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‘Dutch book’ and ‘strong inconsistency’ are generally equivalent: there is a system of bets that makes

money for the gambler, whatever the state of nature may be. As de Finetti showed, an odds-maker

who is not a Bayesian is subject to a Dutch book, under certain highly stylized rules of play – a fact

often used as an argument against frequentists. However, so-called ‘objective’ or ‘uninformative’ priors

may also be subject to a Dutch book. This note explains, in a relatively simple and self-contained way,

how to make Dutch book against a frequently recommended uninformative prior for covariance

matrices.
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1. Introduction

Our aim here is to sketch a relatively simple and self-contained argument to show that

Dutch book can be made against certain ‘objective’ priors, namely, invariant measures that

have infinite mass and are used as ‘priors’ in formal Bayesian calculations. Such improper

priors are often said to be ‘uninformative’. Our main example involves a prior that was

recommended by Jeffreys – and adopted by many Bayesians – for use in multivariate

normal distributions where the covariance matrix is unknown.

To fix ideas, we begin with de Finetti’s Dutch-book argument against the frequentists. Let

� be a finite set. A bookie has to post finite, positive odds on every subset of �, apart

from the empty set and � itself, accepting bets on each set at those odds. Bets can be laid

in any amount (positive or negative) on any combination of sets. The Bayesian bookie will

have a prior probability � on �, and will post odds �(A)=[1 � �(A)] on A. The non-

Bayesian bookie posts odds compatible with no �. In this context, ‘Dutch book’ means a

system of bets that – no matter what ø is chosen from � – yields a positive payoff to the

bettor.

Plainly, Dutch book cannot be made against a Bayesian bookie, since the expected payoff

is 0. On the other hand, as de Finetti showed, Dutch book can be made against any non-

Bayesian bookie. The relevance to applied statistical work is not entirely clear, since few

statisticians place bets when doing data analysis, and few bookies follow de Finetti’s rules

for accepting bets. However, the argument has often been deployed against the frequentists:

for discussion, see Freedman (1995). The possibility of a Dutch book is sometimes referred
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to as a ‘money pump’: if you can win a dollar, you make the poor bookie play the game

over and over again, pumping money from him to you.

De Finetti’s example can be viewed as a prediction problem: nature will choose ø from

�, and the odds are a stylized way of describing opinions about the future. Freedman and

Purves (1969) modified the argument to cover a two-stage process with conditional bets.

The pair (x, z) is chosen at random from PŁ, where Ł is an unknown parameter; x is

observed first, z second. (The parameter space and the observation space are required to be

finite, as in de Finetti’s work.) The gambler is allowed to bet on z, and bets are allowed to

depend on x. The concept of the Dutch book must be extended slightly: the clever gambler

can arrange to have a positive expected payoff from a non-Bayesian bookie, simultaneously

for all Ł – but may have to take a loss for some combinations of Ł, x and z. Some

observers may view the passage from unconditional to conditional bets as a small variation

on de Finetti’s set-up; others consider this generalization to be a major – and subversive –

idea.

Our main example involves prediction, in a setting like that of Freedman and Purves

(1969) – although the spaces are infinite. There are n independent observations from a

common multivariate normal distribution, having mean 0 and (unknown) positive definite

covariance matrix �. The observations are denoted X 1, . . . , X n; they are used to predict an

(nþ 1)th observation, denoted Z. Indeed, having observed X 1, . . . , X n, the statistician is

required to produce a ‘predictive distribution’ for Z. If the Jeffreys prior is used to generate

this predictive distribution, the statistician is exposed to a Dutch book.

A similar example can be constructed for estimation (Section 2.2), but the argument is a

little harder. Stone (1976) has the concept of ‘strong inconsistency’, defined below. In

Section 2, we show that the Jeffreys prior leads to strong inconsistency. Section 3

demonstrates that strong inconsistency is equivalent to a Dutch book. Section 4 reviews the

literature.

2. Main example

Let X1, . . . , X n be independent random p3 1 vectors, with a common N p(0, �)

distribution; the covariance matrix � is p3 p and positive definite. Here, n > p . 1. An

(nþ 1)th observation Z will be drawn independently from N p(0, �). How can the data

X ¼ (X 1, . . . , X n) be used to predict Z? Since the problem is invariant under

multiplication by a p3 p non-singular matrix A,

X i ! AX i, Z ! AZ, � ! A�A9,

an invariant ‘prior distribution’ might suggest itself. (Quote marks are used because the prior

is improper, with infinite total mass.) The invariant prior is d�=j�j( pþ1)=2. It is unique up to a

positive constant, and can be recognized as the Jeffreys prior
ffiffiffiffiffiffi
jI j

p
d�, where I is the Fisher

information matrix and jM j is the determinant of M .

A predictive distribution for Z can be computed from the Jeffreys prior, by a formal

application of Bayes’s rule. In more detail, let 
(x, zj�) be the multivariate normal density

of (X , Z) given �; similarly, 
(xj�) is the multivariate normal density of X given �. Here,
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x 2 (R p)n and z 2 R p. Formally, the ‘predictive density’ for X , Z – in advance of data

collection – is obtained by integrating � against the Jeffreys prior:


(x, z) ¼
ð

(x, zj�)d�=j�j( pþ1)=2: (1)

Likewise, the ‘predictive density’ for X is


(x) ¼
ð

(xj�)d�=j�j( pþ1)=2: (2)

According to ‘Bayes’s rule’, the ‘predictive density’ for Z when X ¼ x is


(zjx) ¼ 
(x, z)=
(x): (3)

We have quote marks because the prior is improper, soð ð

(x, z)dxdz ¼

ð

(x)dx ¼ 1:

On the other hand, 
(zjx) is a proper density for Z, because
Ð

(x, zj�)dz ¼ 
(xj�), soÐ


(x, z)dz ¼ 
(x), and
Ð

(zjx)dz ¼ 1.

The main result of this section can now be stated: the predictive density 
(zjx) is

strongly inconsistent, and Dutch book can be made against a statistician who uses it.

(Strong inconsistency is defined below.)

Theorem 1. Let n > p . 1. Suppose X 1, . . . , X n, Z are independent N p(0, �). The

predictive distribution for Z given X 1, . . . , X n, computed from the Jeffreys prior on the

covariance matrix �, is strongly inconsistent.

An outline of the proof follows, with details in Sections 2.1 and 3. Let S ¼
Pn

i¼1X iX 9i.

We take X i and Z to be p3 1 column vectors, so S is a p3 p matrix. By eliminating a

null set, we can take S to be positive definite. Write Z1 for the first coordinate of Z, and

S11 for the (1, 1)th element of S. Then, as is almost obvious, the sampling distribution D0

of T ¼ Z1=
ffiffiffiffiffiffiffi
S11

p
does not depend on �: ffiffiffi

n
p

T � t n: (4)

Here ‘�’ means ‘is distributed as’, and t n is t with n degrees of freedom.

When X ¼ x, the predictive distribution Q(dzjx) for the (nþ 1)th observation Z,

computed formally by Bayes’s rule from the Jeffreys prior, has a density on R p given by


(zjx) ¼ C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsj(1 þ z9s�1z)nþ1

p
, (5)

where C is a constant, and s ¼
Pn

i¼1xix9i is the value of S at the observed X ¼ x. As before,

we take xi and z to be p3 1, so x is p3 n and s is p3 p. The proof of (5) is ‘just’ calculus

(Section 2.1). The constant C depends on n and p, not on x or z.

Next, the predictive distribution D1 of T ¼ Z1=
ffiffiffiffiffiffiffi
S11

p
when X ¼ x does not depend on x;

indeed,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� pþ 1

p
T � tn� pþ1, (6)

as will also be proved in Section 2.1. By (4) and (6),

D1 6¼ D0: (7)

Inequality (7) is the key point, and strong inconsistency will soon follow. (If p ¼ 1 then

D1 ¼ D0; that is why we assumed p . 1.)

Let E� denote expectation relative to our sampling model for X 1, . . . , X n, Z, and recall

that Q(dzjx) is the predictive distribution for Z given X ¼ x. ‘Strong inconsistency’ means

there is a bounded measurable function f and an E . 0 withð
f (x, z)Q(dzjx) þ E < E�f f (X , Z)g (8)

for all x and �. Section 3 discusses the definition in a more general framework, but here is

the point. The left-hand side of (8) depends on x not �; the right-hand side on �, not x. Thus,

Æ ¼ sup
x

ð
f (x, z)Q(dzjx) , inf

�
E�f f (X , Z)g ¼ �:

Consider a ‘lottery’ that pays f (x, z) when X ¼ x and Z ¼ z. The expected value of the

lottery, in advance of data collection, is at least �. Thus, a statistician (of the kind envisaged

by de Finetti) should pay � to buy the lottery. On the other hand, after seeing X , a statistician

who uses the predictive distribution Q should happily sell the lottery for Æ, no matter what X

proves to be. The gap between Æ and � reflects an inconsistency in the pricing, and leaves

room for Dutch book against Q.

Strong inconsistency is easily demonstrated, by constructing f and E. In view of (7), there

is a bounded measurable function h and E . 0 withð1
�1

h(v)D1(dv) þ E <
ð1
�1

h(v)D0(dv): (9)

Let f (x, z) ¼ h(z1=
ffiffiffiffiffiffi
s11

p
), where z1 is the first coordinate of the p3 1 column vector z, and

s11 is the (1, 1)th element of the p3 p matrix s ¼
Pn

i¼1xix9i. Now (9) boils down to (8), by

the change-of-variables formula for integrals. On the left-hand side, D1 is the Q(dzjx)-

distribution of z1=
ffiffiffiffiffiffi
s11

p
. On the right-hand side, D0 is the sampling distribution of

T ¼ Z1=
ffiffiffiffiffiffiffi
S11

p
. With our f , both sides of (8) are constant, by (4) and (6). This completes a

sketch of the argument for strong inconsistency. Some details are given next, and Dutch book

is discussed in Section 3.

2.1. Some details

We begin with a two-step proof of (5).

Step 1. We first show that the predictive density 
(x) of X ¼ (X 1, . . . , X n), computed

from the model and the Jeffreys prior in advance of data collection, is Cn, p=jsjn=2, where

Cn, p is a constant, s ¼
Pn

i¼1xix9i is positive definite (almost everywhere), and jsj is the

determinant of s. As in (2),
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(x) ¼
ð

(xj�)�(d�),

where 
(xj�) is the multivariate normal density,


(xj�) ¼ (2�)�np=2j�j�n=2 exp � 1

2

Xn
i¼1

x9i�
�1xi

 !
,

and �(d�) ¼ d�=j�j( pþ1)=2 is the Jeffreys prior. As before, x ¼ (x1, . . . , xn), with xi a p3 1

column vector, and � is a p3 p positive definite matrix. Since trace(LM) ¼ trace(ML) when

both products are defined,Xn
i¼1

x9i�
�1xi ¼ trace(��1s) ¼ trace(s1=2��1s1=2): (10)

Since jLM j ¼ jMLj for p3 p matrices,

j�j�n=2 ¼ jsj�n=2js�1=2�s�1=2j�n=2: (11)

So


(x) ¼
ð

(xj�)�(d�) (12)

¼ jsj�n=2

ð
ł(sj�)�(d�)

¼ jsj�n=2

ð
ł(I p3pj�)�(d�),

where I p3p is the p3 p identity matrix,

ł(sj�) ¼ Dn, p(s)exp[�1
2
trace(s1=2��1s1=2)],

Dn, p(s) ¼ (2�)�np=2js�1=2�s�1=2j�n=2:

The first line in (12) is just (2). The second line holds by (10) and (11), with a bit of

algebraic juggling for the constants. The third line holds because the Jeffreys prior � is

invariant. Equation (12) is the required formula for the predictive density 
(x) of

X ¼ (X 1, . . . , X n): the last integral in (12) is Cn, p, the mystery constant in that density.

(Computing the integral is a task not lightly to be undertaken.) This completes step 1 in

proving (5).

Step 2. The predictive density for Z when X ¼ x is obtained from (3), as the quotient of

(1) and (2). In view of (12),


(zjx) ¼ (Cnþ1, p=Cn, p)jsjn=2 jsþ zz9j�(nþ1)=2: (13)

This simplifies to (5), because of the identity

jI p3p þ ww9j ¼ 1 þ w9w, (14)
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with w ¼ s�1=2z, a p3 1 column vector. To verify (14), let L rotate w into (a, 0, . . . , 0)9, so

LL9 ¼ I p3p and a2 ¼ w9w. The left-hand side of (14) equals

jLL9þ Lww9L9j ¼ jI p3p þ Lww9L9j ¼ 1 þ a2:

This proves (14), completing the argument for (5).

We now turn to (6). Let z j be the jth coordinate of the p3 1 column vector z; recall that

s11 is the (1, 1)th entry of the matrix s. What is the Q(dzjx) distribution of z1=
ffiffiffiffiffiffi
s11

p
? When

s ¼ I p3p, the density is proportional to 1=(1 þ z 2
1)(n� pþ2)=2, as one shows by integrating out

z2, . . . , z p. To do the integral, set

z j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ z 2

1

q
wj (15)

for j ¼ 2, . . . , p. This proves (6) when s ¼ I p3p.

Next, Q(dzjx) is the distribution qs on R p whose density is


(zjx) ¼ C=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsj(1 þ z9s�1z)nþ1

p
: (16)

Dependence on x is only through s ¼
Pn

i¼1xix9i: see (5). Abbreviate I ¼ I p3p. Then qs is the

qI -law of s1=2z. What remains to be seen is that

the qI -law of (s1=2z)1=
ffiffiffiffiffiffi
s11

p
does not depend on s, (17)

where (s1=2z)1 is the first coordinate of the p3 1 column vector s1=2z. Claim (17) is

immediate from the invariance of qI under rotation:
ffiffiffiffiffiffi
s11

p
is the ‘2 norm of the first row of

s1=2. (Bear in mind that s1=2 is symmetric.) Since qs is the predictive distribution for Z when

X ¼ x, the argument for (6) is complete, and with it, the proof of Theorem 1.

2.2. Estimation

We have established strong inconsistency when the Jeffreys prior is used in a multivariate

normal prediction problem. A parallel – but more technical – argument yields the same

conclusion in an estimation context. Here is a brief sketch; readers can skip to Section 3

without loss of continuity. Let X1, . . . , X n be independent random p3 1 vectors, with a

common N p(0, �) distribution. Consider the Jeffreys prior distribution �(d�) ¼ d�=
j�j( pþ1)=2. Then the formal posterior distribution for Ł ¼ ��1 given X1, . . . , X n is Wishart:

Ł � W (S�1, p, n), (18)

with S ¼
Pn

i¼1X iX 9i. This is non-trivial, but can be verified starting from the fact that the

Jeffreys prior � is invariant under the transformation � ! ��1, by Jacobian trickery. Given S,

the posterior density of Ł ¼ ��1 with respect to � is proportional to

jŁSjn=2 exp[�1
2

trace(ŁS)],

which is the density of W (S�1, p, n), as in Eaton (1983, p. 240). One analogue of the

statistic T is
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U ¼ Ł11

S11
,

where S11 is the (1, 1)th element of S�1. When – given the data – Ł has the distribution (18),

then

U � �2
n (19)

for each S, as is immediate from the definition of the Wishart: if 
i are independent

N p(0, K), then
Pn

i¼1
i
9i � W (K, p, n). However, under the sampling model, S is

W (�, p, n), and

U � �2
n� pþ1 (20)

for any �, by Proposition (8.7) in Eaton (1983). The fact that (19) and (20) are different for

p . 1 leads to strong inconsistency, as before.

3. Dutch book in the prediction problem

Our purpose here is to show that strong inconsistency is equivalent to a Dutch book. A

‘measurable prediction problem’ consists of: (i) X 2 X ; (ii) Z 2 Z, which is to be

predicted from X ; (iii) a set of parametric models fP(dx, dzjŁ) : Ł 2 ¨g specifying the

joint distribution of X and Z. Here, X and Z are measurable spaces, while X and Z are

measurable functions on some underlying probability space. A ‘predictive distribution’

Q(dzjx) is a distribution for Z that depends on the observed value X ¼ x. If x ! Q(Ajx) is

measurable on X for every measurable A � Z, we will say that Q is measurable.

One way to evaluate Q involves gambling scenarios, as follows. Consider a measurable

subset C � X 3 Z and let Cx ¼ fz : (x, z) 2 Cg be the x-section of C. Then a ‘simple

payoff function’ is

łC(x, z) ¼ IC(x, z) � Q(Cxjx): (21)

If Q is measurable, then (x, z) ! łC(x, z) is measurable by the usual argument, starting from

measurable rectangles.

By way of interpretation, łC(x, z) is the net payoff to a gambler who puts down Q(Cxjx)

dollars to get a dollar if Z 2 Cx. This net payoff is 1 � Q(Cxjx) if Z 2 Cx and �Q(Cxjx) if

Z =2 Cx. No money changes hands if Cx ¼ ˘ or Z. (In particular, there are no interesting

bets on x.)

Now, consider measurable subsets C1, . . . , Ck of X 3 Z. After X ¼ x is observed, allow

the gambler to pay bi(x)Q(Ci,xjx) in order to get bi(x) dollars if Z 2 Ci,x. The gambler is

allowed to use any bounded measurable bi; this is viewed as encouraging honesty on the

part of the odds-maker. Bets are settled separately, and then summed. The net payoff to a

gambler who uses the sets fC1, . . . , Ckg and the betting functions fbi : i ¼ 1, . . . , kg is

ł(x, z) ¼
Xk
i¼1

bi(x)[ICi
(x, z) � Q(Ci,xjx)]: (22)
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Any such ł is called a ‘payoff function’. Clearly,ð
ł(x, z)Q(dzjx) ¼ 0 (23)

for all x. Thus, if your predictive distribution for Z – after observing X ¼ x – is Q(dzjx), all

these payoff functions seem fair.

Definition 1. Dutch book can be made against the predictive distribution Q(dzjx) if there is a

gambling system that provides a uniformly positive expected payoff to the gambler: in other

words, there exists a payoff function ł – as defined by (22) – and an E . 0 such that

E <
ð ð

ł(x, z)P(dx, dzjŁ) for all Ł 2 ¨: (24)

To paraphrase Freedman and Purves (1969), imagine a master of ceremonies who picks some

Ł 2 ¨ and then draws (X , Z) from the model P(dx, dzjŁ). The value of X ¼ x is revealed

and the statistician announces the predictive distribution Q(dzjx). The gambler then lays bets

with payoff function ł. When (24) holds, the gambler expects to win at least E no matter

what the value of Ł.

Of course, if (24) holds for some positive E, any other positive E can be obtained by

rescaling the payoff function. We will say that Dutch book can be made against Q; more

explicitly, Dutch book can made against a bookie who – after seeing that X ¼ x – sets

odds on Z using Q(dzjx). Other language abounds: for instance, there is a Dutch book; or,

if Q is computed from an improper prior �, Dutch book can be made against �.

In this paper, we allow only conditional bets, and obtain results on expected loss for a

non-Bayesian bookie. De Finetti allowed unconditional bets (Section 1) and obtained results

on actual loss. For more discussion, see Freedman and Purves (1969) or Sudderth (1994).

Definition 2. The predictive distribution Q(dzjx) is strongly inconsistent if there exists a

bounded measurable function f (x, z) and an E . 0 such thatð
f (x, z)Q(dzjx) þ E <

ð ð
f (x, z)P(dx, dz)jŁ) (25)

for all x 2 X and Ł 2 ¨.

Equation (8) was a special case, with Ł ¼ �. We now show that Q(dzjx) is strongly

inconsistent if and only if Dutch book can made against Q.

Theorem 2. Let X 2 X , Z 2 Z, and fP(dx, dzjŁ) : Ł 2 ¨g be a measurable prediction

problem. Let Q(dzjx) be a measurable predictive distribution for Z when X ¼ x. Then

Q(dzjx) is strongly inconsistent if and only if Dutch book can be made against Q.

Here is the argument. First, if (24) holds (Dutch book), then f (x, z) � ł(x, z) is bounded

and (25) holds because of (23), proving strong inconsistency. For the converse, assume (25)

868 M.L. Eaton and D.A. Freedman



holds for some bounded measurable f and E . 0. The left-hand side of (25) is a function of

x only; the right, of Ł only. Thus,

sup
x

ð
f (x, z)Q(dzjx) þ E < inf

Ł

ðð
f (x, z)P(dx, dzjŁ): (26)

Since f is bounded, it can be uniformly approximated by a simple function f 0, andð
f 0(x, 
)Q(d
jx) < Æ , � <

ðð
f0(x, z)P(dx, dzjŁ) (27)

for suitable real numbers Æ and �. The inequality holds for all x 2 X and Ł 2 ¨; using 
 for

the variable of integration may be helpful later. Let

f 1(x, z) ¼ f 0(x, z) �
ð
Z
f 0(x, 
)Q(d
jx)

Plainly, f 1 is a payoff function in the sense of (22). Nowð
Z

ð
X
f 1(x, z)P(dx, dzjŁ) ¼ B� A,

where

B ¼
ð
Z

ð
X
f 0(x, z)P(dx, dzjŁ) > �

and

A ¼
ð
Z

ð
X

ð
Z
f 0(x, 
)Q(d
jx)P(dx, dzjŁ) <

ð
Z

ð
X
ÆP(dx, dzjŁ) < Æ;

the inequalities hold by (27), establishing the long-sought Dutch book, namely, inequality

(24) with E ¼ �� Æ and ł ¼ f 1. This completes the proof of Theorem 2.

The equivalence of strong inconsistency and Dutch book also holds for estimation. To see

this, just take Z ¼ ¨, and let Z be the identity map on ¨. Initially, P(dxjŁ) will be defined

only on X ; we require some measurable structure on ¨ and set P(A3 BjŁ) ¼ P(AjŁ)1B(Ł)

for measurable A � X and B � ¨. A predictive distribution is a ‘posterior’ for Ł given

X ¼ x. Quotes are needed unless Q is computed from a proper prior – but then, there are

no paradoxes to discuss.

4. Literature review

Writing in 1926, Ramsey (1931) introduced the idea of betting odds as a means of

assessing probability assignments. De Finetti (1931; 1937) used similar ideas in his

discussion of what is now commonly known as coherence.

di un individuo che debba tenere un banco di scommesse su dati eventi, accettando alle stesse

conditizioni qualunque scommessa nell’uno o nell’altro senso. Vedremo che egli è costretto allora a

rispettare certe restrizioni, che sono i teoremi del calcolo delle probabilità. Altrimenti egli pecca di
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coerenza, e perde sicuramente, purchè l’avversario sappia sfruttare il suo errore. (De Finetti 1931,

p. 305)

In free translation:

A person who is obliged to accept bets in any amount, positive or negative, on any finite

combination of events, must fix prices according to the laws of probability theory. Otherwise, this

person sins against coherence and loses money with certainty, provided the opponent knows how to

exploit the mistake.

Some time afterward, the term ‘Dutch book’ entered the lexicon as a synonym for

incoherence. The earliest citation we could find was Lehman (1955), although use of ‘Dutch’

as a pejorative dates back to seventeenth-century England.

Freedman and Purves (1969) gave the Dutch-book idea careful mathematical expression,

for prediction and estimation, when all the spaces are finite. Rigorous treatments in a

finitely additive setting for the estimation problem can be found in Heath and Sudderth

(1978; 1989). Extensions to the prediction context appear in Lane and Sudderth (1984).

Heath, Lane, and Sudderth allow infinite spaces.

Another foundational idea, ‘strong inconsistency’, was introduced by Stone (1976), and

later adapted to the predictive setting by Lane and Sudderth (1984); also see Eaton and

Sudderth (1993; 1999). The equivalence of strong inconsistency and incoherence is

discussed in the finitely additive setting by Lane and Sudderth (1983). Proof in the

countably additive setting is a little different (Section 3). At the risk of the obvious, strong

inconsistency is an exact finite-sample property, rather than an asymptotic large-sample

property.

That improper prior distributions can give rise to posterior distributions with disturbing

properties has been known since at least the 1970s. Stone (1976) and the discussants of

Stone’s paper provide examples, including the Jeffreys prior. Eaton and Sudderth (1993;

1995; 1998; 1999; 2001; 2002) discuss invariant prediction problems, and show that in the

multivariate linear model, fully invariant predictive distributions are strongly inconsistent:

the ‘principle of invariance’ (Berger, 1985, p. 390) therefore leads to Dutch book. The

Jeffreys prior can be viewed as a prototype where elementary arguments suffice (Section 2).

In contrast, much of the Eaton–Sudderth work relies on separation theorems of the Hahn–

Banach type, which makes the results less accessible. Eaton and Sudderth (1999, Section 8)

show that if the transformation group is amenable, there will be an invariant predictive

distribution immune to Dutch book – although other invariant predictive distributions will

be vulnerable. If the transformation group is not amenable – like the non-singular linear

transformations on R p for p . 1 in Section 2 – all invariant predictive distributions may be

subject to Dutch book (Eaton and Sudderth, 1998).

The uniqueness of the invariant prior in Section 2 above is demonstrated by Eaton (1983,

Example 6.19). Use of this prior has been suggested by Jeffreys (1961, pp. 180–181), Box

and Tiao (1973, p. 426; 1992, Section 8.2.2), Geisser (1993, Chapter 9), Schervish (1995, p.

122) and Keyes and Levy (1996). The latter also has a good survey of invariant predictive

distributions in multivariate analysis of variance. For an interesting generalization of (14),

see Eaton (1983, p. 43). Although incoherence is often a synonym for the possibility of a
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Dutch book, other definitions have been suggested. See Regazzini (1987) as well as Berti

et al. (1991). For more discussion, see Sudderth (1994, Section 7).
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D. Westerstáhl (eds), Logic. Methodology and Philosophy of Science IX. Amsterdam: Elsevier

Science.

Received March 2003 and revised March 2004

872 M.L. Eaton and D.A. Freedman


