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1. Introduction

Stationary Gaussian processes are characterized by their covariance function, and a plethora

of statistical tools in time series analysis and spatial statistics are based on second-order

properties. In this paper, we consider the class of stationary processes Z(u), 0 < u < 1,

whose covariance function C(t) is a polynomial, that is,

cov(Z(u), Z(u þ t)) ¼ C(t), (0 < u < 1; 0 < u þ t < 1),

where

C(t) ¼
Xk

i¼0

bijtji (jtj < 1): (1)

Covariance models of polynomial form have been fitted to geostatistical data in various

applications, and we provide examples below. The statistical analysis of deterministic

simulation experiments is another field where covariance models defined on intervals are of

interest; see Mitchell et al. (1990) and the references therein. However, it is far from evident

which conditions on the coefficients of the polynomial are to be imposed so that a stationary

process Z(u), 0 < u < 1, with covariance function (1) exists. Clearly, such a process exists if

and only if C(t) is a positive definite function, and the associated analytical theory is detailed

in Chapter 4 of Sasvári (1994).

The problem has a natural and practically relevant analogue for isotropic random fields

defined on Euclidean balls in Rd . These are of interest in geostatistics, where isotropic
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covariance functions are fitted to spatial data observed at scattered sites in d-dimensional

Euclidean space Rd ; see, for example, Cressie (1993) or Chilès and Delfiner (1999). We

may then assume that all spatial locations of interest are contained in a Euclidean ball of

diameter � in Rd , and it suffices to consider covariance models defined for distances less

than or equal to �. Stol (1981) provides a list of references in the hydrological literature in

which polynomial models of the form

C(x) ¼
Xk

i¼0

b
(d)
i kxki (x 2 Rd ; kxk < �) (2)

are fitted to observed covariances between rainfall amounts measured in gauges at interstation

distance kxk. Wiencek and Stoyan (1993) fit a polynomial covariance model of degree 4 to

data from a simulation study for the Stienen model, a stationary and isotropic system of non-

overlapping spheres in three-dimensional Euclidean space. We return to this example in

Section 5.3 below. Further examples of the use of polynomial covariance models of the form

(2) in spatial statistics are discussed by Gneiting (1999). The fitted polynomial model, then, is

a valid covariance function if and only if it is positive definite, a property that in general is

very difficult to check. Fortunately, Matheron’s (1973) turning bands operator provides a way

to reduce checks for positive definiteness in the general case (2) to checks for positive

definiteness on the real line. If we put

bi ¼
ffiffiffi
�

p
ˆ((d þ i)=2)

ˆ(d=2)ˆ((i þ 1)=2)
�ib

(d)
i (i ¼ 0, 1, . . . , k), (3)

then equation (4.1) of Matheron (1973), Theorem 3 of Gneiting (1999) and a straightforward

scaling argument show that (2) is a covariance function in Rd if and only if (1) is a

covariance function in R. It is for this reason that we restrict our analytical discussion to

covariance functions defined on intervals, even though the spatial case is of more immediate

practical interest.

Matheron (1974) and Gneiting et al. (2001) characterized polynomial covariance

functions of degree k < 3. Mitchell et al. (1990) considered the quintic case with

vanishing linear and cubic terms. Our key result here is the characterization of covariance

functions of the form

C(t) ¼ r � 1

2
jtj þ a2 t2 þ �

a2
3

12
jtj3 þ a4

24
t4 (jtj < 1), (4)

where � is either 1 or �1. This covers the quartic case except when the linear term vanishes.

The characterization relies on functional analytic tools developed by Krein and Langer (1985)

which we review in Section 2. The computations in Sections 3 and 4 establish the

characterization, and Section 5 provides examples. At present we do not know of methods

that give similar, comparably simple analytical results for higher polynomial orders, except

for the aforementioned special case in Mitchell et al. (1990). Numerical checks of positive

definiteness provide an alternative, and the paper concludes with a discussion of such an

approach in Section 6.
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2. Krein–Langer theory

Here we review our key tools, which are due to Krein and Langer (1985). An even

continuous function C defined on [�1, 1] is said to have an accelerant H if: (i)

H(t) ¼ �C 0(t) exists for t 6¼ 0; (ii) H(t) is absolutely integrable over [�1, 1]; and (iii)

C9(0þ) , 0. As Heinz Langer pointed out to us, the term refers to the second derivative

and its physical interpretation of acceleration. With the accelerant H we associate the

operator H in L2[0, 1], defined by

(Hj)(t) ¼
ð1

0

H(t � s)j(s)ds (0 , t , 1):

The following theorem is an immediate consequence of (48) in Section 2 of Krein and Langer

(1985, p. 324). The symbol I denotes the identity operator and ( � , � )L2[0,1] stands for the

inner product in L2[0, 1]. See also Section 3.4 of Gneiting et al. (2001).

Theorem 1 (Krein and Langer). Let C be a real even function on [�1, 1] with accelerant

H and C9(0þ) ¼ �1
2
. If �1 is not an eigenvalue of H then C is a covariance function if and

only if

(i) the operator I þ H in L2[0, 1] has no negative eigenvalues, and

(ii) C(0) > ((I þ H)�1C9, C9)L2[0,1].

The inner product in condition (ii) can be computed as follows. First we determine the

resolvent kernel ˆ corresponding to H , that is, the unique solution to the integral equation

ˆ(t, s) þ
ð1

0

H(t � u)ˆ(u, s)du ¼ H(t � s) (0 , s, t , 1): (5)

Under the conditions of the theorem, the resolvent kernel is real. To see this, consider the

difference between (5) and its conjugate complex. If H is real then ˆ� ˆ must be zero, since

otherwise it would be an eigenfunction with eigenvalue �1 of the operator H. With ˆ we

associate the operator ˆ in L2[0, 1], defined by

(ˆj)(t) ¼
ð1

0

ˆ(t, s)j(s)ds (0 , t , 1):

Then

((I þ H)�1C9, C9)L2[0,1] ¼ ((I � ˆ)C9, C9)L2[0,1]: (6)

In the following we apply these results to quartic polynomials of the form (4). Section 3

characterizes the eigenvalues of the operator I þ H, and Section 4 shows how to compute the

inner product (6). The accelerant associated with the polynomial C(t) in (4) is

H(t) ¼ �2a2 � �
a2

3

2
jtj � a4

2
t2 (t 6¼ 0), (7)

and we note that both C9(t) and H(t) ¼ �C 0(t) do not exist at t ¼ 0.
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3. Computing the eigenvalues

Condition (i) of the Krein–Langer theorem suggests that we characterize the eigenvalues of

the operator I þ H when C and H are given by (4) and (7), respectively. To this end, let

��2 be a negative eigenvalue of the operator H. Then there exists an eigenfunction V such

that

��2V (t) ¼
ð1

0

H(t � u)V (u)du (0 , t , 1), (8)

which implies that V is three (and in fact infinitely many) times differentiable on the open

unit interval. Differentiating (8) with respect to t yields

�2V 9(t) þ
ð1

0

H9(t � u)V (u)du ¼ 0: (9)

Next we divide the integral on the left-hand side of (9) into two parts, the first from 0 to t

and the second from t to 1. Differentiating a second time and plugging in the specific form of

H9(t) gives

�2V 0(t) � a4

ð1

0

V (u)du � �a2
3V (t) ¼ 0: (10)

Differentiating yet another time yields

�2V -(t) � �a2
3V 9(t) ¼ 0 (0 , t , 1): (11)

We assume now that a3 is strictly positive and defer the case a3 ¼ 0 to Section 5.2. If

� ¼ 1, the general solution of the differential equation (11) is

V (t) ¼ c1 þ c2ea3 t=� þ c3e�a3 t=� (0 , t , 1): (12)

We first put c3 ¼ 0 and check for the associated eigenvalues ��2. Substituting (12) with

c3 ¼ 0 into (10) with t ¼ 1, we are led to an expression for c1 in terms of c2. Then we

substitute (12) with c3 ¼ 0 into (9) with t ¼ 1. Combining the two equations, we see that

��2 is an eigenfunction for H if and only if

a3(a2
3 þ a4)coth

a3

2�

� �
þ 2a4� ¼ 0, (13)

where

coth
a3

2�

� �
¼ ea3=(2�) þ e�a3=(2�)

ea3=(2�) � e�a3=(2�)
¼ 1 þ e�a3=�

1 � e�a3=�
:

Putting c1 ¼ 0 or c2 ¼ 0 in (12) yields the same conclusion. Next we consider general

coefficients in (12). Substituting (12) into (10) with t ¼ 1, we obtain

c1 ¼ � a4�(c2ea3=� � c2 þ c3 � c3e�a3=�)

a3(a2
3 þ a4)

: (14)
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Then we substitute (12) and (14) into (9) with t ¼ 1 to obtain

c2 ¼ c3e�a3=� (15)

and

c1 ¼ 2
a4�c3(e�a3=� � 1)

a3(a2
3 þ a4)

: (16)

Thus, we have expressed both c1 and c2 in terms of c3. Finally, we substitute (12), (16) and

(15) into (8) with t ¼ 1 and simplify. This gives

6�a3(a2
3 þ a4)2coth

a3

2�

� �
� 24�2a2

3a4 � 12�2a2
4 � 24a2a4

3 � 3a6
3 � a2

3a2
4 � 3a4

3a4 ¼ 0: (17)

We conclude that the operator I þ H has no negative eigenvalues if and only if (13) and (17)

do not admit solutions � . 1. Furthermore, �1 is an eigenvalue of the operator H if and only

if � ¼ 1 is a solution to (13) or (17). The preceding arguments exclude the case a2
3 þ a4 ¼ 0,

in which similar computations show that all eigenvalues of I þ H are positive.

If � ¼ �1 the general solution to the differential equation (11) is

V (t) ¼ c1 þ c2eia3 t=� þ c3e�ia3 t=�: (18)

Proceeding as in the case where � ¼ 1, we substitute (18) into (10), (9) and (8) with t ¼ 1.

Again, we first put c3 ¼ 0, c2 ¼ 0 and c1 ¼ 0, respectively, and then consider general

coefficients. It follows that the operator I þ H does not have negative eigenvalues if and only

if a3 < � and the two equations

a3 a2
3 � a4

! "
cot

a3

2�

� �
þ 2a4� ¼ 0 (19)

and

6�a3 a2
3 � a4

! "2
cot

a3

2�

� �
þ 24�2a2

3a4 � 12�2a2
4 � 24a2a4

3 þ 3a6
3 þ a2

3a2
4 � 3a4

3a4 ¼ 0 (20)

do not admit solutions � . 1. Finally, �1 is an eigenvalue of the operator H if and only if a3

is a multiple of � or � ¼ 1 is a solution to (19) or (20). The computations leading to these

results require that a2
3 6¼ a4. If a2

3 ¼ a4 then I þ H does not have negative eigenvalues if and

only if a3 < �, and �1 is an eigenvalue of H if and only if a3 is a multiple of �.

4. Computing the inner product

The second condition in Theorem 2 leads us to the calculation of the inner product on the

left-hand side of (6). Let C and H be given by (4) and (7), respectively. We first find the

resolvent kernel ˆ, that is, the unique solution to (5). Plugging in the accelerant (7) and

partitioning the integral on the left-hand side of (5) yields
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ˆ(t, s) þ
ð t

0

�2a2 � �
a2

3

2
(t � u) � a4

2
(t � u)2

� �
ˆ(u, s)du (21)

þ
ð1

t

�2a2 � �
a2

3

2
(u � t) � a4

2
(t � u)2

� �
ˆ(u, s)du ¼ �2a2 � �

a2
3

2
jt � sj � a4

2
(t � s)2,

thereby showing that ˆ(t, s) is smooth and differentiable infinitely often away from t ¼ s.

Differentiating three times with respect to t, we obtain

@3

@ t3
ˆ(t, s) � �a2

3

@

@ t
ˆ(t, s) ¼ 0 (0 , s, t , 1; s 6¼ t): (22)

Indeed, if s . t, differentiating both sides of (21) with respect to t yields

@

@ t
ˆ(t, s) � �

a2
3

2

ð t

0

ˆ(u, s)du þ �
a2

3

2

ð s

t

ˆ(u, s)du þ �
a2

3

2

ð1

s

ˆ(u, s)du (23)

�a4

ð t

0

(t � u)ˆ(u, s)du � a4

ð s

t

(t � u)ˆ(u, s)du � a4

ð1

s

(t � u)ˆ(u, s)du ¼ �
a2

3

2
� a4(t � s),

where we partition the third integral on the left-hand side of (21). Differentiating once more

with respect to t gives

@2

@ t2
ˆ(t, s) � �a2

3ˆ(t, s) � a4

ð s

0

ˆ(u, s)du � a4

ð1

s

ˆ(u, s)du þ a4 ¼ 0, (24)

and differentiating yet another time leads to (22). If s , t, we obtain analogously

@

@ t
ˆ(t, s) � �

a2
3

2

ð s

0

ˆ(u, s)du � �
a2

3

2

ð t

s

ˆ(u, s)du þ �
a2

3

2

ð1

t

ˆ(u, s)du (25)

�a4

ð s

0

(t � u)ˆ(u, s)du � a4

ð t

s

(t � u)ˆ(u, s)du � a4

ð1

t

(t � u)ˆ(u, s)du ¼ ��
a2

3

2
� a4(t � s),

once again leading to (24) and (22).

As in Section 3, we assume that a3 . 0 and defer the case a3 ¼ 0 to Section 5.2. If

� ¼ 1, the general solution to the differential equation (22) is

ˆ(t, s) ¼ c0(s) þ cþ(s)ea3 t þ c�(s)e�a3 t (0 , s, t , 1; s 6¼ t):

To determine the constants, we put s ¼ 0 and find ˆ(t, 0) first. Then (22) takes the form

d3

dt3
ˆ(t, 0) � a2

3

d

dt
ˆ(t, 0) ¼ 0 (0 , t , 1),

the general solution to which is

ˆ(t, 0) ¼ c0 þ cþea3 t þ c�e�a3 t: (26)

We substitute (26) into (25), (24) and (21) with t ¼ 1 and simplify. Putting

f 0(a3, a4) ¼ a3(a2
3 þ a4)coth(a3=2) � 2a4,
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f1(a2, a3, a4) ¼ 6a3 a2
3 þ a4

! "2
coth

a3

2

� �
� 24a2

3a4 � 12a2
4 � 24a2a4

3 � 3a6
3 � a2

3a2
4 � 3a4

3a4,

and

f 2(a2, a3, a4) ¼ � a2
3

f 0(a3, a4) f 1(a2, a3, a4)(1 � ea3 )2

3 6a4 (a2
3 þ a4)2 þ 2a3a4 þ 4a2a3

3

! "
1 � ea3ð Þ þ a3 3a6

3 þ 6a4
3a4 þ 6a2

3a2
4 þ 2a3

4

! "
1 þ ea3ð Þ

&
þ a2

3a3
4 þ 2a3a3

4 þ 4a4
3a2

4 þ 6a3
3a2

4 þ 12a2
3a2

4 þ 6a6
3a4 þ 6a5

3a4 þ 12a4
3a4 þ 24a2a4

3a4

þ 3a8
3 þ 24a2a6

3

'
,

we find that the coefficients in (26) are

c0 ¼ 6a4

f 0(a3, a4)

f 1(a2, a3, a4)
, cþ ¼ f 2(a2, a3, a4), c� ¼ f 2(a2, �a3, a4):

Notice that f 0(a3, a4) ¼ 0 if and only if � ¼ 1 is a solution to (13), and f 1(a2, a3, a4) ¼ 0 if

and only if � ¼ 1 is a root of (17). In other words, our expressions are well-defined unless

�1 is an eigenvector of H and Theorem 1 does not apply. Finally, we put

g(t, s) ¼ ˆ(1 � t, 0)ˆ(1 � s, 0) � ˆ(t, 0)ˆ(s, 0) (27)

and obtain ˆ(t, s) from ˆ(t, 0). Under the conditions of Theorem 1, Corollary 1.1 of Krein

and Langer (1985) implies that

ˆ(t, s) ¼ ˆ(jt � sj, 0) þ
ðmin(s, t)

0

g(t � r, s � r)dr (0 , s, t , 1): (28)

If � ¼ �1, we may replace a3 by ia3 in the solution for the case � ¼ 1. Specifically, the

solution ˆ(t, 0) to the differential equation

d3

dt3
ˆ(t, 0) þ a2

3

d

dt
ˆ(t, 0) ¼ 0 (0 , t , 1)

is of the general form ˆ(t, 0) ¼ c0 þ cþeia3 t þ c�e�ia3 t, and substitution into (25), (24) and

(21) with t ¼ 1 shows that

c0 ¼ 6a4

f 0(ia3, a4)

f 1(a2, ia3, a4)
, cþ ¼ f 2(a2, ia3, a4), c� ¼ f 2(a2, �ia3, a4):

Using (27) and (28) and the trigonometric form of the resolvent kernel,

ˆ(t, 0) ¼ c0 þ 2 Re(cþ) cos (a3 t) � 2 Im(cþ) sin (a3 t),

we find the solution ˆ(t, s) to the integral equation (5) and subsequently the inner product on

the right-hand side of (6).
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5. Examples and special cases

Given numerical values of a2, a3 and a4, the previous two sections show us how to check

whether or not the polynomial (4) is a covariance function. In the case where � ¼ 1, we find

the roots of (13) and (17), respectively. If roots � . 1 exist, then (4) is not a covariance

function. If all roots are smaller than 1, we proceed to compute the inner product (6) as

detailed in the preceding section. By the Krein–Langer theorem, the polynomial C(t) in (4)

is a covariance function if and only if C(0) is greater than or equal to the value of the inner

product (6). This procedure works unless (17) or (20) respectively admits the exact root

� ¼ 1, a case which seems irrelevant in practice and can usually be dealt with by a

continuity argument. If � ¼ �1 in (4), we proceed analogously. Ready-to-use Maple

worksheets are available from Tilmann Gneiting.

In the following, we give three examples. The first concerns the case where a4 ¼ 0

vanishes and recovers the key result of Gneiting et al. (2001). The second discusses the

case a3 ¼ 0, which was omitted in the previous two sections. Our third and final example

turns to applications in spatial statistics.

5.1. Vanishing quartic term

Here we consider the cubic polynomial

C(t) ¼ r � 1

2
jtj þ a2 t2 þ �

a2
3

12
jtj3 (jtj < 1), (29)

that is, the case where a4 ¼ 0 and a3 . 0 in (4). If � ¼ 1, (13) does not have positive roots

and (17) simplifies to

6�a5
3 coth

a3

2�

� �
� 24a2a4

3 � 3a6
3 ¼ 0: (30)

Notice that � ¼ 1 is a solution to (30) if

a2 ¼ � 1

8
a2

3 þ 1

4
a3 coth

a3

2

� �
:

Furthermore, the left-hand side of (30) is an increasing function of �. Thus, (30) does not

admit solutions � . 1 if and only if

a2 < � 1

8
a2

3 þ 1

4
a3 coth

a3

2

� �
: (31)

The calculations in Section 4 simplify and eventually imply that (29) is a covariance function

if and only if (31) holds and

r >
1

4
þ 1

2
a2 þ 4

a2
2

a2
3

þ 1

48
a2

3 � (a2
3 þ 8a2)2

8a3
3

tanh
a3

2

� �
:
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The case � ¼ �1 is analogous, and we recover the results in Section 4.4 of Gneiting et al.

(2001).

5.2. Vanishing cubic term

Here we consider the case a3 ¼ 0 which we skipped in Sections 3 and 4. For functions of

the form

C(t) ¼ r � 1

2
jtj þ a2 t2 þ a4

24
t4 (jtj < 1), (32)

the differential equation (11) for an eigenfunction V with eigenvalue ��2 for the operator H

reduces to

�2V -(t) ¼ 0 (0 , t , 1),

the general solution to which is

V (t) ¼ c0 þ c1 t þ c2

2
t2 (0 , t , 1):

We proceed as in Section 3. First we put c2 ¼ 0 and find that V (t) ¼ 1 � 2t is an

eigenfunction to the operator H with eigenvalue a4=12. Thus, we require that a4 > �12.

Putting c1 ¼ 0 or c0 ¼ 0, respectively, does not yield additional constraints. Then we consider

general coefficients, express c0 and c1 in terms of c2, and substitute into (8) with t ¼ 1. We

conclude that ��2 is an eigenvalue for H if and only if

720�4 � 1440a2�
2 � 60a4�

2 � a2
4 ¼ 0:

It follows that the operator I þ H does not have negative eigenvalues if and only if a4 > �12

and

a2 <
1

2
� 1

24
a4 � 1

1440
a2

4: (33)

Similarly, the differential equation (22) for the resolvent kernel ˆ(t, s) reduces to

@3

@ t3
ˆ(t, s) ¼ 0 (0 , s, t , 1; s 6¼ t):

Proceeding as in Section 4, we find that

ˆ(t, 0) ¼ c0 þ c1 t þ 1

2
c2 t2 (0 , t , 1), (34)

where
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c0 ¼ �9 (1920a2 þ 640a2a4 þ 48a2
4 þ a3

4)

(12 þ a4)(720 � 1440a2 � 60a4 � a2
4)

,

c1 ¼ 36a4(240a2 þ 30a4 þ a2
4)

(12 þ a4)(720 � 1440a2 � 60a4 � a2
4)

,

c2 ¼ �60a4(12 þ a4)

720 � 1440a2 � 60a4 � a2
4

;

and the general expression for ˆ(t, s) follows readily from (27) and (28). Computing the

scalar product (6) yields

r >
1

100 800

302 400 � 604 800a2 þ 403 200a2
2 þ 10 080a2a4 þ 180a2

4 þ a3
4

12 þ a4

: (35)

Specifically, if a4 ¼ 0 then (32) is a covariance function if and only a2 < 1
2

and

r >
1

4
þ 1

3
a2

2 � 1

2
a2,

which recovers the result in Section 4.3 of Gneiting et al. (2001). If a2 ¼ 0 then (32) is a

covariance function if and only if �12 , a4 < �30 þ 18
ffiffiffi
5

p
and

r >
1

100 800

302 400 þ 180a2
4 þ a3

4

12 þ a4

:

We return to this latter case in Section 6.

5.3. A spatial example

Wiencek and Stoyan (1993) fit a polynomial covariance function to data from a simulation

study for the Stienen model, a stationary and isotropic system of non-overlapping spheres in

three-dimensional Euclidean space. Their covariance model reads

C(x) ¼ 0:125 � 1:828kxk þ 1:642kxk2 þ 98:247kxk3 � 400:320kxk4 (x 2 R3; kxk < 0:12):

(36)

Here and in the following the reported numerical values are truncated, even though we used

500-digit precision in the computations. The turning bands equation (3) reduces to

bi ¼ (i þ 1)�ib
(3)
i if d ¼ 3. Thus, the fitted model (36) is a covariance function in three-

dimensional space if and only if

C(t) ¼ 0:142 � 1

2
jtj þ 0:0808 t2 þ 0:774 jtj3 � 0:473 t4 (jtj < 1) (37)

is a covariance function on the real line. Returning to the notation in (4), we put

a2 ¼ 0:080 84, a3 ¼ 3:047 49, a4 ¼ �11:352 61, (38)

and find the values of r . 0 for which
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C(t) ¼ r � 1

2
jtj þ a2 t2 þ a2

3

12
jtj3 þ a4

24
t4 (jtj < 1) (39)

is a covariance function. This corresponds to the � ¼ 1 case, and it is straightforward to

check that (13) and (17) do not admit roots � > 1. From equations (28) and (6) and condition

(ii) of Theorem 1 we conclude that (39) with the numerical values in (38) is a covariance

function if and only if r > 0:110 94. This confirms the validity of the covariance model (37)

and thereby the permissibility of the three-dimensional model (36) fitted by Wiencek and

Stoyan (1993).

6. Discussion

In the preceding sections we have characterized covariance functions that are polynomials of

degree less than or equal to 4 on intervals. Our results cover the quartic case except when

the linear term vanishes. The technical difficulties in characterizing polynomial covariance

functions of higher orders are considerable with our approach. At present we do not know

of methods that give similar, comparably simple analytical results for higher orders, except

for the quintic case with vanishing linear and cubic terms which was settled by Mitchell et

al. (1990). Related results are given in Lasinger (1993).

Another approach to checking positive definiteness proceeds numerically, using the fact

that if the function C on [�1, 1] is a covariance function, then the (n þ 1) 3 (n þ 1)

Toeplitz matrix

M n(C) ¼ C
1

n
(i � j)

� �� �n

i, j¼0

(40)

is non-negative definite for n ¼ 1, 2, . . . . For a given function C defined on [�1, 1], put

Cr(t) ¼ C(t) � C(0) þ r (jtj < 1)

such that Cr(0) ¼ r. If C has an accelerant and regularity conditions hold, the Krein–Langer

theorem implies that there exists a positive constant r1 such that Cr is a covariance function

if and only if r > r1, where

r1 ¼ inf fr 2 R : Cr is a positive definite functiong:
A straightforward heuristic approximation to r1 can be computed as follows. For

n ¼ 1, 2, . . . , define

rn ¼ sup fr 2 R : M n(Cr) has a negative eigenvalueg:
We expect that rn ! r1 as n ! 1; and if n is reasonably large we expect that rn will be a

good approximation to r1. The following theorem provides a rigorous result.

Theorem 2. If C is a continuous function on [�1, 1] and there exists a positive number r1
such that Cr is a covariance function if and only if r > r1, then limn!1 rn ¼ r1.

Proof. It suffices to prove that whenever r , r1, the Toeplitz matrix M n(Cr) in (40) has at
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least one negative eigenvalue for sufficiently large n. To this end, let r , r1. Since Cr is not

a positive definite function, there exist a positive integer m and numbers x1, . . . , xm 2 [0, 1]

such that the matrix

Cr(xi � xj)ð Þm
i, j¼1

has a negative eigenvalue. By continuity, there exists a positive number E such that the matrix

Cr(yi � yj)ð Þm
i, j¼1

has a negative eigenvalue whenever y1, . . . , ym 2 [0, 1] satisfy jyi � xij , E for i ¼ 1,

. . . , m. The initial assertion now follows from the fact that for sufficiently large n the set

k

n
: k ¼ �n, . . . , n

� �
\ xi � E, xi þ Eð Þ

is non-empty, for all i ¼ 1, . . . , m. The proof is complete. h

Tables 1 and 2 summarize the results of four numerical experiments performed by the

authors. Table 1 gives the parameter values for the quartic polynomial (39). Evidently, cases

(ii) and (iii) are associated with Section 5.2, and case (iv) returns us to the spatial example

of Wiencek and Stoyan (1993) in Section 5.3. Table 2 compares the values of rn for

n ¼ 10, 20, 30, 40 and 50 to the analytical lower bounds r1 which we obtained with the

methods of Sections 4 and 5. In the entries for rn the numerical values are truncated, but

the last digit is sharp, and we performed the eigenvalue calculations with 500-digit

Table 2. The lower bounds rn ad r1 as defined in the text

Case (i) (ii) (iii) (iv)

r10 0.229 987 1.517 54 0.144 01 0.110 48

r20 0.229 992 1.567 00 0.144 70 0.110 82

r30 0.229 993 1.567 57 0.144 82 0.110 88

r40 0.229 993 1.579 95 0.144 87 0.110 91

r50 0.229 994 1.581 52 0.144 89 0.110 92

r1
1

1440

373e � 1583

e � 1

1597

1008

1607

11 088
0.110 94

Table 1. Numerical values of the parameters in (39) used

in four numerical experiments

Case (i) (ii) (iii) (iv)

a2 0 0 0 0.080 84

a3 1 0 0 3.047 49

a4 �1 �10 10 �11.352 61
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precision. The results are quite encouraging, especially in view of the low values of n that

we used. For polynomial functions of higher order, we expect numerical checks of this type

to provide reasonably accurate lower bounds on r1, too.
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Géostatistique 125, Centre de Géostatistique, École des Mines de Paris, Fontainebleau, France.

Mitchell, T., Morris, M. and Ylvisaker, D. (1990) Existence of smoothed stationary processes on an

interval. Stochastic Process. Appl., 35, 109–119.
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