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We give an elementary definition of the (Wick–)Itô integral with respect to a fractional Brownian

motion using the expectation, the ordinary Lebesgue integral and the classical (simple) Wiener

integral. Then we provide new and simple proofs of some basic properties of this integral, including

the so-called fractional Itô isometry. We calculate the expectation of the fractional Itô integral under

change of measure and prove a Girsanov theorem for the fractional Itô integral (not only for fractional

Brownian motion). We then derive an Itô formula for functionals of a fractional Wiener integral.

Finally, we compare our approach with other approaches that yield essentially the same integral.
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1. Introduction

Since fractional Brownian motion with Hurst parameter H 6¼ 1
2

is not a semimartingale, Itô’s

integration theory cannot be applied to this family of processes. Therefore different

extensions have been proposed. They can be roughly divided into two groups by considering

their change-of-variable formulae. An extension is said to be of Itô type if, analogously to

the Itô integral for semimartingales, an additional term involving the second derivative

occurs. It is said to be of Stratonovich type if the change-of-variable formula coincides with

that from ordinary calculus.

After a preliminary section we give a motivation for a simple definition of an integral

with respect to a fractional Brownian motion which turns out to be of Itô type. This

definition is based on the S-transform, an important tool in white noise analysis, but carries

over to an arbitrary probability space on which a two-sided Brownian motion lives. To this

end we provide a new proof of the injectivity of the S-transform. Then we show that the

new definition of the fractional Itô integral is an extension of the classical Itô integral to the

case H 6¼ 1
2

using the classical Girsanov theorem. Moreover, the relationship to the Wick

product and the (Hitsuda–)Skorohod integral is explored and a simple proof of the so-called

fractional Itô isometry is provided.

In Section 4 we examine the behaviour of the fractional Itô integral under change of

measure dQf ¼: e I( f ) : dP, where : e I( f ) : is the Wick exponential of a function

f 2 L2(R). We first calculate its expectation under the measure Qf . Then we prove a

Girsanov theorem for the fractional Itô integral. The essential new feature of this theorem is
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that it holds for the fractional Itô integral, and not just for fractional Brownian motion as do

the Girsanov theorems due to Norros et al. (1999), Hu and Øksendal (2003) and Elliott and

van der Hoek (2003). Since the fractional Itô integral is implictly based on the Wick

product and the Wick product depends on the underlying probability measure, the extension

of Girsanov’s theorem from fractional Brownian motion to the fractional Itô integral is not

at all obvious.

In Section 5 we first prove an Itô formula for functionals of fractional Wiener integrals

(with non-constant coefficients in the case where H . 1
2
) – modifying the approach in

Bender (2003a) – to show that our integral is of Itô type. We then extend the definition of

a (Wick) geometric fractional Brownian motion from Hu and Øksendal (2003) to non-

constant coefficients in the case where H . 1
2
. As a corollary, we obtain an Itô formula for

geometric fractional Brownian motions. This in turn yields an analogue of the Doléans–

Dade equation and thus justifies the name geometric fractional Brownian motion.

We conclude by comparing our S-transform approach with other approaches to Itô-type

integration with respect to a fractional Brownian motion. It turns out that our definition is

equivalent to the white noise definition (Hu and Øksendal 2003; Elliott and van der Hoek

2003; Bender 2003a) as long as we suppose the integrand and the integral to be L2(�)-

valued. However, our definition is much simpler and does not make use of the complicated

constructions from the white noise calculus. Compared to the Malliavin calculus approach

(Alòs et al. 2001), our definition allows a wider class of integrands, particularly for small

Hurst parameters. A different generalization of the Malliavin calculus approach has recently

been developed independently by Cheridito and Nualart (2002).

2. Preliminaries

2.1. Construction of fractional Brownian motion

Definition 2.1. A continuous stochastic process (BH
t ) t2R is called a (two-sided) fractional

Brownian motion with Hurst parameter H, if the family (BH
t ) t2R is centred Gaussian with

E[BH
t BH

s ] ¼ 1
2
(jtj2H þ jsj2H � jt � sj2H ), t, s 2 R: (1)

If H ¼ 1
2
, B1=2 is said to be a two-sided Brownian motion.

We recall a construction of a fractional Brownian motion starting from a Brownian

motion. Let (�, F , P) be a probability space that carries a two-sided Brownian motion B.

For a, b 2 R we define the indicator function

1(a, b)(t) ¼

1, if a < t , b,

�1, if b < t , a,

0, otherwise:

8>><
>>: (2)

Furthermore, let

956 C. Bender



KH :¼ ˆ H þ 1

2

� � ð1
0

(1þ s)H�1=2 � s H�1=2

 �

dsþ 1

2H

� ��1=2

,

and define the operator

M H
� f :¼

KHD
�(H�1=2)
� f , 0 , H , 1

2

f , H ¼ 1
2

KH I
H�1=2
� f , 1

2
, H , 1:

8>>><
>>>:

(3)

Here IÆ�, 0 , Æ , 1, is the fractional integral of Weyl’s type, defined by

(IÆ� f )(x) :¼ 1

ˆ(Æ)

ð1
x

f (t)(t � x)Æ�1dt,

(IÆþ f )(x) :¼ 1

ˆ(Æ)

ðx
�1

f (t)(x� t)Æ�1dt,

if the integrals exist for almost all x 2 R. DÆ
�, 0 , Æ , 1, is the fractional derivative of

Marchaud’s type given by (E . 0)

(DÆ
�,E f )(x) :¼ Æ

ˆ(1� Æ)

ð1
E

f (x)� f (x� t)

t1þÆ
dt

and

(DÆ
� f ) :¼ lim

E!0þ
(DÆ
�,E f ),

if the limit exists in Lp(R) for some p . 1. The notation DÆ
� f 2 Lp(R) indicates

convergence in the Lp(R) norm.

With these definitions we have:

Theorem 2.1. For 0 , H , 1, let the operators M H
� be defined by (3). Then

M H
� 1(0, t) 2 L2(R) and a fractional Brownian motion BH is given by a continuous

version of the Wiener integral
Ð
R

(M H
� 1(0, t))(s)dBs.

Proof. Using elementary integration one can easily show that the representation of BH is the

well-known Mandelbrot–Van Ness representation (Mandelbrot and Van Ness 1968). More

details can be found in Bender (2003a). h

2.2. The S-transform

The S-transform is an important tool in white noise analysis. Here we give a definition and

state some results that do not depend on properties of the white noise space.

We first introduce some notation. I B( f ) denotes the Wiener integral
Ð
R
f (s)dBs for a

function f 2 L2(R). If there is no danger of confusion, we shall drop the superscript B.

j f j0 is the usual L2 norm, and the corresponding inner product is denoted by ( f , g)0.
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Note that we interpret the functions in L2(R) and in S(R), the Schwartz space of smooth

rapidly decreasing functions, as real-valued.

G is the � -field generated by fI( f ); f 2 L2(R)g, and we define (L2) :¼ L2(�, G, P).

k�k0 denotes the (L2) norm.

We can now define the S-transform:

Definition 2.2. For � 2 (L2), the S-transform is defined by

S�(�) :¼ E �� : e I(�) :½ 
, � 2 S(R): (4)

Here the Wick exponential of I(�) is given by : e I(�) : ¼ e I(�)�j�j20=2.

The next theorem states that the S-transform is injective:

Theorem 2.2. If (S�)(�) ¼ (S�)(�) for all � 2 S(R), then � ¼ �.

This result is well known in the white noise setting. Here we give an elementary proof

that relies neither on the Stone–Weierstrass theorem (and hence on topological properties of

the probability space) nor on the chaos decomposition. It is inspired by Theorem 4.1 in

Hida (1980).

Proof. Let 	n, n 2 N, be an orthonormal base for L2(R) in S(R), for example the Hermite

functions. We define Gn as the � -field generated by fI(	k); k < ng.
By the linearity of the S-transform it is sufficient to prove

8� 2 S(R), (S�)(�) ¼ 0) � ¼ 0: (5)

We set �n :¼ E[�jGn]. Then there is a function �n such that �ne
�j�j2=4 2 L2(Rn) and

�n ¼ �n(I(	1), . . . , I(	n)). Using the orthonormality of (	k) and the transformation theorem,

we obtain, for t ¼ (t1, . . . , tn) 2 Rn,

0 ¼
ð
�

: e
I
Pn

k¼1
t k f k

� 

: �dP ¼

ð
�

: e
I
Pn

k¼1
t k f k

� 

: �ndP

¼
ð
�

exp
Xn
k¼1

(t k I( f k)� 1
2
t2k)

( )
�n(I( f 1), . . . I( f n))dP

¼ (2�)�n=2

ð
R n

e�j t�uj
2=2�n(u)du

¼ 2ej tj
2=2(2�)�n=2

ð
Rn

e�j t�uj
2

�n(2u)e�j2uj
2=4du:

Consequently, the convolution of e�jxj
2

and łn(x) ¼ �n(2x)e�j2xj
2=4 2 L2(Rn) vanishes.

Applying the Fourier transform and taking into account that the Fourier transform of e�jxj
2

is

strictly positive, we may conclude from the trivialization theorem for the convolution that
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the Fourier transform of łn vanishes. Therefore, łn equals zero and so do �n and thus

�n.

As (	k) is an orthonormal basis of L2(R), Gn monotonically increases to G and hence

� ¼ 0. h

One can also characterize (L2) convergence in terms of the S-transform:

Theorem 2.3. Let �n be a sequence in (L2) and � 2 (L2). Then the following assertions are

equivalent:

(i) �n (strongly) converges to � in (L2).

(ii) k�nk0 ! k�k0 and, for all � 2 S(R), S(�n)(�)! (S�)(�).

Proof. The proof of (i) ) (ii) is obvious.

As for (ii) ) (i), by the preceding theorem the linear span of f: e I(�) : ; � 2 S(R)g is

dense in (L2). Hence, by Yosida (1966, Theorem 3, p. 121) �n weakly converges to � in

(L2). Then k�nk0 ! k�k0 implies convergence even in the strong topology. h

The following lemma can easily be proved:

Lemma 2.4. Let f , g 2 L2(R). Then:

E[: e I( f ) : � : e I( g) : ] ¼ e( f , g)0 :

In particular,

(S : e I( f ) : )(�) ¼ e( f ,�)0 :

Proof. If g ¼ 0, we have

E[: e I( f ) : ] ¼ 1ffiffiffiffiffiffi
2�
p
j f j0

ð
R

exp u� 1

2
j f j20 þ

u2

j f j20

 !( )
du ¼ 1:

The general case can be reduced to this by

: e I( f ) : � : e I( g) : ¼ e( f , g)0 : e I( fþ g) : :

h

Lemma 2.4 and Theorem 2.3 imply:

Corollary 2.5. Let f n be a sequence that converges in L2(R) to f . Then : e I( f n) : converges

to : e I( f ) : in (L2).

From Lemma 2.4 we know that E[: e I( f ) : ] ¼ 1 for f 2 L2(R). Hence we can define a

probability measure on G by
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dQf ¼: e I( f ) : dP: (6)

One can easily check that P and Qf are equivalent. With the measures Q�, � 2 S(R), we can

rewrite the S-transform as

(S�)(�) ¼ EQ�[�]: (7)

2.3. Fractional integration by parts

Under appropriate conditions, the equationð
R

f (s) M H
� g

� 

(s)ds ¼

ð
R

M H
þ f


 �
(s)g(s)ds (8)

holds. We refer to (8) as the fractional integration by parts rule. It is valid under the

following conditions:

Theorem 2.6. (i) Let 0 , H , 1
2
. Then (8) holds if M H

þ f 2 Lp(R), M H
� g 2 Lr(R),

f 2 Ls(R), g 2 Lt(R) and p . 1, r . 1, 1=pþ 1=r ¼ 3=2� H, 1 < s, t ,1.

(ii) Let 1
2
, H , 1. Then (8) holds if f 2 Lp(R), g 2 Lr(R) and p . 1, r . 1,

1=pþ 1=r ¼ 1=2þ H .

Proof. In view of the definition of M H
� this is a simple reformulation of Corollary 2 (p. 129)

and formula (5.16) in Samko et al. (1993). For (i) we note that by Theorem 6.2 in Samko et

al. (1993) the conditions 1=s ¼ 1=p� 1=2þ H and 1=t ¼ 1=r � 1=2þ H are satisfied. h

From the proof of Lemma 2.6 in Bender (2003a), we know that M H
þ � 2 L1=(1�H)(R) if

H , 1
2

and � 2 S(R). Moreover, it is well known that S(R) � Lp(R) for all p > 1. Hence,

we have:

Corollary 2.7. Let f 2 S(R). Then:

(i) (8) holds if 0 , H , 1
2
, M H

� g 2 L2(R) and g 2 Lp(R) for some 1 < p ,1.

(ii) (8) holds if 1
2
, H , 1 and g 2 Lp(R) for some 1 , p , (H � 1

2
)�1.

2.4. Pettis integral and stochastic fractional calculus

Throughout this paper we interpret a stochastic process as an (L2)-valued function. Hence,

the notion of Pettis integrability fits better than the pathwise integral:

Definition 2.3. Let X : M ! (L2) (M � R a Borel set). Then X is said to be Pettis integrable

if E[X�] 2 L1(M) for any � 2 (L2). In that case there is a unique � 2 (L2) such that, for

all � 2 (L2),
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E[��] ¼
ð
M

E[X t�]dt:

� is called the Pettis integral of X and is denoted by
Ð
M
X t dt.

A proof of the existence and uniqueness of � can be found in Hille and Phillips (1957).

Note that by this definition we have, for a Pettis integrable X ,ð
M

E[X t�]dt ¼ E

ð
M

X t�dt

� �
(9)

for all � 2 (L2). In particular, the Pettis integral interchanges with the S-transform.

Before we state a useful criterion for Pettis integrability, we shall point out the

relationship between the Pettis integral and the pathwise integral. Let X : [a, b] 3�! R

be measurable and pathwise integrable such that the pathwise integral belongs to (L2). If X

is good enough to apply Fubini’s theorem, we can interchange the integrals:

E

ðb
a

X t dt ��

" #
¼
ðb
a

E X t�½ 
dt,

where the integral on the left-hand side is the ordinary pathwise integral. Hence, the Pettis

integral defined in Definition 2.3 coincides with the pathwise integral in that case.

The following criterion is based on the fact, that the Pettis integral is an extension of the

Bochner integral:

Theorem 2.8. Let X : R! (L2) such that (SX )(�) is measurable for all � 2 S(R) and

kXk0 2 L1(R). Then X is Pettis integrable and�����
ð
R

X t dt

�����
0

<

ð
R

kX tk0dt:

Proof. As the linear span of the set f: eh�,�i : ; � 2 S(R)g is dense in (L2) by Theorem 2.2,

E[X tF] is measurable for any F 2 (L2). Hence, X t is weakly measurable. The separability of

(L2) implies that X t is strongly measurable (see Hille and Phillips, 1957, p. 73). Thus, X t

is Bochner integrable and the inequality holds by Theorem 3.7.4 in Hille and Phillips

(1957). h

Let us now extend the operators M H
� to stochastic processes: For X : R! (L2) and

1
2
, H , 1, the fractional integral of Weyl’s type is defined by

(I H�1=2
� X )x :¼

1

ˆ(H � 1
2
)

ð1
x

X t(t � x)H�3=2dt,

(I
H�1=2
þ X )x :¼

1

ˆ(H � 1
2
)

ðx
�1

X t(x� t)H�3=2dt,

if the integrals exist for almost all x 2 R as Pettis integrals.
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If 0 , H , 1
2

the fractional derivative of Marchaud’s type is given by (E . 0)

D
�(H�1=2)
�,E X


 �
x
:¼
�(H � 1

2
)

ˆ(H þ 1
2
)

ð1
E

X x � X x� t

t3=2�H
dt

and

D
�(H�1=2)
� X


 �
:¼ lim

E!0þ
D
�(H�1=2)
�,E X


 �
,

if the above integrals exist for almost all E . 0 and x 2 R as Pettis integrals and the limit

exists in Lp(R, (L2)) for some p . 1. Again, D
�(H�1=2)
� X 2 Lp(R, (L2)) indicates con-

vergence in the Lp(R, (L2)) norm. The operators M H
� can then be defined as in (3).

It is important that the operators M H
� interchange with the S-transform:

Lemma 2.9. Let M H
� X exist for some X : R! (L2). Then we have, for all � 2 (L2),

E (M H
� X ) t�

� �
¼ M H

� (E[X t�]):

In the case H , 1
2
the convergence of the fractional derivative on the right-hand side is in the

L p(R) sense, if M
�(H�1=2)
� X 2 Lp(R, (L2)). In particular, the operators M H

� interchange with

the S-transform.

Proof. The case H > 1
2

is straightforward in view of (9).

Let H , 1
2
. Then by (9):ð

R

				E (D
�(H�1=2)
� X )x�

h i
� D

�(H�1=2)
�,E E[X x�]ð Þ

				
p

dx

¼
ð
R

				E � (D
�(H�1=2)
� X )x � (D

�(H�1=2)
�,E X )x


 �h i				
p

dx

< E[�2] p=2 �
ð
R

E (D
�(H�1=2)
� X )x � (D

�(H�1=2)
�,E X )x


 �2
� � p=2

dx

! 0

as E! 0 þ by the definition of the fractional derivative of a stochastic process. In view of the

definition of M H
� in the case where H , 1

2
the proof is finished. h

We now prove a stochastic version of the Hardy–Littlewood theorem:

Theorem 2.10. Let H . 1
2
. Then M H

� is a continuous operator from Lp(R, (L2)) into

Lq(R, (L2)) if 1 , p , (H � 1
2
)�1 and q ¼ p=(1� p(H � 1=2)).

Proof. As X 2 Lp(R, (L2)), kXk0 2 Lp(R). Thus,
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ð1
t

kX s(s� t)H�3=2k0ds ¼
ð1
t

kX sk0(s� t)H�3=2ds ,1

for all t 2 R. Hence, by Theorem 2.8, M H
� X exists and

ð
R

k(M H
� X ) tkq0dt <

ð
R

j(M H
� kXk0)(t)jqdt < CH

ð
R

kX tk p0 dt

� �q= p

,

where the last inequality follows from the deterministic Hardy–Littlewood theorem (Samko

et al., 1993, Theorem 5.3) applied to kXk0. The proof for M H
þ is similar. h

We conclude this section with a straightforward consequence of Hölder’s inequality:

Lemma 2.11. Let X : R! (L2) such that X 2 Lp(R, (L2)), p . 1. Then E[X�] 2 Lp(R) for

all � 2 (L2). In particular, X 2 Lp(R, (L2)) implies (SX )(�) 2 Lp(R) for all � 2 S(R).

3. The fractional Itô integral

3.1. The classical case from an S-transform point of view

Let 0 < a < b and X : [a, b] 3�! R a progressively measurable (with respect to the

filtration F t generated by the Brownian motion Bs, 0 < s < t) process satisfying

E

ðb
a

jX tj2dt

" #
,1: (10)

Then the classical Itô integral
Ð b
a
X t dBt with respect to the Brownian motion B exists. By the

isometry property of the Itô integral it is an element of (L2). We now calculate its S-

transform.

Let Q�, � 2 S(R), be the measure defined by (6). Then by the classical Girsanov theorem
~BBt :¼ Bt �

Ð t
0
�(t)dt is a two-sided Brownian motion under the measure Q�. Moreover, by

(10) and Hölder’s inequality,

EQ�

ðb
a

jX tj2dt

 !1=2
2
4

3
5 ,1:

Consequently,
Ð s
a
X t d~BBt, a < s < b, is a Q�-martingale with zero expectation.

Using the above considerations, (7) and Fubini’s theorem we obtain
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S

ðb
a

X t dBt

 !
(�) ¼ EQ�

ðb
a

X t dBt

" #

¼ EQ�

ðb
a

X t d ~BBt þ
ðb
a

X t�(t)dt

" #

¼
ðb
a

EQ� [X t]�(t)dt

¼
ðb
a

(SX t)(�)�(t)dt:

If we replace X by a function f 2 L2(R) we can repeat the argument and obtain for the

Wiener integral,

S(I( f ))(�) ¼
ð
R

f (t)�(t)dt:

In particular,

S(Bt)(�) ¼
ð t

0

�(s)ds:

Let us summarize the foregoing:

Theorem 3.1. (i) Let 0 < a < b and X : [a, b] 3�! R a progressively measurable process

satisfying (10). Then the Itô integral
Ð b
a
X t dBt is the unique element in (L2) with S-transform

given by ðb
a

(SX t)(�)�(t)dt:

(ii) The Wiener integral I( f ), f 2 L2(R), is the unique element in (L2) with S-transform

given by ð
R

f (t)�(t)dt:

Using this result we can define an extension of the Itô integral in terms of the

S-transform:

Definition 3.1. Let M � R a Borel set, X : M ! (L2). Then X is said to be Hitsuda–

Skorohod integrable if (SX �)(�)�(�) 2 L1(M) for any � 2 S(R), and there is a � 2 (L2) such

that, for all � 2 S(R),

S�(�) ¼
ð
M

S(X t)(�)�(t)dt:
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In that case � is uniquely determined by Theorem 2.2 and we denote it by
Ð
M
X t dB

1=2
t .

Remark 3.1. In this terminology, Theorem 3.1(i) states that the Hitsuda–Skorohod integral is

an extension of the Itô integral. This result is well known in the white noise setting. However,

in this setting the proof is usually given either by calculating the chaos decomposition (Hida

et al. 1993) or by approximating with step processes (Kuo 1996). Note that our proof is

rather elementary.

Our definition of the Hitsuda–Skorohod integral makes use of the S-transform. It

obviously coincides with the definition in Kuo (1996) in the white noise setting. However,

there is another and more common approach to the Skorohod integral using the Malliavin

calculus. As the fractional Itô integral is defined via the (Malliavin calculus) Skorohod

integral in Decreusefond and Üstünel (1999) and Alòs et al. (2001), we briefly review this

definition. For more information concerning the Malliavin calculus we refer to Nualart

(1995).

For a smooth random variable of the form F(I(	1), . . . , I(	n)) with 	i 2 L2(R) and

F 2 C1(Rn), with polynomial growth, the Malliavin derivative is given by

DtF ¼
Xn
i¼1

@F

@xi
(I(	1), . . . , I(	n))	i(t):

(t 2 M , M � R a Borel set). Here DF is a closable operator from (L2) to L2(�, L2(M)). The

domain of D is denoted by D1,2.

A stochastic process X 2 L2(M , (L2)) is said to be Skorohod integrable (with respect to

B) if X : �3 M ! R is measurable and				E
ð
R

DtFX t dt

� �				 < ckFk0

for all F 2 D1,2 and a constant c depending on X . Then the Skorohod integral of X is the

unique element � 2 (L2) such that, for all F 2 D1,2,

E[� � F] ¼ E

ð
M

DtFX t dt

� �
:

Now one can easily check that : e I(�) : 2 D1,2 and

Dt : e I(�) : ¼: e I(�) : ��(t)

for � 2 S(R). Hence we have proved the first part of the following theorem:

Theorem 3.2. The Hitsuda–Skorohod integral is an extension of the Skorohod integral.

Conversely, if X is Hitsuda–Skorohod integrable, then X is in the domain of the Skorohod

integral if and only if X 2 L2(M , (L2)).

Proof. The ‘only if’ part is trivial in view of the above definition. For the ‘if’ part suppose
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X 2 L2(M , (L2)) is Hitsuda–Skorohod integrable. Then there is a Y 2 (L2) such that, for all

� 2 S(R),

E[Y : e I(�) : ] ¼ (SY )(�) ¼
ð
M

(SX s)(�)�(s)ds ¼
ð
M

E X sDs : e I(�) :
� �

ds:

By linearity and the fact that the linear combinations of Wick exponentials form a dense set

in D1,2, we may conclude that, for all F 2 D1,2,

E[Y � F] ¼
ð
R

E[X s � DsF]ds,

which shows that X is in the domain of the Skorohod integral. h

3.2. Definition of the fractional Itô integral and basic properties

We shall now define an integral with respect to a fractional Brownian motion in analogy to

the Hitsuda–Skorohod integral. To this end, note that

�(t) ¼ d

dt
S(Bt)(�)

and, hence, ðb
a

S(X t)(�)�(t)dt ¼
ðb
a

S(X t)(�)
d

dt
S(Bt)(�)dt:

Thus, we should define the fractional Itô integral as the unique random variable � (if it

exists), that satisfies

(S�)(�) ¼
ðb
a

S(X t)(�)
d

dt
S(BH

t )(�)dt:

From Theorem 3.1(ii) and the construction of BH we see that

d

dt
S(BH

t )(�) ¼ d

dt

ð
R

M H
� (1(0, t))(s)�(s)ds:

Applying the fractional integration by parts rule (Corollary 2.7) yields:

d

dt
S(BH

t )(�) ¼ d

dt

ð t
0

(M H
þ �)(s)ds ¼ (M H

þ �)(t):

Thus, we arrive at the following definition:

Definition 3.2. Let X : M ! (L2) (M � R a Borel set). Then X is said to have a fractional Itô

integral (S-transform approach) if (SX �)(�)(M H
þ �)(�) 2 L1(M) for any � 2 S(R) and there is a

� 2 (L2) such that, for all � 2 S(R),

S�(�) ¼
ð
M

S(X t)(�)(M H
þ �)(t)dt:
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In that case � is uniquely determined by Theorem 2.2 and we denote it by
Ð
M
X t dBH

t .

Remark 3.2. For the rest of this paper, except for Section 6, the phrase ‘fractional Itô

integral’ always refers to the S-transform approach proposed in Definition 3.2.

The following properties of the fractional Itô integral are straightforward in view of the

definition:

Proposition 3.3. (i) For all a , b 2 R,

BH
b � BH

a ¼
ðb
a

dBH
t :

(ii) Let X : M ! (L2) be fractional Itô integrable. Thenð
M

X t dBH
t ¼

ð
R

1M (t)X t dBH
t ,

where 1M denotes the indicator function of M.

(iii) Let X : M ! (L2) be fractional Itô integrable. Then

E

ð
M

X t dBH
t

� �
¼ 0:

Note that (iii) holds since the expectation coincides with the S-transform at � ¼ 0.

Because of (ii) there is no loss of generality in proving the majority of results for M ¼ R

only.

Example 3.1. Let us calculate
Ð T

0
BH
t dBH

t : Again, Qn, � 2 S(R), denotes the measure in (6).
~BB is the Brownian motion under Q� given by the classical Girasanov theorem. Then we can

apply integration by parts and the classical Girsanov theorem to obtain:

2

ðT
0

S(BH
t )(�)(M H

þ �)(t)dt ¼ 2

ðT
0

ð t
0

(M H
þ �)(s)ds(M H

þ �)(t)dt

¼
ðT

0

(M H
þ �)(s)ds

 !2

¼ EQ�

ð
R

M H
� 1(0, T )(s)d ~BBs �

ðT
0

(M H
þ �)(s)ds

 !2
2
4

3
5� jM H

� 1(0, T )j20

¼ EQ�

ð
R

M H
� 1(0, T )(s)dBs

� �2
" #

� T 2H ¼ S (BH
T )2

� 

(�)� T 2H

by Theorem 2.1 and (7). Hence,
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ðT
0

BH
t dBH

t ¼ 1
2

BH
T

� 
2�T 2H


 �
:

Remark 3.3. The above argument can be generalized to obtain Itô formulae for functionals of

a fractional Brownian motion or a geometric fractional Brownian motion; see Section 5.1

below or Bender (2003a) for the case of generalized functionals of BH .

We now prove that the fractional Itô integral coincides with a Hitsuda–Skorohod integral

under appropriate conditions:

Theorem 3.4. Let 0 , H , 1. Suppose that X 2 Lp(R, (L2)) with 1 , p , (H � 1
2
)�1 when

H . 1=2, and that M H
� X 2 L2(R, (L2)) and X 2 Lp(R, (L2)) with 1 < p ,1 when H , 1

2
.

Then ð
R

X t dBH
t ¼

ð
R

(M H
� X )(t)dB

1=2
t

in the usual sense, that is if one of the integrals exists then so does the other, and both

coincide.

Proof. From Lemma 2.11 we know that (SX )(�) 2 Lp(R) for all � 2 S(R) with the respective

p from the assumption of the theorem. Moreover, S(M H
� X ))(�) 2 L2(R), if H , 1

2
. Now we

obtain from Lemma 2.9 and the fractional integration by parts rule (Corollary 2.7):ð
R

S (M H
� X ) t

� 

(�) � �(t)dt ¼

ð
R

M H
� ((SX �)(�))(t) � �(t)dt

¼
ð
R

(SX t)(�) � (M H
þ �)(t)dt,

which (in view of Definition 3.2) proves the assertion. h

From this theorem we can easily deduce a criterion for fractional Itô integrability:

Corollary 3.5. Let 0 , H , 1 and X 2 L1=H (R, (L2)) and additionally M H
� X 2 L2(R, (L2))

when H , 1
2
. Moreover, assume that the Malliavin derivative Dt[(M

H
� X )s] exists as an

element of (L2) for almost all (s, t) 2 R2, andð
R2

E Dt[(M
H
� X )s] � Ds[(M

H
� X ) t]

� �
d(s, t) ,1:

Then X is H-fractional Itô integrable and

E

ð
R

X s dBH
s

� �2
" #

¼
ð
R2

E Dt[(M
H
� X )s] � Ds[(M

H
� X ) t]

� �
d(s, t)þ

ð
R

E[j(M H
� X )sj2]ds (11)

Proof. The stochastic Hardy–Littlewood theorem (Theorem 2.10) yields M H
� X 2 L2(R, (L2))
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when H . 1
2
, too. Then, by Nualart (1995, pp. 38–39), M H

� X is Skorohod integrable and

(11) holds with the left-hand side replaced by

E

ð
R

(M H
� X )s dB1=2

s

� �2
" #

:

Hence, the assertion follows from Theorem 3.4. h

Remark 3.4. Note that (11) was first proved (in a slightly different formulation) by Elliott and

van der Hoek (2003) in the white noise setting by a rather lengthy calculation involving the

Wiener chaos expansion of the fractional Itô integral. In analogy to the classical isometry for

the Itô integral, (11) is usually called the fractional Itô isometry. This name is misleading in

the sense that in general (11) can be zero without X being zero. However, it becomes an

isometry if restricted to an appropriate class of adapted processes (with respect to the

filtration generated by the fractional Brownian motion starting at minus infinity); see Bender

(2003b).

Let us now introduce the Wick product:

Definition 3.3. Let �, � 2 (L2) and assume that there is an element �e� 2 (L2), that

satisfies S(�e�)(�) ¼ (S�)(�)(S�)(�) for all � 2 S(R). Then �e� is called the Wick

product of � and �.

The next theorem explores the relationship between the fractional Itô integral and the

Wick product:

Theorem 3.6. Let X : R! (L2) and Y 2 (L2). Then

Y e

ð
R

X sdB
H
s ¼

ð
R

Y e X sdB
H
s

in the sense that if one side is well defined then so is the other, and both coincide.

The straightforward proof can be carried out by calculating the S-transform of both sides.

In particular, this theorem implies that, for good random variables Y ,

Y e (BH
b � BH

a ) ¼
ð
R

1(a, b)(s)Y dBH
s (12)

Together with the fractional Itô isometry (11), this shows that for sufficiently good processes

X the fractional Itô integral is an (L2) limit of Wick–Riemann sums.

Note that, in general, the Wick product does not coincide with the ordinary pathwise

product. We provide an easy example:

Example 3.2. Let a , b and � 2 S(R). Again Q� denotes the measure defined in (6) and ~BB is

the Brownian motion under Q� constructed by the classical Girsanov theorem. Then
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S BH
a (BH

b � BH
a )

� 

(�) ¼ S

ð
R

(M H
� 1(0, a))(s)dBs �

ð
R

(M H
� 1(a, b))(s)dBs

� �
(�)

¼ EQ�

ð
R

(M H
� 1(0, a))(s)d ~BBs þ

ð
R

(M H
� 1(0, a))(s)�(s)ds

� ��

3

ð
R

(M H
� 1(a, b))(s)d ~BBs þ

ð
R

(M H
� 1(a, b))(s)�(s)ds

� ��

¼
ða

0

(M H
þ �)(s)ds �

ðb
a

(M H
þ �)(s)dsþ (M H

� 1(0, a), M H
� 1(a, b))0

¼ S BH
a e (BH

b � BH
a )

� 

(�)þ 1

2
b2H � a2H � (b� a)2H
� 


:

Hence,

BH
a (BH

b � BH
a ) ¼ BH

a e (BH
b � BH

a )þ 1
2
b2H � a2H � (b� a)2H
� 


: (13)

Remark 3.5. If H ¼ 1
2

the last term on the right-hand side of (13) is zero. This is not by

chance, but a special case of the following more general reasoning. Assume that X is F a-

measurable, where F t is the filtration generated by the Brownian motion B. Then we can

apply Theorem 3.1(i), to see that

S(X (Bb � Ba))(�) ¼ (SX )(�)

ðb
a

�(t)dt ¼ (SX )(�)(S(Bb � Ba))(�):

Hence,

X (Bb � Ba) ¼ X e (Bb � Ba): (14)

This is why one does not need the Wick product in defining the classical Itô integral.

Using (12) we can rewrite (13) as

BH
a

ðb
a

dBH
s ¼

ðb
a

BH
a dBH

s þ 1
2
b2H � a2H � (b� a)2H
� 


:

Thus, we arrive at the following unfortunate observation, which is different from the Itô

integral in the Brownian motion case:

Proposition 3.7. Let F H
t ¼ � BH

s ; 0 < s < t
� 


and assume that X : [a, b]! (L2) is F H
t -

progressively measurable and Y 2 (L2) is F H
a -measurable. Then, in general, the identity

Y �
ðb
a

X sdB
H
s ¼

ðb
a

Y � X sdB
H
s

does not hold if H 6¼ 1=2.

The true relationship between the pathwise product and the fractional Itô integral is as

follows (see Biagini et al. 2003):
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Proposition 3.8. Suppose X satisfies the assumptions of Corollary 3.5, and let Y 2 (L2) such

that, for almost all t 2 R, DtY 2 (L2). Thenð
R

Y � X s dBH
s ¼ Y �

ð
R

X s dBH
s �

ð
R

DsY � (M H
� X )s ds

in the sense that the integral of the left-hand side exists if the right-hand side belongs to (L2).

The proof is a direct application of Theorem 3.4 above and formula (1.49) in Nualart

(1995).

4. The fractional Itô integral under change of measure

4.1. Expectation

We now calculate the expectation of a fractional Itô integral under the measure Qf ,

f 2 L2(R), given by (6).

We begin with the rather simple case of Q�, � 2 S(R). To this end, let X : R! (L2) be

H-fractional Itô integrable (0 , H , 1). Then

EQ�

ð
R

X t dBH
t

� �
¼ S

ð
R

X t dBH
t

� �
(�) ¼

ð
R

EQ� X t½ 
(M H
þ �)(t)dt (15)

by Definition 3.2 and (7).

Let us now consider the general case of f 2 L2(R). We choose a sequence

(�n)n2N � S(R) such that �n converges to f in L2(R). By Corollary 2.5 the left-hand

side of (15) (with � replaced by �n) converges to EQ f
� Ð b

a
X t dBH

t

�
. So we have to impose

conditions that ensure the convergence of the right-hand side:

Theorem 4.1. Let 0 , H , 1, f 2 L2(R) and Qf be given by (6). Moreover, assume that

X : R! (L2) is H-fractional Itô integrable and X 2 L1=H (R, (L2)). Additionally, suppose

that M H
þ f 2 L1=(1�H)(R) and M H

� X 2 L2(R, (L2)) when H , 1
2
. Then

EQ f

ð
R

X t dBH
t

� �
¼
ð
R

EQ f X t½ 
(M H
þ f )(t)dt:

Proof. Note, first, that by Theorem 2.10, M H
� X 2 L2(R, (L2)) when H . 1

2
, too. Let

(�n)n2N � S(R) be given such that �n converges to f in L2(R). By the considerations at the

beginning of this section it remains to prove that the right-hand side of (15) (with � replaced

by �n) converges to EQ f
Ð
R
X t(M

H
þ �)(t)dt

� �
. By the supposed integrability conditions,

Lemmas 2.9 and 2.11, we may apply the fractional integration by parts rule in the form of

Corollary 2.7 to obtain:
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ð
R

E X t : e I(�n) :
� �

(M H
þ �n)(t)� E X t : e I( f ) :

� �
(M H
þ f )(t)dt

				
¼
				
ð
R

E (M H
� X ) t : e I(�n) :

� �
�n(t)�

ð
R

E (M H
� X ) t : e I( f ):

� �
f (t)dt

				
<

ð
R

j�n(t)jE (M H
� X ) t : e I(�n) : � : e I( f ) :

� 
		 		� �
dt

þ
ð
R

j�n(t)� f (t)jE (M H
� X ) t� : e I( f ) :

		 		� �
dt

¼ I1 þ I2:

By Hölder’s inequality,

I2 < j�n � f j0 �
ð
R

E (M H
� X ) t � : e I( f ) :

		 		2dt

� �1=2

< j�n � f j0 �
ð
R

E (M H
� X ) t

		 		2h i
dt

� �1=2

E : e I( f ) : 2½ 
ð Þ1=2

! 0

as n!1. The same argument applied to I1 yields

I1 < j�nj0 �
ð
R

E (M H
� X ) t

		 		2h i
dt

� �1=2

3 E j: e I(�n) : � : e I( f ) : j2
� �� 
1=2

! 0

as n!1 by Corollary 2.5. Hence,

lim
n!1

ð
R

EQ�n [X t](M
H
þ �n)(t)dt ¼

ð
R

EQ f X t½ 
(M H
þ f )(t)dt,

which proves the assertion. h

Remark 4.1. Note that under the assumptions of Theorem 4.1, for all � 2 (L2),ð
R

				E X t(M
H
þ f )(t)�

h i				dt
<

ð
R

j(M H
þ f )(t)j1=(1�H)dt

� �1�H ð
R

E jX tj2
� �1=(2H)

dt

� �H

�E[j�j2]1=2

,1:
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Thus,
Ð
R
X t(M

H
þ f )(t)dt exists as a Pettis integral and, by (9),

EQ f

ð
R

X t dBH
t

� �
¼ EQ f

ð
R

X t(M
H
þ f )(t)dt

� �
: (16)

4.2. A Girsanov theorem

The classical Girsanov theorem states that a Brownian motion with drift becomes a

Brownian motion without drift under some change of measure. In the fractional Brownian

motion case similar results have been obtained by Norros et al. (1999), Hu and Øksendal

(2003) and Elliott and van der Hoek (2003). We now explore how a fractional Itô integral

behaves under change of measure. We thus generalize the results given above.

Let Qf , f 2 L2(R), again be the measure defined by (6). The probability space

(�, G, Qf ) carries a two-sided Brownian motion given by ~BBt :¼ Bt �
Ð t

0
f (t)dt by virtue of

the classical Girsanov theorem. Hence, all constructions from Section 2 carry over to this

probability space. We shall use the notation SQ f
for the S-transform with respect to this

new probability space:

(SQ f
X )(�) :¼ EQ f : e I

~BB(�) : X
h i

:

S and I respectively denote the S-transform with respect to the space (�, G, P) and the

Wiener integral with respect to B, as before.

Later we shall need the following identity which can be verified directly for all

g 2 L2(R):

: e I
~BB( g) : � : e I( f ) : ¼ : e I( gþ f ) : : (17)

Our Girsanov theorem has the following form:

Theorem 4.2. Let the assumptions of Theorem 4.1 hold with respect to the probability space

(�, G, P). Moreover, assume that

EQ f

				
ð
R

X t dBH
t �

ð
R

X t(M
H
þ f )(t)

				
2

" #
,1: (18)

Then the identity ð
R

X t d ~BBH
t ¼

ð
R

X t dBH
t �

ð
R

X t(M
H
þ f )(t)dt

holds in L2(�, G, Qf ) and consequently Q f -almost surely and P-almost surely.

Proof. We want to apply Theorem 4.1 to f þ �, � 2 S(R). Recall that, for H , 1
2
,

M H
þ � 2 L1=(1�H)(R) for all � 2 S(R) by the proof of Lemma 2.6 in Bender (2003a). Hence,

M H
þ ( f þ �) 2 L1=(1�H)(R) if H , 1

2
. By (17) and Theorem 4.1 we have:
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SQ f

ð
R

X t dBH
t �

ð
R

X t(M
H
þ f )(t)dt

� �
(�)

¼ EQ fþ�

ð
R

X t dBH
t �

ð
R

X t(M
H
þ f )(t)dt

� �

¼
ð
R

EQ fþ� X t½ 
M H
þ ( f þ �)(t)dt �

ð
R

EQ fþ� X t½ 
(M H
þ f )(t)dt

¼
ð
R

EQ fþ� X t½ 
(M H
þ �)(t)dt ¼

ð
R

SQ f
X t

� 

(�)(M H

þ �)(t)dt:

To obtain the second identity, we also used the fact that
Ð
R
X t(M

H
þ f )(t)dt exists as a Pettis

integral, which was proven in Remark 4.1. In view of Definition 3.2 applied to the space

(�, G, Qf ), the asserted identity is proved. Note that it also holds P-almost surely, as the

measures P and Qf are equivalent. h

Remark 4.2. (i) Notice that the fractional Girsanov theorem also holds for anticipating

integrands.

(ii) Consider a special case where X t ¼ 1(a, b)(t)Y with Y 2 (L2) such that the conditions of

Theorem 4.2 are valid. Then

Y eQ f
( ~BBH

b � ~BBH
a ) ¼ Y eP (BH

b � BH
a )� Y �

ðb
a

(M H
þ f )(s)ds:

Note that a priori there occur different Wick products with respect to the different probability

measures on both sides of the equation. It is therefore somewhat surprising and not at all

obvious that the Girsanov theorem extends to the fractional Itô integral.

(iii) In Elliott and van der Hoek (2003) and in a preprint of Hu and Øksendal (2003) a

Girsanov theorem is proved for the fractional Brownian motion but applied to the (white

noise definition of the) fractional Itô integral. After we had informed Hu and Øksendal about

this gap, they included an additional result, Lemma 3.21, in the final version of their paper.

This states that (in our notation) in the spaces of Hida distributions (S)�P and (S)�Q f

corresponding to the measures P and Qf respectively, the Wick products eP and eQ f

coincide. In a denseness argument in the proof they implicitly use the fact that both spaces of

Hida distributions are equal as sets and carry equivalent topologies. Both assertions are not

proved and seem not to be trivial.

4.3. Removal of a drift

Usually (and, in particular, in no-arbitrage arguments) the classical Girsanov theorem is

applied to remove a given drift
Ð b
a
X t g(t)dt. The fractional version stated in Theorem 4.2

allows a drift of the form
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ðb
a

X t(M
H
þ f )(t)dt

to be killed. Hence, we need to explore whether the fractional equation

(M H
þ f ) ¼ g a:s: (19)

has a solution f 2 L2(R) for given g.

We start with H , 1
2
. Note that in this case the Theorems 4.1 and 4.2 require that

(M H
þ f ) 2 L1=(1�H)(R). So the best we can hope for is:

Theorem 4.3. Let 0 , H , 1
2
and g 2 L1=(1�H)(R). Then (19) has a solution f 2 L2(R).

Proof. Let f (x) ¼ K�1
H (I

1=2�H
þ g)(x), where KH is the constant given by (3). Then by

Theorem 6.1 in Samko et al. (1993) and (3) above,

M H
þ f ¼ D

1=2�H
þ I

1=2�H
þ g


 �
¼ g:

Now the Hardy–Littlewood theorem (Samko et al., 1993, Theorem 5.3) implies that

f 2 L2(R). h

If H . 1
2

we have:

Theorem 4.4. Let 1
2
, H , 1 and assume that g ¼ I

H�1=2
þ � for a � 2 L2(R). Then (19) has

a solution f 2 L2(R).

The proof is given in Samko et al. (1993, Theorem 30.6). Moreover, the solution f is

explicitly calculated.

For our purposes it is sufficient to solve (19) on the interval [a, b]. Hence, the following

corollary is useful, as its assumptions are easier to verify:

Corollary 4.5. Let 1
2
, H , 1, and suppose that g ¼ 1(a, b)ł, ł : [a, b]! R, is Hölder

continuous with exponent º . H � 1
2
. Then (19) has a solution f 2 L2(R).

Proof. Let us first extend ł to a º-Hölder continuous function ~łł : R! R with compact

support. Then: g ¼ 1(a, b) ~łł and the assertion follows from Lemma 5.3 in Pipiras and Taqqu

(2000), Theorem 6.7 in Samko et al. (1993) and Theorem 4.4 above. h

Thus, we have proved the following variant of Theorem 4.1:

Theorem 4.6. Let 0 , H , 1 and a , b 2 R. Moreover, assume that X : [a, b]! (L2) is

H-fractional Itô integrable and X 2 L1=H ([a, b], (L2)). Additionally, suppose that

g 2 L1=(1�H)(R) and M H
� (1(a, b)X ) 2 L2(R, (L2)) if H , 1

2
, and that g is º-Hölder

continuous with º . H � 1
2
if H . 1

2
. Then there is an f 2 L2(R) such that
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EQ f

ðb
a

X t dBH
t

" #
¼
ðb
a

EQ f X t½ 
g(t)dt:

Remark 4.3. We could also formulate a similar variant of Theorem 4.2. But notice that this

variant would require the integrability condition (18) to hold with respect to the measure Qf ,

where f is the solution to (19) on [a, b].

5. Itô formula and geometric fractional Brownian motion

5.1. Itô formula for a fractional Wiener integral

We begin this section by proving an Itô formula for a class of indefinite fractional Wiener

integrals using the S-transform approach in Bender (2003a). In this way we show that our

definition of an integral with respect to a fractional Brownian motion deserves to be called

of Itô type. In general, an indefinite H-fractional Wiener integral is to be understood as a

process

X t ¼
ð t

0

� (s)dBH
s , 0 < t < T ,

provided � is a deterministic function such that the above integral exists for all 0 < t < T .

Proposition 5.1. Let T . 0, and � : [0, T ]! R be continuous (if 1
2
< H , 1), or º-Hölder

continuous with º . 1
2
� H (if 0 , H , 1

2
). Then the indefinite H-fractional Wiener integral

exists for all 0 < t < T, and ð t
0

� (s)dBH
s ¼ I M H

� (1(0, t)� )
� 


:

Proof. The case where H > 1
2

is straightforward in view of Theorems 3.4 and 3.1(ii). For

H , 1
2

we have to prove M H
� (1(0, t)� ) 2 L2(R) for all 0 < t < T to apply Theorem 3.4:

Similar to the argument in Corollary 4.5, we may conclude that for fixed t there is a function

� 2 L2(R) such that

1(0, t)� ¼ I1=2�H
� �:

Hence, M H
� (1(0, t)� ) 2 L2(R) by the inversion formula of the fractional calculus (Samko

et al., 1993, Theorem 6.1). h

Let us now prepare the ground for the proof of our Itô formula:

Lemma 5.2. Let � : R! R be continuous and H . 1
2
. Then
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jM H
� (1(0, t)� )j20 ¼ 2H(2H � 1)

ð t
0

ð�
0

� (s)� (�)js� �j2H�2 ds d� (20)

In particular:

(i) For all t > 0,

jM H
� (1(0, t)� )j20 < max

s2[0, t]
j� (s)j2 t2H

(ii) jM H
� (1(0, t)� )j20 is differentiable in t and, for all t > 0,

d

dt
jM H
� (1(0, t)� )j20 ¼ 2H(2H � 1)

ð t
0

� (s)� (t)js� tj2H�2ds

< 2H max
s2[0, t]

j� (s)j2 t2H�1:

Proof. By an identity of Gripenberg and Norros (1996) we have

jM H
� (1(0, t)� )j20 ¼ H(2H � 1)

ð
R

ð
R

1(0, t)(s)� (s)1(0, t)(�)� (�)js� �j2H�2 ds d�:

Equation (20) easily follows. The other assertions are direct implications of (20). h

Remark 5.1 For H , 1
2

there is a lack of a result similar to the above lemma. Hence, we can

consider the case of constant � only in this case. Then we have

jM H
� (1(0, t)� )j20 ¼ � 2 t2H :

Note that the Itô formula below would hold for H , 1
2

and a º-Hölder continuous �
(º . 1

2
� H), if estimates similar to the above lemma could be established under these

assumptions for t . 0.

Theorem 5.3. Let T . 0 and X be an indefinite H-fractional Wiener integral with

continuous integrand � when H > 1
2
and constant integrand when H , 1

2
. Furthermore,

assume that F 2 C1,2([0, T ] 3 R) and there are constants C > 0 and º ,

(2T H �maxs2[0,T]j� (s)j)�2 such that, for all (t, x) 2 [0, T ] 3 R,

max jF(t, x)j,
				 @@ t F(t, x)

				,
				 @@x F(t, x)

				,
				 @2

@x2
F(t, x)

				
( )

< Ceºx
2

:

Then the following equality holds in (L2):ðT
0

� (t)
@

@x
F(t, X t)dB

H
t ¼ F(T , XT )� F(0, 0)�

ðT
0

@

@ t
F(t, X t)dt

� 1

2

ðT
0

d

dt
jM H
� (1(0, t)� )j20

@2

@x2
F(t, X t)dt: (21)
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Proof. By Definition 3.2 we have to prove that the right-hand side is an element of (L2) and

has S-transform given byðT
0

(M H
þ �)(t)S � (t)

@

@x
F(t, X t)

� �
(�)dt ¼

ðT
0

(M H
þ �)(t)� (t)S

@

@x
F(t, X t)

� �
(�)dt: (22)

Notice first that, by the growth condition for G ¼ F, (@=@ t)F, (@=@x)F, (@2=@x2)F and

t 2 [0, T ],

kG(t, X t)k2
0 < C2(1� 4ºjM H

� (1(0, t)� )j20)�1=2 < const: (23)

using Lemma 5.2 or Remark 5.1 below. Consequently all terms on the right-hand side exist in

(L2) (the integrals as (L2)-valued Pettis integrals). For the last integral this can be proved in

the following way: ðT
0

����� d

dt
jM H
� (1(0, t)� )j20

@2

@x2
F(t, X t)

�����
0

dt

<

ðT
0

				 d

dt
jM H
� (1(0, t)� )j20

				
����� @2

@x2
F(t, X t)

�����
0

dt

< const:

ðT
0

t2H�1 dt ,1

using Lemma 5.2 and (23) and then applying Theorem 2.8.

We shall now calculate the S-transform of the right-hand side of (21): To this end, let

g(t, x) :¼ 1ffiffiffiffiffiffiffiffi
2�t
p exp

�x2

2t

� �

be the heat kernel. Applying the classical Girsanov theorem for the measure Q�, � 2 S(R),

and fractional integration by parts (Corollary 2.7) we may conclude that X t is a Gaussian

random variable with mean
Ð t

0
� (s)(M H

þ �)(s)ds and variance jM H
� (1(0, t)� )j20 under the

measure Q�.

Thus we obtain, for 0 , t < T,

S(F(t, X t))(�) ¼ EQ�[F(t, X t)]

¼
ð
R

F t, uþ
ð t

0

(M H
þ �)(s)� (s)ds

� �
g(jM H

� (1(0, t)� )j20, u)du

By the growth condition we may interchange integration and differentiation to obtain

d

dt
S(F(t, X t))(�) ¼ S

@

@ t
F(t, X t)

� �
(�)þ (M H

þ �)(t)� (t)S
@

@x
F(t, X t)

� �
(�)

þ 1

2

d

dt
jM H
� (1(0, t)� )j20 � S

@2

@x2
F(t, X t)

� �
(�)
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for 0 , t < T in the same way as in Bender (2003a). Hence,

S(F(T , XT )� F(0, 0))(�) ¼ lim
E!0

S(F(T , XT )� F(E, X E))(�)

¼
ðT

0

S
@

@ t
F(t, X t)

� �
(�)dt þ

ðT
0

(M H
þ �)(t)� (t)S

@

@x
F(t, X t)

� �
(�)dt

þ 1

2

ðT
0

d

dt
jM H
� (1(0, t)� )j20 � S

@2

@x2
F(t, X t)

� �
(�)dt:

Thus, the S-transform of the right-hand side is given by (22). h

Remark 5.2. In the case � ¼ 1 the above theorem generalizes the Itô formula from Alòs et

al. (2001) to the case where H , 1
4
. A different proof has recently and independently been

given by Biagini et al. (2003). The advantage of our proof is that we do not have to

approximate the function F as in Biagini et al. (2003). Moreover, our result allows non-

constant integrands when H . 1
2
. Note that Theorem 5.3 also contains the versions of Itô’s

formula in Bender (2003a) provided F is classically differentiable. However, the Itô formula

in Bender (2003a) holds in the framework of tempered distributions and generalized

functionals of a fractional Brownian motion.

5.2. Geometric fractional Brownian motion

We now introduce geometric fractional Brownian motions with deterministic (but not

necessarily constant) coefficients:

Definition 5.1. Let H 2 (0, 1), x0 . 0 and � , r : [0, 1)! R. Then we call

Pt :¼ x0 exp

ð t
0

r(s)ds� 1
2
jM H
� (1(0, t)� )j20 þ

ð t
0

� (s)dBH
s

� �

a geometric fractional Brownian motion with coefficients H , x0, � , r, provided the right-hand

side exists as an element of (L2) for all 0 < t ,1.

The following Itô formula is a consequence of Theorem 5.3.

Theorem 5.4 Let T . 0, P be a geometric fractional Brownian motion with continuous

coefficients r and � , and let � be a constant in the case where H , 1
2
. Furthermore, assume

that F 2 C1,2([0, T ] 3 R) such that F, (@=@ t)F(t, x), (@=@x)F(t, x), (@2=@x2)F(t, x) are of

polynomial growth. Then the following equality holds in (L2):
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ðT
0

� (t)Pt

@

@x
F(t, Pt)dB

H
t ¼ F(T , PT )� F(0, x0)�

ðT
0

@

@ t
F(t, Pt)dt

�
ðT

0

r(t)Pt

@

@x
F(t, Pt)dt

� 1

2

ðT
0

d

dt
jM H
� (1(0, t)� )j20P2

t

@2

@x2
F(t, Pt)dt:

Remark 5.3. Note that the assumptions on r and � obviously ensure the existence of P.

Proof. Apply Theorem 5.3 to F(t, g(t, x)) with

g(t, x) :¼ x0 exp

ð t
0

r(s)ds� 1
2
jM H
� (1(0, t)� )j20 þ x

� �
:

h

The special case F(t, x) ¼ x yields:

Corollary 5.5. Let P be a geometric fractional Brownian motion as in Theorem 5.4. Then, for

all t > 0,

Pt ¼ x0 þ
ð t

0

� (s)PsdB
H
s þ

ð t
0

r(s)Psds:

This corollary is a fractional analogue of the Doléans–Dade identity. It justifies the name

‘geometric fractional Brownian motion’.

6. Comparison with related approaches

We finally compare our definition of an Itô type integral with respect to a fractional

Brownian motion with related approaches in the literature. However, to make these

approaches comparable, we have to choose a common basic setting. In particular, we will

always assume that fractional Brownian motion is related to the underlying Brownian

motion as described in Section 2. Additionally, we interpret application of the operator M H
�

in the sense of Pettis integration.

6.1. The white noise approach

The general idea of the white noise approach is as follows. There is an appropriate space of

generalized random variables (Hida distributions) (S)� which contains (L2) such that the

mapping BH : R! (S)� is continuously differentiable. Moreover, the Wick product can be

extended to a continuous mapping, e : (S)� 3 (S)� ! (S)�. Now suppose a stochastic
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distribution process, that is, a mapping X : R! (S)�, is given. Then we can consider the

stochastic distribution process X e (d=dt)BH .

(S)�-valued integration can be defined as a Pettis-type integral with the help of the

extension of the S-transform to (S)�. To be precise, a stochastic distribution process X is

integrable if
Ð
R

(SX t)(�)dt exists for all � 2 S(R) and is the S-transform of a Hida

distribution �. We then call � the white noise integral of X . We thus arrive at the

following definition:

Definition 6.1. A stochastic distribution process X has a fractional Itô integral (white noise

approach) if the process X e (d=dt)BH is white noise integrable. We then define its

fractional Itô integral (white noise approach) to be the white noise integral of

X e (d=dt)BH .

This definition was first proposed by Hu and Øksendal (2003) in the case H . 1
2

and

extendend in slightly different settings to arbitrary Hurst parameters in Elliott and van der

Hoek (2003) and Bender (2003a).

We have:

Theorem 6.1. Let X : R! (L2). Then the white noise approach to the fractional Itô integral

extends the S-transform approach. Conversely, if the fractional Itô integral of X exists in the

white noise approach and is itself a member of (L2), then it also exists in the S-transform

approach.

The proof follows directly from the fact that S((d=dt)BH
t )(�) ¼ (M H

þ �)(t), which is

proved in Bender (2003a, Theorem 3.7).

Therefore the S-transform approach preserves the generality of the white noise approach

as long as we suppose the integrand and the fractional Itô integral to be (L2)-valued.

However, following the S-tranform approach we do not need the complicated constructions

from the white noise analysis, such as the space of Hida distributions and the extensions of

the Wick product and the S-transform, for which we refer the reader to Hida et al. (1993)

and Kuo (1996).

6.2. The Malliavin calculus approach

The Malliavin cacluclus approach to integration with respect to a fractional Brownian

motion originates in Decreusefond and Üstünel (1999) and Privault (1998). Most related to

our paper are the definitions in Alòs et al. (2001) and Cheridito and Nualart (2002). In our

setting we may define:

Definition 6.2. Suppose X : R! (L2) such that M H
� X is Skorohod integrable (with respect

to the underlying Brownian motion). Then X is said to have a fractional Itô integral

(Malliavin calculus approach) which is defined to be the Skorohod integral of M H
� X .
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Theorems 3.2 and 3.4 imply:

Theorem 6.2. Suppose X 2 Lp(R, (L2)) for some 1 < p ,1 in the case where H , 1
2
or

for some 1 , p , (H � 1
2
)�1 in the case where H . 1

2
. Then X has a fractional Itô integral in

the Malliavin calculus approach if and only if X has a fractional Itô integral in the S-

transform approach and M H
� X 2 L2(R, (L2)). In that case both approaches yield the same

integral.

The condition M H
� X 2 L2(R, (L2)) is particularly restrictive for small Hurst parameters.

For the smaller the Hurst parameter the higher the order of the fractional Marchaud

derivative and consequently the higher the required smoothness of X . For this reason the

Malliavin calculus approach in Alòs et al. (2001) is only developed for H . 1
4
. For a further

discussion of this smoothness problem for small Hurst parameters we refer to the recent

paper by Cheridito and Nualart (2002), in particular Proposition 3.

Cheridito and Nualart (2002) also propose a different generalization of the Skorohod

integral approach. Roughly speaking, they replace the Wick exponentials in our S-transform

approach by Hermite polynomials. However, we believe that the use of the Wick

exponentials has several advantages over the use of the Hermite polynomials. First, the

definition of the fractional Itô integral with the aid of the Wick exponentials is analogous to

the definition of the Hitsuda–Skorohod integral. Thus, the fractional Itô integral (S-

transform approach) coincides with a well-known integral for H ¼ 1
2
. Second, the relation to

the classical Girsanov theorem, which crucially depends on the use of the Wick

exponentials, yields simple proofs. The reader might like to compare our proof of the

fractional Itô formula with the rather lenghty argument in Cheridito and Nualart (2002).

Acknowledgements

This paper was revised while the author was visiting Robert J. Elliott at Haskayne School of

Business. He wishes to thank the Haskayne School of Business for its kind hospitality and

Robert J. Elliott and Michael Kohlmann for valuable discussions and comments. Financial

support from a grant under the Landesgraduiertenförderungsgesetz and from the German

Academic Exchange Service is gratefully acknowledged.

References
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