi, A,B, then for every z, at stage 0 we have X0(z) = 0.

Consider first the case X = A. An element x can enter A only if enu-
merated by some M -strategy α, i.e., x = xα(t), for some t. But then it can
only be extracted just through Case 1 of the same strategy α. After this x
is never again enumerated into A.

A similar argument applies toB. An element b can enterB if enumerated
by some M -strategy α, and can be extracted again only by α upon giving
outcome d.

Finally assume that X = Gi. An element g can be enumerated in Gi
a first time by an M -strategy α, in correspondence to some witness x, i.e.,
α enumerates x into A, defines the axiom 〈x, {g} ⊕ ∅〉 ∈ ∆α and defines
g ∈ Gi. Then it can only be extracted by the same strategy α, when moving
to outcome d or to outcome j with j 6= i; or it can be extracted by some
strategy γ ⊇ α_〈i〉, after g has been put in the set Sα_〈i〉. After being
extracted g is not used anymore. q.e.d.

Lemma 4.2. For every n the following hold: αn = lim infs δs � n exists;
αn is eventually never initialized; after the last initialization of αn there
are infinitely many αn-true stages s (i.e., stages at which αn ⊆ δs) and at
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each such stage S[j]
αn,s contains a new element for every j; witnesses gαn ,

and xαn(t), bαn(t) reach a limit.

Proof. The proof is by induction on n. For n = 0 the claim is obvious.
Suppose now that αn = lim infs δs � n exists, and the inductive claim is true
of n. For simplicity, let α = αn. Let t be a stage such that at no s ≥ t do we
act on any β <L α. Notice that the inductive assumption on S

[j]
α allows us

to conclude that if α needs to appoint some new element g ∈ S[j]
α in order

to define the set Gj , then it is allowed to do so.
We now distinguish three cases according to whether α is a D-strategy,

or an I-strategy, or an M -strategy, respectively.
Rα = Di. We first notice that when α acts, we give outcome 0, and we
never end the stage after acting. So

αn+1 = lim inf
s

δs � n+ 1 = α_〈0〉.

On the other hand the inductive claim on S
[j]
αn+1 clearly carries through.

Rα = Ii,Φ. Using the inductive assumption on S
[i]
α , at some stage s ≥ t we

appoint a final witness gα, after which we end the current stage at most
twice: once in Case 1 and once in Case 3. Again the inductive claim on
S

[j]
αn+1 trivially carries through.
Rα = MΦ,Ψ. Since α is never initialized after stage t, whenever we appoint
a number xα(t) at some stage s ≥ t, this will never change again. The
same conclusion holds for bα(t). Clearly there exists a greatest m ∈ ω∪{ω}
such that for every t < m, xα(t) is eventually appointed. If m ∈ ω then we
eventually have outcome w or d, which are both finitary, and the inductive
claim on S

[j]
αn+1 carries through.

Thus assume that m = ω and i is the least such that α_〈i〉 is visited
infinitely often. Notice that whenever we visit α_〈i〉 we add a new element
g to the set S[i]

α_〈i〉. On the other hand the inductive claim on S[j]
αn+1 clearly

carries through. q.e.d.

Let f =
⋃
n αn be the true path, defined by

αn = lim inf
s

δs � n.

Lemma 4.3. For every n, Rαn is satisfied.

Proof. Let α = αn, for some n, be given, and suppose by the previous
lemma that tn is the last stage at which α is initialized.

Rα = Di: Let x be given. In order to check that A(x) = ∆Gi⊕B
α (x),

we need only check this for those numbers x such that there are β and t
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with x = xβ(t). Only strategy β is responsible for keeping x in or out of A.
Without loss of generality, we may assume that t ≥ tn.
Case 1. β + α. At the first α-stage s > t if x ∈ A then we enumerate the
axiom 〈x,∅⊕∅〉 ∈ ∆α, which makes x ∈ ∆Gi⊕B

α . Otherwise, if x /∈ A then
at no α-stage s after last initialization of α do we have x ∈ As, hence we do
not define any ∆α-axiom for x.
Case 2. β ⊇ α. If β appoints x and β is initialized before ever extracting
x, then x ∈ A, but on the other hand at the first α-stage after initialization
of β, we enumerate the axiom 〈x,∅ ⊕ ∅〉 ∈ ∆α, which makes x ∈ ∆Gi⊕B

α .
Otherwise, at stage t, when β appoints x, β enumerates also an axiom
〈x, {g} ⊕ ∅〉〉 ∈ ∆α, letting g ∈ Gi, which makes x ∈ ∆Gi⊕B

α as long as β

takes outcome w, waiting for x ∈ Φ
ΨGβ⊕B
β . Then either β jumps immediately

from outcome w to outcome d, extracts x from A and g from Gi, which
makes A(x) = ∆Gi⊕B

α (x); or β takes some outcome j ∈ ω, keeps x ∈ A,
adds an axiom 〈x,∅ ⊕ {b}〉 ∈ ∆α letting b ∈ B, which keeps x ∈ ∆Gi⊕B

α

even if some lower priority strategy extracts g from Gi; until β takes, if this
is ever the case, outcome d and thus extracts x from A, g from Gi, and b
from B, making x /∈ ∆Gi⊕B

α . In all cases A(x) = ∆Gi⊕B
α (x).

Rα = Ii,Φ. Let t be a stage after which α does not change gα anymore. By
Lemma 4.2 such a stage exists. If at no future α-stage do we have gα ∈ ΦG 6=i
then αn+1 = α_〈w〉 and the requirement is satisfied. Otherwise at some
future α-stage we have that gα ∈ ΦG6=i . As explained in the construction,
at the first such stage, we restrain gα ∈ ΦG 6=i , and we extract gα from Gi,
thus letting gα ∈ ΦG 6=i −Gi.
Rα = MΦ,Ψ. If αn+1 = α_〈w〉 then there exists n such that x = xα(n)
is defined, no xα(m) is ever defined for m > n, and x ∈ A − ΦΨG⊕B . If
αn+1 = α_〈d〉 then there is some x = xα(t) (among finitely many witnesses
xα(0), . . . , xα(n) which β has defined after last initialization) such that x ∈
ΦΨG⊕B −A.

It remains to consider the case when αn+1 = α_〈i〉 for some i ∈ ω.
We claim in this case that Gi = ΓΨG

α,i , where Γα,i is the s-operator, as
enumerated by α after the last initialization of α.

If g is eventually used by a strategy β ≤ α, then either g /∈ Gi, and
in this case there is no axiom 〈g, F 〉 ∈ Γα,i, or g ∈ Gi, in which case by
construction we add an axiom 〈g,∅〉 ∈ Γα,i.

Next, for every g which is ever used by any strategy β >L α_〈i〉, we
have (at the moment when we discard g by initialization) either g /∈ Gi,
in which case we have Gi(g) = ΓΨG

α,i (g) since we never define any axiom
in Γα,i for these g’s, or we have g ∈ Gi, in which case we add an axiom
〈g,∅〉 ∈ Γα,i.
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So we need only show that for every g such that g is enumerated into
S

[i]
α_〈i〉 at some α_〈i〉-stage,

g ∈ Gi ⇔ g ∈ ΓΨG

i .

The reason we have enumerated g into S[i]
α_〈i〉 at some stage t′ ≥ tn is

that we have found an axiom 〈y, {g}〉 ∈ Ψ, with g ∈ Gi, in correspondence
with some witness x, for which there is an axiom 〈x, {g}⊕∅〉 ∈ ∆β (where
β ⊂ α is such that Rβ = Di). Moreover there is no other axiom 〈y, {g′}〉 ∈ Ψ
with g′ ∈ G. Indeed, such an axiom can not appear after t′ since in this
case we would be able to diagonalize and give outcome d. If it is present
at stage t′, then since we give outcome i at t′ there must be an axiom
〈x, {g′} ⊕ ∅〉 ∈ ∆j with j > i (here Dj = Dβ′ , for some β′ such that
β ⊂ β′ ⊂ α), but in this case we extract g′ from G by construction.
We are therefore able to conclude

g ∈ Gi ⇔ y ∈ ΨG ⇔ g ∈ ΓΨG

i

as desired. q.e.d.

Lemma 4.4. Let gi = degs(Gi). The set {gi : i ∈ ω} is first order definable
with parameters a,b, c.

Proof. Let α(x) be the following formula with parameters g, a, b in the
language of partial orders (where ∨ and < are obvious abbreviations):

α(x) : x ≤ g & a ≤ x ∨ b

and let
ϕ(x) : α(x) & ¬(∃w < x)α(w).

Now, if the parameters g, a, b are interpreted with the s-degrees g =
degs(G), a = degs(A), b = degs(B), respectively, then in the structure
Ls of the Σ0

2 s-degrees, we have that

Ls |= ϕ(x,g,a,b)⇔ x ∈ {gi : i ∈ ω} .

Indeed, the formula is certainly satisfied when x = gi, any i, since each
gi is incomparable with all the others. On the other hand, if x ≤s g and
a ≤s x ∨ b and there is no y <s x such that y ≤s g and a ≤s y ∨ b, then
since gi ≤s x for some i, we have that gi = x.

q.e.d.
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