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We propose a method to construct a joint statistical model for mixed-domain data to analyze their dependence.
Multivariate Gaussian and log-linear models are particular examples of the proposed model. It is shown that
the functional equation defining the model has a unique solution under fairly weak conditions. The model is
characterized by two orthogonal parameters: the dependence parameter and the marginal parameter. To estimate
the dependence parameter, a conditional inference together with a sampling procedure is proposed and is shown
to provide a consistent estimator. Illustrative examples of data analyses involving penguins and earthquakes are
presented.
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1. Introduction
In multivariate analysis, there are a lot of statistical models describing dependence such as copula
models, regression models, log-linear models and Gaussian graphical models. Such models are quite
powerful and frequently used in applications. However, these approaches depend to varying degrees on
the characteristics of the data domain. For example, in copula modeling, the variables are assumed to
be real-valued and transformed into [0,1] by monotone transformation. In generalized linear models,
the domains of explanatory variables are arbitrary via quantification, but the conditional density of the
response variable has to be specified as Gaussian or Poisson, for example. A log-linear model assumes
the domain to be discrete.

In this paper, we propose a method to construct dependence models without using domain charac-
teristics. The joint density function that we suppose takes the form

p(x1, x2; θ) = eθ
�h(x1 ,x2)A1(x1; θ)A2(x2; θ) (1)

in bivariate cases, and is defined similarly in multivariate cases. Here, the domains of x1 and x2 are
arbitrary as long as they have base measures. The function h(x1, x2) represents the dependence of the
variables. The functions A1 and A2 are determined by the marginal distributions of x1 and x2. It is
proved that a density function satisfying the marginal constraints exists and is unique for every value of
the parameter θ under fairly weak conditions (Theorem 1). This makes the model quite flexible since
the parametric or nonparametric forms of the marginal distributions can be separately designed. We
will call A1 and A2 adjusting functions. See Section 2 for a precise definition.

We show the usefulness of our model by enumerating various examples. In particular, models for
continuous, discrete, and any other type of variables can be jointly designed up to the same cost as
homogeneous data. There has been a similar attempt to construct a mixed-variable model based on
univariate conditional exponential families (Yang et al. (2015)), which, however, does not avoid the
restriction on the parameter space of joint exponential families. The conditional Gaussian families for
mixed data discussed in Lauritzen (1996) and Whittaker (1990) are tractable but restrictive.

The adjusting functions in the proposed model (1) cannot be written in a closed form except for lim-
ited cases. This means a naive likelihood analysis is intractable. However, we can perform conditional
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inference (Cox and Hinkley, 1974, Reid, 1995) given the marginal empirical distribution, as described
in Section 3. It is shown that the conditional likelihood has almost the same information as the full
likelihood and is not affected by nuisance parameters that characterize the marginal distribution (The-
orem 2). These aspects are similar to Fisher’s exact test for contingency tables (e.g., Choi, Blume and
Dupont (2015), Little (1989)), which fixes marginal frequencies for testing of independence. Given the
marginal empirical distribution, the problem of estimation reduces to that of an exponential family on
a set of permutations. See Mukherjee (2016) for properties of exponential families on permutations.

A closed form for the conditional likelihood remains unknown. To deal with this, we propose a
sampling method for the conditional distribution in a Markov chain Monte Carlo (MCMC) manner
(Subsection 3.3) and a pseudo likelihood method (Subsection 3.4) that make the conditional inference
tractable.

The idea behind our method is the minimum information copula model (e.g., Bedford, Daneshkhah
and Wilson (2016), Bedford and Wilson (2014), Meeuwissen and Bedford (1997), Piantadosi, Howlett
and Borwein (2012)), in which the joint density function of real-valued data is determined by uni-
form marginals and fixed values of expectations of some statistics. In a study related to the mini-
mum information copula model, Geenens (2020) constructed a bivariate discrete model written as
p(x1, x2) = c(x1, x2)A1(x1)A2(x2), where the marginal distributions of c(x1, x2) are discrete uniform
distributions.

The paper is organized as follows. In Section 2, we define our model together with practical examples
and establish an existence and uniqueness theorem (Theorem 1). In Section 3, we develop a conditional
inference approach for the dependence parameter and prove its validity under mild conditions (The-
orems 2–5). In Section 4, we present simulation studies for the inference. We conclude the paper in
Section 5 with some future work. In Appendix A of Sei and Yano (2024), we provide more examples
of our model. In Appendix B of Sei and Yano (2024), we summarize useful properties of the model,
including information geometry (e.g., Amari and Nagaoka (2000), Csiszár (1975)), and relationship to
the optimal transport and Schrödinger problems (e.g., Haasler et al. (2021), Léonard (2012), Peyré and
Cuturi (2019)). Appendix C of Sei and Yano (2024) gives all proofs of the results. Appendix D of Sei
and Yano (2024) provides illustrative examples of data analyses involving penguins and earthquakes,
respectively.

2. Minimum information dependence model

In this section, we introduce the minimum information dependence model with its existence guarantee
and present several examples.

2.1. Definition

Let (Xi,F (Xi),dxi) for i = 1, . . . ,d be a measure space and denote their product space by X =
∏d

i=1Xi
and dx =

∏d
i=1 dxi . For index i, use the notation −i to indicate the removal of the i-th coordinate, e.g.,

x−i = (xj )j�i , X−i =
∏

j�iXj , and dx−i =
∏

j�i dxj .
Let r1(x1; ν), . . . ,rd(xd; ν) be statistical models of marginal densities on X1, . . . ,Xd , respectively,

where ν denotes parameters characterizing the marginal densities. We can assign, if necessary, inde-
pendent parameters to each ri as ri(xi; νi) by setting ν = (ν1, . . . , νd). It is also possible to deal with
infinite-dimensional parameters.
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We consider a class of probability density functions

p(x; θ,ν) = exp

(
θ�h(x) −

d∑
i=1

ai(xi; θ,ν) − ψ(θ,ν)
)

d∏
i=1

ri(xi; ν), (2)

where θ ∈ RK is a K-dimensional parameter representing the dependence, and h : X → RK is a given
function. The functions ai(xi; θ,ν) and ψ(θ,ν) are simultaneously determined by constraints∫

p(x; θ,ν)dx−i = ri(xi; ν), i = 1, . . . ,d, and (3)

∫ d∑
i=1

ai(xi; θ,ν)p(x; θ,ν)dx = 0. (4)

The equation (3), which specifies the marginal distributions, is essential in our modeling. The equation
(4) is assumed just for identifiability of ψ(θ,ν), because for fixed ai(xi; θ,ν)s and fixed ψ(θ,ν) and
for any c ∈ R, (ai(xi; θ,ν) + c)s and (ψ(θ,ν) − dc) yield the same probability density function as that
with ai(xi; θ,ν)s and ψ(θ,ν). With these constraints, we shall see that the functions

∑d
i=1 ai(xi; θ,ν) and

ψ(θ,ν) are unique if they exist. If each term of (4) is integrable, the equation (4) is equivalent to the
equation

∑d
i=1

∫
ai(xi; θ,ν)ri(xi; ν)dxi = 0 that does not involve p(x; θ,ν), under the marginal condition

(3). Note that the density (2) is reduced to the independent model
∏d

i=1 ri(xi; ν) if θ = 0.

Definition 1. A statistical model (2) together with the constraints (3) and (4) is called a minimum
information dependence model. The parameter θ is called the canonical parameter, ν is the marginal
parameter, h(x) comprises the canonical statistics, ai(xi; θ,ν)s are the adjusting functions and ψ(θ,ν)
is the potential function.

Throughout the paper, we assume that the canonical statistics hk(x), k = 1, . . . ,K , are linearly inde-
pendent modulo additive functions. That is, if θ satisfies

θ�h(x) +
d∑
i=1

Ai(xi) = 0,

with Ai(xi) not depending on x−i (i = 1, . . . ,d), then θ = 0.
The canonical statistics are not sufficient statistics for θ in the full likelihood because the adjusting

functions contain θ and x, but are sufficient statistics in the conditional likelihood; this point will be
clarified in Section 3.

We state several useful properties of the minimum information dependence model. First, the deriva-
tive of the potential function with respect to θ is E[h(X)]. Second, the potential function ψ(θ,ν) is
shown to be strictly convex with respect to θ. Third, the value of θ is directly linked to the total cor-
relation (Watanabe, 1960) E[log{p(X; θ,ν)/

∏d
j=1 rj (Xj ; ν)}], a measure of strength of the association,

as

E

[
log

p(X; θ,ν)∏d
j=1 rj (Xj ; ν)

]
= θ�∇θψ(θ,ν) − ψ(θ,ν),

where this follows from the equation (4) and Lemma S.2 of Sei and Yano (2024). Finally, the parameters
θ and ν are mutually orthogonal with respect to the Fisher information metric; see Appendices B.1 and
B.2 of Sei and Yano (2024) for details of these properties.
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Figure 1. Two-dimensional histograms of 10000 samples from the minimum information dependence model with
Beta(10,10) and Po(3)marginals. The canonical statistic h(x, y) is given by h(x, y) = x/(y+1). The joint histogram
and marginal histograms are plotted. (a) Joint histogram with θ = 0. (b) Joint histogram with θ = 100.

As a final remark in this subsection, our model is a generalization of the minimum information cop-
ula model proposed by Bedford and Wilson (2014), particular cases of which appear in Meeuwissen
and Bedford (1997) and Piantadosi, Howlett and Borwein (2012). In this copula model, the space Xi is
the interval [0,1] ⊂ R and the marginal density functions ri(xi) are assumed to be the uniform density
on [0,1]. This copula model is derived from the maximum entropy principle (Jaynes (1957)), or equiv-
alently, from the minimum information principle, which is the origin of the name. We discuss a similar
property for our model in Appendix B of Sei and Yano (2024). Yet, copula models are, in general,
intended to be used together with the probability integral transform that makes the variables have uni-
form marginal distributions. In contrast, our model specifies the marginal model without transforming
the variables, which allows arbitraryXi rather than R. Figure 1 displays an example of two-dimensional
histograms of samples from the minimum information dependence model for mixed variables (discrete
and [0,1]) with negative correlation. This example shows that the minimum information dependence
model easily expresses arbitrary dependence between variables in arbitrary product spaces.

Also, the minimum information dependence model naturally contains the existing dependence mod-
els for specific sample spaces (Amari (2001), Holland and Wang (1987), Jansen (1997), Jones, Pewsey
and Kato (2015)). Several examples highlighting the connection between the minimum information de-
pendence model and the existing models are presented in Subsections 2.2 and 2.4, and Appendix A of
Sei and Yano (2024). Remark 1 discusses the difference between the minimum information dependence
models and copula models.

2.2. An illustrative example

We give an elementary example for illustrative purposes. More practical examples are provided in Sub-
section 2.4. Further examples related to the total positivity (e.g., Holland and Wang (1987), Kurowicka
and van Horssen (2015)) and circulas (Jones, Pewsey and Kato (2015)) are presented in Appendix A of
Sei and Yano (2024).
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Example 1 (Gaussian model; Jansen (1997)). The bivariate Gaussian distribution is a minimum
information dependence model. This fact was pointed out by Jansen (1997) in an argument of the
copula theory. Suppose that the mean vector is zero for simplicity. If the variance and correlation
parameters are denoted as σ2

1 ,σ
2
2 and ρ, respectively, then the density is written as

p(x1, x2;σ1,σ2, ρ) = eθx1x2−a1(x1;θ,ν)−a2(x2;θ,ν)−ψ(θ,ν)φ(x1;σ2
1 )φ(x2;σ2

2 ),

where θ = (σ1σ2)−1ρ(1 − ρ2)−1 is the canonical parameter, x1x2 is the canonical statistic, ν = (σ2
1 ,σ

2
2 )

is the marginal parameter and φ(xi;σ2
i ) denotes the univariate normal density. The adjusting functions

and the potential function are

ai(xi; θ,ν) =
(

1
2(1 − ρ2)

− 1
2

) ( (
xi
σi

) 2

− 1

)
, i = 1,2,

ψ(θ,ν) = 1
2

log(1 − ρ2) + 1
1 − ρ2 − 1,

respectively, where ρ = ρ(θ,ν) is the unique solution of θ = (σ1σ2)−1ρ(1 − ρ2)−1. More explicitly,
ρ = ρ(θ,ν) = 2θσ1σ2/{1 + (1 + 4θ2σ2

1σ
2
2 )

1/2}. The canonical parameter θ ranges over R whereas ρ
ranges over (−1,1). The one-to-one relationship between ρ and θ for a given ν is a consequence of a
more general result (see Appendix B.1 of Sei and Yano (2024)). We will show that higher-dimensional
Gaussian models also have a similar structure in Subsection 2.4.

Remark 1. Here we clarify the difference between minimum information dependence models and
copula models. Assume that Xi = R for i = 1, . . . ,d. A copula model is built by using the Sklar theorem
and the change of variables as

pcopula(x; c, ν) = c(R1(x1; ν), . . . ,Rd(xd; ν))
d∏
i=1

ri(xi; ν),

where c(·) is a copula density, Ri(·; ν) (i = 1, . . . ,d) is the distribution function of the i-th variable
for i = 1, . . . ,d, and ri(·; ν) (i = 1, . . . ,d) is the density function of the i-th variable. In contrast, the
minimum information dependence model is built as

p(x; θ,ν) = exp

(
θ�h(x) −

d∑
i=1

ai(xi; θ,ν) − ψ(θ,ν)
)

d∏
i=1

ri(xi; ν).

Two models have the form of the dependence part and the product of marginals. But, the dependence
part in the copula model has the composite form c ◦ R, whereas that of our model has the exponential
of the additive form: the term θ�h(x) independent of marginals plus the terms −

∑d
i=1 ai(xi; θ,ν) −

ψ(θ,ν) depending on the marginals. So, the coincidence between copula and minimum information
dependence models depends on the marginal distributions.

One example of the coincidence is a Gaussian model (Gaussian copula with Gaussian marginals).
Another example is the bi-variate minimum information dependence copula with uniform marginals.
In contrast, one example of the discordance is the Farlie–Gumbel–Morgenstern copula with Gaussian
marginals that is included in copula models but is excluded in our models.
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In Example 1, the adjusting functions and potential functions are explicitly represented. However,
such cases are exceptional. To generate a rich class of distributions, we establish an existence and
uniqueness theorem for the functions in the following subsection.

2.3. Existence and uniqueness

We find tractable conditions for the existence and uniqueness of the adjusting functions and potential
function. Fix θ and ν and drop the dependence on these parameters in this subsection. Then, the inner
product θ�h(x) is replaced with a scalar function H(x) = θ�h(x). The marginal parameter ν is also
abbreviated as ri(xi).

Denote the product density of ri(xi) by p0(x) =
∏d

i=1 ri(xi) that corresponds to the density function
for H = 0. Denote the set of integrable functions with respect to a measure μ by L1(μ).

Definition 2. We say that a function H ∈ L1(p0(x)dx) is feasible if there exist measurable functions
{ai(xi) : i = 1, . . . ,d} and a real number ψ ∈ R such that the function p(x) = eH(x)−

∑d
i=1 ai (xi )−ψp0(x)

satisfies
∫

p(x)dx−i = ri(xi) for each i = 1, . . . ,d and
∫ ∑d

i=1 ai(xi)p(x)dx = 0.

Definition 3. We say that H is strongly feasible if H is feasible and each ai belongs to L1(ri(xi)dxi).

Definition 4. We say that H is moderately feasible if there exist {bi ∈ L1(ri(xi)dxi) : i = 1, . . . ,d} such
that ∫

eH(x)−
∑d

i=1 bi (xi )p0(x)dx <∞. (5)

The only difference between feasibility and strong feasibility is the integrability of ai(xi). Strong
feasibility is convenient for theoretical discussions whereas feasibility is sufficient for the modeling
and the inference. Strong feasibility implies moderate feasibility by Definition 4. If H is feasible and
the adjusting functions are integrable, then H is strongly feasible.

Our first main result is that moderate feasibility is a sufficient condition of feasibility. The proof,
which is based on the results of Borwein, Lewis and Nussbaum (1994), is given in Appendix C.1 of Sei
and Yano (2024).

Theorem 1. If a function H ∈ L1(p0(x)dx) is moderately feasible, then H is feasible. Furthermore, if
H is feasible, then

∑d
i=1 ai(xi) and ψ are unique.

It is usually easy to find integrable functions bis satisfying the inequality (5); we provide concrete
examples in Subsection 2.4.

For moderate feasibility, we obtain a couple of corollaries. First, by applying Hölder’s inequality to
the integral in (5), we immediately obtain the following corollary.

Corollary 1. The set of moderately feasible functions is convex.

Further, we provide the following two useful criteria for moderately feasibility. The proofs are given
in Appendix C.2.

Corollary 2. Suppose that for each i = 1, . . . ,d, the space Xi is equal to R, and the marginal density
function ri has finite moments of any order. Then, any polynomial function H(x) is moderately feasible.
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Corollary 3. Suppose that for each i = 1, . . . ,d, (Xi,di) is a metric space and there exists x0
i
∈ Xi

for which di(xi, x0
i ) ∈ L1(ri(xi)dxi). Then, any Lipschitz function H(x) with respect to d(p)(x, y) :=

‖(di(xi, yi))i=1,...,d ‖p for some p ∈ [1,∞] is moderately feasible, where ‖ · ‖p is the p-norm.

2.4. Practical examples

In this subsection, we provide various examples of the minimum information dependence model by
applying Theorem 1. Denote the canonical part of the model by Hθ (x) = θ�h(x).

Example 2 (Gaussian). For each i = 1, . . . ,d, let ri(xi; ν) be the Gaussian density φ(xi; μi,σ2
i ), where

ν = (μ1, . . . , μd,σ1, . . . ,σd). Then, a quadratic function Hθ (x) =
∑

i< j θi j xi xj is feasible for any real
vector θ = (θi j ) ∈ Rd(d−1)/2 because the condition of Corollary 2 is satisfied. The obtained model pθ (x)
is simply the multivariate normal density. Indeed, there exists a unique positive definite matrix Σ = (σi j)
such that σii = σ2

i and (Σ−1)i j = θi j (Dempster (1972)). We also point out that the covariance selection
model (Gaussian graphical model) is specified by the set of edges (i, j) such that θi j = 0. See Lauritzen
(1996) and Whittaker (1990) for details of the covariance selection model.

The following example deals with three-dimensional interaction. We emphasize that it is not easy to
construct such a model if we use exponential families.

Example 3 (Three-dimensional interaction). Let d = 3 and ri be the standard normal density for
i = 1,2,3 and define Hθ (x1, x2, x3) = θx1x2x3, where θ is a real parameter. The function is feasible by
Corollary 2. The obtained distribution can describe Simpson’s paradox for continuous variables, that
is, the conditional correlation coefficient between the first and second variables given the third variable
depends on the value of the third variable; Gaussian distributions do not have this property. As θ→∞,
the distribution tends to a distribution supported on {x ∈ R3 | |x1 | = |x2 | = |x3 |, x1x2x3 ≥ 0} that is the
optimal coupling between the three marginal distributions:

Minimize −
∫

x1x2x3 p(x1, x2, x3)dx

subject to p with marginals equal to ris.

We can see this convergence in more detail through the relationship with the entropic optimal transport
problem discussed in Appendix B.3 of Sei and Yano (2024).

Example 4 (count data). Suppose that (Xi,dxi) for i = 1,2 is the set of non-negative integers with
the counting measure. For each i, let ri(xi; νi) = (νxii /xi!)e

−νi be the Poisson distribution with mean
νi > 0 and define Hθ (x1, x2) = θx1x2 for θ ∈ R. Then we can see that Hθ is feasible for any θ ∈ R
from Corollary 2. The parameter θ controls the correlation between the two variables. The range of the
Pearson correlation coefficient is a proper subset of (−1,1) that depends on ν = (ν1, ν2). Table 1 shows
numerical evaluation of the lower and upper bounds of the correlation coefficient for several values
of ν2 with ν1 set to 1, where the Sinkhorn–Knopp algorithm (Sinkhorn and Knopp (1967)) is applied
for this evaluation; see Appendix B.3 of Sei and Yano (2024) for details of the computation. Geenens
(2020) discusses another construction of bivariate distributions with Poisson marginals and a negative
association.
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Table 1. Ranges of the Pearson correlation coefficient for the Poisson marginal model. Parameter ν1 is set to 1.

ν2
0.25 0.5 1 2 4

upper bound 0.82 0.87 0.99 0.94 0.93
lower bound −0.50 −0.67 −0.74 −0.81 −0.87

Example 5 (mixed variables). In our model, the domains X1, . . . ,Xd are not necessarily identi-
cal. Suppose that d = 2, X1 = R and X2 = {0,1} for simplicity. (The argument presented herein is
easily generalized to other domains and higher-dimensional cases.) Then, the minimum informa-
tion dependence model is p(x1, x2; θ,ν) = exp(θ�h(x1, x2) − ã1(x1; θ,ν) − ã2(x2; θ,ν) − ψ(θ,ν)), where
ãi(xi; θ,ν) = ai(xi; θ,ν) − log ri(xi; ν). The interaction between the continuous and discrete variables is
described by the canonical statistic h(x1, x2).

The model is interpreted as regression models in two ways as follows. First, let x1 be the explanatory
variable and x2 be the response variable. The conditional density of x2 = 1 given x1 is written as

p(x2 = 1|x1; θ,ν) = 1
1 + exp(−θ�u(x1) − α(θ,ν))

,

where u(x1) = h(x1,1) − h(x1,0) and α(θ,ν) = −ã2(1; θ,ν) + ã2(0; θ,ν). This is the logistic regression
model, except that the intercept term α(θ,ν) depends on the other regression coefficient θ. Since ν is
a nuisance parameter, we can treat α(θ,ν) as a nuisance parameter. More precisely, it is shown that
there is a one-to-one correspondence between α(θ,ν) and r2(1; ν), given θ, by Theorem 1. Thus, the
proposed model is equivalent to the logistic model in this sense, and the difference is which of α and
r2 is specified first.

Next, let x1 be the response variable and x2 be the explanatory variable. The conditional density of
x1 given x2 is

p(x1 |x2; θ,ν) = exp(θ�h(x1, x2) − ψ2(θ,ν |x2))m(x1; θ,ν),

where m(x1; θ,ν) := e−a1(x1;θ,ν)r1(x1; ν) is the base measure independent from x2, and ψ2(θ,ν |x2) is
the normalizing constant that makes

∫
p(x1 |x2)dx1 = 1. This is just a generalized linear model except

that the base measure depends on the regression coefficient θ. From Theorem 1, the base measure has
a one-to-one correspondence with the marginal density for a given θ.

An important consequence here is that the two regression models of opposite direction are derived
from a common joint density function. This is in contrast to the traditional regression approach for
mixed variables (e.g., Chapter 6 of Lauritzen (1996) and Chapter 11 of Whittaker (1990)). Yang et al.
(2015) proposed a mixed-variable model based on univariate conditional exponential families, but the
model cannot avoid the restriction on the parameter space due to the integrability. The difference be-
tween our model and the model proposed by Yang et al. (2015) is that Yang et al. (2015)’s model spec-
ifies the base measure a priori instead of the marginal densities, while our model specifies marginal
densities instead of the base measure.

Remark 2 (Choice of h). The choice of canonical statistics h is one of important issues for practition-
ers. This section and Appendix A give several examples of h. The standard choice of h has the form
h(x) =

∏d
i=1 hi(xi) with hi :Xi→ R. There are several ways to choose hi: The first is to use polynomial

functions in a suitable sense. The second is to use monotone functions in a suitable sense. The third is
to employ known embedding functions; for example, see Appendix D.2. In any case, the conditional
inference in Section 3 is applicable, and the selection of h using the conditional likelihood is possible.
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3. Inference

In this section, we consider the inference for θ using the conditional likelihood as well as the sampling
algorithm for the minimum information dependence model.

3.1. Decomposition of the likelihood

Suppose that x(1), . . . , x(n) are independent and identically distributed (i.i.d.) according to a density in
a minimum information dependence model (2). Denote the components of x(t) as x(t) = (xi(t))di=1.

We decompose the likelihood function into a marginal part and a dependent part using an order and
a rank. By the well-ordering principle, we can define a total order ≤i on Xi for each i = 1, . . . ,d. Using
the ordering is convenient for the following description and, as we shall see in Lemma 1, the choice
does not affect the inference. Also, the following remark provides a standard choice of the ordering.

Remark 3 (Observational order). Given the n observations (x(t))n
t=1, we can use the “observational

order”, xi(t) ≤i xi(s) if t ≤ s, as if they are predetermined. The observational order makes implementa-
tion easier since it does not require sorting.

For each i = 1, . . . ,d, define the set of i-th marginal values by

Mi(1) ≤i · · · ≤i Mi(n), (6)

where for each i, Mi = (Mi(1), . . . ,Mi(n)) are the n observations (xi(t))nt=1 sorted by the predeter-
mined order ≤i . We call it the marginal order statistic. Define the rank statistic by a permutation
πi = (πi(t))nt=1 ∈ Sn such that xi(t) = Mi(πi(t)), where we denote the symmetric group of degree n by
Sn. If there are ties of observations, we choose π with equal probability over the set of permutations
giving the same observations. Denote the vector of all statistics as M = (M1, . . . ,Md) ∈

∏d
i=1X

n
i and

π = (π1, . . . , πd) ∈ Sdn . For each t = 1, . . . ,n, the t-th observation x(t) is recovered from M and π, and is
written as

x(t) = (M ◦ π)(t) = (Mi(πi(t)))di=1.

Example 6. For illustrative purposes, consider discrete spaces X1 = {a,b,c} and X2 = {1,2} equipped
with the alphabetical and numeric orders, respectively. Suppose that we have the 4 observations x(1) =
(c,2), x(2) = (c,1), x(3) = (b,2), x(4) = (a,1). Then, the marginal order statistics are M1 = (a,b,c,c)
and M2 = (1,1,2,2). The rank statistic π1 is an element of {(3,4,2,1),(4,3,2,1)} with equal probabil-
ity 1/2. Suppose that we choose π1 = (3,4,2,1). Similarly, choose π2 = (3,1,4,2) from four possible
permutations. Then, the observations are recovered from M and π as

(M ◦ π)(1) = (M1(π1(1)),M2(π2(1))) = (M1(3),M2(3)) = (c,2),

(M ◦ π)(2) = (M1(π1(2)),M2(π2(2))) = (M1(4),M2(1)) = (c,1),

(M ◦ π)(3) = (M1(π1(3)),M2(π2(3))) = (M1(2),M2(4)) = (b,2),

(M ◦ π)(4) = (M1(π1(4)),M2(π2(4))) = (M1(1),M2(2)) = (a,1).

The following lemma implies that the full likelihood is decomposed as the product of the conditional
likelihood independent of the marginal parameter ν and the marginal likelihood.
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Lemma 1. The likelihood function is decomposed as

L(M, π; θ,ν) :=
n∏
t=1

p((M ◦ π)(t); θ,ν) = f (π |M; θ)g(M; θ,ν),

where

f (π |M; θ) = e
∑n

t=1 θ
�h((M◦π)(t))∑

π̃∈Sdn e
∑n

t=1 θ
�h((M◦π̃)(t)) and g(M; θ,ν) =

∑
π̃∈Sdn

L(M, π̃; θ,ν).

Further, the conditional likelihood does not depend on the choice of the ordering:

f (π | M; θ) = e
∑n

t=1 θ
�h(x(t))∑

π̃∈Sdn e
∑n

t=1 θ
�h((xi (π̃i (t)))di=1)

.

Proof. For the former assertion, it is sufficient to show that the conditional distribution of π is

L(M, π; θ,ν)∑
π̃∈Sdn L(M, π̃; θ,ν) =

e
∑n

t=1 θ
�h((M◦π)(t))∑

π̃∈Sdn e
∑n

t=1 θ
�h((M◦π̃)(t)) .

Indeed, the adjusting-function part of log L(M, π; θ,ν) is

d∑
j=1

n∑
t=1

aj (Mj(πj (t)); θ,ν) =
d∑
j=1

n∑
t=1

aj(Mj(t); θ,ν)

and does not depend on π, which proves the former assertion. The latter assertion follows immediately
from the identity x(t) = (M ◦ π)(t).

Remark 4. Let us mention that the choice or the randomization in defining rank statistics does not
impact on the inference based on the conditional likelihood. In fact, the latter part of Lemma 1 shows
the conditional likelihood is independent from the choice of total orders (≤i)di=1 and is not affected
by the presence of ties, which is different from the inference of discrete copula models (Genest and
Nešlehová, 2007).

3.2. Conditional maximum likelihood estimation

In this subsection, on the basis of the conditional likelihood, we propose a method of estimating θ and
show that this yields a consistent estimator.

We first point out that the log conditional likelihood ratio is almost the same as the log likelihood
ratio and thus utilizing the conditional likelihood for the inference of θ is reasonable. To show this, we
make the following assumptions.

Assumption 1. The following hold:

(1) Let (Xi,di,dxi) for i = 1, . . . ,d be metric measure spaces. There exist κ > 0 and α ≥ 0 such that
for each i = 1, . . . ,d, the ε-covering number N(Xi,di,ε) is bounded as N(Xi,di,ε) ≤ κε−α for
sufficiently small ε > 0.
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(2) The parameter space Θ of canonical parameter θ is bounded.
(3) The canonical statistic h(x) is Lipschitz continuous with respect to x with Lipschitz constant Lh ,

where X is endowed with the 2 product metric dX(x, y) := (
∑d

i=1 d2
i (xi, yi))

1/2.

Assumption 1 (1) states that each Xi is a totally bounded space with a finite upper Minkowski–
Bouligand dimension (e.g., Falconer (2014)), and is quite general. Assumption 1 (2) is a usual assump-
tion. Assumption 1 (3) ensures the existence of p(x; θ,ν) by Corollary 3 and that of an approximator of
p(x; θ,ν).

Under these assumptions, we obtain the following theorem implying that the log conditional likeli-
hood ratio (per sample) approaches to the log likelihood ratio (per sample) uniformly in θ as the sample
size gets larger.

Theorem 2. Let θ0 be the true canonical parameter in the parameter space Θ of θ, and let ν0 be the
true marginal parameter in the parameter space N of ν. Suppose that x(1), . . . , x(n) are i.i.d. according
to p(x; θ0, ν0).

(1) Under Assumption 1, there exists a positive constant C not depending on n such that we have

E

[
sup
θ∈Θ

1
n

����log

∏n
t=1 p(x(t); θ0, ν0)∏n
t=1 p(x(t); θ,ν0)

− log
f (π | M; θ0)
f (π | M; θ)

����] ≤ Cεn, (7)

where

εn :=max
{
n−
(d−1)α+1
2(dα+1) (log n)−

α
2(dα+1) ,n−

1
dα+1 (log n)

1
dα+1

}
.

(2) In addition, under Assumption 1 and under the additional assumption that for i = 1, . . . ,d,
the marginal density ri(xi; ν) is log-Lipschitz continuous with Lipschitz constant Lri ,ν . where
supν∈N Lri ,ν <∞, there exists a positive constant C not depending on n such that for any subset
S ⊂ N containing ν0, we have

E

[
sup

θ∈Θ,ν∈S

1
n

����log

∏n
t=1 p(x(t); θ0, ν0)∏n
t=1 p(x(t); θ,ν) − log

f (π | M; θ0)
f (π | M; θ)

����
]
≤ C

{
sup
ν∈S

D̃(ν0, ν) + εn
}
, (8)

where D̃(ν0, ν) :=
∑d

i=1{‖ri(·; ν0) − ri(·; ν)‖1 + D(ri(·; ν0),ri(·; ν))} with D(·, ·) the Kullback–
Leibler divergence.

The proof of the theorem is given in Appendix C.3 of Sei and Yano (2024). The main ingredients
of the proof are the approximation using ε-net, the Stirling approximation (e.g., Robbins (1955)), the
�1 and the Kullback–Leibler deviation inequalities for the multinomial distribution (Weissman et al.
(2003) and Agrawal (2020)), the recent quantitative stability result for the entropic optimal transport
with respect to the marginals (e.g., Eckstein and Nutz (2022)), and the Pythagorean theorem for the
minimum information dependence model (Theorem S.1 in Appendix B.2 of Sei and Yano (2024)).

Theorem 2 implies that the marginal order statistics M are almost ancillary for the dependence
parameter θ, that is, they contain little information about θ:

E

[
sup
θ∈Θ

����1n log
g(M; θ0, ν0)
g(M; θ,ν0)

����] → 0.

In the literature, there are several results related to Theorem 2. In the bivariate Gaussian model, the
sample variances are shown to be almost ancillary for the correlation parameter; see Example 2.30 of
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Cox and Hinkley (1974). In contingency tables, Choi, Blume and Dupont (2015) and Little (1989) have
also shown that the marginal frequency is an almost ancillary statistic for the dependence parameter.

Henceforth, fix the marginal order statistics M and denote h∗(π) =
∑n

t=1 h((M ◦ π)(t)) ∈ RK for
simplicity. The conditional likelihood is then expressed as

f (π |M; θ) = eθ
�h∗(π)∑

π̃∈Sdn eθ�h∗(π̃)
(9)

and forms an exponential family with a canonical parameter θ and a sufficient statistic h∗(π). Expo-
nential families on permutations without conditioning and their limiting behavior were investigated by
Mukherjee (2016), where the limit of the model was shown to be a minimum information copula model
under suitable conditions.

Definition 5. The conditional maximum likelihood estimate (CLE) θ̂ is a maximizer of the conditional
likelihood (9).

Using Theorem 2, we obtain the consistency of CLE. To show this, we make an additional assump-
tion.

Assumption 2. There exists a p(·; θ0, ν0)-square-integrable function A(·) such that�����
d∑
i=1

ai(xi; θ,ν0) −
d∑
i=1

ai(xi; θ ′, ν0)

����� < A(x)‖θ − θ ′‖ for θ � θ ′ ∈ Θ.

This assumption ensures that the log-likelihood of the minimum information dependence model
forms Glivenko–Cantelli class (e.g., van der Vaart and Wellner (1996)), and is expected by the quanti-
tative stability result for the entropic optimal transport with respect to the cost (e.g., Eckstein and Nutz
(2022)).

Then, we obtain the following consistency result of CLE θ̂.

Corollary 4. Under Assumptions 1 and 2, we have θ̂→ θ0 in probability.

We then consider the asymptotic variance of θ̂. Let Ψ(θ) be the potential function of the conditional
likelihood (9) as an exponential family, that is, Ψ(θ) = Ψ(θ |M) = log

(∑
π̃∈Sdn eθ

�h∗(π̃)
)

. Then the con-

ditional likelihood (9) can be written as f (π |M) = exp(θ�h∗(π) − Ψ(θ)). Denote the derivative with
respect to the parameter as ∂j = ∂/∂θ j . The expectation parameter and Fisher information matrix are

μj(θ) = ∂jΨ(θ) = E[h∗j (π)|M] and (10)

G jk(θ) = ∂j∂kΨ(θ) = E[{h∗j (π) − μj(θ)}{h∗k (π) − μk (θ)}|M], (11)

respectively, where h∗j(π) is the j-th element of h∗(π) and the expectation is taken with respect to
f (π |M; θ).

For 2 by 2 contingency tables, CLE was shown to be asymptotically normal and efficient by Hark-
ness (1965), based on the asymptotic form of the non-central hypergeometric distribution (Hannan and
Harkness (1963)); see also Kou and Ying (1996). For general contingency tables, the following theorem
holds.
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Theorem 3 (Haberman (1977), Theorem 4.1). Suppose that X1, . . . ,Xd are finite. Then, the asymp-
totic distribution of

√
n(θ̂ − θ) is N(0,g jk(θ)), where g jk(θ) is the inverse of the Fisher information

matrix gjk(θ) with respect to θ of the model (2). The conditional Fisher information matrix in (11)
satisfies G jk(θ)/n→ gjk(θ) in probability.

In Appendix B.1, we show that the Fisher information matrix gjk is the Hessian matrix of the poten-
tial function ψ and actually coincides with that given by Haberman (1977). We also provide a useful
expression for gjk using the back-fitting algorithm (Buja, Hastie and Tibshirani (1989)). Furthermore,
in Appendix B.2, the canonical parameter θ and the marginal parameter ν are shown to be orthogonal
to each other.

We expect that the same property as Theorem 3 holds for infinite sample spaces. A numerical study
supporting this claim is provided in Section 4. Note that even the

√
n-consistency of the maximum

likelihood estimator (MLE) for the exponential families on permutations has not been shown in the
literature. Mukherjee (2016) showed the MLE to be consistent, but obtained a

√
n-consistency result

only for the pseudo-likelihood estimator of Besag. Although the asymptotic normality in general cases
is not proved, it is reasonable to use the inverse of the conditional information matrix G jk(θ̂)/n as an
estimate of the asymptotic covariance of θ̂. We also suggest using the likelihood ratio (or score/Wald)
test and Akaike’s information criterion assuming asymptotic normality.

From the theory of discrete exponential families (e.g., Rinaldo, Fienberg and Zhou (2009)), we
obtain the following lemma.

Lemma 2. Let P = conv({h∗(π̃) | π̃ ∈ Sdn}) ⊂ RK be the convex hull of the range of the sufficient
statistic. Suppose that the interior of P is nonempty. Then, CLE θ̂ exists if and only if h∗(π) ∈ int(P).
The estimator is unique and satisfies μj(θ̂) = h∗j (π), whenever it exists.

The condition int(P) � ∅ in the lemma is difficult to check because it requires the computation of
all possible values of h∗. We provide a tractable sufficient condition in Subsection 3.4.

Since any exponential family is log-concave with respect to the canonical parameter, we can use, in
principle, any convex programming solver to obtain CLE. However, a critical issue here is to calculate
the normalizing constant in the denominator of (9). To overcome this difficulty, we propose a sampling
approach and a pseudo likelihood approach in the following subsections.

3.3. Estimation via Monte Carlo

To perform the conditional inference, we need to compute the expectations of several statistics under
the conditional distribution (9). We propose a sampling method in the Metropolis–Hastings manner de-
scribed in Table 2, which is quite easy to implement. We call the method the exchange algorithm. Note
that the method is essentially the same as those for contingency tables (e.g., Diaconis and Sturmfels
(1998)).

Note that the marginal order statistics M are preserved during the procedure. The state space of the
Markov chain is Sdn . The following lemma is obtained immediately from the construction, and the proof
is omitted.

Lemma 3. The chain (π(l))∞
l=1 from the exchange algorithm is ergodic with its stationary distribution

f (π |M; θ) in (9).
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Table 2. Exchange algorithm.

Input: An initial permutation π(0) ∈ Sdn and the number of samples L.
Output: L samples (π(l) ∈ Sdn )Ll=1 of permutations.
Step 1: Initialize π← π(0) and l = 1.
Step 2: Select 1 ≤ i ≤ d and 1 ≤ s < t ≤ n uniformly at random.
Let τist ∈ S

d
n be the transposition between s and t with respect to the i-th variable.

Compute the conditional likelihood ratio ρ =
f (π◦τist |M ;θ)
f (π |M ;θ) =

eHs (π◦τ ist )+Ht (π◦τ ist )

eHs (π)+Ht (π) ,
where Ht (π) = θ�h((M ◦ π)(t)).
Step 3: Generate a random number u uniformly distributed on [0,1].
If u ≤ min(1, ρ), then update π to π ◦ τist .
Step 4: Let π(l) ← π and l← l + 1.
Go to Step 2 if l ≤ L, and output (π(l))L

l=1 otherwise.

Remark 5. It is natural to consider a sampling method for p(x; θ,ν). A naive method is just to gener-
ate n random elements (xi(t))nt=1 according to the marginal distribution ri(xi; ν) for each i = 1, . . . ,d,
independently, and then to employ the exchange algorithm.

However, the method is not exact. Indeed, if n = 1, then the procedure generates a sample from the
independent model

∏d
i=1 ri(xi; ν), not from the correct distribution. It is expected that the distribution

of the sample generated in this way converges to the correct distribution as n→∞. This observation is
supported by Theorem 2 because the target marginal density g(M; θ,ν) and the independent counterpart
g(M; 0, ν) are asymptotically equivalent as n→∞.

We can compute CLE θ̂ via MCMC in line with Geyer and Thompson (1992). More specifically,
let θ be a current estimate of θ̂ and let {π(l)}L

l=1 denote a sample from the conditional likelihood in
(9) obtained by the exchange algorithm. The quantities μj (θ) and G jk(θ) are approximated by μ̌j =∑L

l=1 h∗j(π(l))/L and Ǧ jk =
∑L

l=1(h∗j (π
(l)) − μ̌j)(h∗k (π(l)) − μ̌k)/L. Then, the estimate is updated by

Fisher’s scoring method: θ j ← θ j +
∑K

k=1 Ǧ jk{h∗k(π) − μ̌k }, where Ǧ jk is the inverse matrix of Ǧ jk .
The procedure is repeated until convergence. As noted by Geyer and Thompson (1992), the MCMC
samples can be reused at every step by importance sampling.

The standard error of θ̂ j is estimated by (Ǧ j j/n)1/2. Hypothesis testing and model selection based on
the likelihood ratio statistic (or score/Wald statistic) are also available, where the statistic is computed
from the MCMC samples.

3.4. Besag’s pseudo likelihood

An alternative to CLE is Besag’s pseudo likelihood estimator for permutations (see Mukherjee (2016)),
which does not require the normalizing constant in (9). The pseudo likelihood estimator (PLE) is
defined as a maximizer of

d∏
i=1

∏
1≤s<t≤n

f (πi(s), πi(t) | (πj(u))(u, j)�(s,i),(t ,i),M; θ),

where π = (πi(t)) ∈ Sdn is the observed rank statistic and

f (πi(s), πi(t) | (πj (u))(u, j)�(s,i),(t ,i),M; θ) = 1

1 + eθ�(h∗(π◦τ
i
st )−h∗(π))

.
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Recall that τist denotes the transposition between s and t with respect to the i-th variable (see Sub-
section 3.3). A similar form of PLE for copula models was proposed by Chen and Sei (2022) in the
framework of scoring rules.

The expression of the pseudo likelihood coincides with the likelihood of a logistic regression model,
where the explanatory variable is uist = h∗(π) − h∗(π ◦ τist ) ∈ RK and the response variable is yist = 1
for all i and (s, t). Hence, any software package for logistic regression can be utilized.

As a consequence of regarding PLE as MLE of a logistic regression model, we obtain a condition
for the existence of PLE.

Lemma 4 (Albert and Anderson (1984)). Let Q = conv({h∗(π ◦ τist ) | 1 ≤ i ≤ d,1 ≤ s < t ≤ n}).
Suppose that int(Q) �∅. Then, PLE exists if and only if h∗(π) ∈ int(Q).

The condition h∗(π) ∈ int(Q) is a sufficient condition for h∗(π) ∈ int(P) in Lemma 2 because Q ⊂ P.
In other words, we obtain the following theorem that is practically useful since we first try to find PLE,
and if that succeeds, we can then proceed to computing CLE.

Theorem 4. If PLE exists, then CLE exists.

Further, we obtain the consistency of PLE. For i = 1, . . . ,d, and for (s, t) ∈ {1, . . . ,n}2 with s � t, let
uist = h∗(π) − h∗(π ◦ τist ) ∈ RK .

Theorem 5. In addition to Assumptions 1 (2)–(3), we assume that

• for any v ∈ RK and θ ∈ Θ, E
[∑d

i=1{v
�ui12}

2{cosh(θ�ui12/2)}
−2

]
> 0, and

• for each i = 1, . . . ,d, there exists x0
i such that Ed2

i (Xi(1), x0
i ) <∞.

Then, PLE converges to θ0 in probability.

The proof is given in Appendix C.5 and employs the theory of U-statistics (in particular, the theory
of Mm=2-estimators); see Bose and Chatterjee, 2018, de la Peña and Giné, 1999). The assumptions
in the theorem are quite mild. The first additional assumption ensures the global uniqueness of the
expected pseudo likelihood; Hyvärinen (2006) discusses a similar assumption for PLE in Boltzman
machines. The second additional assumption ensures the moments of marginals.

Note that in Boltzman machines, PLE can be regarded as the contrastive divergence learning (Hinton,
2002) that is a surrogate of MLE via MCMC; see Hyvärinen (2006). The same argument is applicable
to our case, which, together with Theorems 4–5, suggests that PLE is adopted as the initial value of
Fisher’s scoring method.

Remark 6 (Computation time). Generally, as the computation of CLE includes MCMC iteration in
each optimization step, the computation of PLE is faster than that of CLE. This aspect is confirmed in
the subsequent simulation studies.

Finally, by applying the theory of Mm=2-estimators (Theorem 2.3 of Bose and Chatterjee (2018); see
also Appendix C.6), we can estimate the asymptotic variance of PLE θ̂PLE by the sandwich estimator
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(4/n)Ĵ−1
PLE ÎPLE Ĵ−1

PLE, where

ÎPLE =
1
n

n∑
s=1

(
1
n

n∑
t�s,t=1

d∑
i=1

uist

1 + eθ̂
�
PLEu

i
st

) (
1
n

n∑
t�s,t=1

d∑
i=1

(uist )�

1 + eθ̂
�
PLEu

i
st

)
and

ĴPLE =
2

n(n − 1)
∑

1≤s<t≤n

d∑
i=1

uist (uist )�

{1 + eθ̂
�
PLEu

i
st }2

.

4. Simulation studies

In this section, we provide several numerical studies for the inference based on CLE and PLE.

4.1. Gaussian cases

We first examine the performance of CLE developed in Section 3 by applying it to the Gaussian model.
We generated a random sample {x(t)}n

t=1 of size n = 50 from the 4-dimensional centered Gaussian
distribution with the covariance matrix σi j = (1/2) |i−j | . For estimation, we assumed the full Gaus-
sian model, which is a minimum information dependence model (Example 2). The parameter of in-
terest is θ = (θk)6k=1 = (−σ

12,−σ13,−σ14,−σ23,−σ24,−σ34), where σi j denotes the inverse of σi j .
The true value of θ is set to θ = (2/3,0,0,2/3,0,2/3). The tolerance for solving the conditional likeli-
hood equation was set to 10−2 and the MCMC length L was adaptively increased from an initial value
L = 150n = 7500. We used PLE as an initial value for the Fisher scoring method on CLE. Furthermore,
the scoring method is restarted if a component of θ becomes a huge value at some step due to variability
of MCMC. These rules are practically effective and adopted in subsequent examples as well.

We repeated the same experiment 1,000 times. Table 3 shows the root mean square errors of CLE
and MLE together with those of PLE defined in Section 3.4. CLE has almost the same performance as
MLE. PLE is also competitive but slightly worse. Note that the values on θ5 and θ6 are close to those
on θ2 and θ1, respectively, by symmetry of the covariance structure.

We also examined other covariance matrices of the form σi j = ρ
|i−j | for ρ ∈ {0,1/4,1/2,3/4} and

σi j = (1− ρ)δi j + ρ for ρ ∈ {1/4,1/2,3/4}. The root mean squares of the norm ‖θ̂ − θ‖ are summarized
in Table 4, where the number of experiments is 200 in each case.

The mean computational time (resp. standard deviation) for CLE and PLE per each experiment was
6.2 (3.3) and 2.0 (0.2) in seconds, respectively. We find that PLE is faster and (numerically) more
stable.

Table 3. Root mean square errors of three estimators. The model is Gaussian. The true parameter value is θ =
(2/3,0,0,2/3,0,2/3).

θ1 θ2 θ3 θ4 θ5 θ6

CLE 0.283 0.253 0.225 0.314 0.251 0.285
MLE 0.285 0.254 0.226 0.313 0.251 0.286
PLE 0.300 0.262 0.235 0.337 0.260 0.306
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Table 4. The root mean squares of the norm ‖θ̂ − θ‖ for the three estimators. The model is Gaussian. The co-
variance structures are σi j = ρ |i−j | for the auto-regressive model and σi j = (1 − ρ)δi j + ρ for the exchangeable
model.

Auto-regressive model Exchangeable model
ρ = 0 ρ = 1/4 ρ = 1/2 ρ = 3/4 ρ = 1/4 ρ = 1/2 ρ = 3/4

CLE 0.415 0.507 0.647 1.410 0.477 0.688 1.392
MLE 0.416 0.509 0.653 1.422 0.479 0.693 1.398
PLE 0.433 0.529 0.694 1.494 0.507 0.734 1.516

4.2. Three-dimensional interaction

We next consider a three-dimensional interaction model

h(x1, x2, x3) = (x1x2, x1x3, x2x3, x1x2x3)�

on X =
∏3

i=1Xi = R
3. The true parameter value of θ is set to θ = (1,0,0,−1) and the true marginal

densities are set to the standard normal distribution. For the simulation, we first generate a “population”
of size N = 103 by the sampling algorithm in Remark 5 with the number of iterations L = 150N . Then
a sample of size n = 100 is randomly selected from the population without replacement. The tolerance
for CLE and the step length of MCMC are set to the same values as the Gaussian case. We repeated
the same experiment 1,000 times.

Table 5 shows the root mean square errors of CLE and PLE together with the coverage probability
of the 95% confidence intervals constructed from CLE. As expected, CLE has smaller error than PLE.
The confidence intervals are almost exact or slightly conservative.

We also examined other parameter values θ = (a,0,0,−a) for a ∈ {0,1,2}. The root mean squares of
the norm ‖θ̂ − θ‖ are summarized in Table 6.

4.3. Mixed variables

Finally, we study a case with continuous and discrete variables. As in Example 5, the marginal dis-
tributions are set to Beta(10, 10) and Poisson(3), respectively. The canonical statistic is h(x1, x2) =
x1/(1 + x2) and the true parameter values are set to θ ∈ {0,10,100}. The sampling method is the same
as the preceding subsection except that the sample size is n = 50. The tolerance for solving CLE was
set to 10−5.

Table 7 shows the root mean square errors, biases and standard deviations of CLE and PLE. CLE
has better performance than PLE.

Table 5. Root mean square error of two estimators and coverage probabilities of the 95% confidence inter-
vals based on CLE. The model is the three-dimensional interaction model and the true parameter value is
θ = (1,0,0,−1).

θ1 θ2 θ3 θ4

error of CLE 0.214 0.159 0.153 0.168
error of PLE 0.260 0.190 0.189 0.250

coverage 0.953 0.952 0.965 0.968
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Table 6. The root mean squares of the norm ‖θ̂ − θ‖ for CLE and PLE. The model is the three-dimensional
interaction model. The true parameter values are θ = (a,0,0,−a), where a ∈ {0,1,2}.

a = 0 a = 1 a = 2

CLE 0.211 0.353 0.556
PLE 0.230 0.459 0.738

Table 7. Root mean square errors, biases and standard deviations of the two estimators. The model is h(x1, x2) =
x1/(1 + x2) with the beta and Poisson marginals. The true parameter value is set to θ ∈ {0,10,100}.

θ = 0 θ = 10 θ = 100
RMSE bias SD RMSE bias SD RMSE bias SD

CLE 8.19 0.08 8.18 9.40 1.14 9.33 29.26 4.96 28.84
PLE 9.03 0.12 9.03 10.34 1.89 10.17 32.34 7.31 31.51

5. Future directions

We here address potential future directions of our work.
The interpretability of the canonical parameter θ have to be more clarified. In Section 2, we have

clarified the connection between the total correlation and θ. In the application to Earthquake data
in Appendix D.2, we have demonstrated that the estimation of θ not only provided the existence of
the dependence but also identified the pattern of the dependence. For clearer interpretation of θ, the
connection to the partial correlation has to be more investigated.

The asymptotic properties of CLE have to be clarified. The asymptotic normality and efficiency for
contingency tables are described in Theorem 3. We expect that the same properties are valid even for
infinite sample spaces. The limiting behavior of the approximate sampling algorithm in Remark 5 as
n→∞ is also under investigation.

In Theorem 4, we found that CLE of θ exists under suitable conditions. However, if the dimension
of θ is high, the estimator may not exist and some regularization will be necessary. A simple method
of regularization is to assume a (conditional) conjugate prior density

p(θ |M) = exp(λ0μ
�
0 θ − λ0Ψ(θ))

for the exponential family (9), where Ψ(θ) is the potential function of the conditional likelihood in (9),
and μ0 ∈ RK and λ0 > 0 are hyper-parameters. The maximum a posteriori estimator exists if μ0 is an
interior point of P defined in Lemma 2. In practice, we can select μ0 as the sample mean of randomly
generated vectors in h∗(Sdn). The hyper-parameter λ0 may be set to 1/n as a rule of thumb. Investigating
the PLE with regularization would be another important issue.

In our estimation procedure, we need to perform MCMC sampling as stated in Subsection 3.3. The
proposed algorithm was to exchange two elements of permutations. This is just one particular move. A
mover producing a shorter mixing time should be found. Parallel algorithms will also be valuable.

We focused on estimation of the canonical parameter θ representing the dependence. However, es-
timation of the marginal parameters ν is also important in some cases. For example, if our goal is to
predict future observations, then an estimator of the marginal parameters is necessary. A simple proce-
dure to estimate ν is to perform the maximum likelihood estimation assuming the independent model∏d

j=1 rj (xj ; ν). The obtained estimator ν̂ is consistent by Theorem 2. However, ν̂ is not asymptotically
efficient in general, as observed in the bivariate Gaussian model with a common variance.
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In our analysis, we assumed that the data were completely observed. In practice, handling data miss-
ing is a common challenge. To deal with missing data, we can extend the domain Xj to Xj ∪ {NA} for
each j = 1, . . . ,d, where NA indicates missing. Then, the proposed method is applicable whenever we
specify the canonical statistic h(x) including the missing indicator. For example, h(x1, x2) = x1I{x2=NA}
represents a missing effect of the second variable x2 on the first variable x1. A missing data analysis is
important future work.

Finally, there are two mathematical open problems. First, the properties of the potential function
ψ(θ) in the model (2) are unknown except for convexity. We conjecture that ψ(θ) is analytic at every
interior point, by analogy with the standard theory of exponential families. However, ψ(θ) is defined by
functional equations, which makes the problem complicated. The second open problem is the equiv-
alence of the three feasibility conditions discussed in Subsection 2.3. The problem is related to the
closedness of sum spaces of L1-functions; see Rüschendorf and Thomsen (1993).
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