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We consider the Gaussian white noise model and study the estimation of a function f in the uniform
norm assuming that f* belongs to a Holder anisotropic class. We give the minimax rate of convergence
over this class and determine the minimax exact constant and an asymptotically exact estimator.
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1. Introduction

Let {Y . t€ [0, l]d}, be a random process defined by the stochastic differential equation

dY, = f(Hdt +— dWw,, t €0, 119, (1)

\/_
where f is an unknown function, n > 1, 0 > 0 is known and W is a standard Brownian sheet
in [0, 1]¢. We wish to estimate the function / given a realization y = {Y +» 1 €0, l]d}. This
is known as the Gaussian white noise problem and has been studied in several papers, starting
with Ibragimov and Has’minskii (1981). We suppose that f* belongs to a d-dimensional
anisotropic Holder class 3(f, L) for 8= (B1, ..., Ba) € (0, 119 and L = (Ly, ..., Ly) such
that 0 < L; < oco. This class is defined by

(B, L) =
{700, 117 = R: [f(x) = fO)] < Lilxi — mi P + ..o+ Lalxa — yalf, x, y €10, 117},
where x = (x1, ..., xg) and y = (y1, ..., Va)-

In the followmg P, is the distribution of y under model (1) and E, is the corresponding
expectation. We denote by S the real number such that 1/ = Zl ((1/6)). Let w(u), u=0,
be a continuous non-decreasing function which admits a polynomial majorant
w(u) < Wy(l 4+ u”) with some finite positive constants W, v and such that w(0) = 0.

Let 6, be an estimator of f, i.e. a random function on [0, 1] with values in R
measurable with respect to {Y,, t € [0, l]d}. The quality of 6, is characterized by the
maximal risk in sup-norm,

0, o
R.(0,) = sup [Efw(” l/)fH ),

SEX(B.L)
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where 1, = ((log n)/n)?/@*1) and | g|| = sup,cpo.1)¢/g(#)|. The normalizing factor v, is
used here because it is a minimax rate of convergence. For the one-dimensional case, the fact
that 1, is the minimax rate for the sup-norm has been proved by Ibragimov and Has’minskii
(1981). For the multidimensional case, this fact was shown by Stone (1982) and Nussbaum
(1986) for the isotropic setting (3, = - - - = f4), but it has not been shown for the anisotropic
setting considered here. Nevertheless there exist results for estimation in L, norm with
p < oo on anisotropic Besov classes (Kerkyacharian et al., 2001) suggesting similar rates but
without a logarithmic factor. The case p = 2 has been treated by several authors (Neumann
and von Sachs 1997; Barron et al. 1999).

Our result implies in particular that v, is the minimax rate of convergence for estimation
in sup-norm. But we prove a stronger assertion: we find an estimator f » and determine the
minimax exact constant C(f, L, 6%) such that

C(B, L, 0%) = lim igf R,(0,) = lim R,(f,), )

where infy stands for the infimum over all the estimators. Such an estimator f, will be
called asymptotically exact.

The problem of asymptotically exact constants under the sup-norm was first studied in
the one-dimensional case by Korostelev (1993) for the regression model with fixed
equidistant design. Korostelev found the exact constant and an asymptotically exact
estimator for this set-up. Donoho (1994) extended Korostelev’s result to the Gaussian white
noise model and Holder classes with 5 > 1. However, asymptotically exact estimators are
not available in explicit form for § > 1, except for f = 2. Korostelev and Nussbaum (1999)
found the exact constant and asymptotically exact estimator for the density model. Lepskii
(1992) studied the exact constant in the case of adaptation for the white noise model. Bertin
(2004) found the exact constant and an asymptotically exact estimator for the regression
model with random design.

The estimator fn defined in Section 2 and which will be shown to satisfy (2) is a kernel
estimator. For d = 1, the kernel used in our estimator (and defined in (3)) is the one derived
by Korostelev (1993) and can be viewed as a solution of an optimal recovery problem. This
is explained in Donoho (1994) and Lepski and Tsybakov (2000). For our set-up, i.e. the
Gaussian white noise model and d-dimensional anisotropic Holder class =(f, L) for
B=(B1, ..., Ba) €0, 1] and L € (0, +o0)?, the choice of optimal parameters of the
estimator (i.e. kernel, bandwidth) is also related to a solution of optimal recovery problems.
In the same way as in Donoho (1994), the kernel defined in (3) can be expressed, up to a
renormalization on the support, as

g4(0)
s(s)d
|, st
where 83 is the solution of the optimization problem

max gz0), gzl =1, g5 €Z(B, 1)
where ||/, = (tle,fz(t)dt)l/2 and 1 is the vector (1, ..., 1) in R

K(f) =

>
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The anisotropic class of functions in this paper does not turn into a traditional isotropic

Lipschitz class in the case 8 = ... = ;. For an isotropic class defined as
{00, 1" = R: /(@) — fW| = LIx = y|P, x, y €0, 11},
with B € (0, 1], L>0 and | - || the Eucleadian norm in R?, radial symmetric ‘cone-type’

kernels should be optimal. Such kernels of the form K(x) = (1 — x|))., for x € R?, are
studied in Klemeld and Tsybakov (2001). We denote (f). = max(0, ¢).

In Section 2, we give an asymptotically exact estimator f » and the exact constant for the
Gaussian white noise model. The proofs are given in Sections 3 and 4.

2. The estimator and main result

Consider the kernel K defined for u = (uy, ..., ug) € [-1, 1]¢ by
B+1
K(uy, ..., uqg) = a—ﬁz(l — |ulp)+, (3)
where
d
2 [ ra/s)
o= i=1 - ,
r(1/p) [ 8
i=1

I' denotes the gamma function and |u|g = Zflzl\u,-|ﬁ".

Lemma 1. The kernel K satisfies f[71 1 K(u)du =1 and

2B+

2
du = .
J[_l,mK du =5 @B+ 1)

This lemma is a consequence of Lemma 3 in the Appendix.
We consider the bandwidth 4 = (hy, ..., hy), where

Co (log m\ P/ '
n= =2
1 L,( n ) ’
g\ /@B y s
(. p+1 _ 1/8;
CO_<OﬁL*(aﬂ3)> N L*—(HL]- ) .

with
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Finally, we consider the kernel estimator

DI S
Fal®) hy--- hdJ[O,l]d

defined for = (1, ..., t;) € [0, 1]¢, where for u = (uy, ..., ug) € [0, 119,

d
up — h Ug — tg
Ki(u, t) =K uj, ti, hy),
it ) = k(1 i) T st 10

K;(u, 1)dY,, @)

and
1 if t; € [hi, 1 - h,‘],
u; — t; .
21 f ¢ €[0, hy),
g(uia tia hl) = [0’1]< hi ) ! [ )
21110 (ulh l) ti € (1 —hy, 1].

We add the functions g(u;, t;, h;) to account for the boundary effects. Here and later /4
denotes the indicator of the set 4. We suppose that » is large enough so that 4; < %, for
i=1,...,d. Using a change of variables and the symmetry of the function K in each of its
variables — i.e. for all u = (uy, ..., ug) € RY, K(uy, ..., ug) = K(..., ui_1, —tt;, i1, --.)
— we obtain that

1
7J Kj(u, t)du = J K(u)du = 1. 5)
hl M hd [O,I]d [_1’|]d
The main result of the paper is given in the following theorem.

Theorem 1. Under the above assumptions, relation (2) holds for the estimator f » defined in
(4) with

C(B, L, 0%) = w(Cy).

Remark. For d = 1 the constant w(Cy) coincides with that of Korostelev (1993). R
We will prove this theorem in two stages. Let 0 < e < % In Section 3, we show that f,
satisfies the upper bound

limsup sup Ey [W(an —f||oozp;l)} < w(Co(1 + ). 6)
o0 feX(BiL)

In Section 4, we prove the corresponding lower bound

1i’rlrl£réfi(r’1f sup [y (w(ll6s — fllsct,")] = W(Co(1 — &)). @)
" fEX(B.L)

Since € > 0 in (6) and (7) can be arbitrarily small and w is a continuous function, this proves
Theorem 1.
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3. Upper bound

Define, for ¢ € [0, 117 and f € 3(B, L), the bias term,
ba(t, [) = Ef(fu(0) = (1),

and the stochastic term,

200 = Fu0) ~ B0 =T | i va,

Note that Z,(#) does not depend on f. Here we prove inequality (6).

Proposition 1. The bias term satisfies

Co
sup 9, 164, oo < :
1ES(B.L) 28 +1

Proof. Let [ € Z(B, L) and ¢ € [0, 1]9. Suppose n large enough such that (5) is satisfied.
Then

. 1
IE/(fu(0) = F(0)] = ‘ﬁj K (u, 0)(f (u) = f(1))du

d J[o,11¢

d
[0}
< Ki(u,t Liu~—t,~ﬁ" du.
e >(; " |)

Then, using a change of variables and the symmetry of the function K in each of its
variables, we have

d
By~ 70 <E2 S Lkl B,
i=1
where
3
;= iﬁ[ 1— du — ap ’
? J[_u]d|“| (1= fulg)du Bi(B+1D(2B+1)

the last equality being obtained from Lemma 3. Putting these inequalities together, we obtain,
for all ¢ € [0, 119,

‘b " f)| _ Co (log n)ﬁ/(2ﬂ+l)

26+1\ n

Proposition 2. The stochastic term satisfies, for any z > 1 and n large enough,
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_ 2 C()Z
sip By Zull = 2

< Dyn~ VGBI ((og py 2B,
FES(B.L) 26 +1

where D is a finite positive constant.

Proof. The stochastic term is a Gaussian process on [0, 1]¢. To prove this proposition, we use
a more general lemma about the supremum of a Gaussian process (Lemma 4 in the
Appendix). We have

— ZﬁCOZ
P NZolls = =P
|e12al = 2522 <,

te[0,11¢

with

~ 2BCozp/nhy - hy
n o2B+1)

1o

and
1
Vil - hy

We will apply Lemma 4 to the process &, on the sets A belonging to

£ — j K;(u, AW,
[0,13¢

d
S= {A =4 : A €10, k), [hi, 1= hid, (1= hi, 1]}}-
i=1

Let A € S. The process &, on A has the form

1 uy — N Ug — td>
B Y e dw,,
s hy -+ hy J[O,l]dQ< hy hq

where Q(ui, ..., ug) = K(u, ..., ug) [, gi(u;) and
1 if Aj=[hi, 1 — hil,
gi(ui) = § 2. if A; =10, h;),

2y i A== hy 1]

The function Q satisfies ||Q||§ = e O* =K H% Moreover, we have the following lemma
which will be proved in the Appendix.

Lemma 2. There exists a constant D, > 0 such that, for all t € [—1, 1]9,

d 2

i=1

The process &, satisfies the conditions of Lemma 4 and in particular satisfies condition
(12) of that lemma with a; = min(%, B in view of Lemma 2. We have, by Lemma 3,
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) ﬁ b C(l)/ﬂ (log n>1/(2ﬂ+1) rg Z'logn
s LY\ ’ 2K|l; 28+ 1
12

The condition ry > ¢, /[log h|'/* is then satisfied for n large enough. We obtain, for n large
enough, that the quantity N(/4) (cf. Lemma 4) satisfies

D 1/B+1/2
Ny = 2 (Jtog ')
< D3nl/(2ﬂ+1)(log n)1/2ﬁ+l,
where Ds is a finite positive constant. Moreover the quantity ro/|log |'/? is well defined and
bounded independently of n, for n large enough. Then there exists Dy > 0 such that

P, [sup|§,| = Vo] < Dyn~ G D@D (g0 ) /2B
teA
and we obtain Proposition 2 by noting that card(S) = 3¢. 0

We can now complete our proof of inequality (6). Let A, ;=] Fu—flloo for
f € Z(p, L). We have, since w is non-decreasing,

Er(w(Any)) = Ey (W(An,f)l {An,,s(we)co}) +Ey (W(An,f)l {An,f><1+e>co}>

< w((1+)Co) + (Er(w2(An ) > (Pr[Ans > (1 +0)C]) 7.

Therefore to prove inequality (6), it is enough to prove the following two relations:
(i) lim, SUP rcs(4.r) P [An’f > (1+ e)CO] =0;
(i1) there exists a constant Ds such that limsup, . sup res( L)[E f(wz (A,,, /)) < Ds.
Let f € Z(ﬁ, L). To prove (i), note that, for n large enough,
26Co(1 + ¢)
26+1 |

which is a consequence of Proposition 1. By Proposition 2 with z = 1 + ¢, the right-hand side
of this inequality tends to 0 as n — oo.

Let us prove (ii). The assumptions on w imply that there exist constants D¢ and D; such
that

P [Any > (1+)Co) < P, [wnlnznnm >

(0 (Ans) = Do+ D1 [Er (11 2211) ) + (31826 D) 7]
Using the fact that
+00
(3 12)) = Bl 12l >

and Proposition 2, we prove that limsup, . E; [(w;‘ ¥4 n||oo)2y} < 00. This and Proposition
1 entail (ii).
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4. Lower bound

Before proving inequality (7), we need to introduce some notation and preliminary facts.

We write
_up(logn 1/@B+1) e 1/Bi log n B/Bi2B+1)
h=Cy"—— , hy = .
" L; n

Let

d
Sl e e et S €
where [x] is the integer part of x. Consider the points a(/y, ..., l;) € [0, 1]¢ for [; €
{1, ..., m;} and i € {1, ..., d} such that
a(ly, ..., 1) =2 + 1) (1, ..., haly).
To simplify the notation, we denote these points a, ..., ay, and each a; takes the form
aj=(aji, ..., a;q).

Let 0 = (6, ..., 0y) € [—1, 11V, Denote by f(-, §) the function defined for ¢ € [0, 1]¢ by
M
[t 0) =" 0,10,
j=1

where

li —aji
hi

d
fi(ty=n (1 -3

i=1

/5;)
+

S ={fp:0e[-1, 11"}

For all 6 € [—1, 11, f(-, 6) € (B, L), therefore X' C (B, L).
Suppose that f(-) = f(-, 0), with 6 € [—1, 11", in model (1), and denote P g = Py.
Consider the statistics

Define the set

| roar,
y="ll______ je{l,..., M}
J fi(nde
[0,17¢

Proposition 3. Let f = f(-, 0) in model (1).

(i) Forall j€{1,..., M}, y; is a Gaussian variable with mean 6; and variance equal
to
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) _2p+1
" 2logn’

(ii) Moreover, Py is absolutely continuous with respect to Py and
dPa Pu, (¥ — 0,
( ) _ H v ( J ]) ,
j=1 bv, (yj)
where @, is the density of N(0, v2) and Py = P o).

Proof. (i) Let j € {1, ..., M}. Since the functions f; have disjoint supports, the statistic y;
is equal to

| A

0 Jjo,
yi=0i+—= .
Vﬁj [t

(0,134

Since (W,) is a standard Brownian sheet, y; is Gaussian with mean 6; and variance

o? o?
var(y,) = w3 ©)
nJ fz(t)dt nh hl hd[
[0,174
where (see Lemma 3)
2ap°
I = b dr=——"""1— . (10)

J[ll]d( Z‘ | >+ B+DEL+1)

Therefore
o2 L\/P
var(y;) = *

ICf]zﬁH)/ﬁ log n

Using the definition of C(, we obtain (9).
(i1) Using Girsanov’s theorem (see Gihman and Skorohod 1974, Chap. VII, Sect. 4), since
the functions f(-, ) belong to L? ([0, l]d), Py is absolutely continuous with respect to Py

and we have
dpg - ﬁ _ n 2
0= exp{—o [t opaw, 2 [ o 0>dt}.

Since the functions f; have disjoint supports,

dPy 1 E 1 &, M %,9)
ap, ) = e"p{u—zzl‘)fyf‘mzlef 1750
n ]: n J: :
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With these preliminaries, we can now prove inequality (7). For any f € Z(,g, L) and for
any estimator 6,, using the monotonicity of w and the Markov inequality, we obtain that

Er[w(®,'110n = fllso)] = W(Co(1 = )P [1, 100 — [l = Co(1 — &)].
Since X' C Z(ﬁ, L), it is enough to prove that lim, ., A, = 1, where

Ay =inf sup P/ [y,'[|0, — fllc = Co(1 — &)].
O, fex’

,,,,,

the fact that f(a;, 0) = Coy,0; for 0 € [1, 11M, we see that

A, = inf  sup Py(C,),
0cRM ge[—1,11M

where C,, = {maxFl M|éj —0/=1—-e¢; and 6= (él, cee éM) € RM is measurable with

,,,,,

respect to y = {Y,, t € [0, 1]9}. We have

A, = inf

A J Po(C,)(d6),
OcRM J{—(1—¢),1—e}M

where 7 is the prior distribution on 6, 7(df) = H/Ail 7;(d6;), where s; is the Bernoulli

distribution on {—(1 — ¢), | — ¢} that assigns probability % to —(1 — ¢) and to (1 — €). Since
Py is absolutely continuous with respect to Py (see Proposition 3), we have

A, = Ail’lf Jﬂfo (IC dﬂj)@) ﬂ(d@)

feRrM " dPy
M
= inf J[Eo Icnni(””"(yf 9\ wa6).
eRrM = Po()

By the Fubini and Fatou theorems, we can write

1 M
A, =1-— *SuR4JM4 <J H1{|gj,éj‘<1,g}(pu,,(yj - 0])”}(d01)> dP
HeR! j=
T T ewp V!
=t

1 M
=1- J—M (H sup Jl{\e/féj\qfa}%n (v = 9/)”1(d91)> dP.
H ®0 (yj) j=1 6;eR
=

It is not hard to prove that the maximization problem

max Jl{\éﬁe,\qu}%n (v = 0;)7(d0))
0,eR

admits the solution éj (yj) ==&l =0 — (1 —&)l(y<o). By simple algebra, we obtain
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1
J1{|§/_9j\<1_5}(ﬂun(y]' — 0))(d6)) =5 ((pv,,(yj — (L =& ly=0p + @0, (y; + (1 - 8))1{y>,-<o})-

Under Py, the random variables y; are independently and identically Gaussian N(0, v?).
Thus
ol
Ao = 1= TI5 | (90,005 = (= 0110+ 00374 0 = 1 0

=1

+00 M
>1—q %mHU—ww>

S (o)

where @ is the standard normal cdf. Using the relation

~

1
D(—2z2) ~ exp(—z2/2), for z — +o0,
(2~ p(—2%/2)
and the definition of v,, we have
1—¢ 1 2
o _ n —(1—¢) /(2ﬂ+l)l ).
( un) V(= o) (1ot

Now M = C'(n/log n)l/(2ﬁ+l), for some constant C’ >0, therefore lim,_
M®P(—(1 —¢)/v,) = +oo and

M
lim (1 — c1><(1 ‘S)>> —0,
n—oo Un

which completes the proof of the lower bound.

Appendix

Proof of Lemma 2. Let te[—1,1]Y and ueR‘ We have O(t+u)— O(u)=
D8(Q(’+ u) - Q(H)), Where Q(u) = (1 - |u|,3)+ H?:l IG[(ui)’ Wlth Gi S {[05 1]’ [71’ 1]5
[—1, 0]} and Dy is a positive constant. We have:

o If |t+ulg =1 and |ulg = 1, then Ot + u) — O(u) = 0.
o If [+ ulg <1 and |u|g =1, then

O$Q(t+u)—Q(u):1—|t—|—u|ﬂ$|u|ﬂ—|t+u|ﬂ$|t|ﬂ.
o If |t+ulg =1 and |u|g < 1, then for the same reason |Q(¢ + u) — O(u)| < |¢|p.

Thus to prove (8), it is enough to bound from above the integral
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10 = (@t -+ 0~ QL du
where 4, ={u e R : |[t+ulg <1, |ulg < 1}. We have I(t) = Bi() + By(t), where
B0 = [ (0 + 1) = 0w)’ T,
Ba() = [ (0 + ) - Q(a))zlA,mg,c du,

A, ={uecR:Qu)#0, O(t+ u) #0}.
We have

i=1

d 2
Bl(t) = 2d(|l‘|ﬁ)2$ 2(2 |[[|min(ﬁi»l/2)> ,

since mes{u € R : |ulg < } < 2, where mes(-) denotes the Lebesgue measure. Moreover, we
have mes(4, N AS) <257 || and then

d d 2
By(t) < 2¢ Z |t;] =< Dy (Z |ti|min(ﬁ"1/2)>
=1 =1

with Dy a positive constant. This completes the proof. O

The following lemma (Gradshteyn and Ryzhik 1965, formula 4.635.2) is stated without
proof.

Lemma 3. For a continuous function f : Ag — R, we have

J f(x?‘—!—...—!—xd")xf" booxh Ty - dy
A%

1 C(pi/B1) -+ T(pa/Ba) | 1Bt palBa—1
B BaD(pi /By + -+ palBa) Jof(x)x d.

where
Ay = {(xl, ., xg) €0, 119 :x/f1 +.‘.+x§" = 1}
and the f3; and p; are positive numbers.

Lemma 4. Let O : R — R be a function such that ||Q||2 = Jga O* < 00, A be a compact set
A= Hl A with A; intervals of [0, +0) of length T; >0, and W be the standard
Brownian sheet on A. Let hy, ..., hy be arbitrary positive numbers and write h = H?:l h.
We consider the Gaussian process defined for t = (ty, ..., ty) € A:
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1 uy — tq
X =— e daw,, 11
t \/hl"‘hdJ[RdQ< hy ha ) (n
with u= (uy, ..., ug). Let (ai, ..., az) € (0, oo)d and let o be the number such that

1/a= Zle 1/a;. Let T = [[°, T:. We suppose that there exists 0 < ¢| < oo such that, for
tel-1, 1%,

J 2
JW<Q<t+u)— O(u))? du < <c1§j|ri|“f> . (12)
i=1
Then there exists a constant c; > 0, such that, for b = ¢, /|log h|1/2 and h small enough,
b2 Czb
P [sup|X,| = b} < N(h)exp (— —) exp (—), (13)
reA 2)|013 10]3log A'/2
where ¢; = c3(cq + 1/+/a), c3 and c4 do not depend on hy, ..., hy, T and a, P denotes the

distribution of {X,, t € A}, and

d a,
Ny =2]] <Z (cld\log h|1/2) v +1>.
i=1 4

Note that if the h;/T; — 0, then, for h;/T; small enough,

T 1/
N( <2112 (erdltog ')

This lemma is close to various results on the supremum of Gaussian processes (see Adler
1990; Lifshits 1995; Piterbarg 1996). The closest result is Theorem 8-1 of Piterbarg (1996)
which, however, cannot be used directly since there is no explicit expression for the
constants that in our case depend on 4 and 7 and may tend to 0 or co. Also the explicit
dependence of the constants on a is given here. This can be useful for the purpose of
adaptive estimation.

Proof. Let 1 >0 and N;(4, S) be the minimal number of hyperrectangles with edges of

length 7y (A/crd)"/™, ..., ha(A/cid)"/“ that cover a set S C A. We have
d 1/a;
Ti Cld
Ni(A, A) < — [ — 1].
1(4, A) ,H(hi ( 1 ) + >
Denote by By, ..., By,a.a) such hyperrectangles that cover A and choose A = [log h|~'/2,
well defined for 2 < 1. We have, for b = 0,
Ni(,A)
[P’[sup|X,| = b] < Z [F"[sup|X, = b]. (14)
teA = 1€B;
Let j€{l, ..., Ni(4, A)}. Using Theorem 12.2 and Lemma 12.2 of Liftshits (1995), we

obtain, for b = u,
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P

1
sup|X,| = b] <2P [supX, = b] < 2exp (—F(b — ,4)2), (15)

1€B; 1€B;

where 02 = supteA[E(Xf) and u = supj[E(sup,GB/X,). Let us evaluate o2. We have, by a
change of variables,

1 J <u1 — 4 Ug — l‘d) 2
2 2
0° =su e, du < . 16
teg h] . hd AQ h] hd ||Q||2 ( )

Before evaluating 4, we need to introduce a semi-metric p on A defined by

(s, 1) = ([E{(XS - X,)ZDI/Z, s, 1 €A,

where [ is the expectation with respect to P. Let s, t € B;. For h small enough, we have
|(s; — #;)/h;] <1 and, using (12) and a change of variables, we obtain

d
p(S, t) < ¢ Z
i=1

Theorem 14.1 of Lifshits (1995) implies

/2
[E(supX,) < 4\/§J (log NBj(u))l/2 du,
0

a;i

. (17)

S;i— t;
hi

r€B;

where Np (u) is the minimal number of p-balls of radius u necessary to cover B;. In view of
(17), we have a rough bound, for /# small enough,

d ) 1/a;
Np,(u) < Ni(u, B)) < H<1 + (;) )

i=1

Thus, for 4 small enough,

1 1] d 1/2
U= [E(supXt> < 4\/§J [log(N(u, Bj))]1/2 du < 41\/§J [Z log(1 + ul/m)] du
0 i=1

1€B; 0

d 1
<4V2> J [log(1 + u~"/*)]'/? du.
i=1 70
Here

1 1 1 1/2
J [log(1 + u~ /%) ]'/? du = J [log(l + ul/“") ——log u] du
0 0 a;

=< /log2 +

1
log x|'/? dx.
ﬁjo' &

Then we have
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u<Aes(eq + 1/Va) = e, (18)

where c3 and ¢4 are positive constants independent of j, 7, 4 and a. Substituting (15), (16)
and (18) into inequality (14), we obtain, for b = c,A and for 4 small enough,

P{sup|X, = b} < 2N{(4, A)exp (— ! (b— /t)2>,

teA 2HQ”§
b’ Ab
< N(h)exp (— 2) exp(c2 2).
21013 1013
Then for b = ¢,/[log h|'/> and for & small enough, we obtain (13). O
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