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It has recently been established that the tube formula and the Euler characteristic method give an
identical and valid asymptotic expansion of the tail probability of the maximum of a Gaussian random
field when the random field has finite Karhunen—Loéve expansion and the index set has positive
critical radius. We show that the positiveness of the critical radius is an essential condition. When the
critical radius is zero, we prove that only the main term is valid and that other higher-order terms are
generally not valid in the formal asymptotic expansion based on the tube formula. This is done by
first establishing an exact tube formula and comparing the formal tube formula with the exact formula.
Furthermore, we show that the equivalence of the formal tube formula and the Euler characteristic
method no longer holds when the critical radius is zero. We conclude by applying our results to some
specific examples.
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1. Introduction

Let M be a closed subset of the unit sphere S”~! in R”. We consider the upper tail

probability of the maximum of a random field Z(u), u = (w1, ..., u,)" € M, defined by
Zwy=u"z=> usz, (1)
i=1
where z = (zy, ..., z,)" follows the standard multivariate normal distribution N,(0, 7,). This

is the canonical form of a Gaussian random field with finite Karhunen—Loéve expansion
and constant variance, as discussed in Takemura and Kuriki (2002). Let y =

D15 -5 )T = z/||2|| follow the uniform distribution Unif(S"~') on the unit sphere S"~!.
We also study the upper tail probability of the maximum of
Y(u)=u'y. 2)

In Takemura and Kuriki (1997) we treated the situation of convex M in order to study

1350-7265 © 2003 ISI/BS



536 A. Takemura and S. Kuriki

the properties of the ¥ distribution in the framework of testing against multivariate ordered
alternatives. In Kuriki and Takemura (2001) we dealt with smooth M without boundary to
study multilinear forms in normal variates. Unifying these cases, in Takemura and Kuriki
(2002) we considered an index set M which is locally approximated by a convex cone. We
established that in this case M has positive critical radius, and that the tube method due to
Sun (1993) and the Euler characteristic method of Adler (1981) and Worsley (1995a;
1995b) lead to an identical valid asymptotic expansion of the upper tail probabilities. In a
different setting Adler (2000), using results due to Piterbarg (1996), showed that the Euler
characteristic method for isotropic Gaussian random fields on a piecewise smooth domain
gives a valid asymptotic expansion.

These results might give the impression that the formal asymptotic expansion based on
the tube formula is valid and identical to the Euler characteristic method for practically all
regular cases. However, this is not the case if the critical radius of M is zero. The main
purpose of this paper is to show that if the critical radius of M is zero, the asymptotic
expansion based on the tube formula is generally incorrect except for the main term.
Furthermore, the equivalence of the formal tube formula and the Euler characteristic
method no longer holds. We also give some simple examples of index sets with zero critical
radius, for which the formal tube formula and the Euler characteristic method give different
asymptotic expansions and both are incorrect. A more substantial application of the results
of the present paper is given in Takemura and Kuriki (2001), where a natural multivariate
test statistic has an associated index set with zero critical radius.

One advantage of the Euler characteristic method over the tube formula is that it can be
applied to non-Gaussian fields, whereas the tube formula is essentially restricted to
Gaussian fields. See, for example Worsley (1994) and Cao and Worsley (1998; 1999) for
applications of the Euler characteristic method to various non-Gaussian fields. However, the
validity of the Euler characteristic method for non-Gaussian fields has not been established
in general. Indeed, our example in Section 3.3 suggests that the validity of the Euler
characteristic method for non-Gaussian fields is hard to prove in general. In Section 3.3 we
first apply the formal tube formula to a Gaussian field whose index set has zero critical
radius. However, this Gaussian field can be transformed to an equivalent y? field with very
regular index set, and we apply the Euler characteristic method to the resulting 2 field. It
will be shown that the Euler characteristic method for this y? field leads to an invalid
asymptotic expansion, which is identical to the asymptotic expansion obtained by the formal
tube formula for the original Gaussian field.

This paper is organized as follows. In Section 2, after a preliminary discussion of the
properties of index sets with zero critical radius, we give some theoretical results on the
asymptotic expansion based on the formal tube formula. In Section 3 we study some relevant
examples in detail. Proofs and mathematical details are postponed to the appendices.

2. General results

In this section we first define a class of index sets M for which the tube formula can be
defined. Then in Section 2.2 the difference between the formal tube formula and the exact
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tube formula for these index sets is clarified. The invalidity of the asymptotic expansion
based on the formal tube formula is shown in Section 2.3.

2.1. A class of index sets

We consider a class of index sets M with the following property. At each point x € M, M
can be locally approximated by a cone, but the cone is not necessarily convex. We call sets
M with this property locally conic. This class contains the boundary of a polyhedron and
the union of submanifolds of S”~! which are self-intersecting on S”~'. Unfortunately the
class of locally conic sets cannot be defined using standard manifold terminology because
we allow self-intersection of the index set. Precise definitions of this class and other notions
of this subsection are given in Appendix A.

The approximating cone of M at x € M is called the support cone of M at x and is
denoted by S, (M). Let C(Sy(M)) denote the convex hull of S,(M). The dual cone of S,(M)
(or equivalently, the dual cone of C(S,(M))) in R” is called the normal cone of M at x and
is denoted by N,(M). As we shall show, the critical radius of M is zero if S,(M) is non-
convex at some x € M because of the singularity of the projection onto M around x.

We discuss several simple examples to illustrate the above notions. Note that in our
definition in Appendix A the support cone S,(M) and the normal cone N.(M) are defined
with their vertices located at the origin.

Example 2.1. On the sphere S*> C R® consider the union of two great circles:
M = {(x1, x2, x3) € §?|x3 = 0} U {(x1, X2, x3) € §*|x, = 0} 3)

Except for two points (£1, 0, 0), M is a regular one-dimensional manifold. However, at these
two points M cannot be considered as a manifold using the standard terminology because of
the self-intersection. At x = (%1, 0, 0), S.(M) = {(0, x2, 0)|x, € R} U {(0, 0, x3)|x3 € R},
C(S(M)) = {(0, x2, x3)|(x2, x3) € R*} and N.(M) = span{x}.

Example 2.2. On S* consider
M = {(xla X2, X3) S S2|XQX3 = 0}’

whose boundary is M of Example 2.1. At x = (x1, X2, x3), with xox03 > 0, S,(M) = C(S,(M))
is the tangent plane 7,(S?) of S? at x and N, (M) = span{x}. At x = (x1, X2, 0), with |x;| < 1
and x; >0, Su(M) = C(S«(M)) = Tx(Sz) N{(1, 2, »3)y3 = 0} and  N.(M) = span{x}
@{(0, 0, y3)|y3 <0}, where ‘@’ is the orthogonal direct sum. At x = (=*1, 0, 0), S,(M)
= {(0, x2, x3)|x2x3 = 0}, C(Sx(M)) = {(0, x2, x3)|(x2, x3) € R?} and N, (M) = span{x}.

Example 2.3. Again on S?, let M be the union of two semicircles M =
{(x1, 12, 0) € S?|x, = 0} U {(x1, 0, x3) € S?|x3 = 0}. At x = (%1, 0, 0), S, (M) = {(0, x5,
0)jx, = 0} U{(0, 0, x3)|x3 = 0}, C(Sx(M)) ={(0, x2, x3)|x =0, x3 =0} and N (M)=
{(0, x2, x3)|x2 <0, x3 < 0} @ span{x}.
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In the above three examples the points x = (%1, 0, 0) exhibit a certain singularity.
However, from the viewpoint of the spherical tube around M in S?, the points
x =(=£1, 0, 0) in Example 2.3 contribute to the volume of the tube just as other points
in the sense that the points in the direction of N,(M) from x are sent to x when projected
onto M. On the other hand, in Examples 2.1 and 2.2, the points x = (£1, 0, 0) do not
contribute to the volume of the spherical tube around M, because no point (other than x
itself) is sent to x when projected onto M. In general, consider a spherical tube around M
in $"~!. A point x € M does not contribute to the volume of the tube around M if the
dimension of N,(M) and the dimension of the support cone S,(M) do not add up to n.
This consideration leads us to call x € M a proper d-dimensional boundary point of M if
Sy(M) contains a linear subspace L of dimension d = n — dimN,(M). We define the
dimension of M by the maximum value of d such that there exists a proper d-dimensional
boundary point of M. Note that we use the term ‘boundary’ even if x belongs to the
relative interior of M.

Let OMy, d =0, ..., m (=dimM), denote the set of proper d-dimensional boundary
points of M. We now make the following technical assumption on locally conic sets M.

Assumption 2.1. For d =0, ..., m OMy is a relatively open d-dimensional C*-submanifold
of R". Let I(M) denote the set of improper boundary points of M. The Lebesgue measure of
Uveran Nu(M) is zero.

Here we are assuming that OM, is an open manifold embedded in R”. This assumption is
satisfied if the set of improper boundary points is at most countable. If M satisfies this
assumption we call it a ‘set with piecewise smooth proper boundary’. In summary, we assume
that the index set M C S”' is a locally conic closed set with piecewise smooth proper
boundary.

We now consider spherical projection onto M. For x, y € §"7!, let

dist(x, y) = arccos(x' y) € [0, 7]
be the geodesic distance and define
dist(x, M) = dist(x, xy,) = Ivl’élj{/ll dist(x, y),
where x), is the spherical projection of x onto M. Although x), may not be unique,

dist(x, M) is uniquely determined because M is closed. We are interested in the geometry of
the set of points with a unique projection onto M:

R(M) = {x|xp is unique}. 4
For u,v e S, uTv=0and 0 <0 <, let

{ucost+uvsint|0 <t <6}, if >0,

[u, ucos 6 + vsin6) = { {u}, if 6=0, ©

denote the great circle segment joining « and u cos 6 + v sin 6, which includes « and excludes
ucost 4+ vsinf. Let
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K(M)=|JeM

c=0

denote the smallest cone containing M in R”. For u€ My, d<n-—2, and
v € N,(K(M))NS"!, consider the semicircle

[u, ucosm + vsin ) (6)

starting from « € M in the direction of v. In Appendix B it is shown that this semicircle is
divided into two segments. The points on the first segment have u as the unique projection
and the points on the second do not. More precisely, define

O(u, v) = sup {0 < 6 < ;|ucos @ + vsin® € R(M), (ucos 6 + vsin6)y = u}. (7

Then u is the unique projection of points on the segment [u, ucos O(u, v)) but u is not the
unique projection of wucos@+wvsin® for O(u,v) <O <m At the boundary
ucos O(u, v) + vsin O(u, v), u may or may not be the unique projection.

For the case d = n — 1, that is, if M contains non-empty interior in S”"~! and u is an
interior point, N,(K(M))= {0} and N, (K(M))NS" ' =@. To simplify the notation in
this case, we define O(u, v) = 0 and

[u, ucos O(u, v) + vsin O(u, v)) = {u}. (8)
VEN(K(M)),||v]|=1
Henceforth we use this notational convention for the case d = n — 1 throughout the paper.
Now we state the following basic proposition concerning R(M) in (4).

Proposition 2.1. For a locally conic closed set M with piecewise smooth proper boundary,

ROM) S | U [u, ucos O(u, v) + vsin O(u, v)) )
uEM veN,(K(M)),|lv]|=1

and the complement in S"~ of the right-hand side of (9) has zero spherical volume.

The proof of Proposition 2.1 is given in Appendix B.

2.2. Exact tube formula and a formal tube formula

The open spherical tube of radius 6 around a closed set M C S"~! is defined by
Mg = {x|dist(x, M) < 6}.

Classifying the points of the tube in terms of their projection onto M and the direction of the
projection, My can be written as

My = U U [u, ucos 6 + vsin6).

ueM veN,(M),|lv]|=1

Note that here the cross-section
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Cu(0) = U [u, ucos O + vsin 6)
ve Ny (K(M)),|lv]|=1

may overlap for different values of u. If we only count points with unique projection onto M,
we obtain

My = U U [t, ucos O + vsin @) C My,
ueM veN,(K(M)),||v]|=1

where 6’ = min(6, 0_(~u, v)). Note that, by Proposition 2.1, My — My is a null set.

Writing the tube My as above, we see that R(M) in (9) is a generalization of the tube
where the radius of the tube depends on u € M and on v € N, (K(M)). Define

O(u) = inf O(u, v).

®) VENL(K(M)),||v]|=1 (& 0)
In Example 2.3 consider the points ug = (%1, 0, 0). Note that O(up) = m/2, whereas
O(u) — 0 as u — uy. This example shows that 6(x) may not be a continuous function of
u € M. The critical radius (or angle) of M C R” is

n—2
0 = inf {é(u)|u e 8Md}.

d=0
In this definition we omit the interior OM, | of M C S"~! when M contains a non-empty
interior in S”"'. In the case of positive critical radius @ > 0, the constant-radius tube
U.ear Cu(6) was essential for obtaining an asymptotic expansion of the tail probability of the
maximum of Z(u) of (1) and Y(u) of (2). See Kuriki and Takemura (2001) and Takemura and
Kuriki (2002).

As already mentioned, we have the following simple lemma concerning the critical radius

0 of M.

Lemma 2.1. The critical radius of M is zero if, for some x € M, the support cone Sy(M) is
not convex.

The proof is outlined in Appendix B.

Now we study the volume of the tube My, when M is a locally conic closed set with
piecewise smooth proper boundary. Let H(x, v) denote the second fundamental form of M
at x in the direction v. Then from Lemma 2.3 of Takemura an Kuriki (2002) the volume
element dy of S"~! (induced from the Lebesgue measure of R") at y = xcos @ + vsin6,
X € OMy, v € N(K(M)), is written as

dy = det (I, cos 0 + H(x, v)sin @) sin"~“20 d dx dv,
where dx denotes the volume element of OM, at x and dv denotes the volume element

of §77 472 = N.(K(M))NS""' at v. Note that, for 6 < O(x, v), the matrix (I, cos6
+ H(x, v)sin ) is positive definite. This can be seen from the discussion on focal points in
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Appendix B. Therefore, by the standard derivation of the tube formula, the spherical volume
of the tube My is written as

min(6,0(x,v))

V(Mg) = J dxj va drdet (4 cos T+ H(x, v)sint)sin" ¢ 2¢
M—1(M)  JveN(K)ns =t Jo
m d min(O,é(x,U)) ] )
= Z J de do Z tr; H(x, U)J cos?/rsin" T2 dr,
4—0 JOM, vEN(K(M)NS 1 =0 0

where tr;H denotes the jth elementary symmetric function of the characteristic roots of H.
Using the fact that, for 0 < 6 < 7/2,

0
. Quipi2 5 2
cos‘tsin’Tdr = —“2= B 1y o pany2(cos?0),
Jo Qi1 Qpyy @D

where By, denotes the upper probability function of the beta distribution with parameters

(k, 1) and

2 c/2
Q= V) =575

is the volume of S~!, we have established the following theorem.

Theorem 2.1. For a locally conic closed set M C S™' with piecewise smooth proper
boundary, the spherical volume of the tube My, 0 < 1t/2, is given by

m

vt 2,3 | v
o Jom,  Jven k(mynst

d tr; H(x, v) -

20, 0., 1B(d—j+1)/2,(n—d+j—1)/2(0052 min(6, 0(x, v))). (10)
=0 “ed—j+15%n—d+j—

Theorem 2.1 can be generalized to the case min(6, O(x, v)) > 7/2 as in Proposition 2.1
of Takemura and Kuriki (2002). Exact tube formula for a submanifold of a Riemannian
manifold is given in Lemma 8.3 of Gray (1990). Now we define a formal tube formula for
6 < m/2 by setting O(x, v) = /2.

Definition 2.1. A formal tube formula approximation to the exact volume of the tube My in
(10) is defined by

Pt =2,3" [ a &
d=0 )My JUENL(K(M)NS™!

d
tr;H(x, v) =
L Bl jity2(nd+j1)2(c0s76). (11)

= Qa-jt1Qn-arj
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For sets with positive critical radius # > 0, (11) is the usual tube formula and coincides
with the exact volume (10) for & < 6. For the case of zero critical radius there is actually
an alternative way to define the formal tube formula, by requiring equivalence to the Euler
characteristic method. We will discuss these points at the end of this section.

Since V(My)/Q, gives the exact tail probability of max,c Y (), we have the following.

Corollary 2.1. For t = 0,

P(max Y(u) = t> = J de dv
ueM ; IOM 4 vEN(K(M))NS"-!

d
ter(X, U) — 2 - 2
. — = B n—d i max(t°, t(x, v)°)), 12
Y YR (d—j+1)/2,(n—d+j—1)/2(max( )7) (12)

where (x, v) = cos O(x, V).

We can also derive the exact tail probability for the maximum of Z(u) in (1). Let g4 and Gy
denote the density and the cumulative distribution function of the y? distribution with k
degrees of freedom, and write

o}

Oi(a, b) = J 2100 Gi(br)dx.

a

Theorem 2.2. Let M C S"~! be a locally conic closed set with piecewise smooth proper
boundary. For t =0,

m

P| maxZ(u) = t) = J de dv
(ueM dz:; oMy IN(K(MyNSm-!

<ty H(x, v)

Oy Qi Qu—jstn—atj—1(2*, tan® O(x, v)).  (13)
00 S2d—j+15dn—d+ j-

Proof. Since, for z~ N,(0, I,), y=1z/||z]| and |z|| are independent, P(maxycu Z(u)
= f) = P(max,cyu'z = 1) is calculated by substituting 7:= ¢/||z|| in (12) and taking
expectation with respect to ||z||? ~ x?(n). Let B be a random variable distributed as B(k, 1),
the beta distribution with parameters (k, /). Then, for k + [ = n,

E[By (max(£/||z|%, )] = P(|z|*B = 7, B= %)
= P(|z|PB = 7, ||z|*B(1 — )/ = ||z||*(1 — B))

= 0w, (1 = 1)/ 1),

since ||z||?B and ||z||*(1 — B) are independently distributed according to y2(k) and y*(1),
respectively. U
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_ The formal asymptotic expansion by the tube formula is obtained by letting
0(x, v) = m/2. In this case

Ou-jit ndsj1(t2, 00) = Ga_ i1 () = 1 — Gy_j1 (1),

and the formal expansion is given by

m d
- tr; H(x, v) _ )
P maxZ(u) = t) - J dxj S R T G2, (14)

(uGM dz:; oMy NX(K(M))QS”’I _]'Z:O:Qd*j“rlgn*dﬁ»jfl J+

where G denotes the upper probability function of the y? distribution with k degrees of
freedom.

As mentioned above, there is an alternative definition of the formal tube formula for the
case of zero critical radius. Here we give a brief discussion of this point. For piecewise
smooth M with convex support cone (and hence with positive critical radius 6 > 0),
Takemura and Kuriki (2002) established the equivalence of the tube formula and the Euler
characteristic method in the sense that

VM) = | o oy 0<0,

SVI
where
A(y, 0) = {u € M|u"y = cos 0} (15)

is the excursion set, y(-) is the Euler characteristic, and dy is the volume element of S”~!. For
M with smooth boundary it is a consequence of the kinematic fundamental formula (Santald
1976, TV.18.3). An alternative definition of the formal tube formula for the case § = 0 may be
given by requiring the equivalence to the Euler characteristic method — that is, we define

P = | 2 0y, (16)

sn

In convex analysis, the tube formula for a convex body K in R” is called the Steiner
formula and the coefficients of the tube formula are called curvature measures of K. The
notion of the curvature measures of convex bodies can be generalized in various ways.
When M belongs to the convex ring (the set of finite unions of convex bodies), V(M) of
Definition 2.1 corresponds to the absolute curvature measures of M, whereas the alternative
definition V(M(;) in (16) corresponds to additive extension of curvature measures of M.
These notions are discussed in Matheron (1975, Section 4.7), Schneider (1993, Section 4.4)
and Stoyan et al. (1995, Section 7.3.4). See also Cheeger et al. (1986) for the alternative
definition (16) when M is piecewise linear.

Our example in Section 3.1 shows that V(M) and V(My) are different in general for M
with zero critical radius, and furthermore both of them lead to incorrect expansion of the
exact volume V(My). The reason for adopting V(My) as our definition is that its
discrepancy from the exact volume V' (Mpy) in (10) is easier to study. At present we know of
no integral expression for V(My) similar to (10) for # = 0 in the literature.
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2.3. Invalidity of formal expansion

In this subsection we show that when the critical radius 6 is zero, the formal tube formula
only gives a valid main term, with other higher-order expansion terms not being valid in
general. Concerning the tail probability of max,c, Y (u), we let 60 and compare the Taylor
expansion of (10) and (11). Similarly, we let + — co and compare (13) and (14).

First, we consider the main terms of the expansions. In (10) the main term is given by
d=m, j=0. The case m = n — 1 is trivial, because in this case (10) and (11) converge to
V(M) = V(OM,—,) > 0. Therefore, let m < n — 1. Then

Q _ o
V(MQ) ~ J de dv 79 Qn B(,,1+1)/2’(n,m+1)/2(0082 mln(@, O(x, U)))
oM ,, vEN(K(M)NS"—1 m+1=en—m—1

Write a = (m+1)/2, b= (n— m — 1)/2. Ignoring the constant, which is common to (10)
and (11), consider

1
J de duJ g1 — &P de
M, N (K(M)nS»! cos? min(6), O(x, v))

1
J dxj duJ (-8 de
oM ,, N(K(M))NSr—1 cos? min(6, O(x, v))

1 _
= —J de dv sin®® min(@, O(x, v))
blom,  In(kpmnsi

= G_ZbJ de " sin2® min(zeb, 0(x, v)) .
b Jom, JN(x@nns— 0

Now for each fixed (x, v) such that x ¢ I(M), 6(x, v) > 0, because M is locally conic and
N(K(M)) # {0}. Therefore,

sin®” min(, 6(x, v))
-
02b

and by the dominated convergence theorem we have

1, 60— 0,

. 2b . ~
sin“” min(6, O(x, v
J de dv (2b (x, ) — J de do.
oM, I NJ(KM)NS! 0 oM,  JN(KM)NS-!
Taking the constant into account again, we obtain

n—m—1

V(Mp) ~ 7J dxj dv, 60
n—m—1)om, Jnkomns-

However, this is the main term of V(My) as well. Therefore, we have shown that (10) and
(11) have the same main term.
Proving that (13) and (14) have the same main term
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I'((n—m-—1)/2
PlmaxZ(u) =t ) ~ (n—m = 1)/2) ! e—ﬂ/zJ de do, t — 00,
ueM 2(m+3)/2 JT”/Z oM, NX(K(M))I"IS”’I

is entirely similar, by noting that, for each (x, v), x ¢ I(M),

Qun—a(??, tan® O(x, v))
— —
Go(1?)

We proceed to show that in general the higher-order terms of (10) and (11) or of (13)
and (14) are not equal. The arguments for these two cases are entirely similar. Here we
discuss only the difference between (13) and (14). In order to show the discrepancy we only
consider expansion terms arising from the term d = m, j = 0, in the summation of (13) and
(14). Ignoring 1/(R,4+1R,—m—1), the difference of these two terms is written as

1, t — 00.

{o.¢]

J dxj dvj Emet(E) Gt (tan? B(x, 0)) dE. (17
oM ,, ]\/X(K(/VI'))F‘IS”’l

t2
Define
A() = {(x, v)|x € OM,,, v € N(K(M))NS"!, tan O(x, v) < 1/1}.

Now assume that there exists some k > 0 such that
J dxdv = O(+7%). (18)
A(1)

Fix ¢ > 1. Then (17) is bounded below by

ct?

J de dUJ Zm1(§) G m1(E tan? O(x, v)) dE
oM, JN(KMNS™!

12

= J dXdUJ gm+l(§) anmfl(‘gtanz é(xa U)) dé
A() 2

t

ct?

- én,m,l(@J dxd”L g1 (E)dE

A(1)
= 0(t "G ui1(t1) = O(G i1 1(1)).

However, the term of order O(G,,._(#?)) is not distinguishable from higher-order expansion
terms of (13) or (14). Therefore, we have shown that the higher-order terms of (13) and (14)
are not generally equal when (18) holds.

It may be the case that £ in (18) is large and that many terms of the formal asymptotic
expansion are correct. In this case we may want to approximate the tail probability using
only the correct terms of the asymptotic expansion. Therefore it is important to determine
the value of £ in (18) for a given problem.

We now argue that in certain regular cases k& in (18) is simply the difference between
m = dimM and the dimension of the set of points with non-convex support cone.

We require the technical assumption that there exists ¢ = 1 such that, on OM,,,
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lim inf inf

] J dv > 0. (19)
=0 y:tan 0(x)=<1/(ct) Jve N (K(M))NS"! tan O(x,v)<1/1

This condition implies that, for sufficiently small 7, the angle of N (K(M))N
{v|0(x, v) < 1/t} is bounded away from O for all x € OM,, with O(x) < 1/(ct). Now for

c=1,

J de dU$J dxdv = anmj dx.
x:tan O(x)=<1/(ct) ve N (K(M)NS™ ! tan O(x,0)<1/1 A(1) x:tan O(x)<1/t

Therefore, under assumption (19),

J dxdv=0(t ") & J ) dx =0t ")
A1) x:tan O(x)<1/t
and k can be evaluated from the volume of the set {x € OM,|tan O(x) < 1/1}.

Let M denote the set of points on the relative boundary of OM, with non-convex
support cone. We now make a second assumption that M forms a C2-submanifold of R” of
dimension /. Finally, we assume that, for x € OM,, O(x)= O(1/f) if and only if
dist(x, M) = O(1/1). Under these assumptions the set {x € M, |0(x) < 1/} is basically a
tube around M in OM of radius O(1/¢). Therefore the m-dimensional volume of this tube
is proportional to O(¢~*) with

k=m—1=dimM — dim M.

3. Examples

The formulae for exact tail probabilities in Section 2.2 are of theoretical importance.
However, they may be difficult to evaluate explicitly for a given problem. Therefore in this
section we investigate in detail some simple examples in which the exact tail probability as
well as the formal expansion by the tube formula and the Euler characteristic method can
be explicitly evaluated and the discrepancy between them can be clearly understood. A
detailed treatment of a more complicated but statistically natural example is given in
Takemura and Kuriki (2001).

3.1. Boundary of polyhedral cone

Here we consider simple examples of the tail probability of the maximum of Y(u) in (2)
corresponding to Examples 2.1 and 2.3. Consider the uniform distribution Unif(S?) on the
sphere S? in R3. For simplicity of notation we avoid subscripts and let (x, y, z) denote a
vector on R? or on S2. Note that Q3 = 4m, Q, =27, Q; = 2.

First, we discuss Example 2.1. If M is as in (3), then
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max Y(u) = max<\/x2 + 92, V2 + zz)

ueM
= max(\/l —z2, /1 — y2)
and

V(My) .

P Y(u)= 0| =
<max (1) = cos ) im

ueM

Y(u) corresponds to the maximum of two correlated beta variables. This type of statistic is
commonly used in change-point analysis or multiple comparisons. M consists of four arcs of
length 7t and two crossing points at (£1, 0, 0). These two points are improper and do not
contribute to the volume of the tube. On the other hand, the four arcs form the one-
dimensional proper boundary of M. Without loss of generality, consider points on the arc
u=(cost,sint, 0), 0 <7< m N,(K(M)) NS> = (0,0, +1) and the cross-section at u is the
arc

C,(6) = cos&(cost, sint, 0) + sin &(0, 0, 1), & < 6.
u is the unique projection of points in C,(0) if and only if
[sin§| < cos&sint.
Therefore, for v = (0, 0, £1),
O(u, v) = arctan(sin 7).

Now in (10) and (11) m=d =1, JNu(K(M))ﬂSZ dv=2, H=0, troH =1, tr;H = 0, and
_ 1 (! B
B =3 | =8P d=a - )"
t

The point which makes the largest angle from M is (0, 1, 1)/v/2, and this angle is 7t/4.
We first consider the formal tube formula, because it is simpler. We have

V(Mg) =2 Q3J du By 2(cos® 6)

4 arcs 1 92

JT
= 8sin QJ dt = 8msin 6.
0
This is the sum of the spherical areas of two bands around the two great circles of M.

In this example the alternative definition ¥(My) can also be explicitly computed. The
difference between V(M) and V(My) comes from excursion sets A(y, 0) of (15) for y near
two crossing points. Figure 1 depicts the excursion set A(y, 8) for y close to a crossing
point, which is placed at the origin. In ¥(My), points in the ‘square’ [—6, 8] X [—6, 6] are
counted twice. On the other hand, in ¥(Mjy) the points in the spherical circle of radius 6
are counted once, because the Euler characteristic of the latter is 1 and hence
%(A(y, 8)) =1 for y in the spherical circle. Note that points y’ in the square outside the
circle (shaded area in Figure 1) are counted twice, because A(y’, 8) consists of two line
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Figure 1. Euler characteristic around a crossing point.
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segments and y(A(y’, #)) =2. The area of a spherical circle of radius 6 is given by

2m(1 — cos #). Hence

V(Mg) = V(My) — 4n(1 — cos 0) = 8msin 6 — 4m(1 — cos 6).

We now consider the true volume V(My). We only consider 6 < m/4. Write 6 =
arctan(sinzy) or 7y = arcsin (tan 6). Then

min(0, O(u, v)) =

arctan(sinz), if 0 <7 <1,
0, if 1o <t<m-—10,
arctan(sint), if m—19 <7 <.

The contribution of the middle case to the volume is

8sin O (;r — 219) = 87 sin O — 16 sin 6 arcsin(tan 6).

The contribution from the region where O(u, v) < 6 is

0

To
16J sin(arctan(sin 7)) dt = 16J

To

Let w = sin’t, with dw = 2sin7costdz. Then

sint

T0
16| ————=dr =
,[0 V1 + sin?t

Therefore, we obtain

tan? 6
1

0 V1—w?

= 8 arcsin(tan >0).

sint

——dr
0o V14 sin?t

sin? 7o 1
SJ o w
0 VIi+wvl—w



Tail probability via tube formula 549

V(My) = 8msin @ — 16 sin 0 arcsin(tan 0) + 8 arcsin(tan >6).
Note that both V(My) and V(My) are O(f) and they differ in the term of order O(6%):
V(Mg) = V(M) + 86* + o(6%).
V(My) also differs from V(My) in the term of order O(6?):
V(M) = V(Mg) + (8 — 2m)0* + o(6?).

O(u, v) tends to zero around two crossing points of M. Note that in this example the
conditions of Section 2.3 are satisfied with ¢ = 1 in (19). The volume (actually the length
in this example) of points u € M, with O(u) <1/t is O(1/t). Therefore, k =1 in (18).
This corresponds to the difference between 1 = dimM and 0, which is the dimension of
these two points.

We now turn to Example 2.3. The necessary calculation has already been done. The
formal tube formula ¥ (My) consists of the sum of two areas of half bands and the area of
two quarter spherical circles corresponding to the normal cone at (%1, 0, 0). Therefore

V(Myg) = 4msin @ + m(1 — cos ).
We obtain V(My) by subtracting the area of two spherical quarter circles from V(My):
V(Mg) = 4msin 6 + m(1 — cos ) — (1 — cos 0) = 4asin 6.

On the other hand, the true volume V(M) is obtained by further subtracting twice the shaded
area of Figure 1:

V(M) = 4msin @ — m(1 — cos 6) + 4 sin @ arcsin (tan 6) — 2 arcsin (tan® 6).

We again see that these three are all different and the difference appears at the order O(6?).

3.2. Direct product of two cones

Here we consider a generalization of Examples 2.1 and 2.3. For i = 1, 2, let K; be smooth
cones in R"™ such that M; = K;NS™"! is a d;-dimensional closed manifold. Define the
cone of direct product

K = Kl X K2 = {(Xl, Xz)‘xl S Kl, Xy € Kz} c R”

and its intersection with the unit sphere M = K N S"~!, where n = n; + n,. Note that M is
of dimension d = d| + d, + 1 and is expressed as

M = {(u1 cos @, upsin@)|us € My, up € Mo, ¢ € [0, /2]}. (20)
Examples 2.1 and 2.3 correspond the case where K; = R! and

K — {0, y) e R*|y e R'} U {(x, 0) € R?*|x € R'} (Example 2.1),
27 {0, y) eRYy = 0} U{(x, 0) € R¥x =0}  (Example 2.3).

As seen in Examples 2.1 and 2.3, M in (20) generally has zero critical radius, although
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M, and M, have positive critical radii. This is because the support cone of M at
u:(ul,O)EM, u; € My, is

Su(M) = Tul(Ml) X KZ,
which is not convex unless K, is convex. Conversely, the set of regular points of M is
M — I(M) = {(u1 cos @, up sin @)|uy € My, uy € M, ¢ € (0, ®/2)}

when both of K; and K, are non-convex.
The following proposition, proved in Appendix C, gives the formal tube formula for M.

Proposition 3.1. Assume that the formal tube formula for M;, i =1, 2, is given by

di
V((Mi)e) = Qy, Z WirB(di— j1)/2.(ni—d i+ j—1)/2(OS” 6),

j=0
which is exact for 0 < 0 < 0,,, where 0;. > 0 is the critical radius of M;. Then the formal
tube formula (11) for M is

d  dy

V(M) = Q, Z Z Wi Was Blas jy - i 1)/2, (n—dsjy+ jo—1)/2(c08” 0).
J1=0 j2=0

As an example, consider the cones in R® given by
K, :Kzz{x®y€[R6|x€R2,y€R3},

where ® denotes the Kronecker product. Cones of this type are defined by bilinear forms and
investigated fully in Kuriki and Takemura (2001). The formal tube formula for
M;=K;nS* ! i=1,2,is given by

V((M;)o) = 96{2E4/2,2/2(0052 6) — 2B, 5 4/(cos’ 0)}, (21)

which is exact for 0 < 0 < /4. Write K = K; X K; and M = KN S12=1 ag before.
Let z = (z1, z2) € R'2, z1, z; € R®, be random vectors consisting of independent standard
normal random variables. Then max,c Ml.uTzi =W, i=1,2, and

maxu'z = max (u]Tzl cos ¢ + ugzz sin @) = /U (W) + 61(W>),
2

ueM u; € M;,0e[0,7/2]

where W, W, are 2 X 2 matrices independently following the Wishart distribution with three
degrees of freedom and scale matrix /,, Wisy(3, /5), and are a function of z; and z,. Here
£1(+) denotes the largest eigenvalue of the matrix. The tube formula (21) gives an asymptotic
expansion for the upper tail probability

Py(W) = 1) ~ 2(_;4(1) — 262([), t — o0.
By Proposition 3.1 and (14), the formal tube formula is given by
P((W) + (W) = 1) = 4G(1) — 8Go(1) + 4Ga(1). (22)
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In the case of this example the exact distribution of ¢;(;) can be obtained in a simple
form. The joint density of the eigenvalues (1, £;), ¢ = ¢, = 0, of a Wis;(3, I;) matrix is
known to be

1
7 e 20 ), (=10, =0. (23)

By integrating this over the region ¢ = t, ¢ = ¢, = 0, we have
P(ty = 1) = 2G4(1) — 2Ga(1) + Ga(20),

with moment generating function E(e?") = 2(1 —26)2 —2(1 —260)! + (1 — 6)"!. Square
the moment generating function and for the term (1 —26)*/?(1 — 6)~! use the asymptotic
relation

2

where 2 and X% are independent y> random variables. Then the tail probability of the sum of
the two largest eigenvalues is evaluated as

Py (W) + £1(W) = 1) = 4Gs(1) — 8Gg(1) + 8G4(1) + O(Ga(1)).

Therefore, we see that the formal tube formula (22) is invalid in the term of order O(G4(?)).
This was expected since k = dim M — dim /(M) =7 — 3 = 4.

1 _
P(x% +o5= t) =2G, () + 0?1772, 11— oo,

3.3. Euler characteristic method applied to x> field

We continue to examine the example of sum of the largest eigenvalues of two independent
Wishart matrices £{(W) + £1(W,), Wy, W, ~ Wis,y(3, I).
Define a % field with index set S' X S':
2 cos(¢;/2)
X0 =3 (costp/2) s, 2w (S )
2 (/2
2 (win — wy Wit1 + w;
— Z (’112’22 oS @; + wyiz sin ¢; + ’“2122),
i—1

I

where u = (cos ¢y, singy, cos¢y, singy), 0 < ¢, ¢ < 2mw. The (i, j2)th element of W; is
denoted by wy, ;,. This is a x* field in a sense that, for each u fixed, X(u) is distributed as y?
with two degrees of freedom. In the following we apply the Euler characteristic method to
approximate the upper tail probability of

max X(u) = (W) + 6(W2).

ueS x !
The Euler characteristic method approximates the tail probability by
P(E(W) + 6i(W2) = 1) = E[x(A()],

where
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A(t) = {uc S' X S'\X(u) =t}

is the excursion set. The expectation E[y(A(¢))] can be evaluated with the help of Morse
theory.

Define a (random) function on S' X S' by f(u) = —X(u). With probability one there
exist four critical points of f:

u* = (¢ cos¢)f, € sinq&f, 1) cosqﬁ;k, &) singbf), € ==+1, 6 ==+l1,
where
1 2w
¢F =tan”' —— i=1,2.
Witlt — Wi

The Hessian at each critical point is shown to be

82f(“) 2 \/(Wm - Wi22>2
det| ——~+ = € _ +w12. ,
<B¢ia¢j - ,11 2 12

which is non-zero with probability one. Therefore f(u) is a Morse function with probability
one. Then, by Morse’s theorem (Worsley 1995b, Theorem 1; Takemura and Kuriki 2002,
Proposition 3.1), we have

O f(u)
0¢:0¢;

x(A(1) = Z I(f(u) =< —1)sgndet (

u:critical point

2 2
Will — Wix2 Will + Wiz
= g el E el\/(121> +wh, +% =t
=1

w:critical point
= 1(L(W) + (W) = 1) — I(L(W) + L(Wh) = 1)
— [(L(W) + (W) = 1) + [(L(Wh) + 6L(W)) = 1),

with probability one, where ¢;(W;) = {,(W;) are ordered eigenvalues of ;. Note that the
Joint distribution of the eigenvalues is given in (23). Simple calculations yield
Pty = t) = Go(21),

P(l; = 1) — P(l, = 1) = 2G4(t) — 2Ga (1),
and hence
E[x(A(1)] = PUy(Wy) + L(W,) = 1) — PULL(Wy) + 6(W,) = 1)
— P(Ly(Wh) + 6(W2) = t) + P(L(Wh) + L(W,) = 1)
= 4Gg(1) — 8Gg(1) + 4G4(1).

The last equality can be easily verified by the moment generating function. This result
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coincides with the formal tube approximation (22), and the coefficient of the lowest term of
order O(Gy(t)) is incorrect.

Appendix A. Definition of locally conic set and related notions

Here we give precise definitions of various notions in Section 2.1. Throughout Section 2 we
consider spherical tubes around M C S"~!. Here we begin by considering M C R” and the
volume of tubes in R” for simplicity. Once we have a proof for tubes in R”, it is
straightforward to adapt it to the spherical tube.

Let M be a closed subset of R”. For each x € M, we assume that M is locally
approximated by a cone in the following definition.

Definition A.1. A closed subset M of R" is locally conic of class C* if, for each x € M, there
exist an open neighbourhood U(x) CR" of x, c¢=¢, >0, a C*diffeomorphism
@y 1 (=€, " — U(x) with ¢,(0)=x and a closed cone K =Ky of R" such that
M N U(x) is the image of K N (—¢, €)" by ¢y:

MNU(x) =g (KN(—¢ )").

Furthermore, if V.= Ux) N U(x") # @ for x, x' € M, then ¢ 'o ¢p: ¢ (V) — ¢! (V) is a
C?-diffeomorphism.

In Definition A.1 we are following the standard definition of a differentiable manifold.
However, M may not be a standard manifold because we allow self-intersections in M. The
definition of the locally conic set is the same when M is a subset of "'

For locally conic M we define the supporting cone and the normal cone at each x € M
as follows. The support cone (or the tangent cone) of M at x € M is the image of K by the
differential d¢ at the origin:

SX(M) +x = d¢|(0 0)K~ (24)

,,,,,

Note that ‘+’ on the left-hand side of (24) is the vector sum and hence Sy(M) is defined with
its vertex located at the origin. Let C(Sy(M)) be the convex hull of S,(M). The normal cone
N (M) of M at x is the dual cone of C(S,(M)) in R”:

N(M) = {y|y"v<0,Vv € S(M)} = {y|y"v <0, Vv € C(S{(M))}.

Here note that by definition the dual cone of S,(M) coincides with the dual cone of
C(Sy(M)). For the case of geodesically convex M, the notions of support cone and normal
cone given here coincide with the standard notions in convex analysis (Schneider 1993,
Section 2.2; Takemura and Kuriki 1997, Section 2.3). Takemura and Kuriki (2002) assumed
that S,(M) is convex for all x € M and proved the validity and the equivalence of the tube
method and the Euler characteristic method. In the present paper Sy(AM) may not be convex
and the distinction between Sy(M) and its convex hull is important.
For x € M, let
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d = n — dim N.(M)

be the codimension of N.(M). Note that d is the dimension of the largest linear subspace
contained in C(S,(M)):

L = C(S:(M)) N0 (= C(Sx(M))).

If L is contained in S,(M), then clearly L is the unique largest linear subspace contained in
Sy(M), and in this sense L is the tangent space 7,(M) of M at x. On the other hand, if L is
not contained in S,(M), then there are two non-nested linear subspaces contained in S,(M)
and M does not possess a tangent space at x. In the tube formula the n-dimensional volume
of the tube is obtained by integrating the product of the volume element of N.(M), the
volume element of the tangent space 7,(M) and the Jacobian containing the second
fundamental form at x. This implies that if L is not contained in S,(M), then there should be
no contribution to the volume of the tube from x. On the other hand, if L is contained in
Sy (M), the contribution of points in N,(M) to the volume of the tube is the same for convex
or non-convex S,(M). This is the motivation for the definition of the proper boundary in
Section 2.1; for convenience we now give a formal definition.

Definition A.2. Let M be locally conic and, for x € M, let d = n — dim N,(M). x is a proper
d-dimensional boundary point if L = C(Sy(M)) N (—C(Sy(M))) is contained in S,(M).

Appendix B. Proofs of Proposition 2.1 and Lemma 2.1

We begin with a proof of Proposition 2.1. We then state a version of Proposition 2.1 for
tubes in R”. Finally, we outline the proof of Lemma 2.1.

Proof of Proposition 2.1. We first show that the complement of R(M) in S"~! has zero
spherical volume. Let x ¢ R(M). Then there are at least two equidistant projections y;, y, of
x onto M. By Assumption 2.1 it suffices to consider the case where both y; and y, are proper
boundary points of M. We need to distinguish two cases of non-uniqueness of projection.
One case is that x is a ‘focal point’ of y; or ), in the sense of Milnor (1963, p. 33).
Arguments similar to those in Milnor (1963, Corollary 6.2) show that the set of focal points
is of zero spherical volume. In the second case there exist neighbourhoods V' (y1), V()2) C M
of y; and y», respectively, such that y; is the locally unique projection of x on V(y;). It can be
easily seen that there exists a neighbourhood U(x) C S”~! of x such that projections 7;:
U(x) — V(y), i =1, 2, are of class C2. Let

E(x) = {z € UW)|z'm(2) = ' ma(2)}.

Then E(x) is the set of points z € U(x) which are equidistant from V(y;) and V(y,). Let
g(z) = 2" 1(z) — z"my(z). Note that 77;(dz) belongs to the tangent space Ty,.(M) of M at
7;(z) and hence z'm;(dz) = 0. It follows that

grad g = ma(2) — m1(2) # 0.

Therefore, by the implicit function theorem, E(x) is an (n — 2)-dimensional submanifold of
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class C? in U(x) and hence has zero spherical volume. Combining the above two cases, we
have shown that the complement of R(M) has zero spherical volume.
We now investigate points in R(M). For x € R(M), let
x — (xTxa0)x00

e = x|

n—1

Consider the segment of the great circle joining x); and x, and let u=
Xy cos O+ xsin 6, 0 < 6 < dist(x, x)/), be an interior point of this segment. We claim that
u € R(M), and that the projection of u coincides with x,,. Assume the contrary. Then there
exists y # xu, ¥ € M, such that

dist(u, y) =< dist(u, x,7).
By the triangular inequality,
dist(x, y) =< dist(x, u) + dist(u, y)
< dist(x, u) + dist(u, x)
= dist(x, xu).

However, this contradicts the assumption that x,, is the unique projection of x onto M.
Therefore, u has the unique projection x;, onto M.

Consider the semicircle of (6). The above argument shows that this semicircle is divided
into two intervals. The points on the first interval have the unique projection u and the
points on the second do not. Define O(u, v) by (7). Note that O(u, v) = 0 corresponds to the
case where no point other than u itself has u as the unique projection. O(u, v) = /2
corresponds to the case where all the points on the quarter circle from u in the direction v
have u as unique projection, which is equivalent to

vx =<0, Vx e M. (25)

That is to say, M is entirely contained in one side of the hyperplane in R” defined by the
normal v.

Since M is assumed to be locally conic, u is a projection of wucosf+ vsinf for
sufficiently small 6 > 0 if and only if v € N, (K(M)). Therefore we have

[u, ucos O(u, v) + vsin O(u, v)) C R(M)
uEM e N (K)ol =1

c U U [u, ucos O(u, v) + vsin O(y, v)], (26)
ue M veN,(K(M)),||v]|=1

where
[u, ucos O + vsin O] = [u, ucos @ + vsinO) U {ucos O + vsin 6}

denotes the right closed segment of the great circle. Suppose there exist points x in the
difference of R(M) and the left-hand side of (26), that is, x € R(M) such that
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x = ucos O(u, v) + vsin O(u, v), O(u, v) > 0,

where u = xj, is the unique projection of x. We now prove that x is a focal point of u.
Assume the contrary, that is, assume that 0_(u, v) is smaller than the radius of curvature of M
at u with respect to the direction v. Then there exist a neighbourhood V(u) C M of u and
¢ > 0 such that the restricted projection of points on the extended segment

ucosf + vsin 6, O(u, v) < 0 < O(u, v) + ¢,

onto V(u) is u and is unique in FV(u). Consider a sequence of points x, =
ucos (O(u, v) + 1/n) + vsin(O(u, v) + 1/n) converging to x. By definition of O(u, v) there
exists y, € M such that dist(x,, y,) < dist(x,, ). Furthermore, by the above argument,
Yn & V(u). Since the sequence {y,} is bounded, there exists an accumulation point y, of
{yn}. Taking a subsequence if necessary, we can without loss of generality assume that
Va— yo & V(). Then

dist(x, yp) = limdist(x,, y,) < limdist(x,, u) = dist(x, u).

However, this contradicts the assumption that # = x,, is the unique projection of x onto M.
Therefore x is a focal point of x,,. We have now shown that the difference of R(M) and the
left-hand side of (26) is contained in the set of focal points and hence has zero spherical
volume. O

We now state a version of Proposition 2.1 for tubes in R”. Let M C R” be a locally
conic set satisfying Assumption 2.1. Let R(M) denote the set of points of R” with unique
projection onto M. For y € M and v € N,(M), |[v|| =1, let

J{y+wlo=st<r}, ifr>0,
[y’y+rv)_{{y}, ifr=0,
denote the right open line segment starting from y in the direction v. Define
Ay, v) = sup {r = 0|y + rv € R(M), (y + rv)u = y}. 27

Then we have the following proposition.

Proposition B.1. For a locally conic closed set M with piecewise smooth proper boundary,

RS ) U ny+ory, o), (28)

YeM veN ,(M),||v]|=1
and the complement of the right-hand side of (28) has zero Lebesgue measure. Here, as in
(8), we define Uyen, i), joj=1 1> ¥ + 0y, 0)) = {y} for y € OM,.
As in (25), #(y, v) = oo is equivalent to
vi(x—y) <0, Vx € M, (29)

that is, M is entirely contained in one side of the hyperplane in R” defined by the normal v.
Finally, we give an outline of the proof of a version of Lemma 2.1. Suppose that x € M
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has a non-convex support cone S (M). It suffices to show that inf,cyy 6(y) = 0, where
U(x) is a neighbourhood of x. If we take U(x) sufficiently small, then M is approximated
by the support cone S,(M). Therefore the essential point of the proof is to consider
projection onto M around the point x and to show Lemma 2.1 for M = K = S,(M), which
is a non-convex cone in R”". Consider y € K N S"~!. Let #(y, v) be defined by (27). Using
(29), it can be easily shown that
inf "y, ) = 0
yeKNS™1ueN,(K),|vl|=1

if and only if K is a convex cone. Since K is assumed to be non-convex, there exist
yeKnS" ! and ve N,(M) such that #(y, v) <oo. By the proof of Proposition B.I,
x=y+ Ay, v)v has at least two equidistant projections onto M. Because of the scale
invariance of the geometry of the cone, cx = ¢y + ¢7(y, V)V = €y + 7(€y, V)V has the same
property for every ¢ > 0. Therefore lim.|o7(ey, v) = 0, and this proves that the critical radius
of M is zero.

Appendix C. Proof of Proposition 3.1

In the following the index i is assumed to run over {1, 2}.
Let u; € M; and let the volume element of M; at u; be denoted by du; At

u = (uy cos @, up sinp) € M, @ €0, m/2], (30)
the volume element of M is given by
du = cos™ ¢ sin™ ¢ du; du, de. (31)

Let v; € T,,(K)* N S™~! and let the volume element of 7,,(K,;)* N S"~! be denoted by
dv;, where ‘1’ denotes orthogonal complement. Then at

v = (v cos @, Uysin@) € T,(K): ns" !, ¢ € [0, /2], (32)
the volume element of T,(K)" NS" ! is given by

—dy—

dv = cos™ " 72¢ sin™ % 2¢ dv; dv, dg. (33)

Let H;(u;, v;) be the second fundamental form of M; at u; with respect to the normal
direction v; € T,,(K;)* N S"~!. Then the second fundamental form of M at u in (30) with
respect to the normal direction v in (32) is given by

. cos @ sin @
H(u, v) = diag (cosz Hi(u, vy), ﬁ Hy(uz, 12), 0>~ (34)

Substituting (31), (33), and (34) into (11), and integrating it over 0 < 7, @, ¢ < /2, we
prove the proposition.
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