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The class of moving-average fractional Lévy motions (MAFLMs), which are fields parameterized by a

d-dimensional space, is introduced. MAFLMs are defined by a moving-average fractional integration

of order H of a random Lévy measure with finite moments. MAFLMs are centred d-dimensional

motions with stationary increments, and have the same covariance function as fractional Brownian

motions. They have H � d=2 Hölder-continuous sample paths. When the Lévy measure is the

truncated random stable measure of index Æ, MAFLMs are locally self-similar with index
~HH ¼ H � d=2þ d=Æ. This shows that in a non-Gaussian setting these indices (local self-similarity,

variance of the increments, Hölder continuity) may be different. Moreover, we can establish a

multiscale behaviour of some of these fields. All the indices of such MAFLMs are identified for the

truncated random stable measure.
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1. Introduction

The concept of self-similarity is often used to give a mathematical meaning to the heuristic

concept of roughness. In this domain the fractional Brownian motion (FBM) BH (t) of

fractional index 0 , H , 1, introduced by Kolmogorov (1940), is certainly the most

famous model. Recall that the FBM is the only centred d-dimensional Gaussian process

such that

E BH (t)� BH (s)ð Þ2 ¼ kt � sk2H , t, s 2 Rd ,

BH (0) ¼ 0 (almost surely):

The FBM has stationary increments, is self-similar of index H , is almost surely H-Hölderian,

and H may be identified in an efficient way using generalized quadratic variations (Istas and

Lang 1997; Coeurjolly and Istas 2001). In summary, H describes without ambiguity the

roughness of the FBM, and this roughness is identifiable. Classical representations

(Mandelbrot and Van Ness 1968) of the FBM are the harmonizable representation,

BH (t) ¼
ð
Rd

ei t:º � 1

kºkHþd=2
dW (º),
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and the moving-average representation,

BH (t) ¼
ð
Rd

(kt � skH�d=2 � kskH�d=2)dW (s),

where the W are the d-dimensional random Brownian measures. In outline, the construction

is as follows: one performs a fractional integration, either harmonizable or moving-average,

of the random Brownian measure. The stochastic integrals with respect to random Brownian

measures are isometries that map deterministic functions in L2(R) to Gaussian random

variables in L2(�, P), where (�, P) is the underlying probability space (see Neveu 1968).

The following question arises: what happens when the ‘Gaussian’ condition is replaced by a

more general condition? The stable case has been widely studied (Samorodnitsky and Taqqu

1994), and we will consider the case where the ‘Gaussian’ condition is replaced by the

existence of all moments. Let us be more precise. Let M be a random Lévy measure all of

whose moments are finite: typically, M will be a truncated stable random measure of index

Æ. We consider the following two processes:

X HA(t) ¼
ð
Rd

ei t:º � 1

kºkHþd=2
dM(º),

and

XMA(t) ¼
ð
Rd

(kt � skH�d=2 � kskH�d=2)dM(s):

Because of the isometry property of such random Lévy measure, the second-order structures

of X HA, XMA and FBM are the same:

E(X HA(t)� X HA(s))
2 ¼ E(XMA(t)� XMA(s))

2 (1)

¼ kt � sk2H :

The process X HA, called real harmonizable fractional Lévy motion (RHFLM), was studied in

Benassi et al. (2002). X HA still has stationary increments but is no longer self-similar. X HA is

locally self-similar with an FBM as tangent field:

lim
�!0þ

X HA(t þ �u)� X HA(t)

�H

� �
u2Rd

¼(d) (BH (u))u2Rd ,

where ¼(d) stands for the limit in distribution. RHFLMs are almost surely H-Hölderian. The

index H may be identified with the same tools as for FBM (Benassi et al. 2002). Once again,

H describes without ambiguity the roughness of the process and this roughness is

identifiable. One therefore should wonder whether the index H of the second-order structure

(cf. (1)) always describes the roughness of a process. The study of processes XMA, called

moving-average fractional Lévy motion (MAFLM), the subject of this paper, clearly indicates

that the answer is no.

It is known (Falconer 2002; 2003) that the tangent field, if it exists, of a process is

almost everywhere a self-similar field with stationary increments. We show in this paper

that the tangent field of some MAFLMs is not an FBM, but is a moving-average stable
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motion (defined in Samorodnitsky and Taqqu 1994). To our knowledge, these MAFLMs are

the first known second-order processes having non-Gaussian tangent fields. Moreover, the

index of local self-similarity of these MAFLMs is not H , but another index, ~HH , which we

give in the paper. It follows that the roughness is no longer described by a single index. We

then prove that MAFLMs have continous sample paths if and only if d ¼ 1 and H . 1=2.
Thus, MAFLMs are almost surely (H � 1=2)-Hölderian.

The indices H and ~HH of MAFLMs are then identified thanks to the observation of a

single sample path on a bounded interval. The local self-similarity suggests the use of log-

variations to identify ~HH, as was done in Abry et al. (2000) and Dury (2001) for stable

processes in a wavelet setting and generalized by Cohen and Istas (2003). �-variations are

used for the identification of H . Actually it is shown that �-variations behave differently

according to whether � , Æ or � . Æ. This fact is reminiscent of the multiscale behaviour

of MAFLMs that we will describe in this paper.

The paper is organized as follows. In Section 2 the MAFLMs are constructed by means

of a Poisson representation. The properties of general MAFLMs (asymptotic self-similarity,

smoothness of the sample paths) are given in Section 3. The property of local self-

similarity, where we need to restrict the class of MAFLMs, is studied in Section 4. The

identification is carried out in Section 5.

2. Construction of moving-average fractional Lévy motions

In this section MAFLMs are obtained by means of a Poisson representation of the random

Lévy measure M(ds) that integrates the classical moving-average kernel:

G(t, s) ¼ kt � skH�d=2 � kskH�d=2: (2)

As in Benassi et al. (2002), a real-valued field is obtained that has moments of second order

E(X 2
H (t)) , þ1 for all t 2 Rd . Since the kernel is itself real-valued, the construction of

MAFLMs is even easier than that of RHFLMs since the random measure M(ds) can be

chosen real-valued.

Let us consider a random Poisson measure N (ds, du) in the sense of Section 3.12 of

Samorodnitsky and Taqqu (1994) but with a control measure that has moments of every

order (see also Benassi et al. 2002). More precisely, let N (ds, du) be a random Poisson

measure on Rd 3 R for which the mean measure n(ds, du) ¼ EN (ds, du) ¼ ds�(du)

satisfies,

8p > 2,

ð
R

juj p�(du) , þ1: (3)

A control measure is said to be finite ifð
R

�(du) , þ1:

Denoting by eNN ¼ N � n the compensated random Poisson measure, the characteristic

function of the stochastic integral is, for all � 2 L2, for all v 2 R,
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E exp iv

ð
j d eNN )

� �
¼ exp

ð
Rd3R

[exp (ivj)� 1� ivj]ds�(du)

� �
, (4)

where the integral on the right-hand side is convergent since

jexp(ix)� 1� ixj < Cjxj2 8x 2 R: (5)

Let us now define the random Lévy measure M(ds) byð
Rd

f (s)M(ds) ¼def
ð
Rd3R

f (s)u eNN (ds, du) (6)

for every function f : Rd ! R where f 2 L2(Rd): Moreover, an isometry property for the

random Lévy measure M(ds) holds:

E

����ð
Rd

f (s)M(ds)

����2 ¼ k f k2L2(Rd )

ð
R

u2�(du) (7)

Since G(t, :) is in L2(Rd) for every t 2 Rd, the MAFLM can now be defined.

Definition 2.1. Let us call a real-valued field (X H (t)) t2Rd which admits a well-balanced

moving-average representation

X H (t) ¼
ð
Rd

kt � skH�d=2 � kskH�d=2
� �

M(ds),

where M(ds) is a random Lévy measure defined by (6) that satisfies the finite-moment

assumption (3), a moving-average fractional Lévy motion with parameter H.

In this paper, for the sake of simplicity, we omit the case d ¼ 1, H ¼ 1=2: X 1=2(t) is

equal in distribution to
Ð t

0
M(ds), which is a Lévy process, and this case is of no interest in

this paper.

Since n(ds, du) is translation-invariant with respect to the variable s, it is straightforward

to show that MAFLMs have stationary increments.

Let us illustrate this construction with a simple example: d ¼ 1 and �(du) ¼
1
2
(��1(du)þ �1(du)), where the �s are Dirac masses. In this case M(ds) is a compound

random Poisson measure and can be written as an infinite sum of random Dirac masses,

M(ds) ¼
X
n2Z

�Sn
(ds)�n,

where Snþ1 � Sn are identically independent random variables with an exponential law, and

�n are identically distributed independent Bernoulli random variables such that

P(�n ¼ 1) ¼ P(�n ¼ �1) ¼ 1=2. The �n are independent of the Sn. Since the measure � is

finite and
Ð
R

u�(du) ¼ 0, the corresponding MAFLM is, in this special case,

X (t) ¼
Xþ1

n¼�1
�n(jt � SnjH�1=2 � jSnjH�1=2): (8)

Even if this equality is in the L2 sense, it suggests that the regularity of the sample path can
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be governed by H � 1=2. In the following section we need other tools to prove this fact, but

it turns out to be true.

3. Properties of general moving-average fractional Lévy
motions

3.1. Asymptotic self-similarity

Proposition 3.1. MAFLMs are asymptotically self-similar with parameter H,

lim
R!þ1

X H (Rt)

R H

� �
t2Rd

¼(d)
ð
R

u2�(du)3 BH (t)ð Þ t2Rd , (9)

where the convergence is that of the finite-dimensional margins and BH is a standard FBM of

index H .

Proof. Let us consider the multivariate function

gt,v,H (R, s, u) ¼ iu
Xn

k¼1

vk

kRtk � skH�d=2 � kskH�d=2

R H
, (10)

where t ¼ (t1, . . . , tn) and v ¼ (v1, . . . , vn) are in Rn. Then

E exp i
Xn

k¼1

vk

X H (Rtk)

R H

 !
¼ exp

ð
Rd3R

[exp(gt,v,H (R, s, u))� 1� gt,v,H (R, s, u)]ds�(du)

� �
:

(11)

The change of variable s ¼ R� is applied to the integral on the right-hand side to give:ð
Rd3R

[exp(R�d=2 gt,v,H (1, � , u))� 1� R�d=2 g t,v,H (1, � , u)]Rd d��(du): (12)

Then, as R ! þ1, a dominated convergence argument yields that

lim
R!þ1

E exp i
Xn

k¼1

vk

X H (Rtk)

R H

 !
¼ exp

1

2

ð
Rd3R

g2
t,v,H (1, � , u)d��(du)

� �
: (13)

Therefore the logarithm of this limit is

� 1

2

ðþ1

0

u2�(du)

ð
Rd

Xn

k¼1

vk(kt k � �kH�d=2 � k�kH�d=2)

 !2

d� , (14)

the second integral of which is the variance of
Pn

k¼1vk BH (t k), which concludes the proof of

the convergence of finite-dimensional margins. h
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3.2. Regularity of the sample paths

In this subsection general MAFLMs are considered again. To investigate the regularity of

the sample paths of MAFLMs one can use the Kolmogorov theorem to show that the

sample paths are locally Hölder-continuous for every exponent H9 , H � d=2 when

H . d=2. This is a direct application of the isometry property. The question is then what

happens when H , d=2 or if H � d=2 . 0. Can we show that the ‘true’ exponent is

strictly larger than H � d=2? If we consider the integrand G(t, s) ¼ kt � skH�d=2�
kskH�d=2 it is clear that, when H � d=2 , 0, G(:, s) is not locally bounded, and when

H . d=2, it is not H9-Hölderian if H9 . H � d=2 in a neighbourhood of s. Following

Rosinski’s rule of the thumb (Rosinski 1989), it is known that the simple paths of the

integral defining X H (t) cannot be ‘smoother’ than the integrand G.

Let us now make some precise statements.

Proposition 3.2. If H . d=2, for every H9 , H � d=2 there exists a continuous modification

of the MAFLM X H such that

P ø; sup
0,ks� tk,E(ø),ksk<1,k tk<1

X H (s)� X H (t)

ks � tkH9

� �
< �

" #
¼ 1, (15)

where E(ø) is an almost surely positive random variable and � . 0. Moreover, for every

H9 . H � d=2, P(X H =2 C H9) . 0, where C H9 is the space of Hölder-continous functions on

[0, 1]d. Furthermore, if the control measure � of the random measure M is not finite,

P(X H =2 C H9) ¼ 1.

Proof. Since

E(X H (s)� X H (t))
2 ¼ Ckt � sk2H ,

property (15) is a direct consequence of the Kolmogorov theorem. To prove the second part

of the proposition, Theorem 4 in Rosinski (1989) will be applied to X H . First, we take a

separable modification of X H with a separable representation. The next step is to use the

symmetrization argument of Rosinski (1989, Section 5) if � is not already symmetric. Then

we can remark that the kernel t ! kt � skH�d=2 � kskH�d=2 =2 C H9 for every H9 . H � d=2,
and the conclusion of Theorem 4 is applied to the measurable linear subspace C H9 to give

P(X H =2 C H9) . 0. To show that this probability is actually one, we rely on a zero–one law.

The process X H can be viewed as an infinitely divisible law on the Banach space C[0, 1] of
the continous functions endowed with the supremum norm. Let us consider the map

j : R3 Rd 7! C[0, 1]

(u, s) ! u(k:� skH�d=2 � kskH�d=2k);

the random Lévy measure F(d f ) of the infinitely divisible law defined by X H is now given

by j(�sym(du)3 ds) ¼ F(d f ), where �sym is the control measure of the symmetrized process.

362 A. Benassi, S. Cohen and J. Istas



Hence F(C[0, 1]nC H9) ¼ þ1 if �sym(R) ¼ þ1. Corollary 11 in Janssen (1982) and

P(X H =2 C H9) . 0 yield the last result of the proposition. h

Now let us return to the case H , d=2.

Proposition 3.3. If H , d=2, for every compact interval K � Rd,

P(X H =2 B(K)) . 0,

where B(K) is the space of bounded functions on K.

Proof. In this case, we remark that t ! kt � skH�d=2 � kskH�d=2 =2 B(K) for every s 2 K.

The proposition is then proved by applying Theorem 4 in Rosinski (1989) to B(K).

4. Local self-similarity of MAFLMs

We now investigate local self-similarity for MAFLMs. It should be noted that MAFLMs

generally do not have a tangent field. In this section we focus on the truncated stable case.

In view of Propositions 3.1 and 4.1, the truncated stable case can be viewed as a bridge

between FBM and moving-average stable motion. Let

�(du) ¼
1fjuj<1g du

juj1þÆ
:

Denote the corresponding MAFLM by

X H ,Æ(t) ¼
ð
Rd

G(t, s)dM(s):

The behaviour of MAFLMs at small scales E ! 0þ is similar to the behaviour of

RHFLMs at large scales R ! þ1. For instance, the limit field is a moving-average stable

motion (cf. Samorodnitsky and Taqqu 1994) with parameter ~HH. However, the relationship

between ~HH and H is slightly different in the setting of moving averages, as shown in the

following proposition.

Proposition 4.1. Let us assume that ~HH, defined by ~HH � d=Æ ¼ H � d=2, is such that

0 , ~HH , 1. The MAFLM X H ,Æ with control measure

�(du) ¼
1fjuj<1g du

juj1þÆ

is locally self-similar with parameter ~HH. For every fixed t 2 Rd,

lim
E!0þ

X H ,Æ(t þ Ex)� X H ,Æ(t)

E ~HH

� �
x2Rd

¼(d) Y ~HH (x)
� 	

x2Rd , (16)

where the limit is in distribution for all finite-dimensional margins of the field and the limit is

a moving-average fractional stable motion that has a representation
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Y ~HH (x) ¼
ð
Rd

(kx � �k ~HH�d=Æ � k�k ~HH�d=Æ)MÆ(d� ), (17)

where MÆ(d�) is a stable Æ-symmetric random measure.

Proof. Since the MAFLM has stationary increments we need only prove the convergence for

t ¼ 0. As in the previous proposition, we consider a multivariate function

g t,v,H (E, s, u) ¼ iu
Xn

k¼1

vk

kEt k � skH�d=2 � kskH�d=2

E ~HH
, (18)

where t and v are in Rn. Then

E exp i
Xn

k¼1

vk

X ~HH (Euk)

E ~HH

 !
¼ exp

ð
Rd3R

[exp(gt,v,H (E, s, u))� 1� g t,v,H (E, s, u)]ds�(du)

� �
:

(19)

Then the change of variable � ¼ s=E is applied, and ~HH has been chosen such that the integral

in (19) is nowð
Rd3R

[exp(gt,v,H (1, � , E�d=Æu))� 1� gt,v,H (1, � , E�d=Æu)]1(juj , 1)Ed d�
du

juj1þÆ
: (20)

Let us set w ¼ E�d=Æu. The integral becomes

I(E) ¼
ð
Rd3R

[exp(g t,v,H (1, � , w))� 1� gt,v,H (1, � , w)]1(jwj , E�d=Æ) d�
dw

jwj1þÆ
: (21)

Recall that

�C(Æ)jxjÆ ¼
ð
R

[eixr � 1� ixr1(jrj < E�d=Æ)]
dr

jrj1þÆ
(22)

for every E . 0, where C(Æ) ¼ 2
Ðþ1
0

(1� cos (r))dr=r1þÆ. Let us write

JE ¼
ð
R

[eixr � 1� ixr]1(jrj < E�d=Æ)
dr

jrj1þÆ
:

Then

lim
E!0þ

JE þ C(Æ)jxjÆð Þ ¼ lim
E!0þ

ð
R

[1� eixr]1(jrj . E�d=Æ)
dr

jrj1þÆ
¼ 0:

Hence,

lim
E!0þ

I(E) ¼ �C(Æ)

ð
Rd

jgt,v,H (1, � , 1)jÆ d� : (23)

Since this last expression is the logarithm of
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E exp i
Xn

k¼1

vk Y ~HH (t k)

 !
,

the proof is complete.

5. Identification of the fractional indices

We now carry out our identification for MAFLMs with truncated stable control measures.

M is therefore a random Lévy measure associated with �(du) ¼ 1fjuj<1g du=juj1þÆ. Recall

that the corresponding MAFLM is denoted by

X H ,Æ(t) ¼
ð
Rd

G(t, s)dM(s):

For k ¼ (k1, . . . , kd) 2 Nd and n 2 N?, define

k

2n
¼ k1

2n
, . . . ,

kd

2n

� �
,

X H ,Æ
k

2n

� �
¼ X H ,Æ

k1

2n
, . . . ,

kd

2n

� �
:

The aim of this section is to perform the identification of the fractional indices H and ~HH,

or equivalently the indices H and Æ, with discrete observations of the field X H ,Æ on [0, 1]d .

X H ,Æ is observed at times (k1=2
n, . . . , kd=2

n), 0 < ki < 2n, i ¼ 1, . . . , d.

Let (a‘), ‘ ¼ 0, . . . , K be a real-valued sequence such thatXK

‘¼0

a‘ ¼ 0,
XK

‘¼0

‘a‘ ¼ 0: (24)

From now on, multi-indices are written with bold letters. For k ¼ (k1, . . . , kd) 2 Nd, define

ak ¼ ak1 . . . akd
:

Define the increments of X H ,Æ associated with the sequence a:

˜Xp,n ¼
XK

k¼0

ak X H ,Æ
k þ p

2n

� �

¼def
XK

k1,... , kd¼0

ak1 . . . akd
X H ,Æ

k1 þ p1

2n
, . . . ,

kd þ pd

2n

� �
;

one can, for instance, take K ¼ 2, a0 ¼ 1, a1 ¼ �2, a2 ¼ 1.

For � . 0, define the �-variations by

Vn,� ¼ 1

(2n � K)d

X2n�K

p¼1

j˜X p,nj�:
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Define the log-variations by:

Vn,0 ¼
1

(2n � K)d

X2n�K

p¼1

logj˜X p,nj:

Variations of processes are classical tools for identifying parameters: quadratic variations

were introduced some time ago for Gaussian processes, and log-variations were introduced

in Abry et al. (2000) for stable processes in a wavelet setting. The main result of this

section concerns the asymptotic behaviour of the log- and �-variations:

Theorem 5.1. For the convergence of log-variations, we have

lim
n!þ1

� 1

n log 2
Vn,0 ¼(P) ~HH :

For the convergence of �-variations, there are two cases. For 0 , � , Æ, there exists a

constant C� . 0 such that

lim
n!þ1

2n� ~HH Vn,� ¼(a:s:) C�:

For Æ , � , 2, there exists a constant C� . 0 such that

lim
n!þ1

2n�(Hþd=��d=2)Vn,� ¼(a:s:) C�:

The fractional indices H and ~HH can then be identified as follows. A consistent estimator

of ~HH is given by

~HH n ¼ � 1

log 2n
Vn,0: (25)

To estimate H , we have to assume weak a priori knowledge on Æ, for instance that Æ belongs

to the interval ]0, Æsup[, with Æsup , 2 known. For any Æsup < � , 2, a consistent estimator of

H is then given by

H n ¼ 1

�
log2

Vn�1,�

Vn,�
þ �d

2
� d

� �
: (26)

Using (25) and (26), a consistent estimator of Æ is of course

Æn ¼ d

~HH n � H n þ d=2
:

Note that we could have estimated Æ using the results on the convergence of �-variations.
Actually, if we assume that we know (�, log2(Vn�1,�=Vn,�)) for different values of � then Æ is

the point at which the slope is changing. Although this method does not theoretically require

any a priori knowledge for Æ, we believe it is not numerically feasable to determine a

sampling design for the �s without this a priori knowledge.
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Proof of Theorem 5.1. The convergence of the log-variations is a particular case of a more

general result due to Cohen and Istas (2003) and will be omitted.

Integral representations of power functions are used extensively and are given in the

following. For all � 2 (0, 2), for all x 2 R,

jxj� ¼
ð
R

ei y � 1� iy1j yj<1

jyj1þ�
dy

� ��1ð
R

eixy � 1� ixy1j yj<1

jyj1þ�
dy:

Because of this integral representation the process

Sn(y) ¼ 1

(2n � K)d

X2n�K

p¼1

exp iy2n ~HH˜Xp,n

� �
, y 2 R,

is introduced for the the study of the �-variations and log-variations. Let

˜Gp,n(s) ¼
XK

‘¼0

a‘G
p þ ‘

2n
, s

� �
,

where G is defined in (2) and

S(y) ¼ exp jyjÆ
ð
Rd3R

[exp(iv˜G0,1(� ))� 1� iv˜G0,1(� )1jvj<1]d�
dv

jvj1þÆ


 �
:

We first prove the following intermediate lemma on Sn(y).

Lemma 5.2.

lim
n!þ1

Sn(y) ¼(a:s:) S(y):

Proof. We first prove the convergence of ESn(y). By (4),

ESn(y) ¼ exp

ð
Rd3R

[exp(iuy2n ~HH˜G0,n(s))� 1� iuy2n ~HH˜G0,n(s)]ds�(du)


 �
:

The change of variables s ¼ �=2n, v ¼ uy2nd=Æ leads to

ESn(y) ¼ exp jyjÆ
ð
Rd3R

[exp(iv˜G0,1(� ))� 1� iv˜G0,1(� )]d�
dv

jvj1þÆ
1jvj<j yj2 nd=Æ


 �
:

and the convergence of ESn(y) toward S(y) is proved by using the same arguments as in (23).

Let us now study the variance of Sn(y). We have

var Sn(y) ¼ 1

(2n � K)2d

X2n�K

p,p9¼1

Ip,p9,

with

Ip,p9 ¼ E exp(iy2n ~HH (˜Xp,n � ˜X p9,n))� E exp(iy2n ~HH˜X p,n)E exp(�iy2n ~HH˜X p9,n):
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Because of (4), Ip,p9 can also be written

Ip,p9 ¼ exp

ð
Rd3R

[exp(iuy2n ~HH (˜Gp,n(s)� ˜Gp9,n(s)))� 1



� iuy2n ~HH (˜Gp,n(s)� ˜Gp9,n(s))]ds�(du)

o
� exp

ð
Rd3R

[exp(iuy2n ~HH˜Gp,n(s))þ exp(�iuy2n ~HH˜Gp9,n(s))



� 2� iuy2n ~HH˜Gp,n(s)� iuy2n ~HH˜Gp9,n(s)]ds�(du)

o
:

Hence

Ip,p9 ¼ Ap,p9 3 Bp,p9

with

Ap,p9 ¼ exp

ð
Rd3R

[exp(iuy2n ~HH˜Gp,n(s))þ exp(�iuy2n ~HH˜Gp9,n(s))� 2



� iuy2n ~HH˜Gp,n(s)� iuy2n ~HH˜Gp9,n(s)]ds�(du)

o
and

Bp,p9 ¼ exp

ð
Rd3R

[exp(iuy2n ~HH˜Gp,n(s))� 1]



[exp(�iuy2n ~HH˜Gp9,n(s))� 1]ds�(du)

o
� 1:

Clearly,

jAp,p9j < 1:

The change of variables s ¼ �=2n, v ¼ uy2nd=Æ leads to

Bp,p9 ¼ exp jyjÆ
ð
Rd3R

[exp(iv˜Gp,1(� ))� 1]




[exp(�iv˜Gp9,1(� ))� 1]d�
dv

jvj1þÆ
1jvj<2nd=Æ

�
� 1:

Define

Cp,p9 ¼
ð
Rd3R

[exp(iv˜Gp�p9,1(� ))� 1][exp(�iv˜G0,1(� ))� 1]d�
dv

jvj1þÆ
:

This leads to

Bp,p9 ¼ exp(Cp,p9jyjÆ)� 1
� 	

(1þ o(1)):
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We split Cp,p9 into two parts,

T1 ¼
ð
Rd3fjvj<Ag

[exp(iv˜Gp�p9,1(� ))� 1][exp(�iv˜G0,1(� ))� 1]d�
dv

jvj1þÆ
,

T2 ¼
ð
Rd3fjvj>Ag

[exp(iv˜Gp�p9,1(� ))� 1][exp(�iv˜G0,1(� ))� 1]d�
dv

jvj1þÆ
,

with A to be chosen later.

jT1j <
ð
Rd3jvj<A

����XK

‘¼0

a‘k‘þ p � p9� �kH�d=2
XK

‘¼0

a‘k‘� �kH�d=2

����d� dv

jvjÆ�1

< CA2�Æ

ð
Rd

����XK

‘¼0

a‘k‘þ p � p9� �kH�d=2
XK

‘¼0

a‘k‘� �kH�d=2

����d� :
This is identical to the term obtained in the Gaussian case (cf. Benassi et al. 1998).

Therefore, a Taylor expansion of order 2 around p � p9 is used:

jT1j < CA2�Ækp � p9kH�d=2�2:

Moreover, for � . 0 arbitrarily small,

jT2j <
C

AÆ��

ð
Rd3R

����[exp(iv˜Gp�p9,1(� ))� 1][exp(�iv˜G0,1(� ))� 1]

����d� dv

jvj1þ�
:

By the Cauchy–Schwarz inequality,ð
Rd

����[exp(iv˜Gp�p9,1(� ))� 1][exp(�iv˜G0,1(� ))� 1]

����d�� �2

<

ð
Rd

����[exp(iv˜Gp�p9,1(� ))� 1]

����2 d�ð
Rd

����[exp(�iv˜G0,1(� ))� 1]

����2 d�
¼

ð
Rd

����[exp(�iv˜G0,1(� ))� 1]

����2 d�
 !2

,

so that

jT2j <
C9

AÆ��
:

We choose A such that A2þ� ¼ kp � p9k2þd=2�H . Therefore, as kp � p9k ! þ1:

jBp,p9j < Ckp � p9k(��Æ)(2þd=2�H)=(2þ�)jyjÆ:

We choose � small enough, so that
P

n var Sn(y) is convergent. For every E . 0,Xþ1

n¼1

P(jSn(y)� ESn(y)j . E) < E�2
X

n

var Sn(y):
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Hence, by the Borel–Cantelli lemma,

lim
n!þ1

(Sn(y)� ESn(y)) ¼(a:s:) 0

and

lim
n!þ1

Sn(y) ¼(a:s:) S(y)

and the convergence of ESn(y) concludes the proof of the lemma. h

We can now prove the convergence of the �-variations for 0 , � , Æ. The integral

representation of power functions leads to

2n� ~HH

(2n � K)d

X2n�K

p¼1

j˜Xp,nj� ¼
ð
R

Sn(y)� 1� i y1j yj<1(1=(2
n � K)d)

X2n�K

p¼1

2n ~HH˜Xp,n

jyj1þ�
dy:

The sequence
P2n�K

p¼1 ˜Xp,n is a telescopic one: E(
P2n�K

p¼1 ˜X p,n)
2 converges to zero

and can be overestimated by a constant. By the Borel–Cantelli lemma,

(2n ~HH=(2n � K)d)
P2n�K

p¼1 ˜X p,n converges (almost surely) to 0.

An application of the dominated convergence theorem leads to

lim
n!þ1

2n� ~HH

(2n � K)d

X2n�K

p¼1

j˜Xp,nj� ¼(a:s:)
ð
R

S(y)� 1

jyj1þ�
dy: (27)

We now study the �-variations for Æ , � , 2. The integral on the right-hand side of (27)

is divergent, so of course the dominated convergence theorem can no longer be applied.

First, recall that

ð
R

ESn(y)� 1

jyj1þ�
dy ¼

ð
R

exp jyjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2 nd=Æ


 �
� 1

jyj1þ�
dy,

where

E(v, � ) ¼ exp(iv˜G0,1(� ))� 1� iv˜G0,1(� ):

The previous integral is split into three terms,ð
j yj<2�nd=Æ

. . . þ
ð
2� nd=Æ,j yj<1=n

. . . þ
ð
j yj.1=n

. . .

For the sake of brevity, the integrand with respect to y has been suppressed in the following

when no confusion is possible. For the first term, the change of variables z ¼ y2nd=Æ leads to:

ð
j yj<2� nd=Æ

exp jyjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2nd=Æ


 �
� 1

jyj1þ�
dy
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¼ 2nd�=Æ

ð
jzj<1

exp 2�nd jzjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<jzj


 �
� 1

jzj1þ�
dz:

Since 2�nd ! 0 as n ! þ1, a Taylor expansion of order 1 is used:

exp 2�nd jzjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<jzj


 �
� 1 ¼ 2�nd jzjÆ

ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<jzj(1þ o(1)):

Note that, because of the term 1jvj<jzj, the integralð
jzj<1

dz

jzj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<jzj

is convergent. It follows that:

ð
j yj<2� nd=Æ

exp jyjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2 nd=Æ


 �
� 1

jyj1þ�
dy

¼ 2n(�dþd�=Æ)

ð
jzj<1

dz

jzj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<jzj(1þ o(1)):

We now turn to the third term. Because of the symmetry of dv=jvj1þÆ, the integralÐ
Rd3R

E(v, � )d�dv=jvj1þÆ1jvj<j yj2 nd=Æ is negative.

We can bound expfjyjÆ
Ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2nd=Æg by 1, so that

ð
j yj>1=n

exp jyjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2nd=Æ


 �
� 1

jyj1þ�
dy < Cn�:

Finally, we consider the second term. Since 1=n ! 0, a Taylor expansion of order 1 leads

to:

ð
2� nd=Æ<j yj<1=n

exp jyjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2nd=Æ


 �
� 1

jyj1þ�
dy

¼
ð
2� nd=Æ<j yj<1=n

dy

jyj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<j yj2nd=Æ (1þ o(1)):

The change of variable z ¼ y2nd=Æ leads to:ð
2� nd=Æ<j yj<1=n

dy

jyj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<j yj2nd=Æ

¼ 2n(�dþd�=Æ)

ð
1<jzj<2 nd=Æ=n

dz

jzj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<jzj:
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Since � . Æ, the integralð
1<jzj<2 nd=Æ=n

dz

jzj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<jzj

converges to ð
1<jzj

dz

jzj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<jzj,

so that

ð
2� nd=Æ<j yj<1=n

exp jyjÆ
ð
Rd3R

E(v, � )d� dvjvj�(1þÆ)1jvj<j yj2 nd=Æ


 �
� 1

jyj1þ�
dy

¼ 2n(�dþd�=Æ)(1þ o(1))

ð
jzj>1

dz

jzj1þ��Æ

ð
Rd3R

E(v, � )d�
dv

jvj1þÆ
1jvj<jzj:

To summarize, the first term is equivalent to C2n(�dþd�=Æ), the third is equivalent to

C2n(�dþd�=Æ) and the second is negligible as compared to the two others. We have proved

that:

2n(d�d�=Æ)

ð
R

ESn(y)� 1

jyj1þ�
dy ! C:

From Lemma 5.2, Sn(y) ¼ ESn(y)(1þ o(a:s:)(1)): We have therefore proved that

2n� ~HH2n(d�d�=Æ)Vn,� converges, as n ! þ1 to a constant. Since � ~HH þ d � d�=Æ) ¼
�(H � d=2þ d=�), Theorem 5.1 is proved. h
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