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Omnibus tests for various nonparametric hypotheses are developed using the empirical likelihood

method. These include tests for symmetry about zero, changes in distribution, independence and

exponentiality. The approach is to localize the empirical likelihood using a suitable ‘time’ variable

implicit in the null hypothesis and then form an integral of the log-likelihood ratio statistic. The

asymptotic null distributions of these statistics are established. In simulation studies, the proposed

statistics are found to have greater power than corresponding Cramér–von Mises type statistics.
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1. Introduction

We develop an approach to omnibus hypothesis testing based on the empirical likelihood

method. This method is known to be desirable and natural for deriving nonparametric and

semi-parametric confidence regions for mostly finite-dimensional parameters; see Owen

(2001) for an excellent account and an extensive bibliography on the topic. Just a few of

the papers cited by Owen, however, consider problems of simultaneous inference, and none

as far as we know has made a detailed study of omnibus hypothesis testing beyond the case

of a simple null hypothesis.

Our approach is based on localizing the empirical likelihood using one or more ‘time’

variables implicit in the given null hypothesis. An omnibus test statistic is then constructed

by integrating the log-likelihood ratio over those variables. We consider the proposed

procedure to be potentially more efficient than the corresponding, often used, Cramér–von

Mises type statistics. Four nonparametric problems will be studied in this way: testing for

symmetry about zero; testing for a change in distribution (and the two-sample problem);

testing for independence; and testing for exponentiality. These classical problems have been

extensively studied in the literature, but use of the empirical likelihood approach in such

contexts appears to be new. Actually, in Owen (2001) testing for symmetry and testing for

independence are described as ‘Challenges for empirical likelihood’, since the standard

method does not work properly here. Our localization approach, however, appears to be a
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convenient adaptation, which makes empirical likelihood suitable for dealing with these

fundamental statistical problems as well.

We first recall the case of a simple null hypothesis. Given independent and identically

distributed (i.i.d.) observations X 1, . . . , X n with distribution function F, consider

H0 : F ¼ F0, where F0 is a completely specified (continuous) distribution function. Define

the localized empirical likelihood ratio

R(x) ¼ supfL( ~FF) : ~FF(x) ¼ F0(x)g
supfL( ~FF)g

,

where L( ~FF) ¼
Qn

i¼1( ~FF(X i) � ~FF(Xi�)). The empirical distribution function Fn attains the

supremum in the denominator, and the supremum in the numerator is attained by putting

mass F0(x)=(nFn(x)) on each observation up to and including x and mass

(1 � F0(x))=(n(1 � Fn(x))) on each observation beyond x. This easily leads to

log R(x) ¼ nFn(x)log
F0(x)

Fn(x)
þ n(1 � Fn(x))log

1 � F0(x)

1 � Fn(x)

and, provided 0 , F0(x) , 1,

�2 log R(x) ¼ n(Fn(x) � F0(x))2

F0(x)(1 � F0(x))
þ oP(1)�!D 	2

1 (1:1)

under H0. This is a special case of Owen’s nonparametric version of the classical Wilks’s

theorem.

For an omnibus test (consistent against any departure from H0), however, we need to

look at �2 logR(x) simultaneously over a range of x-values. Taking the integral with respect

to F0 leads to the statistic

Tn ¼ �2

ð1
�1

log R(x)dF0(x):

If instead of integrating in Tn, we take the supremum over all x, we obtain essentially the

statistic of Berk and Jones (1979), who showed that their statistic is more efficient in

Bahadur’s sense than any weighted Kolmogorov–Smirnov statistic. Li (2000) has introduced

an extension of Berk and Jones’s approach for a composite null hypothesis that F belongs

to a parametric family of distributions. In that case, R(x) ¼ RŁ(x) for a parameter Ł, and Li

suggests replacing the unknown Ł in Berk and Jones’s statistic by its maximum likelihood

estimator under the null hypothesis.

Clearly Tn is distribution-free and its small-sample null distribution can be approximated

easily by simulation. Moreover, from (1.1) and a careful application of empirical process

theory, it can be shown (cf. the proof of Theorem 1) that

Tn �!
D
ð1

0

B2(t)

t(1 � t)
dt

under H0, where B is a standard Brownian bridge. Under H0, Tn is asymptotically equivalent

to the Anderson–Darling statistic
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A2
n ¼ n

ð1
�1

(Fn(x) � F0(x))2

F0(x)(1 � F0(x))
dF0(x)

and the limit distribution may be calculated using a series representation of Anderson and

Darling (1952).

We investigate statistics of the form Tn for a variety of nonparametric hypotheses beyond

the case of a simple null hypothesis. Testing for symmetry around zero can be handled

using F(�x) ¼ 1 � F(x�) and localizing at x . 0. To test for exponentiality, we localize

using the memorylessness property of the exponential distribution. Our method also applies

to the two-sample problem, and, more generally, to the nonparametric change-point

problem; in that case, we localize at (x, t), where t is the proportion of observation time

before the change point. Testing for independent components in a bivariate distribution

function F can be handled using F(x, y) ¼ F(x, 1)F(1, y), with localization at (x, y).

The paper is organized as follows. In Sections 2–5 we examine the four nonparametric

testing problems mentioned above and derive likelihood ratio test statistics of the form Tn.

Using empirical process techniques, we derive the limiting distribution of Tn in each case.

Section 6 contains simulation results comparing the small-sample performance of each Tn

with a corresponding Cramér–von Mises type statistic, and Section 7 is a concluding

discussion. Proofs are postponed to Section 8. Tables of selected critical values for Tn are

given in the Appendix.

2. Testing for symmetry

Much has been written on testing the symmetry of a distribution around either a known or

unknown point of symmetry, some recent contributions being Diks and Tong (1999),

Mizushima and Nagao (1998), Ahmad and Li (1997), Modarres and Gastwirth (1996),

Nikitin (1996a), and Dykstra et al. (1995). Early papers include Butler (1969), Orlov

(1972), Rothman and Woodroofe (1972), Srinivasan and Godio (1974), Hill and Rao (1977)

and Lockhart and McLaren (1985).

Many of the papers cited above consider the case of a known point of symmetry and use

a Cramér–von Mises type test statistic. We also assume that the point of symmetry is

known, so without loss of generality it is assumed to be zero. Let X1, . . . , Xn be i.i.d. with

continuous distribution function F. The null hypothesis of symmetry about zero is

H0 : F(�x) ¼ 1 � F(x�), for all x . 0:

The local likelihood ratio statistic is defined by

R(x) ¼ supfL( ~FF) : ~FF(�x) ¼ 1 � ~FF(x�)g
supfL( ~FF)g

, x . 0:

As in the Introduction, the unrestricted likelihood in the denominator is maximized by setting
~FF ¼ Fn, the empirical distribution function. The supremum in the numerator can be found by

treating ~FF as a function of 0 < p < 1, where ~FF puts mass p=2 on the interval (�1, �x],

mass p=2 on [x, 1) and mass 1 � p on (�x, x), with those masses divided equally among

Empirical likelihood based hypothesis testing 269



the observations in the respective intervals. That is, the masses on the individual observations

in the respective intervals are given by

p=2

n p̂p1

,
p=2

n p̂p2

,
1 � p

n(1 � p̂p)
,

where p̂p ¼ p̂p1 þ p̂p2, p̂p1 ¼ Fn(�x) and p̂p2 ¼ 1 � Fn(x�). The numerator of R(x) is therefore

the maximal value of

p=2

n p̂p1

� �n p̂p1 p=2

n p̂p2

� �n p̂p2 1 � p

n(1 � p̂p)

� �n(1� p̂p)

,

which is easily seen to be attained at p ¼ p̂p. We thus obtain

log R(x) ¼ n p̂p1 log
p̂p

2 p̂p1

þ n p̂p2 log
p̂p

2 p̂p2

¼ nFn(�x)log
Fn(�x) þ 1 � Fn(x�)

2Fn(�x)

þ n(1 � Fn(x�))log
Fn(�x) þ 1 � Fn(x�)

2(1 � Fn(x�))
, (2:1)

where 0 log(a=0) ¼ 0. Consider the test statistic

Tn ¼ �2

ð1
0

log R(x)dfFn(x) � Fn(�x)g

¼ �2

ð1
0

log R(x)dGn(x),

where Gn is the empirical distribution function of the jX ij. Alternatively, we may write

Tn ¼ � 2

n

Xn

i¼1

log R(jX ij):

Clearly, Tn is distribution-free; selected critical values are provided in Table A.1. The limit

distribution of Tn is given by the following result.

Theorem 1. Let F be continuous. Then, under H0 ,

Tn �!
D
ð1

0

W 2(t)

t
dt,

where W is a standard Wiener process.

3. Testing for a change point

The nonparametric change-point testing problem has an extensive literature; recent

contributions include Gombay and Jin (1999), Aly (1998), Aly and Kochar (1997), Ferger
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(1994; 1995; 1996; 1998), McKeague and Sun (1996) and Szyszkowicz (1994). We consider

the non-sequential (retrospective) situation with ‘at most one change’; see, for example,

Csörgó́ and Horváth (1987) and Hawkins (1988).

Let X1, . . . , Xn be independent, and assume that for some � 2 f2, . . . , ng and some

continuous distribution functions F, G,

X 1, . . . , X ��1 � F and X �, . . . , Xn � G,

with �, F and G unknown. We wish to test the null hypothesis of no change point,

H0 : F ¼ G. Define the local likelihood ratio test statistic

R(t, x) ¼ supfL( ~FF, ~GG, �) : ~FF(x) ¼ ~GG(x), � ¼ [nt] þ 1g
supfL( ~FF, ~GG, �) : � ¼ [nt] þ 1g

for 1=n < t , 1 and x 2 R, with

L( ~FF, ~GG, �) ¼
Y��1

i¼1

( ~FF(Xi) � ~FF(Xi�))
Yn

i¼�

( ~GG(X i) � ~GG(X i�)):

Set n1 ¼ [nt], n2 ¼ n � [nt], and let F1n and F2n be the empirical distribution functions of

the first n1 observations and last n2 observations, respectively. Let Fn be the empirical

distribution function of the full sample, so Fn(x) ¼ (n1 F1n(x) þ n2 F2n(x))=n. Then

log R(t, x) ¼ n1 F1n(x)log
Fn(x)

F1n(x)
þ n1(1 � F1n(x))log

1 � Fn(x)

1 � F1n(x)

þ n2 F2n(x)log
Fn(x)

F2n(x)
þ n2(1 � F2n(x))log

1 � Fn(x)

1 � F2n(x)
, (3:1)

where 0 log(a=0) ¼ 0. Consider the test statistic

Tn ¼ �2

ð1

1=n

ð1
�1

log R(t, x)dFn(x)dt

¼ � 2

n

Xn

i¼1

ð1

1=n

log R(t, X i)dt:

Clearly, Tn is distribution-free; selected critical values are provided in Table A.2. The limit

distribution of Tn is given by the following result. Let W0 be a four-sided tied-down Wiener

process on [0, 1]2 defined by W0(t, y) ¼ W (t, y) � tW (1, y) � yW (t, 1) þ tyW (1, 1), where

W is a standard bivariate Wiener process.

Theorem 2. Let F and G be continuous. Then, under H0,

Tn �!
D
ð1

0

ð1

0

W 2
0(t, y)

t(1 � t)y(1 � y)
dy dt:

Note that the classical two-sample problem could be handled in a similar way; see

Einmahl and Khmaladze (2001) for recent progress on this problem along other lines and
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for the references therein. We will briefly describe the two-sample problem here, but we

will not provide a proof for this case, since it is similar to but easier than the proof for the

change-point problem given in Section 7.

Let X 1, . . . , Xn be independent, and suppose that X 1, . . . , X n1
(1 < n1 , n) have

common continuous distribution function F, and X n1þ1, . . . , Xn have common continuous

distribution function G; here F and G are unknown. We wish to test the null hypothesis of

equal distributions, H0 : F ¼ G. Define the local likelihood ratio test statistic

R(x) ¼ supfL( ~FF, ~GG) : ~FF(x) ¼ ~GG(x)g
supfL( ~FF, ~GG)g

, x 2 R,

with

L( ~FF, ~GG) ¼
Yn1

i¼1

( ~FF(Xi) � ~FF(Xi�))
Yn

i¼n1þ1

( ~GG(X i) � ~GG(X i�)):

Let F1n and F2n be the empirical distribution functions of the first n1 and last n2 :¼ n � n1

observations respectively, and let Fn be the empirical distribution function of the pooled

sample X 1, . . . , X n. Then log R(x) is equal to the right-hand side of (3.1). Consider the test

statistic

Tn ¼ �2

ð1
�1

log R(x)dFn(x) ¼ � 2

n

Xn

i¼1

log R(X i);

again Tn is distribution-free.

Theorem 2a. Let F and G be continuous and assume n1, n2 ! 1 as n ! 1. Then, under

H0,

Tn �!
D
ð1

0

B2(y)

y(1 � y)
dy,

with B a standard Brownian bridge.

4. Testing for independence

The wide variety of tests for independence has been surveyed by Martynov (1992, Section

12). Here we consider a test for the independence of two random variables.

Let X1, . . . , Xn be i.i.d. bivariate random vectors with distribution function F and

continuous marginal distribution functions F1 and F2. We wish to test the null hypothesis of

independence:

H0 : F(x, y) ¼ F1(x)F2(y), for all x, y 2 R:

Define the local likelihood ratio test statistic
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R(x, y) ¼ supfL( ~FF) : ~FF(x, y) ¼ ~FF1(x) ~FF2(y)g
supfL( ~FF)g

for (x, y) 2 R2, with L( ~FF) ¼
Qn

i¼1
~PP(fX ig), where ~PP is the probability measure correspond-

ing to ~FF. Then

log R(x, y) ¼ nPn(A11)log
F1n(x)F2n(y)

Pn(A11)
þ nPn(A12)log

F1n(x)(1 � F2n(y))

Pn(A12)

þ nPn(A21)log
(1 � F1n(x))F2n(y)

Pn(A21)
þ nPn(A22)log

(1 � F1n(x))(1 � F2n(y))

Pn(A22)
,

where Pn is the empirical measure, F1n and F2n are the corresponding marginal distribution

functions, and

A11 ¼ (�1, x] 3 (�1, y],

A12 ¼ (�1, x] 3 (y, 1),

A21 ¼ (x, 1) 3 (�1, y],

A22 ¼ (x, 1) 3 (y, 1):

Consider the test statistic

Tn ¼ �2

ð1
�1

ð1
�1

log R(x, y)dF1n(x)dF2n(y):

Clearly, Tn is distribution-free; selected critical values are provided in Table A.3. The limit

distribution of Tn is given by the following result.

Theorem 3. Let F1, F2 be continuous. Then, under H0,

Tn �!
D
ð1

0

ð1

0

W 2
0(u, v)

u(1 � u)v(1 � v)
du dv,

where W0 is a four-sided tied-down Wiener process on [0, 1]2.

The limit distribution above agrees with that in the change-point problem.

5. Testing for exponentiality

In this section we develop a likelihood ratio based test for exponentiality motivated by the

memorylessness property of the exponential distribution. Cramér–von Mises type tests

based on this property have been proposed by Angus (1982) and Ahmad and Alwasel

(1999); we refer to these papers for references to the earlier literature.

Let X 1, . . . , X n be i.i.d. non-negative random variables with distribution function F,

F(0�) ¼ 0, and survival function S ¼ 1 � F. Consider the null hypothesis
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H0 : S(x) ¼ exp(�ºx), x > 0, for some º . 0:

The local likelihood ratio statistic based on the memorylessness property of the exponential

distribution is

R(x, y) ¼ supfL( ~SS) : ~SS(x þ y) ¼ ~SS(x) ~SS(y)g
supfL( ~SS)g

for x . 0, y . 0, where

L( ~SS) ¼
Yn

i¼1

( ~SS(X i�) � ~SS(X i)):

Let Fn denote the empirical distribution function. It follows by a straightforward calculation

that

log R(x, y) ¼ N1 log
n(1 � a)

N1

þ N2 log
n(a � b)

N2

þ N3 log
nb(1 � a)

N3

þ N4 log
nab

N4

where N1 ¼ nFn(x ^ y), N2 ¼ n(Fn(x _ y) � Fn(x ^ y)), N3 ¼ n(Fn(x þ y) � Fn(x _ y)),

N4 ¼ n(1 � Fn(x þ y)), and

a ¼ N2 þ N3 þ 2N4

n þ N3 þ N4

, b ¼ N3 þ N4

n � N1

� �
a:

Consider the test statistic

Tn ¼ �2

ð1
0

ð1
0

log R(x, y)º̂º2 e�º̂º(xþ y) dx dy,

with º̂º ¼ n=
Pn

i¼1 Xi. This statistic is distribution-free (under H0 its distribution does not

depend on the parameter º). Selected critical values for Tn obtained by simulation are

displayed in Table A.4.

The asymptotic null distribution of Tn is given in the following result. Based on this

result, selected critical values for the large-sample case are presented in the last row of

Table A.4. Comparison of Tables A.1–A.4 shows that the convergence of Tn is much

slower here than in the previous sections.

Theorem 4. Under H0,

Tn �!
D

2

ð1

0

ð1

t

st

(1 � s)(1 þ t)

B(st)

st
� B(s)

s
� B(t)

t

� �2

ds dt,

where B is a standard Brownian bridge.

6. Simulation results

In this section we present simulation results comparing the small-sample performance of the

proposed likelihood ratio statistic Tn with that of a corresponding Cramér–von Mises type
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statistic Cn. In each case the powers are based on 10 000 samples, and exact critical values

are used (see the Appendix for the Tn critical values).

For the symmetry test, we compared Tn with

Cn ¼ n

ð1
0

f1 � Fn(x�) � Fn(�x)g2 dGn(x);

see Rothman and Woodroofe (1972). The alternatives are N (0:3, 1) and chi-squared centred

about the mean; see Table 1.

For the change-point test, we compared Tn with

Cn ¼ n

ð1

1=n

ð1
�1

fF1n(x) � F2n(x)g2dFn(x)dt;

see Csörgő and Horváth (1988). The results are presented in Table 2.

For the test of independence, we compared Tn with

Cn ¼ n

ð1
�1

ð1
�1

fFn(x, y) � F1n(x)F2n(y)g2dF1n(x)dF2n(y);

see Deheuvels (1981) or Martynov (1992, Section 12). The alternatives are bivariate normal

with correlation r, and (U , �U þ V ), where U , V are i.i.d. uniform on (0, 1), for various

values of r and �; see Table 3.

Table 1. Power comparison of tests for symmetry at level

Æ ¼ 0:05 for n ¼ 50 and Æ ¼ 0:01 for n ¼ 100

Alternative n ¼ 50 n ¼ 100

Tn Cn Tn Cn

N (0:3, 1) 0.539 0.516 0.629 0.600

Centred 	2
1 0.893 0.732 0.988 0.872

Centred 	2
2 0.505 0.433 0.647 0.495

Centred 	2
3 0.322 0.307 0.332 0.297

Table 2. Power comparison of tests for a change point, n ¼ 50, Æ ¼ 0:05

� ¼ 11 � ¼ 21

F G Tn Cn Tn Cn

N (0, 1) N(0, 16) 0.210 0.129 0.735 0.356

Unif(0, 1) Unif(0.3, 1.3) 0.512 0.446 0.837 0.661

Exp(1) Exp(2) 0.236 0.229 0.418 0.333

Exp(1) Exp(3) 0.506 0.479 0.789 0.683
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For the test of exponentiality, we compared Tn with

Cn ¼ n

ð1
0

ð1
0

fSn(x þ y) � Sn(x)Sn(y)g2º̂º2 e�º̂º(xþ y) dx dy;

see Angus (1982). We used levels Æ ¼ 0:10 for n ¼ 20, and Æ ¼ 0:05 for n ¼ 30. The

alternatives were chi-squared, lognormal and Weibull; see Table 4. The lognormal distribution

with corresponding normal parameters � ¼ 0 and � is denoted LN(� ); the Weibull

distribution with scale parameter 1 and shape parameter c is denoted Weibull(c).

The proposed statistics show consistent improvement over the corresponding Cramér–von

Mises statistics in all cases.

7. Discussion

We have developed a rather general localized empirical likelihood approach for testing

certain composite nonparametric null hypotheses. We use integral type statistics to establish

appropriate limit results. These statistics are somewhat related to Anderson–Darling type

statistics, but have the advantage that the implicitly present weight function is automatically

determined by the empirical likelihood. Clearly our tests are consistent (against all fixed

alternatives). The proofs of our main results (see Section 8) require delicate arguments

Table 3. Power comparison of tests for independence at level

Æ ¼ 0:05

Alternative n ¼ 20 n ¼ 50

Tn Cn Tn Cn

r ¼ 0:4 0.357 0.341 0.761 0.728

r ¼ 0:5 0.550 0.520 0.937 0.915

� ¼ 0:5 0.437 0.389 0.904 0.826

� ¼ 0:6 0.573 0.523 0.974 0.935

Table 4. Power comparison of tests for exponentiality

Alternative n ¼ 20 n ¼ 30

Tn Cn Tn Cn

	2
4 0.675 0.624 0.717 0.678

LN(0.8) 0.638 0.560 0.696 0.618

LN(1.0) 0.227 0.181 0.201 0.144

Weibull(1.5) 0.619 0.588 0.666 0.638
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concerning weighted empirical processes to handle ‘edge’ effects in the localized empirical

likelihood.

Our approach is tractable in the four cases we have examined because the null hypothesis

is expressed in terms of a relatively simple functional equation involving the distribution

function(s). Another example in which our approach appears to be useful is in testing

bivariate symmetry. More complex null hypotheses, however, might be difficult to handle

via our localized empirical likelihood technique. In that sense the goodness-of-fit tests for

parametric models in Li’s (2000) extension of Berk and Jones (1979) are complementary to

the present paper (but, in contrast to our approach, the limit distribution is intractable).

However, in the case of testing for exponentiality our test is simpler and more natural. For

that case both Li’s and our approach can be extended to randomly censored data. Li’s

approach is not applicable to the other cases we have considered.

An interesting direction for future research would be to investigate the Bahadur efficiency

of Tn. Nikitin (1996a; 1996b) has studied the Bahadur efficiency of various types of

supremum-norm statistics in the contexts of testing for symmetry and exponentiality, but it

is not clear how to handle statistics of the form Tn.

8. Proofs

We use the following general strategy in each proof. First, we establish the limit distribution

for a version of the test statistic in which the range of integration is restricted to a region

where the integrand can be approximated uniformly in terms of an empirical process; that

region is carefully chosen to avoid a ‘problematic boundary’ where the approximation

breaks down. Second, we show that the contribution from the part of the test statistic close

to the boundary is asymptotically negligible. The first proof is presented in full detail, but

to save space we skip some details in subsequent proofs and concentrate on the key points.

Proof of Theorem 1. The problematic boundary is 1 in this case. For a given 0 , � , 1,

split the range of integration in the test statistic into the bounded interval [0, x�] and its

complement, where F has mass 1 � � on [�x�, x�] and mass �=2 on each side, by symmetry.

Decompose the test statistic as Tn ¼ T1n þ T2n, and note that it suffices to show that, as

n ! 1,

T1n ¼ �2

ðx�

0

log R(x)dGn(x)�!D
ð1

�

W 2(t)

t
dt, (8:1)

and

T2n ¼ �2

ð1
x�

log R(x)dGn(x) ¼ OP(
ffiffiffi
�

p
) (8:2)

uniformly in �; see Billingsley (1968, Theorem 4.2).

First consider the leading term T1n. From (2.1), a Taylor expansion of log(1 þ y) and the

Glivenko–Cantelli theorem it follows that, almost surely,
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sup
0,x<x�

����log R(x) þ n

8
f�Fn(�x) þ 1 � Fn(x�)g2 1

Fn(�x)
þ 1

1 � Fn(x�)

� �����
¼ sup

0,x<x�

����nFn(�x)log 1 þ 1 � Fn(x�) � Fn(�x)

2Fn(�x)

� �

þ n(1 � Fn(x�))log 1 þ Fn(�x) � (1 � Fn(x�))

2(1 � Fn(x�))

� �

þ n

8
f�Fn(�x) þ 1 � Fn(x�)g2 1

Fn(�x)
þ 1

1 � Fn(x�)

� �����
< sup

0,x<x�

���� n

24
(1 � Fn(x�) � Fn(�x))3 1

(Fn(�x))2
� 1

(1 � Fn(x�))2

� �����
<

1

24
sup

0,x<x�

(
ffiffiffi
n

p
f1 � Fn(x�) � (1 � F(x�)) þ F(�x) � Fn(�x)g)2

3 sup
0,x<x�

(1 � Fn(x�) � Fn(�x))2 Fn(�x) þ 1 � Fn(x�)

(Fn(�x))2(1 � Fn(x�))2

� �
:

Now by the weak convergence of the empirical process
ffiffiffi
n

p
(Fn � F), we immediately obtain

that this last bound is OP(1) � oP(1) ¼ oP(1).

Set Ui ¼ F(X i) and let ˆn be the empirical distribution function of the Ui. Then by the

uniform approximation of log R(x) just obtained, we have

T1n ¼
ðx�

0

n

4
f�Fn(�x) þ 1 � Fn(x�)g2 1

Fn(�x)
þ 1

1 � Fn(x�)

� �
þ oP(1)

� �
dGn(x)

¼
ðx�

0

n

4
f�ˆn(F(�x)) þ 1 � ˆn(F(x)�)g2 1

ˆn(F(�x))
þ 1

1 � ˆn(F(x)�)

� �

dfˆn(F(x)) � ˆn(F(�x))g þ oP(1)

¼
ð1=2

�=2

n

4
f�ˆn(t) þ 1 � ˆn((1 � t)�)g2 1

ˆn(t)
þ 1

1 � ˆn((1 � t)�)

� �

dfˆn(t) � ˆn(1 � t)g þ oP(1)

¼ 1

4

ð1=2

�=2

f
ffiffiffi
n

p
(t � ˆn(t)) þ

ffiffiffi
n

p
((1 � t) � ˆn((1 � t)�))g2 1

ˆn(t)
þ 1

1 � ˆn((1 � t)�)

� �

dfˆn(t) � ˆn(1 � t)g þ oP(1), (8:3)

where we have used the change of variable t ¼ F(�x). Consider the uniform empirical

process
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Æn(t) ¼
ffiffiffi
n

p
(ˆn(t) � t), t 2 [0, 1]:

Since Æn converges in distribution to a Brownian bridge, the Skorohod construction ensures

almost sure convergence in supremum norm of a sequence of uniform empirical processes to

a Brownian bridge B. That is, keeping the same notation for these new uniform empirical

processes,

sup
0< t<1

jÆn(t) � B(t)j ! 0 a:s:

The leading term in (8.3) can then be expressed as

1

2

ð1=2

�=2

f�B(t) � B(1 � t)g2

t
dfˆn(t) � ˆn(1 � t)g þ o(1) a:s: (8:4)

By the Helly–Bray theorem the main expression in (8.4) converges a.s. toð1=2

�=2

f�B(t) � B(1 � t)g2

t
dt ¼D

ð1=2

�=2

W 2(2t)

t
dt ¼

ð1

�

W 2(t)

t
dt:

This settles (8.1).

It remains to show that T2n is asymptotically negligible in the sense of (8.2). Decompose

T2n ¼ �2

ðVn_x�

x�

log R(x)dGn(x) � 2

ð1
Vn_x�

log R(x)dGn(x) ¼ T3n þ T4n,

where Vn ¼ min(�X1:n, X n:n) and X i:n denotes the ith order statistic. Using

jlog(1 þ y) � yj < 2y2 for y > �1
2
, we find that

jlog R(x)j < n

2
(�Fn(�x) þ 1 � Fn(x�))2 1

Fn(�x)
þ 1

1 � Fn(x�)

� �

for all x. This leads to (cf. (8.3))

T3n <

ð�=2

F(�Vn)^�=2

fÆn(t) þ Æn((1 � t)�)g2 1

ˆn(t)
þ 1

1 � ˆn((1 � t)�)

� �
d(ˆn(t) � ˆn(1 � t))

¼
ð�=2

F(�Vn)^�=2

fÆn(t) þ Æn((1 � t)�)g2

t1=2

1

t1=2

t

ˆn(t)
þ t

1 � ˆn((1 � t)�)

� �
d(ˆn(t) � ˆn(1 � t)):

(8:5)

The following four sequences are bounded in probability:

sup
0, t,1

jÆn(t)j
t1=4

, sup
0, t,1

jÆn((1 � t)�)j
t1=4

,

sup
U1: n< t<1

t

ˆn(t)
, sup

1�Un: n< t<1

t

1 � ˆn((1 � t)�)
,

in the case of the first two by the Chibisov–O’Reilly theorem, and the last two by Shorack
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and Wellner (1986, p. 404). Using these bounds inside the integrand of (8.5), and noting that

F(�Vn) > max(U1:n, 1 � Un:n), we obtain

T3n ¼ OP(1)

ð�=2

0

1

t1=2
d(ˆn(t) � ˆn(1 � t)):

It follows from integration by parts thatð�=2

0

1

t1=2
d(ˆn(t) � ˆn(1 � t)) ¼

ð�=2

0

1

t1=2
d(ˆn(t) þ 1 � ˆn(1 � t))

¼ ˆn(�=2) þ 1 � ˆn(1 � �=2)

(�=2)1=2
þ 1

2

ð�=2

0

ˆn(t) þ 1 � ˆn(1 � t)

t3=2
dt:

Since sup0, t,1 ˆn(t)=t ¼ OP(1) (see Shorack and Wellner 1986, p. 404), and similarly

sup0, t,1(1 � ˆn(1 � t))=t ¼ OP(1), we obtain that T3n ¼ OP(
ffiffiffi
�

p
).

Finally, consider T4n. Note that R(x) is invariant under a sign change of the observations

X i. Thus it suffices to evaluate T4n in the case that Fn(Vn) ¼ 1, which holds either for the

original observations or for the sign-changed observations. This gives

T4n < �2

ð1
Vn

nFn(�x)log
1

2
dGn(x) ¼ O(n)(1 � Gn(Vn))2 ¼ OP(1=n),

uniformly in �. The last equality can be seen by noticing that the number of jXij greater than

Vn is bounded above by a geometric random variable with parameter 1
2
. h

Proof of Theorem 2. Write Ui ¼ F(X i) and let 1̂n, 2̂n and ˆn be the corresponding

empirical distribution functions. Let 0 , � , 1
2
. It suffices to show that, as n ! 1,

T1n ¼ �2

ð1��

�

ð1��

�
log R(t, Q(y))dˆn(y)dt

�!D
ð1��

�

ð1��

�

W 2
0(t, y)

t(1 � t)y(1 � y)
dy dt (8:6)

and

T2n ¼ Tn � T1n ¼ OP(
ffiffiffi
�

p
) (8:7)

uniformly in �.

First, consider T1n. By a Taylor expansion it readily follows that uniformly for � < t,

y < 1 � �,

�2 log R(t, Q(y)) ¼ nt(1 � t)( 1̂n(y) � 2̂n(y))2 1 � t

1̂n(y)(1 � 1̂n(y))
þ t

2̂n(y)(1 � 2̂n(y))

� �

3 (1 þ o(1)) þ oP(1):

So instead of T1n we consider
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ð1��

�

ð1��

�
nt(1 � t)( 1̂n(y) � 2̂n(y))2 1 � t

1̂n(y)(1 � 1̂n(y))
þ t

2̂n(y)(1 � 2̂n(y))

� �
dˆn(y)dt:

Set Yn(t, y) ¼
ffiffiffi
n

p
t(1 � t)( 1̂n(y) � 2̂n(y)). From Csörgő and Horváth (1987) (see also

McKeague and Sun 1996), it follows that there exists a sequence fW0,ng of four-sided tied-

down Wiener processes such that

P sup
n�1=2, t, y,1�n�1=2

jYn(t, y) � W0,n(t, y)j . A
(log n)3=4

n1=4

 !
< Bn��

for all � . 0, where A ¼ A(�) and B are constants. Hence it suffices to considerð1��

�

ð1��

�

W 2
0,n(t, y)

t(1 � t)

1 � t

1̂n(y)(1 � 1̂n(y))
þ t

2̂n(y)(1 � 2̂n(y))

� �
dˆn(y)dt

¼D
ð1��

�

ð1��

�

W 2
0(t, y)

t(1 � t)y(1 � y)
dˆn(y)dt þ oP(1),

which implies (8.6) by the Helly–Bray theorem.

It remains to prove (8.7). We will only consider the relevant region of the unit square

where, in addition, both y and t are less than or equal to 1
2
, that is, we assume n�1 < t < �

and 0 , y < 1
2
, or, n�1 < t < 1

2
and 0 , y < �. Denote this L-shaped region by A�. The

other regions can be handled in the same way, by symmetry. We prove thatðð
A�

log R(t, Q(y))dˆn(y)dt ¼ OP(
ffiffiffi
�

p
): (8:8)

We will split the region A� in turn into several subregions.

First, we consider the case where n�1 < t < n�3=5 and n�3=8 < y < 1
2
. Note that in this

region ����n1 1̂n(y)log
ˆn(y)

1̂n(y)

���� < n2=5 log n,

����n1(1 � 1̂n(y))log
1 � ˆn(y)

1 � 1̂n(y)

���� < n2=5 log n,

and with arbitrarily high probability, for large n,����n2 2̂n(y)log
ˆn(y)

2̂n(y)

���� < j2n2(ˆn(y) � 2̂n(y))j

¼
���� 2n2 n1

n
( 1̂n(y) � 2̂n(y))

���� < 2n2=5,

����n2(1 � 2̂n(y))log
1 � ˆn(y)

1 � 2̂n(y)

���� < 2n2=5:

Hence with high probability, for large n,
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ð n�3=5

n�1

ð1=2

n�3=8

jlog R(t, Q(y))jdˆn(y)dt <

ð n�3=5

n�1

3n2=5 log n dt <
3 log n

n1=5
! 0:

Now consider the region n�3=8 < t < 1
2

and 0 , y < n�3=5. In this region we have with

high probability, for large n,����n1 1̂n(y)log
ˆn(y)

1̂n(y)

���� < n1 1̂n(n�3=5)log n < nˆn(n�3=5)log n

< 2n2=5 log n,����n2 2̂n(y)log
ˆn(y)

2̂n(y)

���� < nˆn(n�3=5)log n < 2n2=5 log n,

����n1(1 � 1̂n(y))log
1 � ˆn(y)

1 � 1̂n(y)

���� < j2n1( 1̂n(y) � ˆn(y))j < 2nˆn(n�3=5) < 4n2=5,

����n2(1 � 2̂n(y))log
1 � ˆn(y)

1 � 2̂n(y)

���� < j2n2( 2̂n(y) � ˆn(y))j < 2nˆn(n�3=5) < 4n2=5:

Hence with high probability, for large n,ð1=2

n�3=8

ð n�3=5

0

jlog R(t, Q(y))jdˆn(y)dt <

ð n�3=5

0

5n2=5 log n dˆn(y) <
6 log n

n1=5
! 0:

Next consider the region n�1 < t < n�3=8 and 0 , y < n�3=8. In this region����n1 1̂n(y)log
ˆn(y)

1̂n(y)

���� < n5=8 log (n5=8),

����n1(1 � 1̂n(y))log
1 � ˆn(y)

1 � 1̂n(y)

���� < n5=8 log (n5=8),

and with high probability, for large n,����n2 2̂n(y)log
ˆn(y)

2̂n(y)

���� < 2n5=8 log n,

����n2(1 � 2̂n(y))log
1 � ˆn(y)

1 � 2̂n(y)

���� <
���� 2n2 n1

n
( 1̂n(y) � 2̂n(y))

���� < 2n5=8:

Hence ð n�3=8

n�1

ð n�3=8

0

jlog R(t, Q(y))jdˆn(y)dt <
4n5=8 log n

n3=4
<

4 log n

n1=8
! 0:

In order to handle the remaining part of A� we need two lemmas. The first follows quite

easily from Inequality 2 of Shorack and Wellner (1986, pp. 415–416).
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Lemma 1. Let 0 , an, bn < 1=2 with nanbn ! 1 as n ! 1. Then, for any � . 0,

P sup
a n< t<1

sup
b n< y<1

1̂n(y)

y

 !
_ sup

b n< y<1

y

1̂n(y)

� �( )
. 1 þ �

 !
! 0:

The second lemma follows directly from Komlós et al. (1975), in a similar but easier way

than in Csörgő and Horváth (1987).

Lemma 2. Under the same conditions as in Lemma 1, there exists a sequence fW0,ng of four-

sided tied-down Wiener processes such that

sup
a n< t<1�an

sup
b n< y<1�b n

jYn(t, y) � W0,n(t, y)j
(t(1 � t)y(1 � y))1=4

�!P 0:

We are now in a position to conclude the proof of Theorem 2. Consider the region

n�3=5 < t < � and n�3=8 < y < 1
2
. We have by a Taylor expansion and Lemma 1 that with

high probability, uniformly over this region, for large n,

jlog R(t, Q(y))j < n1

(ˆn(y) � 1̂n(y))2

1̂n(y)(1 � 1̂n(y))
þ n2

(ˆn(y) � 2̂n(y))2

2̂n(y)(1 � 2̂n(y))

¼ n1 n2
2

n2

( 1̂n(y) � 2̂n(y))2

1̂n(y)(1 � 1̂n(y))
þ n2 n2

1

n2

( 1̂n(y) � 2̂n(y))2

2̂n(y)(1 � 2̂n(y))
:

We only continue with the first term of this sum; the second is somewhat easier to deal with.

By Lemma 1, with high probability and uniformly over the region, the first term is bounded

above by

2Y 2
n(t, y)

ty

y

1̂n(y)
<

3Y 2
n(t, y)

ty
¼ 3

Yn(t, y)

(ty)1=4

� �2
1

(ty)1=2
:

But by Lemma 2,ð�
n�3=5

ð1=2

n�3=8

Yn(t, y)

(ty)1=4

� �2
1

(ty)1=2
dˆn(y)dt ¼D

ð�
n�3=5

ð1=2

n�3=8

W0(t, y)

(ty)1=4

� �2
1

(ty)1=2
dˆn(y)dt þ oP(1)

¼ OP(1)

ð�
0

1

t1=2
dt þ oP(1) ¼ OP(

ffiffiffi
�

p
):

Finally, it remains to consider the region n�3=8 < t < 1
2

and n�3=5 < y < �. This region,

however, can be treated in the same way and yields another term of order OP(
ffiffiffi
�

p
). Hence

(8.7) is proved. h

Proof of Theorem 3. The proof is somewhat similar to the change-point case. Set

X i ¼ (X i1, X i2) and denote the empirical distribution function of the (F1(X i1), F2(X i2)) by

Gn, with marginals G1n and G2n. Under H0, the distribution of (F1(X i1), F2(X i2)) is uniform
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on the unit square. Write Q1, Q2 for the quantile functions corresponding to F1, F2. Let

0 , � , 1
2
. It suffices to show that, as n ! 1,

T1n ¼ �2

ð1��

�

ð1��

�
log R(Q1(u), Q2(v))dG1n(u)dG2n(v)

�!D
ð1��

�

ð1��

�

W 2
0(u, v)

u(1 � u)v(1 � v)
du dv (8:9)

and

T2n ¼ Tn � T1n ¼ OP(
ffiffiffi
�

p
) (8:10)

uniformly in �.

First, consider T1n. By a Taylor expansion it readily follows that uniformly for

� < u, v < 1 � � (replacing (x, y) by (Q1(u), Q2(v)) in the definition of the A jk),

�2 log R(Q1(u), Q2(v)) ¼ n(Pn(A11)Pn(A22) � Pn(A12)Pn(A21))2

u(1 � u)v(1 � v)
þ oP(1)

¼ n(Pn(A11) � G1n(u)G2n(v))2

u(1 � u)v(1 � v)
þ oP(1)

¼ (Æn(u, v) � vÆ1n(u) � uÆ2n(v))2

u(1 � u)v(1 � v)
þ oP(1), (8:11)

with Æn(u, v) ¼ ffiffiffi
n

p
(Gn(u, v) � uv), Æ1n(u) ¼ ffiffiffi

n
p

(G1n(u) � u), Æ2n(v) ¼ ffiffiffi
n

p
(G2n(v) � v),

0 , u, v , 1. So instead of T1n we considerð1��

�

ð1��

�

(Æn(u, v) � vÆ1n(u) � uÆ2n(v))2

u(1 � u)v(1 � v)
dG1n(u)dG2n(v),

which, by standard empirical process theory and a multivariate version of the Helly–Bray

theorem, converges in distribution toð1��

�

ð1��

�

(B(u, v) � vB(u, 1) � uB(1, v))2

u(1 � u)v(1 � v)
du dv,

where B is a standard bivariate Brownian bridge: a centred Gaussian process with covariance

structure EB(u, v)B(~uu, ~vv ) ¼ (u ^ ~uu)(v ^ ~vv ) � uv~uu~vv, 0 , u, ~uu, v, ~vv , 1. Observing that

fB(u, v) � vB(u, 1) � uB(1, v), (u, v) 2 (0, 1)2g¼DfW0(u, v), (u, v) 2 (0, 1)2g,

completes the proof of (8.9).

It remains to prove (8.10). We will only consider integration over the region

B� ¼ f(u, v) 2 (0, 1)2 : 0 , u < �, 0 , v < 1
2
, or 0 , u < 1

2
, 0 , v < �g,
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because of symmetry arguments; compare the way we handled A� in the change-point case.

Because of a further symmetry argument, namely the symmetry in u and v, we will further

restrict ourselves to the following three regions which clearly cover f(u, v) 2 B� : u < vg:

B�,1 ¼ f(u, v) 2 (0, 1)2 : 0 , u < n�3=5, n�3=8 < v < 1
2
g,

B�,2 ¼ f(u, v) 2 (0, 1)2 : 0 , u < v < n�3=8g,

B�,3 ¼ f(u, v) 2 (0, 1)2 : n�3=5 , u < �, n�3=8 < v < 1
2
g:

We almost immediately obtain, along the lines of the change-point case,ðð
B�,1[B�,2

jlog R(Q1(u), Q2(v))jdG1n(u)dG2n(v) ¼ oP(1), (8:12)

where we have (again) used the equalities

jPn(A11) � G1n(u)G2n(v)j ¼ jPn(A11) � G1n(u)(1 � G2n(v))j

¼ jPn(A21) � (1 � G1n(u))G2n(v)j

¼ jPn(A22) � (1 � G1n(u))(1 � G2n(v))j:

Moreover, here and later in the proof we use the fact that, uniform over certain classes of

rectangles (the A jk), Pn=P converges to 1 in probability. This follows from, for example,

Chapters 2 and 3 of Einmahl (1987).

For (u, v) 2 B�,3 it easily follows that with arbitrarily high probability, uniformly over

B�,3, for large n,

jlog R(Q1(u), Q2(v))j < (Æn(u, v) � vÆ1n(u) � uÆ2n(v))2

u(1 � u)v(1 � v)

< 12
Æ2

n(u, v)

uv
þ Æ2

1n(u)

u
þ Æ2

2n(v)

v

� �
;

cf. (8.11). This yields that indeed

�2

ðð
B�,3

log R(Q1(u), Q2(v))dG1n(u)dG2n(v) ¼ OP(
ffiffiffi
�

p
),

and this, in conjunction with (8.12), yields (8.10). h

Proof of Theorem 4. The quantile function of F is Q(u) ¼ � log(1 � u)=º, so we have

Tn ¼ �4

ð1

0

ðv

0

log R(Q(u), Q(v))
º̂º

º

� �2

((1 � u)(1 � v))º̂º=º�1 du dv,
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and it suffices to show that

T1n ¼ �4

ð1��

�

ðv

�
log R(Q(u), Q(v))

º̂º

º

� �2

((1 � u)(1 � v))º̂º=º�1 du dv

�!D 2

ð1��

�

ð1��

t

st

(1 � s)(1 þ t)

B(st)

st
� B(s)

s
� B(t)

t

� �2

ds dt (8:13)

and

T2n ¼ Tn � T1n ¼ OP(
ffiffiffi
�

p
) (8:14)

uniformly in 0 , � , 1
2
.

First, consider (8.13). With Sn(u) ¼ 1 � Fn(Q(u)), by a Taylor expansion

�2 log R(Q(u), Q(v)) ¼ n(Sn(u)Sn(v) � Sn(u þ v � uv))2

u(1 � u)(1 � v)(2 � v)
(1 þ oP(1)) (8:15)

uniformly for � < u < v < 1 � �. Writing

Sn(u)Sn(v) � Sn(u þ v � uv) ¼ Sn(u)(Sn(v) � (1 � v)) þ (Sn(u) � (1 � u))(1 � v)

þ ((1 � u)(1 � v) � Sn(1 � (1 � u)(1 � v)))

and using the weak convergence of the uniform empirical process to a standard Brownian

bridge B, we see that the right-hand side of (8.15) converges weakly on � < u < v < 1 � � to

((1 � u)(�B(v)) � B(u)(1 � v) þ B(1 � (1 � u)(1 � v)))2

u(1 � u)(1 � v)(2 � v)

¼D (�(1 � u)B(1 � v) � (1 � v)B(1 � u) þ B((1 � u)(1 � v)))2

u(1 � u)(1 � v)(2 � v)
: (8:16)

Thus, using the change of variables s ¼ 1 � u, t ¼ 1 � v, and noting that º̂º�!P º, we see that

(8.13) follows directly from (8.15) and (8.16).

The proof of (8.14) follows along the lines of the previous proofs, in particular the proof of

the change-point case. We note here only that results for weighted empirical processes indexed

by intervals, especially Theorem 3.3 in Einmahl (1987), are used to complete the proof. h

Appendix

Tables A.1–A.4 provide selected critical values for the four proposed test statistics Tn. The

values are based on 100 000 samples in each case.
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Table A.1. Test for symmetry

Percentage points

n 90% 95% 97.5% 99%

10 2.620 3.392 4.272 5.393

15 2.477 3.325 4.195 5.317

20 2.428 3.271 4.138 5.306

30 2.360 3.154 3.989 5.160

50 2.295 3.081 3.902 5.027

100 2.254 3.041 3.880 5.005

150 2.231 3.002 3.836 4.967

Table A.2. Test for a change point

Percentage points

n 90% 95% 97.5% 99%

10 1.420 1.667 1.899 2.141

15 1.496 1.756 2.024 2.355

20 1.529 1.804 2.074 2.423

30 1.556 1.832 2.111 2.485

Table A.3. Test for independence

Percentage points

n 90% 95% 97.5% 99%

10 1.535 1.792 2.020 2.283

15 1.572 1.841 2.103 2.442

20 1.575 1.852 2.126 2.485

50 1.581 1.861 2.154 2.553
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Gombay, E. and Jin, X. (1999) Sign tests for change under alternatives. J. Nonparametr. Statist., 10,

389–404.

Hawkins, D.L. (1988) Retrospective and sequential tests for a change in distribution based on

Kolmogorov–Smirnov-type statistics. Sequential Anal., 7, 23–51.

Hill, D.L. and Rao, P.V. (1977) Tests of symmetry based on Cramér–von Mises statistics. Biometrika,

64, 489–494.

Komlós, J., Major, P. and Tusnady, G. (1975) An approximation of partial sums of independent RV’s

and the sample DF. I. Z. Wahrscheinlichkeitstheorie Verw. Geb., 32, 111–131.

Li, G. (2000) A nonparametric likelihood ratio goodness-of-fit test for survival data. Preprint.

Lockhart, R.A. and McLaren, C.G. (1985) Asymptotic points for a test of symmetry about a specified

median. Biometrika, 72, 208–210.

Martynov, G.V. (1992) Statistical tests based on empirical processes, and related problems. J. Soviet

Math., 61, 2195–2271.

McKeague, I.W. and Sun, Y. (1996) Transformations of Gaussian random fields to Brownian sheet and

nonparametric change-point tests. Statist. Probab. Lett., 28, 311–319.

Mizushima, T. and Nagao, H. (1998) A test for symmetry based on density estimates. J. Japan Statist.

Soc., 28, 205–225.

Modarres, R. and Gastwirth, J.L. (1996) A modified runs test for symmetry. Statist. Probab. Lett., 31,

107–112.

Nikitin, Y.Y. (1996a) On Baringhaus–Henze test for symmetry: Bahadur efficiency and local

optimality for shift alternatives. Math. Methods Statist., 5, 214–226.

Nikitin, Y.Y. (1996b) Bahadur efficiency of a test of exponentiality based on a loss-of-memory type

functional equation. J. Nonparametr. Statist., 6, 13–26.

Empirical likelihood based hypothesis testing 289



Orlov, A.I. (1972) Testing the symmetry of a distribution. Theory Probab. Appl., 17, 372–377.

Owen, A.B. (2001) Empirical Likelihood. Boca Raton, FL: Chapman & Hall/CRC.

Rothman, E.N.D. and Woodroofe, M.A. (1972) A Cramér–von Mises type statistic for testing

symmetry. Ann. Math. Statist., 43, 2035–2038.

Shorack, G.R. and Wellner, J.A. (1986) Empirical Processes with Applications to Statistics. New York:

Wiley.

Srinivasan, R. and Godio, L.B. (1974) A Cramér–von Mises type statistic for testing symmetry.

Biometrika, 61, 196–198.

Szyszkowicz, B. (1994) Weak convergence of weighted empirical type processes under contiguous and

changepoint alternatives. Stochastic Process. Appl., 50, 281–313.

Received November 2000 and revised March 2002

290 J.H.J. Einmahl and I.W. McKeague


