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We consider nonparametric estimation of the Lévy measure of a hidden Lévy process driving a

stationary Ornstein–Uhlenbeck process which is observed at discrete time points. This Lévy measure

can be expressed in terms of the canonical function of the stationary distribution of the Ornstein–

Uhlenbeck process, which is known to be self-decomposable. We propose an estimator for this

canonical function based on a preliminary estimator of the characteristic function of the stationary

distribution. We provide a suppport-reduction algorithm for the numerical computation of the

estimator, and show that the estimator is asymptotically consistent under various sampling schemes.

We also define a simple consistent estimator of the intensity parameter of the process. Along the way,

a nonparametric procedure for estimating a self-decomposable density function is constructed, and it is

shown that the Ornstein–Uhlenbeck process is �-mixing. Some general results on uniform

convergence of random characteristic functions are included.
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1. Introduction

For a given positive number º and a given increasing Lévy process Z without drift

component, consider the stochastic differential equation

dX (t) ¼ �ºX (t)dt þ dZ(ºt), t > 0: (1:1)

A solution X to this equation is called a Lévy-driven Ornstein–Uhlenbeck (OU) process, and

the process Z is referred to as the background driving Lévy process (BDLP). The

autocorrelation of X at lag h can be expressed in terms of the ‘intensity parameter’ º as e�ºjhj.
By the Lévy–Khinchine representation theorem (Sato 1999, Theorem 8.1), the

distribution of Z is characterized by its Lévy measure r. If
Ð1

2
log xr(dx) , 1, then a

unique stationary solution to (1.1) exists (Sato 1999, Theorem 17.5 and Corollary 17.9).

Moreover, the stationary distribution � of X (1) is self-decomposable with characteristic

function

ł(t) :¼
ð

ei tx�(dx) ¼ exp

ð1
0

(ei tx � 1)
k(x)

x
dx

� �
, (1:2)
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where k(x) ¼ r(x, 1). This shows that � is characterized by the decreasing function k,

which is called the canonical function. Conversely, if we presuppose that � satisfies (1.2),

then there exists an increasing Lévy process Z, unique in law, such that (1.1) holds for all

º . 0. Due to the special scaling in (1.1), � does not depend on º.

Assume that we have discrete-time observations X 0, X˜, . . . , X (n�1)˜ (˜ . 0) from

(X t, t > 0), as defined by (1.1), where the sampling interval ˜ may depend on n. Based on

these observations, we aim to estimate the parameters of the model. From the previous

remarks this comes down to (i) estimating the intensity parameter º and (ii) estimating the

canonical function k. In this paper we deal with both estimation problems. Our approach to

(ii) is nonparametric, although parametric submodels can be handled with our method as

well (see Jongbloed and van der Meulen 2004).

One motivation for studying this problem comes from stochastic volatility models in

financial mathematics. Barndorff-Nielsen and Shephard (2001a) model stock price as a

geometric Brownian motion. The diffusion coefficient of this motion, referred to as the

volatility, is assumed to be a Lévy-driven OU process. Based on stock prices, the objective

is to estimate the Lévy measure of the BDLP and º. Although related, this estimation

problem is intrinsically harder than the one we consider, since volatility is unobservable in

practice. Despite this, the present work may be extended to handle these models by the

addition of a deconvolution step, and hence may provide a first step towards estimating

these models nonparametrically. Another motivation comes from storage theory, where

equation (1.1) is often referred to as the ‘storage equation’ (see, for example, Çinlar and

Pinsky 1971).

Rubin and Tucker (1959) considered nonparametric estimation for general Lévy

processes, based on both continuous- and discrete-time observations, and Basawa and

Brockwell (1982) considered estimation for the subclass of continuously observed increasing

Lévy processes. In this paper we consider indirect estimation through the observation of the

OU process X at discrete time instants. Thus we deal with an inverse problem, and our

estimation techniques are correspondingly quite different from the ones in these papers.

Another paper on estimation for OU processes is Roberts et al. (2004), in which Bayesian

estimation for parametric models is considered. Other papers on empirical characteristic

function procedures include Knight and Satchell (1997), Feuerverger and McDunnough

(1981) and, in a more general framework, Luong and Thompson (1987).

In section 2 we discuss self-decomposability via the Lévy–Khinchine representation

theorem. We show that a self-decomposable distribution is characterized by the logarithm of

its characteristic function, which is called the cumulant function. Furthermore, we state the

close relationship between self-decomposability and Lévy-driven OU processes. Additional

details on this can be found in Sato (1999, Section 17). We show that the process

(X t, t > 0) is a Feller process (Proposition 2.1) and hence satisfies the strong Markov

property. We also give some examples of self-decomposable distributions and related OU

processes. In section 3 we prove that the OU process is �-mixing. In the proof, we use

theory as developed in Meyn and Tweedie (1993a; 1993b) and a result from Shiga (1990).

Section 4 explains our method for estimating the canonical function. The method uses a

given preliminary, consistent estimator ~łłn for the characteristic function ł0 of X (1), a

typical example being the empirical characteristic function of the observations. Any
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characteristic function ł without zeros possesses a unique (distinguished) logarithm, its

associated cumulant function, which we denote by Tł. Our estimator of the cumulant

function Tł0 is now defined as the projection of the preliminary estimate T ~łłn onto the

class of cumulant functions of self-decomposable distributions, relative to a weighted L2-

distance. The estimates of ł0 and its associated canonical function are defined by inverting

the respective maps. Under a ‘compactness condition’ on the set of canonical functions, this

cumulant M-estimator exists and is unique (Theorem 4.5). In Section 5 we prove two

uniform convergence results on random characteristic functions, which may be of

independent interest. We then use these results to provide conditions under which the

cumulant M-estimator is consistent (Theorem 5.3). The estimator can numerically be

approximated by a support-reduction algorithm, as discussed in Groeneboom et al. (2003).

In Section 6 we explain how this algorithm fits within our set-up.

Section 7 contains applications and examples of estimators under different observation

schemes and presents some simulation results. We also consider the estimation of a self-

decomposable distribution based on independent and identically distributed (i.i.d.) data. This

problem is difficult to handle by standard estimation techniques, as there exists no general

closed-form expression for the density of a self-decomposable distribution. The approach is

to first estimate the canonical function by our cumulant M-estimator and then apply Fourier

inversion.

For the intensity parameter º, a simple explicit estimator is defined in Section 8. This

estimator is shown to be asymptotically consistent, although biased upward.

The appendix contains proofs of some more technical lemmas.

2. Preliminaries

In this section we discuss self-decomposable distributions on Rþ and Lévy-driven OU

processes. Furthermore, we introduce notation that will be used throughout the rest of the

paper.

2.1. Self-decomposable distributions on Rþ

A random variable X , with distribution function F, is said to be self-decomposable if for

every c 2 (0, 1) there exists a random variable X c, independent of X , such that

X ¼d cX þ X c. In particular, all degenerate random variables are self-decomposable. Since

the concept of self-decomposability only involves the distribution of a random variable, we

define a probability measure or a characteristic function to be self-decomposable if its

corresponding random variable is self-decompsable.

The class of self-decomposable distributions is a subclass of the class of infinitely

divisible distributions. For the latter type of distributions, there is a powerful

characterization in terms of characteristic functions: the Lévy–Khinchine representation.

A random variable Y with values in Rþ (¼ [0, 1)) is infinitely divisible if and only if its

characteristic function has the form
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ł(t) ¼ Ei tY ¼ exp iª0 t þ
ð1

0

(ei tx � 1)�(dx)

� �
, 8t 2 R, (2:1)

where ª0 > 0. The measure � is called the Lévy measure of Y and satisfies the integrability

condition
Ð1

0
(x ^ 1) �(dx) , 1. The parameter ª0 is called the drift.

If Y is self-decomposable, the measure � takes a special form. It has a density with

respect to Lebesgue measure (Sato 1999, Corollary 15.11) and

�(dx) ¼ k(x)

x
dx,

where k is a decreasing function on (0, 1), known as the canonical function. We take

this function to be right-continuous. The integrability condition on � is given byÐ 1

0
k(x)dx þ

Ð1
1

x�1 k(x)dx , 1. By Proposition V.2.3 in van Harn and Steutel (2004), the

class of self-decomposable distributions on Rþ is closed under weak convergence. By

Theorem 27.13 in Sato (1999), the distribution of Y is either absolutely continuous with

respect to Lebesgue measure or degenerate.

Thus each non-degenerate positive, self-decomposable random variable is characterized

by a couple (ª0, k) consisting of a non-negative number ª0 and decreasing function k. In

the next section we shall see that the variable X (1) of the process X solving (1.1) is self-

decomposable. Due to our assumption that the BDLP Z in (1.1) possesses no drift, the

parameter ª0 corresponding to X (1) is zero.

Next, we introduce some notation. Define a measure � on the Lebesgue measurable sets

in (0, 1) by

�(dx) ¼ 1 ^ x

x
dx, x 2 (0, 1):

Let L1(�) be the space of �-integrable functions on (0, 1). Define a semi-norm k:k� on

L1(�) by kkk� ¼
Ð
jkjd�. Note that the definition of the measure � precisely suits the

integrability condition on k, which can now be formulated as kkk� , 1.

Define a set of functions by

K :¼ fk 2 L1(�) : k(x) > 0, k is decreasing and right-continuousg:
The set K � L1(�) is a convex cone which contains precisely the canonical functions of all

non-degenerate self-decomposable distributions on Rþ and the degenerate distribution at 0.

Let � be the corresponding set of characteristic functions

� :¼ ł : R ! Cjł(t; k) ¼ exp

ð1
0

(ei tx � 1)
k(x)

x
dx

� �
for some k 2 K

� �
: (2:2)

By the definition of � the mapping Q : K 7! �, assigning to each function k 2 K its

corresponding characteristic function in �, is onto. As a consequence of the Lévy–Khinchine

theorem, Q is also one-to-one.

The following result from complex analysis can be found, for example, in Chung (2001,

Section 7.6). Suppose j : R ! C is continuous, j(0) ¼ 1 and j(x) 6¼ 0 for all x 2 [�T , T ].

Then there exists a unique continuous function f : [�T , T ] ! C such that f (0) ¼ 0 and

exp( f (x)) ¼ j(x). The corresponding statement when [�T , T ] is replaced by (�1, 1) is
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also true. The function f is referred to as the distinguished logarithm. If j is a

characteristic function, then f is called a cumulant function.

Since an infinitely divisible characterstic function has no real zeros (see Sato 1999,

Lemma 7.5), we can attach to each ł 2 � a unique continuous function g such that

e g( t) ¼ ł(t) and g(0) ¼ 0. Since we will switch between sets of characteristic functions and

cumulant functions throughout, we define a mapping T from � onto its range by

[T (ł)](t) ¼ g(t), ł 2 �, t 2 R,

By the uniqueness of the distinguished logarithm and the Lévy–Khinchine representation it

follows that

G :¼ T (�) ¼ g : R ! C j g(t) ¼
ð1

0

(ei tx � 1)
k(x)

x
dx, for some k 2 K

� �
:

We have thus defined three sets, each parametrizing the class of self-decomposable

distributions: (i) K, the set of canonical functions; (ii) �, the set of characteristic functions;

(iii) G, the set of cumulant functions. Typical members of each will be denoted by k, ł and

g respectively.

In order to switch easily between canonical functions and cumulants, we define the

mapping L : K ! G by L ¼ T � Q. That is, for k 2 K,

[L(k)](t) ¼
ð1

0

(ei tx � 1)
k(x)

x
dx, t 2 R:

The following diagram may help to clarify the relations between the operators defined so far:

� �

�

�

� �

Next, we give a few examples of positive self-decomposable distributions.

Example 2.1. (i) Let X be Gamma(c, Æ) distributed with density f given by f (x) ¼
(Æc=ˆ(c))xc�1e�Æx1fx.0g, c, Æ . 0. The characteristic and canonical functions are given by

ł(t) ¼ (1 � Æ�1it)�c and k(x) ¼ ce�Æx, respectively.

(ii) Let X be an Æ-stable distribution with Æ 2 (0, 1). Then X has support [0, 1) if and

only if its characteristic function is

ł(t) ¼ exp �jtjÆ 1 � i tan
�Æ

2

� �
sgn(t)

h i� �
:

Its corresponding canonical function is given by k(x) ¼ cÆx�Æ, where cÆ ¼ Æ=
(ˆ(1 � Æ) cos (�Æ=2)). Note that c1=2 ¼ 1=

ffiffiffiffiffiffi
2�

p
. The density function of X permits a known

closed-form expression in terms of elementary functions only if Æ ¼ 1
2
. In this case

f (x) ¼ (2�)�1=2x�3=2e�1=(2x)1fx.0g. The probability distribution with this density is called the

Lévy distribution. If Z has a standard normal distribution, then W , defined by W ¼ 1=Z2 if

Z 6¼ 0 and W ¼ 0 otherwise, has a Lévy distribution.
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(iii) The inverse Gaussian distribution with parameters � and ª, IG(�, ª), has probability

density function

f (x) ¼ 1ffiffiffiffiffiffi
2�

p �e�ªx�3=2 exp(�(�2x�1 þ ª2x)=2)1fx.0g, � . 0, ª > 0:

See, for example, Barndorff-Nielsen and Shephard (2001b). Its canonical function is given by

k(x) ¼ (2�)�1=2�x�1=2 exp(�ª2x=2)1fx.0g. The case (�, ª) ¼ (1, 0) corresponds to the Lévy

distribution.

2.2. Lévy-driven Ornstein–Uhlenbeck processes

In this section we discuss some properties of Lévy-driven OU processes. We can assume

that the driving Lévy process Z ¼ (Z t, t > 0) has right-continuous sample paths, with

existing left-hand limits. It is easily verified that a (strong) solution X ¼ (X t, t > 0) to

(1.1) is given by

X t ¼ e�º t X 0 þ
ð

(0, t]

e�º( t�s)dZ(ºs), t > 0: (2:3)

Up to indistinguishability, this solution is unique (Sato 1999, Section 17). Furthermore, since

X is given as a stochastic integral with respect to a cadlag semi-martingale, the OU process

(X t, t > 0) can be assumed cadlag itself. The stochastic integral in (2.3) can be interpreted

as a pathwise Lebesgue–Stieltjes integral, since the paths of Z are almost surely of finite

variation on each interval (0, t], t 2 (0, 1) (Sato 1999, Theorem 21.9). Figure 1 shows a

simulation of an OU process with Gamma(2, 2) marginal distribution.

Denote by (F 0
t ) t>0 the natural filtration of (X t). That is, (F 0

t ) ¼ � (X u, u 2 [0, t]). As

noted in Shiga (1990, Section 2), (X t, F 0
t ) is a temporally homogeneous Markov process.

Denote by (E, E) the state space of X , where E is the Borel � -field on E. We take

E ¼ [0, 1). The transition kernel of (X t), denoted by Pt(x, B) (x 2 E, B 2 E), has

characteristic function (Sato 1999, Lemma 17.1).ð
eizy Pt(x, dy) ¼ exp ize�º t x þ º

ð t

0

g(eº(u� t)z)du

� �
, z 2 R, (2:4)

where g is the cumulant of Z(1).

Let bE denote the space of bounded E-measurable functions. The transition kernel

induces an operator Pt : bE ! bE by

Pt f (x) :¼
ð

f (y)Pt(x, dy) ¼
ð

f (e�º t x þ y)Pt(0, dy): (2:5)

The second equality follows directly from the explicit solution (2.3). We call Pt the transition

operator. Let C0(E) denote the space of continuous functions on E vanishing at infinity (i.e.

for all � . 0 there exists a compact subset K of E such that j f j < � on EnK).
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Proposition 2.1. The transition operator of the OU-process is of Feller type. That is,

(i) PtC0(E) � C0(E) for all t > 0,

(ii) 8 f 2 C0(E), 8x 2 E, lim t#0 Pt f (x) ¼ f (x).

For general notions concerning Markov processes of Feller type we refer to Revuz and Yor

(1999, Chapter 3).

Proof. (i) Let f 2 C0(E), whence f is bounded. If xn ! x in E, then

f (e�º t xn þ y) ! f (e�º t x þ y) in R, by the continuity of f , for any y 2 R. By dominated

convergence, Pt f (xn) ! Pt f (x), as n ! 1. Hence, Pt f is continuous. Again by dominated

convergence, Pt f (x) ! 0, as x ! 1.

(ii) By dominated convergence
Ð t

0
g(eº(u� t)z)du ¼

Ð t

0
g(e�ºuz)du ! 0, as t # 0. Here we

use the continuity of the cumulant g and g(0) ¼ 0. Then it follows from (2.4) that

� � � � � �� �� �� �� �� ��
�

��

��

��

� � � � � �� �� �� �� �� ��
�

�

�

�

�

� ��� ��� ��� ��� ��� ��� 	�� ��� 
�� ����
�

�

�

�

Figure 1. Top: simulation of the BDLP (compound Poisson process of intensity 2 with exponential

jumps of expectation 1
2
). Middle: corresponding OU process with Gamma(2,2) marginal distribution.

Bottom: OU process on longer time horizon.
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lim
t#0

ð
eizy Pt(x, dy) ¼ eizx:

Thus Pt(x, �) converges weakly to �x(�) (Dirac measure at x):

lim
t#0

ð
f (y)Pt(x, dy) ¼

ð
f (y)�x(dy) ¼ f (x), 8 f 2 Cb(E):

Here Cb(E) denotes the class of bounded, continuous functions on E. The result follows since

C0(E) � Cb(E). h

The Feller property of (X t) implies (X t) is a Borel right Markov process; see the

definitions in Getoor (1975, Chapter 9). We will need this result in Section 3.

Since Pt is Feller, (X t) satisfies the strong Markov property (Revuz and Yor 1999,

Theorem III.3.1). In order to state a useful form of the latter property, we define a

canonical OU process on the space � ¼ D[0, 1), by setting X t(ø) ¼ ø(t), for ø 2 �
(here D[0, 1) denotes the space of cadlag functions on [0, 1), equipped with its � -algebra

generated by the cylinder sets). By the Feller property, this process exists (Revuz and Yor

1999, theorem III.2.7). Let � be a probability measure on (E, E) and denote by P� the

distribution of the canonical OU process on D[0, 1) with initial distribution �. For

t 2 [0, 1), we define the shift maps Łt : � ! � by Łt(ø(�)) ¼ ø(� þ t).

Next, we enlarge the filtration by including certain null sets. Denote by F �
1 the

completion of F 0
1 ¼ � (F 0

t , t > 0) with respect to P�. Let (F �
t ) be the filtration obtained

by adding to each F 0
t all the P�-negligible sets of F �

1. Finally, set F t ¼
T

� F �
t and

F1 ¼
T

� F �
1, where the intersection is over all initial probability measures � on (E, E). In

the special case of Feller processes, it can be shown that the filtration (F t) obtained in this

way is automatically right-continuous (thus, it satisfies the ‘usual hypotheses’). See

Proposition III.2.10 in Revuz and Yor (1999). Moreover, (X t) is still Markov with respect to

this completed filtration (Revuz and Yor 1999, Proposition III.2.14). The strong Markov

property can now be formulated as follows. Let Z be an F1-measurable and positive (or

bounded) random variable. Let T be an F t-stopping time. Then, for any initial measure �,

E�(Z � ŁT jF T ) ¼ EX T
(Z) , P�-almost surely on fT , 1g: (2:6)

Here F T ¼ fA 2 F : A
T
fT < tg 2 F t, 8t > 0g. The expectation on the right-hand side is

interpreted as Ex Z, evaluated at x ¼ X T .

In Section 3 we will apply the strong Markov property to random times such as

� A :¼ infft > 0 : X t 2 Ag with A 2 E. By Theorem III.2.17 in Revuz and Yor (1999), � A

is an (F t)-stopping time.

The following theorem gives a condition in terms of the process Z such that there exists

a stationary solution to (1.1). Moreover, it shows that under this condition the marginal

distribution of this stationary solution is self-decomposable with canonical function

determined by the Lévy measure of the underlying process Z.

Theorem 2.2. Suppose Z is an increasing Lévy process with Lévy measure r (which is by

definition the Lévy measure of Z(1)). Suppose r satisfies the integrability condition
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ð1
2

log xr(dx) , 1: (2:7)

Then Pt(x, �) converges weakly to a limit distribution � as t ! 1 for each x 2 E and each

º . 0. Moreover, � is self-decomposable with canonical function k(x) ¼ r(x, 1)1(0,1)(x).

Furthermore, � is the unique invariant probability distribution of X.

For a proof, see Sato (1999, Theorem 17.5 and Corollary 17.9). Theorem 24.10(iii) in Sato

(1999) implies that � has support [0, 1).

We end this section with two examples of Lévy-driven OU processes. These examples are

closely related to the ones given in Examples 2.1(i) and 2.1(iii).

Example 2.2. (i) Let (X t, t > 0) be the OU process with � ¼ Gamma(c, Æ). From Theorem

2.2 and Example 2.1(i) it follows that the BDLP (Z t, t > 0) has Lévy measure r satisfying

r(dx) ¼ cÆe�Æxdx (for x . 0). Since
Ð1

0
r(dx) , 1, Z is a compound Poisson process. By

examining the characteristic function of Z(1), we see that the process Z can be represented as

Z t ¼
PNt

i¼1Yi, where (N t, t > 0) is a Poisson process of intensity c, and Y1, Y2, . . . is a

sequence of independent random variables, each having an exponential distribution with

parameter Æ. Figure 1 corresponds to the case c ¼ Æ ¼ 2.

(ii) Let (X t, t > 0) be the OU process with � ¼ IG(�, ª). Similarly to (i), we obtain for

the Lévy measure r of the BDLP Z the expression

r(dx) ¼ �

2
ffiffiffiffiffiffi
2�

p 1

x
ffiffiffi
x

p e�ª2 x=2 þ �ª2

2
ffiffiffiffiffiffi
2�

p 1ffiffiffi
x

p e�ª2 x=2

� �
dx, x . 0:

Write r ¼ r(1) þ r(2). Then (Z t , t > 0) can be constructed as the sum of two independent

Lévy processes Z (1) and Z (2), where Z (i) has Lévy measure r(i) (i ¼ 1, 2). It is easily seen

that Z (1)(1) � IG(�=2, ª). Note thatð1
0

r(2)(dx) ¼
ð1

0

�ª2

2
ffiffiffiffiffiffi
2�

p 1ffiffiffi
x

p e�ª2 x=2dx , 1,

so that Z (2) is a compound Poisson process. Some calculations show that we can construct

Z (2) as Z
(2)
t ¼ ª�2

PNt

i¼1W 2
i , where (Nt, t > 0) is a Poisson process of intensity �ª=2, and

W1, W2, . . . is a sequence of independent standard normal random variables. SinceÐ1
0

r(dx) ¼ 1, this OU process is a process of infinite activity: it has infinitely many

jumps in bounded time intervals.

3. A condition for the OU process to be �-mixing

Let (X t, t > 0) be a stationary Lévy-driven OU process. The following theorem is the main

result of this section.

Theorem 3.1. If condition (2.7) of Theorem 2.2 holds, then the Ornstein–Uhlenbeck process

(X t) is �-mixing.
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This result will be used in Section 7 to obtain consistency proofs for some estimators that

will be defined in the next section. For the remainder of this section we will assume that (2.7)

holds. Theorem 2.2 then implies that there exists a unique invariant probability measure �0.

By Proposition 1 in Davydov (1973), the �-mixing coefficients for a stationary

continuous-time Markov process X are given by

�X (t) ¼
ð

E

�(dx)kPt(x, �) � �(�)kTV, t . 0:

Here, k � kTV denotes the total variation norm and � the initial distribution. The process is

said to be �-mixing if �X (t) ! 0, as t ! 1. The analogous definitions for the discrete-time

case are obvious. Dominated convergence implies that the following condition is sufficient

for (X t) to be �-mixing:

lim
t!1

kPt(x, �) � �(�)kTV ¼ 0, 8 x 2 E : (3:1)

That is, it suffices to prove that the transition probabilities converge in total variation to the

invariant distribution for each initial state x 2 E. The next theorem, taken from Meyn and

Tweedie (1993b), (Theorem 6.1), can be used to verify this condition.

Theorem 3.2. Suppose that (X t) is positive Harris recurrent with invariant probability

distribution �. Then (3.1) holds if and only if some skeleton chain is j-irreducible.

In the remainder of this section we first prove that the 1-skeleton chain, obtained from (X t),

is j-irreducible (Corollary 3.5). Subsequently we show that (X t) is positive Harris recurrent

(Lemma 3.6). By an application of Theorem 3.2, Theorem 3.1 then follows immediately.

We start with some definitions from the general theory of stability of continuous-time

Markov processes. These correspond to the ones used in Theorem 3.2. For more details, see

Meyn and Tweedie (1993b). Recall from Section 2 that P� denotes the distribution of the

OU process with initial distribution �. We write Px if � is Dirac mass at x. For a

measurable set A we let

� A ¼ infft > 0jX t 2 Ag, �A ¼
ð1

0

1fX t2Agdt:

Thus, � A denotes the first hitting time of the set A and �A denotes the time spent in A by the

process X . A Markov process is called j-irreducible if, for some non-zero � -finite measure

j,

j(A) . 0 ) Ex(�A) . 0, 8x 2 E, A 2 E:

The Markov process X is called Harris recurrent if, for some non-zero � -finite measure j,

j(A) . 0 ) Px(�A ¼ 1) ¼ 1, 8x 2 E, A 2 E:

If X is a Borel right Markov process, then this condition can be shown to be equivalent to the

following (see Kaspi and Mandelbaum 1994): for some non-zero � -finite measure ł,

ł(A) . 0 ) Px(� A , 1) ¼ 1, 8x 2 E, A 2 E: (3:2)
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The latter condition is generally more easily verifiable. The process is called positive Harris

recurrent if it is Harris recurrent and admits an invariant probability measure.

The ˜-skeleton is defined as the Markov chain obtained by sampling the original process

X t at deterministic time points ˜, 2˜, . . . (observation scheme 1 in Section 7 coincides

with this concept). In a slight abuse of notation, we shall henceforth denote the continuous-

time process by (X t) and its ˜-skeleton by (X n) (thus, X n � X n˜). The next proposition

says that the 1-skeleton obtained from X constitutes a first-order autoregressive time series,

with infinitely divisible noise terms.

Proposition 3.3. Consider observation scheme 1 with ˜ ¼ 1 and denote the observations by

X 0, X1, . . . . Then the chain satisfies the first-order autoregressive relation

X n ¼ e�ºX n�1 þ W n(º), n > 1, (3:3)

where (W n(º))n is an i.i.d. sequence of random variables distributed as

Wº :¼
ð1

0

eº(u�1)dZ(ºu):

Moreover, Wº is infinitely divisible with Lévy measure k given by

k(B) ¼
ð

B

w�1r(w, eºw]dw, B 2 E: (3:4)

The proof is given in the Appendix.

Remark 3.1. Since

e�º Z(º) <

ð1

0

eº(u�1)dZ(ºu) < Z(º),

Wº has the same tail behaviour as Z(º). In particular, if Z(1) has infinite expectation, then so

does Wº.

We will now show that (X n) is j-irreducible. For the discrete-time case this means that

there exists a non-zero � -finite measure j, such that, for all B 2 E with j(B) . 0,P1
n¼1 Pn(x, B) . 0 for all x 2 E.

Lemma 3.4. Let PWº be the distribution function of Wº. Then PWº has an absolutely

continuous component with respect to Lebesgue measure.

Proof. It follows from Proposition 3.3 that PWº is infinitely divisible with Lévy measure k.

From (3.4), we see that k is absolutely continuous with respect to Lebesgue measure.

First consider the case k[0, 1) , 1. Then PWº is compound Poisson, and hence (see

equation 27.1 in Sato 1999),
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PWº(�) ¼ e�k[0,1) �f0g(�) þ
X1
k¼1

k� k(�)
k!

 !
, (3:5)

where �0 denotes the Dirac measure at 0 and � denotes the convolution operator. Since the

convolution of two non-zero finite measures �1 and �2 is absolutely continuous if either of

them is absolutely continuous (Sato 1999, Lemma 27.1), it follows from the absolute

continuity of k that the second term on the right-hand side of (3.5) constitutes the absolutely

continuous part of PWº .

Next consider the case k[0, 1) ¼ 1. Define for each n ¼ 1, 2, . . . , kn(B) :¼
k(B \ (1=n, 1) for Borel sets B in (0, 1). Set cn ¼ kn[0, 1). Then cn , 1 and kn is

absolutely continuous. Let PWº
n be the distribution corresponding to kn. As in the previous

case, we have

PWº
n (�) ¼ e�c n �f0g(�) þ

X1
k¼1

k�k
n (�)
k!

 !
,

and PWº
n has an absolutely continuous component with respect to Lebesgue measure. Since

PWº contains PWº
n as a convolution factor, it follows that PWº has an absolutely continuous

component with respect to Lebesgue measure. h

Proposition 6.3.5 in Meyn and Tweedie (1993a) asserts that (X n) as defined in (3.3) is j-

irreducible if the common distribution of the innovation sequence (W n(º)) has an absolutely

continuous component with respect to Lebesgue measure. Using the previous lemma, we

therefore obtain j-irreducibility of (X n).

Corollary 3.5 The 1-skeleton chain (X n) is j-irreducible.

Lemma 3.6. Under condition (2.7), (X t) is positive Harris recurrent.

Proof. Let � a ¼ infft > 0 : X t ¼ ag. We will prove Px(� a , 1) ¼ 1, for all x, a 2 E. Then

condition (3.2) is satisfied for any non-zero measure ł on E.

First, we consider the case x > a. Since we assume condition (2.7), Lemma A.1 in the

Appendix applies:

ð1

0

dz

z
exp �

ð1

z

ºr(y)

y
dy

� �
¼ þ1: (3:6)

Here ºr is given as in (A.4) in the Appendix. Theorem 3.3 in Shiga (1990) now asserts that

Px(� a , 1) ¼ 1 for every x > a . 0.

Next, suppose x , a. Let (X n) be the skeleton chain obtained from (X t). Define

	a ¼ inffn > 0 : X n > ag. Then, for each m 2 N,

770 G. Jongbloed, F.H. van der Meulen and A.W. van der Vaart



Px(	a . m) ¼ Px(X 1 , a, . . . , X m , a)

¼ P0(X 1 þ e�ºx , a, . . . , X m þ e�ºmx , a)

< P0(X 1 , a, . . . , X m , a)

¼ P0(W1 , a, . . . , e�ºX m�1 þ W m , a)

< P(W1 , a, . . . , W m , a) ¼ [P(Wº , a)]m 2 [0, 1):

The last assertion holds since the support of any non-degenerate infinitely divisible random

variable is unbounded (Sato 1999, Theorem 24.3). From this, it follows that

Px(	a , 1) > lim
m!1

(1 � [P(Wº , a)]m) ¼ 1:

It is easy to see that f	a þ � a � Ł	a
, 1g � f� a , 1g. Hence,

Px(� a , 1) > Px(	a þ � a � Ł	a
, 1) ¼ ExfEx(1f	aþ� a�Ł	a,1gjF	a

)g

¼ Exf1f	a,1gEx(1f� a�Ł	a,1gjF	a
)g ¼ ExfEX 	a

1f� a,1gg ¼ 1:

The second inequality holds since f	a þ � a � Ł	a
, 1g ¼ f	a , 1g

T
f� a � Ł	a

, 1g. The

third equality follows from the strong Markov property, as formulated in (2.6). The last

equality follows from the case x > a.

Hence, for all x 2 E, we have proved that Px(� a , 1) ¼ 1. Thus (X t) is Harris

recurrent.

By Theorem 2.2, the invariant measure of a Lévy-driven OU process is a probability

measure, which shows that (X t) is positive Harris recurrent. h

Remark 3.2. The �-mixing property of general (multidimensional) OU processes is also

treated in Masuda (2004, Section 4). There it is assumed that the OU process is strictly

stationary, and moreover that
Ð
jxjÆ�(dx) , 1, for some Æ . 0. The latter assumption is

stronger than our assumption (2.7), but also yields the stronger conclusion that

�X (t) ¼ O(e�at), as t ! 1, for some a . 0 (i.e. the process (X t) is geometrically

ergodic). It seems hard to extend the argument in Masuda (2004) under assumption (2.7).

4. Definition of a cumulant M-estimator

Let �0 be the unique invariant probability distribution of X . Any reference to the true

underlying distribution will be denoted by a subscript 0. For example, F0 denotes the true

underlying distribution function of X (1) and k0 the true underlying canonical function.

To estimate k0, based on discrete-time observations from X , we first define a preliminary

estimator ~łłn for ł0. In what follows, we choose ~łłn such that either

for each n, ~łłn is a characteristic function and, 8t 2 R, ~łłn(t)�!a:s: ł0(t), as n ! 1, (4:1)
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or

for each n, ~łłn is a characteristic function and, 8t 2 R, ~łłn(t)�!p ł0(t), as n ! 1: (4:2)

We will show in Section 5 that any preliminary estimator satisfying this condition will yield a

consistent estimator for k0. A natural preliminary estimator is the empirical characteristic

function. We will return to possible choices for ~łłn in Section 7.

Given any preliminary estimator ~łłn for ł0, a first idea for constructing an estimator for

k0 would be to minimize some distance between Q(k) and ~łłn over all canonical functions

k 2 K. For example, if we let w be a positive (Lebesgue) integrable compactly supported

weight function, we could take a weighted L2-distance and define an estimator by

k̂k n ¼ argmin
k2K

ð
j[Q(k)](t) � ~łłn(t)j2w(t)dt:

Apart from the issue of whether this estimator is well defined, one disadvantage of this

estimation method is that the objective function is non-convex (convexity being desirable

from a computational point of view). This problem can be avoided by comparing cumulants.

We will see below that ~łłn is non-vanishing on Sw for sufficiently large n and thus admits a

distinguished logarithm there. Then the idea is to define an estimator k̂k n as

k̂k n ¼ argmin
k2K

ð
j[L(k)](t) � ~ggn(t)j2w(t)dt:

We call this estimator a cumulant M-estimator. Next, we will make this idea more precise.

Let w be a non-negative integrable weight function with compact support, denoted by Sw.

Assume w is non-zero in a neighbourhood of the origin and even. Define the space of

square-integrable functions with respect to w(t)dt by

L2(w) :¼ f : R ! Cj f is (Lebesgue) measurable and

ð
j f (t)j2w(t)dt , 1

� �
,

where we identify functions which are equal almost everywhere with respect to w(t)dt. We

define an inner-product h�, �iw on L2(w) by

h f , giw ¼ R

ð
f (t)g(t)w(t)dt,

where the bar over g denotes complex conjugation and R the operation of taking the real part

of an element of C. For g 2 L2(w) define a norm by kgkw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg, giw

p
. The space

(L2(w), h�, �iw) is a Hilbert space. For the rest of this paper, we assume n is large enough

such that ~ggn exists on Sw.

Next, we define an estimator for g0 ¼ T (ł0) as the minimizer of

ˆn(g) :¼ kg � T ~łłnk2
w ¼

ð
jg(t) � T ~łłn(t)j2w(t)dt

over an appropriate subset of G, which we consider as a subspace of L2(w). It is a standard

fact from Hilbert space theory that every non-empty, closed, convex set in L2(w) contains a
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unique element of smallest norm. We will use this result to establish the existence and

uniqueness of our estimator.

Since ˆn is a squared norm in a Hilbert space, we only need to specify an appropriate

subset of G. For this purpose, we first derive some properties of the mapping L, as defined

in Section 2.

Lemma 4.1. The mapping L : K ! G is continuous, onto and one-to-one.

Proof. Let fk ng be a sequence in K converging to k0 2 K, that is kk n � k0k� ! 0 as

n ! 1.

For t 2 Sw,

jL(k n)(t) � L(k0)(t)j ¼
����
ð1

0

(ei tx � 1)
k n(x) � k0(x)

x
dx

����
< jtj

ð1

0

jk n(x) � k0(x)jdx þ 2

ð1
1

x�1jk n(x) � k0(x)jdx

< maxfjtj, 2gkk n � k0k�,

where we use the inequality jeix � 1j < minfjxj, 2g. Thus L(k n) ! L(k0) uniformly on Sw

which implies kL(k n) � L(k0)kw ! 0 (n ! 1). Hence, L is continuous.

The surjectivity is trivial by the definition of G. If g1, g2 2 G and kg1 � g2kw ¼ 0, then

(by continuity of elements in G), g1 ¼ g2 on Sw. Then also ł1 :¼ e g1 ¼ e g2 :¼ ł2 on Sw.

Lemma 4.2 below implies ł1 ¼ ł2 on R . Since Q is one-to-one, we must have k1 ¼ k2.

h

The following lemma extends the uniqueness theorem for characteristic functions. A

proof can be found in Loève (1977, Chapter 4).

Lemma 4.2. Let X be a positive random variable with characteristic function ł. If łM is the

restriction of ł to an interval (�M , M), then łM determines ł.

The set

G9 :¼ g : R ! C : g(t) ¼ �0it þ
ð1

0

ei tx � 1

x
k(x)dx, �0 > 0, k 2 K

� �
,

is closed under uniform convergence on compact sets containing the origin. To see this, let S

be such a compact set. If fgngn 2 G9 is such that sup t2S jgn(t) � g(t)j ! 0 for some g, then

sup t2S jłn(t) � ł(t)j ! 0 and then (by the same argument as in the proof of Lévy’s

continuity theorem) the random variables corresponding to fłng are uniformly tight. Denote

these random variables by fX ng. By Prohorov’s theorem, there exists a subsequence nl such

that X nl
converges weakly to a random variable X�. Since X n is a positive self-

decomposable random variable, and the class of positive self-decomposable random variables

is closed under weak convergence, X� is positive self-decomposable. Let g� be the cumulant
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of X�. Then g� 2 G9 and sup t2S jgn l
(t) � g�(t)j ! 0. Together with the continuity of g and

g� on S, this implies g� ¼ g on S. Hence g ¼ g� 2 G9.

However, the set G is not closed under uniform convergence on compact sets containing

the origin. Let S again be such a set and define a sequence fk ngn>1 2 K by k n(x) ¼
n1[0,1=n)(x). Then, for each t 2 R,

g n(t) ¼ [L(k n)](t) ¼ n

ð1=n

0

ei tx � 1

x
dx ! it, as n ! 1:

Let g(t) ¼ it. Then, since each gn and g are uniformly continuous on the compact set S, we

have sup t2S jgn(t) � g(t)j ! 0. However, g =2 G, since g can only correspond to a point mass

at one. Returning to the set G9, we see that this example is the canonical example that can

preclude closedness of G.

In view of dominated convergence, this counterexample also shows why the set G is not

closed in L2(w). To obtain an appropriate closed subset of G, we first define a set of

envelope functions in K. Pick for each R . 0 a function k R 2 K such that kk Rk� < R (for

example k R(x) ¼ R=(4
ffiffiffi
x

p
)). The collection fk R, R . 0g defines a set of envelope

functions. Now let

K R :¼ fk 2 Kjk(x) < k R(x) for x 2 (0, 1)g:

and put GR ¼ L(K R), that is, GR is the image of K R under L.

Lemma 4.3. Let R . 0. Then

(i) K R is a compact, convex subset of L1(�),

(ii) GR is a compact, convex subset of L2(w).

Proof. (i) Convexity of K R is obvious.

Let fk ng be a sequence in K R. Since each k n is bounded on all strictly positive rational

points, we can use a diagonalization argument to extract a subsequence n j from n such that

the sequence k n j
converges to some function k on all strictly positive rationals. For

x 2 (0, 1) define

~kk(x) ¼ supfk(q), x , q, q 2 Qg:

This function is (by its definition) decreasing and right-continuous and satisfies ~kk < k R on

(0, 1). Thus ~kk 2 K R. Furthermore, k n j
converges pointwise to ~kk at all continuity points of

~kk. Since the number of discontinuity points of ~kk is at most countable, k n j
converges to ~kk

almost everywhere on (0, 1). Moreover, since k n j
< k R on (0, 1) and k R 2 L1(�),

Lebesgue’s dominated convergence theorem applies: kk n j
� ~kkk� ! 0, as n j ! 1. Hence,

K R is sequentially compact.

(ii) GR is compact since it is the image of the compact set K R under the continuous

mapping L. Convexity of GR follows from convexity of K R. h

Corollary 4.4. The inverse operator of L, L�1 : GR ! K R, is continuous.
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Proof. This is a standard result from topology; see Corollary 9.12 in Jameson (1974). h

Since we want to define our objective function in terms of the canonical function, one

last step is necessary. Since ˆn has a unique minimizer over GR and to each GR there

belongs a unique member of K R, there exists a unique minimizer of ˆn � L (which we will

henceforth write as ˆn L) over K R. More precisely:

Theorem 4.5. Let ĝgn ¼ argmin g2GR
ˆn(g) (known to exist and to be unique). Then

k̂k n ¼ argmink2K R
[ˆn L](k) exists. Moreover, k̂k n ¼ L�1( ĝgn) and k̂k n is unique.

Proof. Since L : K R ! GR is onto and one-to-one, to each g 2 GR there corresponds a

unique k 2 K R such that L(k) ¼ g. Thus

� :¼ min
g2GR

ˆn(g) ¼ min
k2K R

[ˆn L](k):

Now define k̂k n ¼ L�1( ĝg n) and choose an arbitrary k 2 K R (but k 6¼ k̂k n). Then k̂k n 2 K R and

[ˆn L]( k̂k n) ¼ ˆn( ĝgn) ¼ � , [ˆn L](k) ,

which shows that k̂k n is the unique minimizer of ˆn L over K R. h

5. Consistency

In this section we discuss the consistency of the cumulant M-estimator. We start with two

results, which strengthen the pointwise convergence in (4.1) and (4.2) to uniform

convergence.

Lemma 5.1. Let (�, U, P) be a probability space. For each ø 2 �, suppose jn(�, ø)

(n ¼ 1, 2, . . .) and j are characteristic functions such that for each t 2 R, jn(t, �)�!p j(t),

as n ! 1. Then, as n ! 1

sup
t2K

jjn(t, �) � j(t)j �!p 0, for every compact set K � R:

Proof. Denote the distribution functions corresponding to jn(�, ø) and j by Fn(�, ø) and F.

The functions x 7! ei tx for t 2 K are uniformly bounded and equicontinuous. Therefore (by

the Arzelà–Ascoli theorem), if Fn(�, ø)�!w F for some ø along some subsequence, then

sup t2K jjn(t, �) � j(t)j ! 0 for this ø and subsequence. It follows that it suffices to show

that for every subsequence of fng there exists a further subsequence fn9g and a set A 2 U
with P(A) ¼ 1 such that Fn9(�, ø)�!w F, for all ø 2 A, along the subsequence.

By assumption, for every t there exists a subsequence fng such that jn(t, ø)�!a:s: j(t).

Denote Q ¼ fq1, q2, . . .g. There exists a subsequence fn(1)g of fng and a set A(1) 2 U with

P(A(1)) ¼ 1 such that jn(1) (q1, ø) ! j(q1), for all ø 2 A(1). There exists a subsequence

fn(2)g of fn(1)g and a set A(2) 2 U with P(A(2)) ¼ 1 such that jn(2) (q2, ø) ! j(q2), for all
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ø 2 A(2). Proceed iteratively in this way. Consider the diagonal sequence, obtained by

ni :¼ n
(i)
i , and set A ¼ \1

i¼1A(i), then P(A) ¼ 1 and

jn(q, ø) ! j(q), 8 q 2 Q, 8ø 2 A: (5:1)

For every � . 0,ð
jxj.2=�

Fn(dx, ø) <
1

2�

ð�
��
j1 � jn(t, ø)jdt ¼: an(�, ø), (5:2)

by a well-known inequality (see, for instance, Chung 2001, Section 6.3). Furthermore, with

a(�) :¼ (2�)�1
Ð �
�� j1 � j(t)jdt, by Fubini’s theorem

Ejan(�, �) � a(�)j < 1

2�

ð�
��
E

���� j1 � jn(t)j � j1 � j(t)j
����dt ! 0, n ! 1,

by dominated convergence and the assumed convergence in probability. Thus, for every

� . 0 there exists a further subsequence fng and a set B 2 U with P(B) ¼ 1 such that

an(�, ø) ! a(�) for all ø 2 B. By a diagonalization scheme we can find a further

subsequence fng and a set C 2 U with P(C) ¼ 1 such that

lim
n!1

jan(�, ø) � a(�)j ¼ 0, 8 � 2 Q \ (0, 1), 8ø 2 C:

Combined with (5.2), this shows that

lim sup
n!1

ð
fjxj.2=�g

Fn(dx, ø) < a(�), 8� 2 Q \ (0, 1), 8ø 2 C,

taking the limsup over the subsequence. Because a(�)#0 as �#0, we see that fFn(�, ø)g1n¼1 is

tight for all ø 2 C.

If G is a limit point of Fn(�, ø), then by (5.1),ð
ei txdG(x) ¼ lim

n!1

ð
ei tx Fn(dx, ø) ¼

ð
ei txd F(x), 8t 2 Q, 8ø 2 A:

Hence F ¼ G, and it follows that fFn(�, ø)gn has only one limit point, whence

Fn(�, ø)�!w F, for all ø 2 A \ C, along the subsequence. h

Lemma 5.2. Let (�, U, P) be a probability space. For each ø 2 �, suppose that jn(�, ø)

(n ¼ 1, 2, . . .) and j are characteristic functions such that for each t 2 R, jn(t, �)�!a:s: j(t),

as n ! 1. Then, as n ! 1,

sup
t2K

jjn(t, �) � j(t)j �!a:s: 0, for every compact set K � R:

Proof. It suffices to show that there exists an A 2 U with P(A) ¼ 1 such that Fn(�, ø)�!w F,

for all ø 2 A.

With an and a as in the proof of the previous lemma,
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E sup
m>n

jam(�, �) � a(�)j < 1

2�

ð�
��
E sup

m>n

����j1 � jm(t, �)j � j1 � j(t)j
����

� �
dt ! 0, n ! 1:

This implies that jan(�, �) � a(�)j �!a:s: 0 (n ! 1), for all � . 0. Combined with (5.2), we see

that

lim sup
n!1

ð
fjxj.2=�g

Fn(dx, ø) < a(�), 8� 2 Q, ø 2 A1,

for some set A1 2 U with P(A1) ¼ 1. Thus, for ø 2 A1 the whole sequence fFn(�, ø)g is

tight.

Let A2 2 U be a set of probability one such that jn(t, ø) ! j(t), for all t 2 Q and for

all ø 2 A2. Let ø 2 A2. Then (as at the end of the proof of Lemma 5.1), Fn(�, ø) has only

F as a limit point.

Hence, for all ø 2 A :¼ A1 \ A2, Fn(�, ø)�!w F. h

Remark 5.1. If jn is the empirical characteristic function of independent random variables

with common distribution F, there is a large literature on results as in Lemma 5.2. We

mention the final result of Csörgő and Totik (1983): if limn!1(log Tn)=n ¼ 0, then

supj tj<Tn
jjn(t) � j(t)j �!a:s: 0, as n ! 1, where j(t) ¼

Ð
ei tx F(dx), t 2 R . The rate Tn ¼

exp (o(n)) is the best possible in general for almost sure convergence.

We now come to the consistency result which will be applied in Section 7.

Theorem 5.3. Assume that the sequence of preliminary estimators ~łłn satisfies (4.1). If

k0 2 K R for some R . 0, then the cumulant M-estimator is consistent. That is,

k ĝg n � g0kw ! 0 almost surely, as n ! 1, (5:3)

k k̂k n � k0k� ! 0 almost surely, as n ! 1: (5:4)

The same results hold in probability if we only assume (4.2).

Proof. We first prove the statement in the case where ~łłn converges almost surely to ł0. By

Lemma 5.2, sup t2Sw
j~łłn(t, �) � ł0(t)j �!a:s: 0. Let A � � be the set of probability one on

which the convergence occurs. Fix ø 2 A. Since ł0 has no zeros, there exists an � . 0 such

that inf t2Sw
jł0(t)j . 2�. For this � there exists an N ¼ N (�, ø) 2 N such that

sup t2Sw
j~łłn(t, ø) � ł0(t)j , � for all n > N . Hence, for all n > N and for all t 2 Sw,

j~łłn(t, ø)j > jł0(t)j � j ~łł(t, ø) � ł0(t)j > � . 0.

For n > N we can define ~ggn(ø) ¼ T ~łłn(ø) on Sw. Theorem 7.6.3 in Chung (2001)

implies that the uniform convergence of ~łłn(ø) to ł0 on Sw carries over to uniform

convergence of ~gg n(ø) to g0 on Sw. By dominated convergence, limn!1k~gg n(ø) � g0kw ¼ 0.

Since ĝg n(�, ø) minimizes ˆn over GR, we have

k ĝgn(�, ø) � g0kw < k ĝg n(�, ø) � ~ggn(�, ø)kw þ kg0 � ~ggn(�, ø)kw < 2kg0 � ~gg n(�, ø)kw ! 0,

as n tends to infinity. By Corollary 4.4 this implies
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k k̂k n(�, ø) � k0k� ¼ kL�1( ĝgn(�, ø)) � L�1(g0)k� ! 0, n ! 1:

Hence, for all ø in a set with probability one, limn!1k k̂k n(�, ø) � k0k� ! 0.

Next, we prove the corresponding statement for convergence in probability. By Lemma

5.1, Yn :¼ sup t2Sw
j~łłn(t, �) � ł0(t)j �!p 0, as n ! 1.

The following characterization of convergence in probability holds: Yn �!
p

Y if and only

if each subsequence of (Yn) possesses a further subsequence that converges almost surely

to Y .

Let (nk) be an arbitrary increasing sequence of natural numbers. Then Yn k
�!p 0. Then

there exists a subsequence (nm) of (nk) such that Yn m
�!a:s: 0. Now we can apply the

statement of the theorem for almost sure convergence; this gives k k̂k n m
� k0k� �!

a:s:
0. This in

turn shows that k k̂k n � k0k� �!
p

0. h

Corollary 5.4. Assume (4.1) and k0 2 k r for some R . 0. Denote the distribution function

corresponding to ł̂łn(�, ø) by F̂Fn(�, ø). Then, for all ø in a set of probability one,

kF̂Fn(�, ø) � F0(�)k1 ! 0, n ! 1:

Here k:k1 denotes the supremum norm. If we only assume (4.2), then

kF̂Fn � F0k1 �!p 0, n ! 1:

Proof. First assume (4.1). Theorem 5.3 implies k k̂k n � k0k� �!
a:s:

0, as n ! 1. Fix an arbitrary

ø of the set on which the convergence takes place. From the proof of Lemma 4.1, we obtain

that ĝgn(�, ø) converges uniformly on compacta to g0. Then ł̂łn(�, ø) also converges

uniformly on compacta to ł0. By the continuity theorem (Chung 2001, Section 6.3),

F̂Fn(�, ø)�!w F0(�). Since F0 is continuous, this is equivalent to kF̂Fn(�, ø) � F0(�)k1 ! 0, as

n ! 1.

The statement for convergence in probability follows by arguing along subsequences, as

in the proof of Theorem 5.3. h

Theorem 5.3 involves only functional analytic properties of various operators and sets. To

fulfil the probabilistic assumption that the sequence of preliminary estimators satisfies a law

of large numbers, we can use the �-mixing result from Section 3.

6. Computing the cumulant M-estimator

For numerical purposes we will approximate the convex cone K by a finite-dimensional

subset. For N > 1, let 0 , Ł1 , Ł2 , . . . , ŁN be a fixed set of positive numbers and set

¨ ¼ fŁ1, . . . , ŁNg. For example, we can take an equidistant grid with grid points Ł j ¼ jh

(1 < j < N ), where h is the mesh width. Define ‘basis functions’ by

uŁ(x) :¼ 1[0,Ł)(x), x > 0,
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zŁ(t) ¼ [LuŁ](t) ¼
ðŁ t

0

eiu � 1

u
du, t 2 R,

and set U¨ :¼ fuŁ, Ł 2 ¨g. Let K¨ be the convex cone generated by U¨,

K¨ :¼ k 2 Kjk ¼
XN

i¼1

ÆiuŁi
, Æi 2 [0, 1), 1 < i < N

( )
:

Define a sieved estimator by

�kk n ¼ argmin
k2K¨

ˆn L(k) ¼ argmin
Æ1>0,...,ÆN>0

					
XN

i¼1

Æi zŁi
� ~ggn

					
2

w

: (6:1)

Since the set fx : x ¼ (x1, . . . , xN ), xi > 0 for all 1 < i < Ng is a closed convex subset of

RN and ˆn L is a continuous mapping, we have:

Theorem 6.1. The sieved estimator �kk n is uniquely defined.

Note that in this case we do not need conditions in terms of envelope functions, as in Section

4.

Next, we study the problem of computing �kk n numerically. Since each k 2 K¨ is a finite

positive mixture of basis functions uŁ 2 U¨, our minimization problem fits precisely in the

set-up of Groeneboom et al. (2003). We will follow the approach adopted there to solve

(6.1).

6.1. The support-reduction algorithm

Define the directional derivative of ˆn L at k1 2 K in the direction of k2 2 K by

Dˆn L(k2; k1) :¼ lim
�!0

��1([ˆn L](k1 þ �k2) � [ˆn L](k1)):

This quantity exists (it may be infinite), since ˆn L is a convex functional on K (ˆn, as an L2-

distance on a Hilbert space, is a strictly convex functional on G, and L satisfies

L(k1 þ k2) ¼ L(k1) þ L(k2)).

Groeneboom et al. (2003) show that under conditions that are satisfied here the following

characterization of �kk n holds. Write �kk n ¼
P

j2JÆ juŁ j
, where J :¼ f j 2 f1, . . . , Ngj

Æ j . 0g. Then

�kk n minimizes ˆn L over K¨ () Dˆn L(uŁ j
; �kk n)

> 0 8 j 2 f1, . . . , Ng,

¼ 0 8 j 2 J :

�
(6:2)

This result forms the basis for the support-reduction algorithm, which is an iterative

algorithm for solving (6.1). We discuss this algorithm briefly. For additional details we refer

to Section 3 of Groeneboom et al. (2003).

Suppose at each iteration we are given a ‘current iterate’ k J 2 K¨ which can be

written as
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k J ¼
X
j2J

Æ juŁ j

(J refers to the index set of positive Æ-weights). Relation (6.2) gives a criterion for checking

whether k J is optimal. As we will shortly see, each iterate k J will satisfy the equality part of

(6.2): Dˆn L(uŁ j
; k J ) ¼ 0, for all j 2 J . This fact, together with (6.2), implies that if k J is not

optimal, then there is an i 2 f1, . . . , NgnJ with Dˆn L(uŁi
, k J ) , 0. Thus uŁi

provides a

direction of descent for ˆn L. In that case the algorithm prescribes two steps that have to be

carried out:

Step 1. Determine a direction of descent for ˆn L. Let

¨, :¼ fŁ 2 ¨ : Dˆn L(uŁ, k J ) , 0g;

then ¨, is non-empty. From ¨, we choose a direction of descent. Suppose Ł j� is this

direction. (A particular choice is the direction of steepest descent, in which case

Ł j� :¼ argmin Ł2¨,
Dˆn L(uŁ, k J ). This boils down to finding a minimum element in a vector

of length at most N . We give an alternative choice below.)

Step 2. Let the new iterate be given by

k J� ¼
X
j2J�

� juŁ j
, J� :¼ J [ f j�g,

where f� j , j 2 J�g are (as yet unknown) weights. We first minimize ˆn L(k J�) with respect

to f� j , j 2 J�g, without positivity constraints. In our situation this is a (usually low-

dimensional) quadratic unconstrained optimization problem.

If minf� j, j 2 J�g > 0, then k J� 2 K¨ and k J� satisfies the equality part of (6.2). In

that case, we check the inequality part of (6.2) and possibly return to step 1. Otherwise, we

perform a support-reduction step. Since it can be shown that � j� is always positive, we can

make a move from k J towards k J� and stay within the cone K¨ initially. As a next iterate,

we take k :¼ k J þ ĉc(k J� � k J ), where

ĉc ¼ maxfc 2 [0, 1] : k J þ c(k J� � k J ) 2 K¨g

¼ max c 2 [0, 1] :
X
j2J

c� j þ (1 � c)Æ j)

 �

uŁ j
þ c� j�uŁ j� 2 K¨

( )

¼ maxfc 2 [0, 1] : c� j þ (1 � c)Æ j > 0 , for all � j( j 2 J ) with � j , 0g

¼ minfÆ j=(Æ j � � j), j 2 J , for which � j , 0g: (6:3)

Then k 2 K¨. Let j�� be the index for which the minimum in (6.3) is attained, that is, for

which ĉc� j�� þ (1 � ĉc)Æ j�� ¼ 0. Define J�� :¼ J�nf j��g. Then k is supported on

fŁ j , j 2 J��g. That is, in the new iterate, the support point Ł j�� is removed. Next, set

k J�� ¼
P

j2J��ª juŁ j
and compute optimal weights ª j. If all weights ª j are non-negative, the

equality part of (6.2) is satisfied and we can check the inequality part of (6.2) and possibly

return to step 1. Otherwise, a new support-reduction step can be carried out, since all weights

of k are positive. In the end, our iterate k will satisfy the equality part of (6.2).
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To start the algorithm, we fix a starting value Ł(0) 2 ¨. Then we determine the function

cuŁ(0) minimizing ˆn L as a function of c . 0. Once the algorithm has been initialized it

starts iteratively adding and removing support points, while in between computing optimal

weights.

Theorem 3.1 in Groeneboom et al. (2003) gives conditions to guarantee that the sequence

of iterates fk(i)gi (generated by the support-reduction algorithm) indeed converges to the

solution of our minimization problem. Since these conditions are met in our case, we have

(ˆn L)(k(i)) # (ˆn L)(�kk n), as i ! 1:

6.2. Implementation details

We now work out the actual computations involved when implementing the algorithm.

Suppose k ¼
Pm

j¼1Æ juŁ j
.

Step 1. Given the ‘current iterate’ k, we aim to add a function uŁ which provides a

direction of descent for ˆn L. By linearity of L,

[ˆn L](k þ �uŁ) � [ˆn L](k) ¼ kL(k þ uŁ) � ~ggnk2
w � kLk � ~ggnk2

w

¼ �c1(Ł, k) þ 1

2
�2c2(Ł), (6:4)

where c2(Ł) ¼ 2kLuŁk2
w ¼ 2kzŁk2

w . 0 and

c1(Ł, k) ¼ 2hLk � ~gg n, LuŁiw ¼ 2
Xm

j¼1

Æ j zŁ j
� ~gg n, zŁ

* +
w:

In order to find a direction of descent, we can pick any Ł 2 ¨ for which c1(Ł, k) , 0.

However, since the right-hand side of (6.4) is quadratic in �, it can be minimized explicitly

(and we choose to do so). If c1(Ł, k) , 0, then

argmin
�.0

(�c1(Ł, k) þ 1

2
�2c2(Ł)) ¼ � c1(Ł, k)

c2(Ł)
¼: �̂�Ł:

Minimizing [ˆn L](k þ �̂�ŁuŁ) over all points Ł 2 ¨ with c1(Ł, k) , 0 gives

Ł̂Ł ¼ argmin
fŁ2¨:c1(Ł,k),0g

� c1(Ł, k)2

2c2(Ł)
¼ argmin

Ł2¨

c1(Ł, k)ffiffiffiffiffiffiffiffiffiffiffi
c2(Ł)

p :

Step 2. Given a set of support points, we compute optimal weights. This is a standard

least-squares problem, that is solved by the normal equations. In our set-up, these are

obtained by differentiating [ˆn L](k) with respect to Æ j ( j 2 f1, . . . , mg) and setting the

partial derivatives equal to zero. This gives the system AÆ ¼ b, where

Ai, j ¼ hzŁi
, zŁ j

iw, i, j ¼ 1, . . . , m, (6:5)

and

bi ¼ hzŁi
, ~ggniw, i ¼ 1, . . . , m:
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The matrix A is easily seen to be symmetric. By the next lemma, A is non-singular, whence

the system AÆ ¼ b has a unique solution.

Lemma 6.2. The matrix A, as defined in (6.5), is non-singular.

Proof. Denote by a j the jth column of A. Let h1, . . . , hm 2 R . We aim to show that ifPm
i¼1 hiai ¼ 0, then all h j are zero. Now

Pm
i¼1 hiai ¼ (hzŁ1

, jiw, . . . , hzŁm
, jiw)T, where

j 2 L2(w) is given by j :¼
Pm

i¼1 h jzŁ j
. Thus if

Pm
i¼1 hiai ¼ 0 , then j ? span(zŁ1

, . . . , zŁm
)

in L2(w). Since j 2 span(zŁ1
, . . . , zŁm

), we must have j ¼ 0 almost everywhere with respect

to Lebesgue measure on Sw. By continuity of t 7! zŁ(t), j ¼ 0 on Sw.

Now j ¼
Pm

i¼1 hizŁi
¼ L(

Pm
i¼1 hiuŁi

) ¼ 0. If, for k 2 K, L(k) ¼ 0, then k � 0. Therefore,Pm
i¼1 hiuŁi

� 0, which can only be true if all hi are equal to zero. h

Tucker (1967, Section 4.3) gives an explicit way to calculate the imaginary part of ~gg n.

An estimator �ff n of the density function can be obtained by inverting the characteristic

function Q(�kk n). For the density plots in Figures 2 and 3, we used the method of Schorr (1975).

7. Applications and examples

We consider two observation schemes for (X t):

1. Observe (X t) on a regularly spaced grid with fixed mesh width ˜. Write X k˜ for the

observations (k ¼ 0, 1, . . .).
2. As observation scheme 1, but now suppose that the mesh width ˜n decreases as n

increases. This gives, for each n, observations (X0, X˜n
, X2˜n

, . . .).

7.1. Data from the OU process: observation scheme 1

Suppose X0, X˜, . . . , X (n�1)˜ are n observations from the stationary OU process (X t). Let

F0 denote the marginal distribution of X i˜ (0 < i < n � 1). By Theorem 2.2, F0 is

positive, self-decomposable and characterized by a function k0 in K. As a preliminary

estimator for ł0 ¼ Q(k0) we propose the empirical characteristic function defined by

~łłn(t) :¼
ð

ei txdFn(x) ¼ 1

n

Xn�1

j¼0

ei t X j˜ , t 2 R:

Here Fn denotes the empirical distribution function of X 0, . . . , X (n�1)˜. By Theorem 3.1 the

process (X t) is �-mixing. This implies that (X n) is �-mixing. This in turn implies that (X n)

is ergodic (Genon-Catalot et al. 2000). An application of Birkhoff’s ergodic theorem

(Krengel 1985, pp. 9–10) gives, for t 2 R,

~łłn(t)�!a:s:
ð

ei txdF0(x) ¼ ł0(t),
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as n tends to infinity. Consistency of k̂k n now follows directly upon an application of Theorem 5.3.

So far, the weight function has been fixed in advance of the estimation procedure. The

choice of this function has been more or less arbitrary. Roughly, the larger the number of

observations, the larger one would like to take Sw. This suggests a data-adaptive choice for

w (or at least for its support). Numerical experiments indicate that such a choice can

improve the numerical results obtained so far. Therefore, we have implemented a bootstrap

procedure to determine the right-hand end-point of Sw, which we denote by t�n. This

procedure runs as follows. Take a large number (say, N ) of samples of n observations from

the empirical distribution function F̂Fn. For the ith set of observations, let g(i)
n denote its

corresponding empirical cumulant function. Then approximate Ej~ggn(t) � g0(t)j by the

average Un(t) :¼ N�1
PN

i¼1jg(i)
n (t) � ~ggn(t)j for each t in a (large) interval [0, M]. Finally,

take some threshold � . 0 and define t�n :¼ infft > 0 : Un(t) . �g.

Next, we apply the support-reduction algorithm of Section 6 with w(�) ¼ 1[� t�n , t�n ](�)
(� ¼ 0:1). Figure 2 shows some simulation results in the case where �0 is Gamma(3, 2). We

simulated the OU process on the interval [0, 1000] and took observations at time instants

0, 1, . . . (i.e. we observe the 1-skeleton).

Although the estimate for k0 is quite inaccurate, the estimate for the density function

shows a much better fit. The density plot is obtained by inversion of the characteristic

function, corresponding to the estimated canonical function. See the final remark of

Section 6.

7.2. Data from the OU process: observation scheme 2

For each n > 1, denote the observations by X 0, X˜n
, X2˜n

, . . . , X (n�1)˜ n
. We will now

show that the empirical characteristic function based on these observations converges

pointwise in probability to ł0.

Define for each fixed u 2 R the continuous process (Y u
t , t > 0) by

� � � � �
�

���

�

���

�

���

�

���

�

���

� � � � �
�

���

���

���

���

���

���

�

Figure 2. Gamma(3,2) distribution, n ¼ 1000. Left: estimated (solid) and true (dotted) canonical

function. Right: estimated (solid) and true (dotted) density function.
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Y u
t ¼ eiuX t � EiuX t :

Denote by (Y u
k˜ n

)k the discretely sampled process, obtained from (Y u
t , t > 0) by observation

scheme 2. Thus,

Y u
k˜n

¼ eiuX k˜ n � EiuX k˜n , k ¼ 0, . . . , n � 1:

For a certain stochastic process (Us , s > 0) the Æ-mixing ‘numbers’ are defined by

ÆU (h) ¼ 2sup
t

sup
A2� (Us,s< t)

B2� (Us,s> tþh)

jP(A \ B) � P(A)P(B)j, h . 0:

The process (Us , s > 0) is called Æ-mixing if ÆU (h) ! 0 as h ! 1. As shown in Genon-

Catalot et al. (2000), �-mixing is a stronger property than Æ-mixing. In fact, for any process

(Us , s > 0) we have ÆU (t) < �U (t) (t . 0).

Lemma 7.1. Suppose that ˜n ! 0 and n˜n ! 1, as n ! 1. Then, for u 2 R,

1

n

Xn�1

k¼0

Y u
k˜ n

�!p 0, n ! 1:

Proof. Let u 2 R arbitrary. Denote the Æ-mixing numbers of (jY u
t j , t > 0) by ÆjY uj, and

similarly for (jY u
k˜ n

j)k by ÆjY u, nj. Since � (jY u
t j, t 2 T ) � � (X t, t 2 T ) for any interval

T � [0, 1), the definition of the Æ-mixing numbers implies that for any h . 0,

ÆjY uj(h) < ÆX (h). In the same way one can verify that for j 2 N, ÆjY u, nj( j) < ÆjY uj( j˜n).

Combining these inequalities gives, for j 2 N,

ÆjY u, nj( j) < ÆjY uj( j˜n) < ÆX ( j˜n) < �X ( j˜n), (7:1)

where the last inequality follows from the remark just before the lemma.

Lemma A.2 implies that the following inequality holds: for each h 2 N,

P
1

n

Xn�1

k¼0

jY u
k˜n

j > 2�

 !
<

2h

n�2

ð1

0

Q2(1 � w)dw þ 2

�

ðÆjY u, n j(h)

0

Q(1 � w)dw, (7:2)

where Q ¼ F�1
jY1j. Since P(jY1j < y) ¼ 1 if y > 2, we have Q(u) < 2 for all u 2 (0, 1).

Hence, for all � . 0,

P

���� 1

n

Xn�1

k¼0

Y u
k˜n

���� > 2�

 !
< P

1

n

Xn�1

k¼0

jY u
k˜n

j > 2�

 !

<
8h

n�2
þ 4

�
ÆjY u, nj(h) <

8h

n�2
þ 4

�
�X (h˜n), (7:3)

where the last inequality follows from (7.1).

Take h ¼ hn ¼
ffiffiffiffiffiffiffiffiffiffiffi
n=˜n

p
, then hn=n ! 0 and hn˜n ! 1 (n ! 1). Hence both terms in

(7.3) can be made arbitrarily small by letting n ! 1. h
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If we define ~łłn(u) ¼ n�1
Pn�1

k¼0eiuX k˜n , then the above lemma shows that ~łłn(u)�!p ł0(u)

for each u 2 R . An application of Theorem 5.3 gives k k̂k n � k0k� �!
p

0 as n ! 1, proving

consistency.

7.3. Estimating a positive self-decomposable density from i.i.d. data

We momentarily digress to consider the problem of estimating a positive self-decomposable

density from i.i.d. data. Let X1, . . . , X n be independent random variables with common

distribution function F0. As before, F0 is characterized by k0 in K. As a preliminary

estimator for ł0 we take again the empirical characteristic function. Since Fn converges

weakly to F0 almost surely, it follows that ~łłn converges pointwise almost surely to ł0, as

n tends to infinity. Consistency of k̂k n now follows from Theorem 5.3.

Let f 0 denote the density of F0. We remark that a general closed-form expression for the

density function f 0 in terms of k0 is not known, This hampers the use of maximum

likelihood techniques for estimating a self-decomposable density based on i.i.d. data.

However, given k̂k n, we can calculate ł̂łn ¼ Q( k̂k n), and then numerically invert this function

to obtain a nonparametric estimator F̂Fn for F0. In contrast to the empirical distribution

function, our estimator F̂Fn is guaranteed to be of the correct type (i.e. self-decomposable).

Figure 3 shows plots for the canonical function and the density function, in the case where

�0 follows an IG(2, 1) distribution.

Alternative preliminary estimators are also possible. For example, suppose we know, in

addition to the assumptions already made, that the density of F0 is decreasing. Then we can

take as a preliminary estimator the Grenander estimator Fn,Gren, which is defined as the

least concave majorant of the empirical distribution function Fn. Using similar arguments to

the foregoing, we can show that the estimator for k based on Fn,Gren is consistent. As

another example, one could also take the maximum likelihood estimator for a unimodal

��� �� �
�

���

�

���

�

���

�

���

�

� � � � 	
�

���

���

���

���

���

��	

����

����

����

����

����

Figure 3. IG(2,1) distribution, n ¼ 1000. Left: estimated (solid) and true (dotted) canonical function.

Right: estimated (solid) and true (dotted) density function.
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density as a preliminary estimator for f 0. This makes sense, since every self-decomposable

density is unimodal (Sato 1999, Theorem 53.1).

8. Estimation of the intensity parameter º

Suppose X0, X˜, . . . , X n˜ are discrete-time observations from the stationary OU process

according to observation scheme 1, for some fixed ˜ . 0. In this section, we define an

estimator for º. For ease of notation we write X i ¼ X i˜ (i ¼ 0, . . . , n). From the proof of

Proposition 3.3 we know that for each n > 1, X n ¼ e�ºX n�1 þ W n(º). Here fW n(º)gn>1 is

a sequence of independent random variables with infinitely divisible distribution function

º̂. Since (X n, n > 0) is stationary, X0 � �0, where �0 has Lévy density x 7! r(x, 1)=x.

Let Ł ¼ e�º and denote the true parameter by Ł0. Since W n(º) > 0 for each n > 1, we

easily obtain the bound Ł0 < minn>1(X n=X n�1). Define the estimator

Ł̂Łn ¼ min
1<k<n

X k

X k�1

:

Then Ł̂Łn(ø) > Ł0, for each ø. Hence Ł̂Łn is always biased upwards. However, we have:

Lemma 8.1. The estimator Ł̂Łn is consistent: Ł̂Łn �!
p

Ł0, as n tends to infinity.

Proof. Let � . 0. Since

fŁ̂Łn < Ł0 þ �g ¼ 9 k 2 f1, . . . , ng such that
X k

X k�1

< Ł0 þ �

� �

¼ 9 k 2 f1, . . . , ng such that
Ł0 X k�1 þ W k(º)

X k�1

< Ł0 þ �

� �

¼ f9 k 2 f1, . . . , ng such that W k(º) < �X k�1g :¼ An,�,

we have P(jŁ̂Łn � Ł0j < �) ¼ P(An,�). We aim to show that for each � . 0,

limn!1P(Ac
n,�) ¼ 0. Define Nn :¼

Pn
k¼11fX k�1.1g. Then

P(Ac
n,�) ¼ P(W k(º) . �X k�1 , 8 k 2 f1, . . . , ng)

¼
Xn

j¼0

P(W k(º) . �X k�1, 8 k 2 f1, . . . , ngjNn ¼ j)P(Nn ¼ j)

<
Xn

j¼0

(P(W1(º) . �)) j P(Nn ¼ j),

where the last inequality holds since fW k(º)gk>1 is an i.i.d. sequence. Since W1(º) has

support [0, 1) (Sato 1999, Corollary 24.8), P(W1(º) . �) :¼ Æ� 2 [0, 1). This gives
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P(Ac
n,�) <

X1
j¼0

Æ j
� P(Nn ¼ j):

By dominated convergence, limn!1P(Ac
n,�) <

P1
j¼0Æ

j
�[limn!1P(N n ¼ j)]. We are done,

once we have proved that limn!1P(Nn ¼ j) ¼ 0.

We claim N n �!
a:s: 1, as n ! 1. From Section 3 we know that

limn!1kPn(x, �) � �0kTV ¼ 0, for all x 2 E. By Proposition 6.3 in Nummelin (1984), this

implies that the chain (X n)n is positive Harris recurrent and aperiodic. Now Harris

recurrence implies that the set (1, 1) is visited infinitely many times by (X n)n, almost

surely. Therefore, the claim holds and we conclude P(Ac
n,�) ! 0. h

By the continuous mapping theorem we have:

Corollary 8.2. Define º̂ºn ¼ �log Ł̂Łn. Then º̂ºn �!
p

º0, as n ! 1, where º0 denotes the true

value of º.

If all innovations W n(º) are exponentially distributed, Ł̂Łn equals the maximum likelihood

estimator for the model. A detailed asymptotic analysis for this model is given in Nielsen

and Shephard (2003).

Appendix

Proof of Proposition 3.3. The solution of the OU equation is given in (2.3). If we discretize

the expression for this solution, we obtain

X n ¼ e�ºX n�1 þ
ð1

0

eº(u�1)dZ(º(u þ n � 1)), n > 1:

Since Z has stationary and independent increments, we can write

X n ¼ e�ºX n�1 þ W n(º), (A:1)

where (W n(º))n is an i.i.d. sequence of random variables distributed as Wº.

Next, we show that the distribution of ( ~XX t), defined by

~XX t :¼
ð t

0

e�º( t�s)dZ(ºs), (A:2)

is infinitely divisible for each t > 0. Since Wº ¼
d ~XX1 we then obtain infinite divisibility for the

noise variables. Note that ( ~XX t) is simply the OU process with initial condition X (0) ¼ 0.

Similarly to equation (17.3) in Sato (1999), we have the following relation between the

characteristic function of ~XX and T (łZ(1)) (the cumulant of Z(1)):

Eiz ~XX t ¼ exp º

ð t

0

T (łZ(1))(e
�º( t�u)z)du

� �
:

Since we assume Z has Lévy measure r (i.e. T (łZ(1))(u) ¼
Ð1

0
(eiux � 1)r(dx)), we have
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log Eiz ~XX t ¼ º

ð t

0

ð1
0

eie�º( t�u) zx � 1
� �

r(dx)du

¼ º

ð1
0

ð t

0

eie�º( t�u) zx � 1
� �

dur(dx) ¼
ð1

0

ðx

e�º t x

(eiwz � 1)w�1dwr(dx)

¼
ð1

0

(eiwz � 1)w�1dw

ðeº t w

w

r(dx) ¼
ð1

0

(eiwz � 1)kt(dw):

Here

kt(B) ¼
ð

B

w�1r(w, eº tw]dw, B 2 E:

Hence if we let k :¼ k1, the Lévy measure has the form as given in (3.4).

It remains to be shown that kt satisfies
Ð1

0
(1 ^ x)kt(dx) , 1 for each t . 0. This follows

from

ð1

0

xkt(dx) ¼
ð1

0

r(x, eº t x]dx <

ðeº t

0

yr(dy) , 1

and ð1
1

kt(dx) ¼ kt(1, 1) ¼
ð1

1

ð y

(1_e�º t y)

1

w
dwr(dy)

¼
ð1

1

log
y

(1 _ e�º t y)

� �
r(dy) , 1

¼
ðeº t

1

log yr(dy) þ
ð1

eº t

ºtr(dy) , 1:

h

Lemma A.1. Under condition (2.7),

I :¼
ð1

0

dz

z
exp �

ð1

z

ºr(y)

y
dy

� �
¼ þ1, (A:3)

where

ºr(y) ¼
ð1

0

(1 � e� yx)r(dx): (A:4)

Proof. Let y 2 (0, 1). Since 1 � e�u < min(u, 1) for u . 0, we obtain
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ºr(y) ¼
ð1

0

. . . þ
ð1=

ffiffiffi
y

p

1

. . . þ
ð1

1=
ffiffiffi
y

p (1 � e� yx)r(dx)

< y

ð1

0

xr(dx) þ
ð1=

ffiffiffi
y

p

1

yffiffiffi
y

p r(dx) þ
ð1

1=
ffiffiffi
y

p
1 � e� yx

log x
log xr(dx)

< c1 y þ c2

ffiffiffi
y

p � 2

log y

ð1
1=
ffiffiffi
y

p log xr(dx),

where c1 ¼
Ð 1

0
xr(dx) and c2 ¼ r(1, 1).

Choose Æ 2 (0, 1) such that c3 :¼ 2
Ð1

1=
ffiffiffi
Æ

p log xr(dx) , 1, which is possible by (2.7).

Since y 7!
Ð1

1=
ffiffiffi
y

p log xr(dx) is increasing on (0, 1), we have

ºr(y) < c1 y þ c2

ffiffiffi
y

p � c3=log y, if y 2 (0, Æ):

For y 2 (Æ, 1), we have the simple estimate ºr(y) < c1 y þ c2. If z 2 (0, Æ), thenð1

z

ºr(y)

y
dy ¼

ðÆ
z

ºr(y)

y
dy þ

ð1

Æ

ºr(y)

y
dy

< c1(Æ� z) þ 2c2(
ffiffiffi
Æ

p
�

ffiffiffi
z

p
) � c3

ðÆ
z

1

y log y
dy þ c1(1 � Æ) � c2 logÆ

¼ KÆ � c1z � 2c2

ffiffiffi
z

p
þ c3 log(�log z),

where

KÆ ¼ c1 þ c2(2
ffiffiffi
Æ

p
� log(Æ)) � c3 log(�logÆ) 2 R:

Using this inequality, we obtain

I >

ðÆ
0

dz

z
exp �

ð1

z

ºr(y)

y
dy

� �
> e�KÆ

ðÆ
0

ec1 zþ2c2

ffiffi
z

p
(�log z)�c3

dz

z
:

The last integral exceeds ðÆ
0

1

z(�log z)c3
dz ¼

ð1
�log Æ

1

uc3
du ¼ 1,

since Æ was chosen such that c3 , 1. h

The statement and proof of the following lemma are similar to Theorem 3.2 in Rio

(2000).

Lemma A.2. For any mean-zero time series X t with Æ-mixing numbers Æ(h), every x . 0 and

every h, n 2 N, with Qt ¼ F�1
jX t j,
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P(X n > 2x) <
2

nx2

ð1

0

h

n

Xn

t¼1

Q2
t (1 � u) du þ 2

x

ðÆ(h)

0

1

n

Xn

t¼1

Qt(1 � u) du: (A:5)
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Roy. Statist. Soc. Ser. B, 44, 262–269.

Chung, K.L. (2001) A Course in Probability Theory (3rd edition). San Diego, CA: Academic Press.
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