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Discussion

JON A. WELLNER

Department of Statistics, GN-22, B313 Padelford Hall, University of Washington, Seattle, WA 98193,
USA

This is a discussion of the Forum Lectures by Evarist Giné on the subject of Empirical Processes and
Applications presented at the European Meeting of Statisticians held in Bath, England, September
13-18, 1992.

The discussion includes short sketches of developments in probability theory (Gaussian process
theory, weak convergence theory, and probability in Banach spaces), empirical process theory, and
applications thereof in statistics. [ comment briefly on the formulation of central limit theorems for
empirical processes in terms of the presence or absence of 2 Gaussian hypothesis, expand on Professor
Ging’s discussion of the bootstrap, and briefly explain my recent results for exchangeably weighted
bootstraps obtained jointly with Jens Priestgaard. The discussion closes with some problems.
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1. Introduction

First, let me congratulate Professor Giné on his lucid and enthustastic paper. He has donea
wonderful job of conveying the feel and excitement connected with recent developments in
empirical process theory and the application of this theory in statistics. His simple and
elegant presentation of the inequalities clearly shows their power for obtaining the basics of
the theory.

There has been tremendous progress over the past 15 years in empirical process theory -
and in its applications to problems in statistics. As I tried to argue in my recent review
article (Wellner 1992), the time-lag between the introduction of problems and their solution
using modern empirical process techniques seems to be decreasing rapidly.

This progress in empirical process theory has gone hand in hand with considerable
progress in some of the related areas of probability theory. Three general areas in particular
are: Gaussian process theory; weak convergence theory; probability in Banach spaces.

In the area of Gaussian process theory, major developments include: exponential bounds
resutting from the Borell inequalities; introduction and use of ‘majorizing measures’ to
characterize continuity of Gaussian processes; and systematic development of Gaussian
comparison theorems. Major contributions have been made by Dudley, Marcus and Shepp,
Fernique, Borelll, Pisier, Sudakov, and Talagrand; see Ledoux and Talagrand (1991,
Chapters 3 and 11) for much of this.

In the area of weak convergence theory, it was recognized early on by Chibisov (1965)
that even the classical empirical process is not Borell-measurable in the non-separable
metric space (D[0,1],{| - ||} Dudley (1966) suggested one solution to deal with this
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difficuity, and a useful summary of solutions via separable metrizations is given in
Billingsley (1968). However the current modern approach via outer measures did not
become clear until the work of Hoffmann-Jargensen {(1984) and Dudley (1985).

Finally, developments in the area of probability in Banach spaces have had a profound
impact on empirical process theory. Major developments include the Hofftmann-Jorgensen
inequalities and the isoperimetric methods exposited in the recent book by Ledoux and
Taiagrand (1991). Important contributions have been made by Dudley, Giné, Kuelbs,
Ledoux, Pisier, Talagrand, and Zinn, among many others.

On the empirical process side of the fence, progress has also been rapid, building on the
probability tools, and in turn providing further problems for the theory. Here is a very brief
thumbnail sketch of developments in the theory of (general) empirical processes:

e Vapnik and Cervonenkis (1971): Glivenko—Cantelli theorems for sets.

s Dudley (1978): General central limit theorems for empirical processes indexed by sets:
VC-classes and sets with smooth boundaries.

s Koldinskii (1981) and Pollard (1982): Central limit theorems for classes of square-
integrable functions satisfying uniform entropy conditions.

s Giné and Zinn (1984): Systematic use of Gaussianization and the mulriplier inequaliry
begins. (We will elaborate on this below.)

» Alexander (1984): Exponential bounds for suprema of empirical processes indexed by
classes of sets and by uniformly bounded classes of functions.

o Massart (1986): Rates of convergence for Pollard’s uniform entropy central limit
theorem; more exponential bounds.

o Ossiander (1987): General central limit theorem for classes functions satisfying an
entropy with bracketing condition,

e Talagrand (1987): Study of measurability issues for the Glivenko—Cantelli theorems.

e Dudley (1987): Study of universal Donsker classes of functions and entropy bounds for
convex hulls of polynomial classes.

¢ Giné and Zinn (1990); Bootstrap CLT for the general empirical process.

¢ Giné and Zinn (1991); Sheehy and Wellner (1992): Study of uniform Donsker classes of
functions: exponential bounds for such classes and applications to model-based boot-
strapping.

This progress in empirical process theory has enabled a large number of new applications
in statistics. Statistical problems have, in turn, continued to generate new and challenging
probiems for empirical process theory. Here is a short list of selected areas of application in
statistics, chosen with a view towards potential for further development and application:

& M-estimators: Huber, Poliard, Arcones and Giné.

¢ Infinite-dimensional M-estimators: Gill, van der Vaart, Murphy.

» The delta method: Gill, Dudley.

e Rates of convergence: van de Geer, Birgé and Massart, Wong and Shen.

¢ Smoothing: Pollard, Yukich, Nolan.

# Non-standard asymptotics: Kim and Pollard, Nolan, Groeneboom, Doncho.

See Weliner (1992) for a more complete review and full references.
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2. Donsker theorems: pre-Gaussianity as hypothesis or conclusion

In considering the Donsker theorems in Professor Giné’s paper, it is useful to distinguish
those theorems which involve a Gaussian hypothesis and those which include existence of a
tight P-Brownian bridge process as one of the conclusions. For example, Theorems 2 and
3(b) include the hypothesis that the class & is P-pre-Gaussian. On the other hand, Pollard’s
(1982) corollary of Theorem 3(b) and Ossiander’s (1987} Theorem 4(ii) include P-pre-
Gaussianity of & as a part of their conclusions. Hypothesizing pre-Gaussianity of %
provides an interesting way of exploring conditions and of obtaining sharp theorems — but
with an additional (often difficult) hypothesis to check in order to apply the result. For most
applications in statistics, I find the latter type of Donsker theorems, with pre-Gaussianity as
a conclusion, more convenient and easier to apply.

Of course, pre-Gaussianity as a first step in the proof of a Donsker theorem can be
extremely illuminating, and can indeed lead to sufficient conditions: one nice example of
this is Marcus (1981), in which necessary and sufficient conditions for weak convergence of
the empirical characteristic function are found based on pre-Gaussian considerations.

3. Multiplier inequalities, empirical processes and bootstrap
empirical processes

In this section our goal is to expand upon Professor Giné’s treatment of the multiplier
inequality, and to explain its role and conseguences in empirical process theory.

The basic multiplier inequality (Proposition 8 of Giné’s paper) was apparently first
discovered (independently} by Pisier and Fernique in 1977 or 1978. It first appeared in Giné
and Zinn (1984) (see also Giné and Zinn (1986a)) where it was used with Gaussian
multipliers; see also Giné and Zinn (1986a). Alexander (1985), solving a problem posed by
Hoffmann-Jorgensen, shows that no ‘universal multiplier moment” exists; there is no
function 1 : R* — R so that YZ satisfies the central limit theorem, whenever EYZ = 0,
E4(|Y|,]lZ]|) « oo and Z satisfies the central limit theorem, for indepeadent real and
Banach space valued random elements ¥ and Z. Proposition 8 continues to hold for mean
zero multipliers {£,} without the assumption of symmetry at the price of a factor of 2v/2
multiplying the right-hand side. For empirical process theory, the processes Y; are usually
taken to be §y, — P usually, but the multipliers £; can be Gaussian, centred Poisson,
symmetrized Poisson, centred exponential, centred Gamma(4,1), and so forth.

The following (unconditional) multiplier central limit theorem is implicit in Giné and
Zinn (1984) and is stated explicitly in Giné and Zinn (1986a); also see Proposition 10.4 in
Ledoux and Talagrand (1991, p. 279).

Theorem 3.1 (Unconditional multiplier CLT). Ler & be a class of measurable functions. Let
&1y-.. &, be iid. random variables with mean zero, variance ¢? > 0 and A p(€;) < ox,
independent of X;, ..., X,. Then the following are equivalent:
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(4) & is Donsker: G, = Gp in {°(F)
(B) n L £d8y, — P) = ¢Gp in £2(F),

Ledoux and Talagrand (1986) show that the L ; hypothesis on the multipliers £; cannot
be relaxed in the sense that for every £ with A, | (§) = oo there exists a Banach space valued
Y that satisfies the central limit theorem, but £¥ does not satisfy the central limit thecrem.
Ledoux and Talagrand (1986) and Proposition 10.4 in Ledoux and Talagrand (1991, p. 279)
give a different proof of the basic multiplier inequality.

The following almost sure conditional multiplier central limit theorem is due to Ledoux,
Talagrand (and Zinn) (1988). It apparently originated simply from a desire beiter 1o
understand the nature of the unconditional multiplier CLT. The original proof of Ledoux
and Talagrand (1988} used martingale difference methods originating in Yurinskii (1974);
another proof based on isoperimetric methods is given by Ledoux and Talagrand (1991,
p. 293).

Theorem 3.2 (Almost sure conditional multiplier CLT). Let & be a class of measurable
Sunctions with || Pf |lg < co. Let &,...,€E, be iid. random varighles with mean zero,
variance ¢° >0 and A 1{&;) < oo, independent of X;,...,X,. Then the following are
equivalent:

(4) F is Donsker and P(F?) < : G, = Gp in {™(F)
(B) n 2 £ {8y — P) = cGp abmost surely in {°(F).

The following ‘in probability’ conditional multiplier central limit theorem is implicit in
Giné and Zinn (1990).

Theorem 3.3 (‘In probability’ conditional multiplier CLT). Let # be o class of measurable
Sfunctions with || Pf || 5 < co. Let &, ..., &, be i.i.d. random variables with mean zero, variance
¢ > 0and A; (&) < oo, independent of X, ..., X,. Then the following are equivalent.

(A) F is Donsker: G, = Gp in £2(F)
(B) Z¥=n'S0 166y —P)=>cGp in probability in £%(F); e
dgr-(Zy;,cGp) —, 0 where dp;- denotes the dual-bounded Lipschitz metric.

In view of these last two theorems, the bootstrap central limit theorems of Giné and Zinn
{1990} (Theorem 9 of Giné's paper) seem quite natural when we realize that the bootstrap
empirical processes is just a multiplier process with multinomial weights: Let P, be the
empirical measure of the X; as above, let X, ..., X, be a ‘bootstrap sample’ from P, and
let N, ~ Poisson(n) be independent of the X; and of the X;. The bootstrap empirical process
G, is

G, = vn(P, - Py} = \/E(%Z“:‘SX, —JP’:)

I~ - ; [
= —_ . o nd = a— —] =
H(H !.:E] Mméxr_(_,,) Pu) \/P_I E (Mm )6}(‘(‘,)

i=1
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where
M, ~ Mult, (n, G‘ o ,;!l—)) is independent of the X;.

We can write

k
Z =3 (Lijpeees 1)

j=1

1 1
(1”‘:-.-‘ lﬂj) P Muh,,(l, (;,. ..,;!-))

are iid., j=1,...,k k=1,2,,... Note that if we ‘Poissonize’ H,, by forming MN”,
the result is:

where

MN ™~ (&ls"'!‘gﬂ)

where £,,...,§, are i.i.d, Poisson(1). This fact is exploited by Klaassen and Wellner (1992)
to give alternative proofs of the Giné and Zinn (1990) bootstrap central limit theorems
based on the multiplier CLTs 2.2 and 2.3.

Now we turn to alternative bootstrap methods based on exchangeable weights instead of
the multinomial weights used in Efron’s bootstrap. A key element of the proof is the
following multiplier inequality for exchangeable weights given in Prastgaard and Wellner
(1993). It shows that the expectation of the norm of an ‘exchangeably weighted’ bootstrap
empirical process can be bounded by the expectation of a ‘randomly permuted’ sum — with
a random permutation R playing the role of the Rademacher random vanables in the
unconditional multiplier inequality, Lemma 2.1.

Lemma 3.1 (Exchangeable multiplier inequality). Le: W = (W, ..., W,) be a non-negative,
exchangeable random vector with Ay ;(W;) < oo, and let R denote a random permutation
uniformly distributed on 11,,, the set of permutations of {1,...,n}. Let Y,,..., Y, be random
elements of £%(F) so that (W, R) and (Y,,....Y,) are independent (in fact defined on a
product probability space). Let ||- || denote a pseudonorm on £ (F). Then, for any ng < n,

NIBES .
E V—,—r_!j;u;-}g (maxW) -E ZHYH

Z Yripy ||

j-n9+ l

+A2](W|) InaX E

<k=n

where the expectation is with respect to both Y,,..., Y, and R.

In most of our applications of Lemma 2.1 the ¥; are deterministic.
This version of the multiplier inequality plays a key role, together with Hoeffding’s (1963)
inequality relating sampling without replacement to sampling with replacement, in the
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proof of the following ‘exchangeabiy weighted bootstrap central limit theorem’. In fact the
following theorem, obtained in joint work with Aad van der Vaart, is a slight generalization
of the exchangeable bootstrap central limit theorem of Prestgaard and Wellner (1993). Tt is
formulated to include the important case of sampling without replacement. To do this
requires introduction of a new norming sequence r, and hypotheses on the weights { #,;} as
follows:

(A1) {W,;} are non-negative and exchangeable.

(A) 3L W=n.
(A3) sup, Hf’n o llza <00
(A4) lun,,_,m Sup,;.c‘/-t Pr(|r,, 4 | > #) =0 for every ¢ > 0.

(AS) P2/m) T (W — 1P S e > 0.
The sampling without replacement weights { #,} defined by

R . .
M,-E;ZI{R}-:f}, i=1,...,n

J=1

where R = (R|,...,R,) is a random permutation of {1,...,n}, satisfies these conditions
with r, = (m/n)/{1 — (m/m)) and ¢ = 1 if sup{m/n) < 1.
In this setting we redefine the bootstrap empirical process to be

G;V = rn\/ﬁ(ﬁn:p w = Z{M: 6)( {w)-
1—1

The following theorem shows that these conditions suffice for conditional weak conver-
gence of the bootstrap process.

Theorem 3.4 (*Exchangeably weighted’ bootstrap CLT). Suppose that % is a Donsker class,
and, for eachn, W = (W,;, ..., W.,) is a vector of weights satisfyving conditions A1—AS5 for a
sequence r, with r? = o{n). Then, under measurability,

GY = ¢Gp in probability in £ (F);

asn — oc. If P*|| f = Pf ||% < oc then the convergence is also outer almost surely.
The proof follows the same pattern as the proof of the main result in Prestgaard and
Wellner (1993); in fact the main modification needed is in the proof of finite-dimensional

convergence. A complete proof is given in van der Vaart and Wellner (1993).
Here is the corollary for sampling without replacement. Write

- 1< R
IFDm.n = ;génfa @n-—m.n =

z-—m+l

Corollary 3.1 (Bootstrap without replacement). Let F be a Donsker class. If
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m A (n—m) — oo, then, subject to measurability,

[ nm s _ mn—m) - =
n—m (Pm,n - P,,) = _H——(Pm‘" - Qm—m,n) = GP

given X, Xz, ... in probability. Here Gp is a tight P-Brownian bridge process. If in addition ¥
possesses an envelope function F with P*F* < co, then the weak convergence also holds given
almost every sequence X1,Xs, ... -

Proof. First note that

nm

- ¥ "
P, .- =2 ;= 1)6y
n—m( mn Pﬂ) \/P—I;(%e ) X:

for the bootstrap without replacement weights {1,;}.

Suppose first that lim sup, A, = lim sup,(m/n) < 1. Then the result follows from the
preceding theorem by checking that the sampling without replacement weights {#};}
satisfy Al-AS5 with the choice . = (m/n)/(1 — (m/n)) and with ¢=1. In fact the
hypothesis AS holds with exact equality.

If lim sup, A, < 1, but lim inf, A, > 0, then we can argue the same way, but using
instead the identity

n(n—m)

min—m)

(@n—-m.n - ]Pﬂ) = _n'_' (Pm.n - @n—m,n}'

Thus we have the desired conclusion in probability if either liminf, A, >0 or
lim sup, A, < 1. But for any given subsequence {n'} there exists a further subsequence
{n"} such that X,» converges to some number in [0,1], and for this subsequence one of the
preceding arguments yields the convergence of the process to Gp along this further
subsequence. 0

This theorem for ‘bootstrap sampling without replacement’ is closely related to some nice
results of Romano and Politis (1992) concerning validity of the ‘sampling without replace-
ment bootstrap’ for a general real-valued statistic T, with 7,(T, — @) 4, Z: their results are
focused on the case m/n — 0. It is also closely related to results for two-sample permutation
test obtained in Prastgaard (1995). The main difference is that in Prestgaard (1995} it is
important to study the two-sample permutation empirical process under fixed alternatives
P # Q,whereas the above theorem corresponds to the null hypothesis 2 = Q in Prastgaard’s
two-sample setting.

The main point to be made here is that the multiplier inequalities, and the multiplier
central limit theorems based thereon, are very useful for a variety of statistical problems.

4. Problems

Here are a few selected problems connected with empirical process theory and the
application of this theory to statistics. Problem 4 below is from Pyke (1992), to which we
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refer for further problems in connection with ‘product processes’. Not all of the problems
are directly connected to Professor Giné’s lectures

(1) Suppose that (S, &) is an arbitrary sample space. Is there always a class of functions
Fsatisfying: (i) # is P-Donsker; (i) # is a determining class G.e. [f dP = [f dQ for all
f € & implies P = (?

(2) Is there an analogue of the Hoffmann-Jorgensen inequality for U-processes?
(Professor Giné informs me that J. Zinn and he have obtained a partial analogue for
degenerate U-processes; see Giné and Zinn (1992).)

(3) Is there a #-uniform version of the Giné—Zinn bootstrap theorem? [Professor Giné
suggests that uniform Donsker classes also satisfy the bootstrap CLT uniformly in P, and
possibly that the same is true for a restricted class #]

(4) Give conditions on r = r, — o0 2and €, C & so that

” Pn - P”%’,‘ —*as. 0.

(5) When does the bootstrap ‘work’ for dependent data? When does the bootstrap “work’
for U-processes?

(6) In what sense(s) is P, optimal as an estimator of P? What are the appropriate
extensions of the classical results of Dvoretzky et al. (1956), Kiefer and Wolfowitz (1959)?

(7) Suppose that (X, ¥)),....(X,, Y,),... are iid. as H on @ x % with empirical
measure H,, and marginal empirical measures P, and @, on 4 and % respectively, What are
the natural bootstrap and permutation central limit theorems for the independence

empirical process n{H, — P,-Q,)?

Acknowledgement

Research supported in part by National Science Foundation grants DMS-9108409 and
DMS-2306809.

Additional references

Alexander, K.S. {1984) Probability inequalities for empirical processes and a law of the iterated
logarithm. Ann. Probab., 12, 1041-1067. Correction: Ann. Probab., 15, 428—430.

Alexander, K.§, (1985) The nonexistence of a universal multiplier moment for the central limit
theorem. In Probability in Banach Spaces V. Lecture Notes in Math. 1153, pp. 15-16. New York:
Springer-Verlag.

Alexander, K. 8. (1987) Rates of growth and sample moduli for weighted empirical processes indexed
by sets. Probab. Theory Related Fields, 75, 379-423.

Andersen, N.T. (1985) The central limit theorem for non-separable valued functions. Z. Wahrschein-
lichkeitstheorie Verw. Geb., 70, 445-455.

Billingsley, P. (1968) Convergence to Probability Measures. New York: Wiley.

Chibisov, D.M. {1965) An investigation of the asymptotic power of the tests of fit. Theory Probab.
Appl., 10, 421-437,



Discussion 37

Dudley, R.M. {1966) Weak convergence of probabilities on nonseparabie metric spaces and empirical
measures on Euclidean spaces. Hlinois J. Math., 10, 109-126.

Dudley, R.M. (1990) Nonlinear functionals of empirical measures and the beootstrap. Probability in
Banach Spaces 7 (E. Eberlein, J. Kuelbs and M.B. Marcus, eds), pp. 63-82. Progress in
Probability 21. Boston: Birkhauser.

Dwvoretsky, A., Kiefer, J. and Wolfowitz, J. (1956) Asymptotic minimax character of the sample
distribution functign and of the classical multinomial estimator. Ann. Math. Statist, 27, 642-669.

Efron, B. (1979) Bootstrap methods: another look at the jackknife. Ann. Starist., 7, 1-26.

Efron, B. (1982) The Jackknifz, the Bootstrap and Other Resampling Plans. CMBS—-NSF Regional
Couference Series in Applied Mathematics 38, Philadelphia: Society for Industrial and Applied
Mathematics.

Gine, E. and Zinn, J. {1992) On Hoffmann-Jergensen’s inequality for U-processes. In R.M. Dudiey,
M.G. Hahn and J. Kuelbs (eds). Probability in Banach Spaces 8, pp. 80-91, Progress in
Probability 30. Boston: Birkhduser.

Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc, 58, 13-30.

Kiefer, J. and Wolfowitz, J. {1959} Asvmpiotic minimax character of the sample distribution function
for vector chance variables. Ann. Math. Statist. 30, 463-489.

Kiaassen, C.A.J. and Wellner, J.A. (1992) Kac empirical processes and the bootstrap. In R.M.
Dudley, M.G. Hahn and J. Kuelbs (eds). Probability in Banach Spaces 8, pp. 411-429. Progress
in Probability 3(. Boston: Birkh#user.

Marcus, MLB. (1981) Weak convergence of the empirical characteristic function. Ann. Probab., 9, 194-201.

Massart, P. (1986) Rates of convergence in the central limit theorem for empirical measures. Ann. Insi.
H. Poincare, 22, 381-423.

Pister, G. (1975) Le théoréme de la limite centrale et la loi du logarithme itéré dans les espaces de
Banach. Séminaire Maurey-Schwartz 1975-1976. Expose IV, Ecole Polytechnique, Paris.

Pollard, D. {1984} Convergence in Distribution of Stochastic Processes. New York: Springer-Verlag.

Pollard, D. (1990) Empirical Processes: Theory and Applicarions. NSF-CMBS Regional Conference
Seres in Probability and Statistics 2. Hayward, CA: Institute of Mathematical Statistics,

Prastgaard, J. (1995) Permutation and bootstrap Kolmogerov—Smirnov tests for the equality of two
distributions. Scand. J. Statist., 22, 305-322.

Pyke, R. (1992) Probability in mathematics and statistics: a century’s predictor of future directions.
Jahresberichr Deutschen Mathematiker-Veremigung Jubildumstagung 1990, 239--264.

Romano, J.P. and Politis, D.N. {1992) A general theory for large sample confidence regions based on
subsamples under minimal conditions. Technical Report 399, Department of Statistics, Stanford
University.

Romano, J.P. and Politts, D.N. (1994) Large sample confidence regions based ¢n subsamples under
minimal assumptions. dnn. Statist., 22, 2031 -2050.

Shechy, A. and Wellner, J.A. (1988) Uniformity in P of some limit theorems for empirical rmeasures
and processes. Technical Report 134, Department of Statistics, University of Washington.
Van der Vaart, AW. and Wellner, J.A. (1989) Prohorov and contituous mapping theorems in the
Hofimann-Jergensen weak convergence theory with application to convolution and asymptotic
minimax theorems. Technicat Report No. 157, Department of Statistics, University of Washington.

Van der Vaart, A W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes. New
York: Springer-Verlag, To appear.

Yurinski:, V.V. (1974} Exponential bounds for large deviations. Theory Probab. Appl., 19, 154-153.

Received October 1993 and revised April 1995



38 E. Giné
Rejoinder

I thank Professor Wellner for providing, in his discussion, an excellent complement to my
paper. Whereas in my overview I chose to emphasize simple instances of some of the main
developments in empirical process theory, with very sketchy comments on methods, he has
given us, in his Introduction, quite a comprehensive perspective (to which I would only add
the work of Ledoux and Talagrand 1989), and this was missing in my work. His Section 4
constitutes a very nice glimpse at his present work on the bootstrap with Praestgaard and
van der Vaart, which adds significantly to the work of Zinn and me by considering other
bootstraps as well as reduced sample size. Last, but not least, he has offered us a list of
problems that no doubt will be at the core of more than one good piece of further research.



