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We consider the stochastic behavior of a class of local U-statistics of Poisson processes—which include subgraph
and simplex counts as special cases, and amounts to quantifying clustering behavior—for point clouds lying in
diverging halfspaces. We provide limit theorems for distributions with light and heavy tails. In particular, we prove
finite-dimensional central limit theorems. In the light tail case we investigate tails that decay at least as slow as
exponential and at least as fast as Gaussian. These results also furnish as a corollary that U-statistics for halfs-
paces diverging at different angles are asymptotically independent, and that there is no asymptotic independence
for heavy-tailed densities. Using state-of-the-art bounds derived from recent breakthroughs combining Stein’s
method and Malliavin calculus, we quantify the rate of this convergence in terms of Kolmogorov distance. We also
investigate the behavior of local U-statistics of a Poisson process conditioned to lie in a diverging halfspace and
find that the upper bound on the Kolmogorov distance to a standard normal distribution is smaller the lighter the
tail of the density is.
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1. Introduction

Attempts to investigate the behavior of shapes in the tails of distributions have thus far focused on
spherically symmetric densities outside of an expanding ball [13—15,23]. Though some of these results
can easily be expanded to densities with elliptical level sets, results for more general densities remain
unexplored. Densities with heavy and light tails (in the sense of exponential decay) have been explored
in the literature of geometric and topological functionals, however limit theory for geometric summaries
of extreme samples for even lighter tails—such as the Gaussian distribution—has gotten little attention.
This can be attributed to the absence of topological crackle [1] in the Gaussian tail case. In other
words, for a Poisson process with intensity proportional to a Gaussian, connected components and
higher dimensional topological features rarely form outside of a contractible core of balls centered
at the points of the process. However, the lack of interesting topology does not preclude noteworthy
clustering phenomena. In this study, we examine said clustering phenomena by means of the limit
theory of a class of local U-statistics Sg_,(6)—see (4) for a definition—of order k£ + 1 of Poisson
processes P, whose intensities are n times the measure induced by heavy and light-tailed densities f;
the points of P, are restricted to diverging halfspaces H,,(6) = t,H(6), where t,, — co as n — oo and
6 lies in the standard Euclidean (d — 1)-dimensional unit sphere S¢~'. We do so in a rather general
setup where the level sets of our densities are “rotund” [3,4], or egg-shaped, rather than spherically
symmetric. Our main results are the following finite-dimensional central limit theorems on the set of
real-valued functions on S9!,
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Theorem 1.1. Under appropriate conditions on t,, and the density f, if f has a light (exponentially-
decaying) tail, then (Si_,(6), 0 € §9=1) converges in a finite-dimensional sense to a white noise random
field. That is, for any m e N and 64,...,0,, € S91 e have

S']:,lnﬂ (Sk,n(gl) - E[Sk,n(el)]’ cee ’Sk,n(em) - E[Sk,n(gm)]) = (W(Gl)) :11

where W = (W(6), 0 € S~V are independent mean zero Gaussians with variance Var(W(6)) depending
on 6; the variance and normalization sequence (S ,)n>1 also depend on f and d. Furthermore, for
anymeN, 6,...,0,, € S and appropriate normalization sequence (Uk.n)nz1, if f has a heavy tail

U (Skn(01) = ELSkn (O] Sk (Om) = ElSkn(0)]) = (G(60) 7,
where G = (G(0), 0 € S471Y is a Gaussian process with covariance function
C(61,62) := v, (H(01) N H(62)),

and vy, is an absolutely continuous control measure on R depending on the kernel h = (hlr‘)rzo of the
U-statistic, the shape of the level sets, and the regular variation exponent associated to the tail of f.

We prove these results, and establish bounds in the Kolmogorov distance, by applying inequalities
derived in [7,18,21]. These aforementioned inequalities were ultimately proved using techniques that
combined Malliavin Calculus on Poisson spaces and Stein’s method, pioneered in [16]. Connections
between extreme value theory and these results are minimal. One notable exception is [22], where the
authors prove a Poisson limit theorem for the values taken by the kernels of the U-statistics using the
Malliavin-Stein method; this yielded asymptotic distributions for the order statistics of the values of
the kernels. Other applications of these seminal probability distance bounds—outside an extreme value
context—are cited in the monograph [12].

Studies of extremal behavior of components of random vectors yield that light tails exhibit asymp-
totic independence [5] and that regularly varying tails exhibit asymptotic dependence [5,11]. For the
class of densities we examine in this paper, [5] demonstrates that if a random vector X has a positive
density f with a light tail, then (61, X) and (6,,X) are asymptotically independent, and that for some
constants L, L, > 0,

’P((@l,X) > Lity,{62,X) > thn) —P((@l,X) > thn)P(<92,X> > Lzl‘n)

—0, n—ooo.
Equivalently, we have that
)P(X € H,(61) N Hy(62)) —P(X € Hy(61)) P(X € Hy(62)) | — 0.

What we are able to demonstrate is similar in spirit to the above, except for U-statistics Sk ,(6) of the
restricted point process £, N Hy(6).

Corollary 1.2. For f a light-tailed density, and any 6,6, € S471, if we have a sequence t,, — oo such
that Sk (0) obeys a central limit theorem as in Theorems 4.3 and 4.5, then for any s1,s2 >0

|P(Sk,n(91) < S1nsSkn(02) < 52.0) —P(Sk,n(01) < 51,0)P(Sk,n(62) < 52,)

-0, n—ox

s

where s; 5 1= si\/Var(Sk_,(0;)) + E[Sk »(8:)], i = 1,2.
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Figure 1. Two independent Poisson processes 7)?00 and 7’1100 with intensities proportional to ne ™) and

ne Y /2 je. having exponential and Gaussian tails, respectively. Points are conditioned to lie in the halfspaces
tH fort=1,3,5.

In addition to Theorem 1.1 and Corollary 1.2, we establish, via our proof method for the CLTs
of bounding the Kolmogorov distance, that convergence to normal of Sk ,(6) is much “quicker” for
densities with lighter tails (in the sense of smaller bounds) when the Poi(n) points of $,, are conditioned
to lie in H,(6). Though this is essentially a corollary of the moment asymptotics and the central limit
theorems, it captures the intuition behind Figure 1, where lighter tailed densities with the same level set
shape exhibit greater clustering behavior when conditioned to lie on the same halfspace H,,(6). Finally,
in Proposition 3.3, we recover a “loss of dimension” phenomenon known to exist for Gaussian joint
survival probabilities [8,9].

Before continuing, we will outline the structure of the paper. In Section 2, we spend a fair bit of time
defining the notions in convexity, point process functionals, and multivariate extreme value theory that
we need to make our results intelligible. Section 3 holds all of the precise moment asymptotics for both
classes of densities. Section 4 contains in it the proofs of the main results of the paper, in particular the
proofs of the theorems mentioned above. In Section 5, we give a quantitative statement of the behavior
of the “reversed” rate of convergence in the conditional case.

2. Setup

In this section, we introduce all the prerequisites for this article. To begin, we introduce the necessary
concepts in convexity. We begin with a brief lemma which describes a type of “support halfspace”,
which diverges and on which we will examine the clustering behavior of the local U-statistics. Let
(+,-) denote the Euclidean inner product and || x|| := 4/{x, x) the Euclidean norm. Our first result is an
important analogue of the support hyperplane theorem.

Lemma 2.1. Let D be a convex, bounded open subset of R which contains the origin. Then for every
0 € 84 there is a unique level L > 0 such that the closed halfspace

H@®)={xeR¥:(6,x)> L} )

satisfies (i) 0D N H(0) + @ and (ii) D c H(#)°.
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We deem the halfspace H(6) in Lemma 2.1 an outer support halfspace at angle 6 € S4~!. Further-
more, L = {p(6), where ¢p is the support function of D. The support function {p : RY — R of D is
defined as

¢p(u) :=sup{{x,u) : x € D}.

The support function and another useful function—the gauge function—are in some sense dual [10,20].
We now define the gauge function, which generalizes norms in describing the level sets of densities.

Definition 2.2. Given a convex set D c R containing the origin, the gauge function yp : R% — [0, 0]
of D is defined by

vyp(x):=inf{a > 0: x € aD}.

The gauge function yp is a convex function and positively homogeneous of degree 1, meaning that
vp(ax)=ayp(x), forallxe R4, @ > 0.

The gauge function yp has further important properties when D is open and bounded, in addition to
being convex and containing the origin. In the case that D is an open ellipse containing the origin, i.e.
D= L(B(O,r)), where B(0,r) = {x e R? Hlxll, <r}t, r >0, for some €-norm ||| ,, p € (2,00), on R4
and L an invertible linear transformation, then yp(x) = ||[L™' (x/r)|| p- This can be seen from the fairly
standard Lemma 2.3 below, which follows from the material of Chapter 2 in [10].

Lemma 2.3. If D is a bounded open convex subset of R? which contains the origin. Then yp satisfies:

1. yp is finite and continuous,
2. D={yp <1}and D={yp <1},
3. yp(x)=0ifand only if x =0.

Typically, we fix a set D in the background so we denote the gauge function yp as y. We can now
introduce the concept of a rotund set D [3,4].

Definition 2.4. Let D be a bounded open (strictly) convex set containing the origin. Then D is rotund
if

1. The gauge function of D, y : RY — [0, 0] is C? outside of the origin,
2. The Hessian of y? is positive definite outside the origin.

It can be shown by standard multivariable calculus methods, that if D = L(B(0,r)), where L is any
invertible linear transformation and B(0,r) an open €7 ball, p € (2,00), with radius r > 0, then D is a
rotund set. That D is also strictly convex follows from Minkowski’s inequality for norms.

As any rotund set D is strictly convex, dD N H(6) consists of a single point p for each § € S4~!. The
point {p} = 0D N H(0) satisfies the equation p = V{p(0), i.e. the gradient of the support function at 6
[20, see Corollary 1.7.3]. Additionally, that y is differentiable implies that D is also smooth; that is, the
family of sets {dD N H(), 6 € S4~!} are disjoint. Let us represent a point x € R as x = (u,v) where
u e R4 ! and v € R is the vertical coordinate. Let ey := (0,1) € R? represent the point where u =0
and v = 1. For any rotund set D and any angle 6 € S9~!, there exists an invertible linear transformation
A = Ag called an initial transformation such that

y(A@. 1)) —y(A(eq) ~llull? /2, u—0. )
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The concept of an initial transformation originated in [3,4]. The inverse of an initial transformation
brings D into correct initial position, following the definition in the same two articles. Formally, an
initial transformation A satisfies

1. A(eq) = V{p(0) =: p(6),
2. A({x=(u,v)eRe:v > 1}) = H(H),
3. The set A~!(D) is in correct initial position—i.e. (2) holds.

Additionally, there are two more facts worth noting. By the assumed invertibility of A we have
that e; € dA~!(D), just as p(#) € dD. Let y4 be the the gauge function associated to A~'(D). It is
straightforward to show that y4 =y o A. Note that if x € H, then x ¢ D, so that y(x) > 1. Additionally,
recall that A~'(H) = {x e R? : (eg4,x) > 1}. Therefore, if x € A~'(H) then y4(x) > 1, so A~'(H) is the
outer support halfspace at angle e; for A~!(D). In general, for any angle 6 € S%~! and ¢ > 0 we have
that

if x € tH then y(x) > 1. 3)

by the positive homogeneity of the gauge function .

Example 2.5. The initial transformations we have in mind, correspond to those in Section 9.3 of [4],
where existence is demonstrated for rotund sets. Here we illustrate some of the constituent transforma-
tions of A. The inverse of A consists of the composition of a rotation R, such that H becomes a closed
halfspace of the form

R(H)={xeR%:v> L},

where R(p) = (a,L); a vertical multiplication V : (u,v) + (u,v/L); a shear mapping S : (u,v) — (u —
av,v); and finally the composition of a rotation and a scaling acting on the horizontal coordinate u =
(x1,-..,X4—1). The determinant of an initial transformation A can be seen to satisfy

z2p(6) = det(A) = (A1 -+~ A4-1)"*{p(6) > 0,

where A; are the eigenvalues of the Hessian of yév R(D) /2 at (0,1) with the d'" row and column deleted.
You can see some of the respective linear transformations that go into an initial transformation of a
rotund set with gauge function

1/2
(2 +y%) S
5 ify>0
(x,y) = (12 # sin“(arctan(y/2x)) + 4)
Yeeel WY =00 i
(x” +y7) i
— if y <0.

in R? in Figure 2.

2.1. The class of functionals

We confine our study here to counts of a certain class of local U-statistics that represent values or
instances of Euclidean point configurations. We define the diameter of a subset A c R to be diam(A) :=
supy yeallx = yll. Let Xi‘ be the set of all k-tuples (xi,...,x¢) of elements of a finite subset X ¢ R¢
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Figure 2. Constituent transformations in an initial transformation of the rotund, egg-shaped, set on the far left with
gauge function yegg.

such that x; # x; for i # j. Our objects of interest are the functionals we deem U-statistics of X (of
order k + 1), defined as

1
SeXr) = oy > o), )

where A : (R?)**1 — [0, 00) is the kernel of the U-statistic Sy, i.e. a symmetric measurable map that
satisfies for every r > 0:

(H1) h’r‘ is translation invariant — i.e., for y € R, we have hlr‘(xo + Y, X+ y)= h’r‘(xo,. XKD,
(H2) h’r‘ is locally determined — i.e., there exists a « so that if h’l‘(xo, e Xk) >0

then diam({xo,...,x}) <k,
(H3) hlr‘(sxo,. CSXE) = h’r‘/s(xo,. .., x) forall s > 0,

(H4) hlr‘ is uniformly bounded, so that there exists an M < co with hlr‘ (x05. .., XK) <M.

It is clear to see that these kernels are closed under finite linear combinations, i.e. for Kernels
h’r‘ e .,h’r"m we have that er‘i | aihlr‘i satisfies (H1)—-(H4). These conditions are very similar to the
conditions outlined in [14]. Note that as a result of the definition of S; (X, r) above, we have

SXor)i= Y BW),
YcX,
| Y |=k+1

as well. On a final note, define
= 15(0,...,0). 5)

The definition of S (X,r) above mirrors that of [23] fairly closely. Examples of these functionals
include simplex counts in the Cech and Vietoris-Rips complexes as in [23] and induced subgraph
counts of [17] and non-induced subgraph counts of [2].

Fix a rotund set D. We finish this section by defining H,, = H,(0) := t,,H, where t,, — co as n — oo
and for every 6 € S4~!, H = H(#) is the halfspace specified by (1). Thus, we can specify our main
quantity of interest

Sk,n(e) =Sk (Pn N Hn’rn): (6)

where P, is the Poisson process with intensity n f, (r,);>1 is positive and r,, — r € [0,00) as n — oco. If
ry is constant, then we may drop condition (H3) from the requirement on the kernel 7%. We defer the
definition of the conditional setup until Section 3.2.
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In principle, we could let H,(6) = t,(6)H, where {1,(0)},cga-1 satisfies infg #,,(6) — oo; however,
with the added generality of the rotund level sets and already heavy notational burden, we suppose
that #,, is constant with respect to 6. However, such an approach would have relevance in the study of
asymptotic independence. For example, if X is a random vector on R? having density f, we may want
to restrict (6, X) to exceed its 1 — 1/n quantile.

We define f to be a probability density on R such that

f(x):=gy(x)), xeR?

where y = yp is the gauge function of a rotund set and g : [0,00) — (0,00) is the density generator,
following [S]. If g is continuous and nonincreasing, then {g > ¢} = [0,@) for some @ > 0, and by
Lemma 2.3, we have

{(f>cr=y"({g>c}) =aD, @)

in which case we say f is a homothetic density. We always require that g be positive over its domain,
which we take here to be [0, c0).

2.1.1. Some notation

Before continuing onto the class of distributions, let us take a moment to lay out some necessary
notation. Let p be the measure on R¢ associated with the density f and let N be the positive integers.
Define f4 := f o A= goya. As above, we let (1,v) € R? = R4~ x R denote a point such that u € R?~!
andv € Rand leteg = (0,1) € RY. Per usual, for two positive sequences (a, ), 1 and (b, )1 let a, ~ by,
denote

lim a, /b, =1;

n—oo
let a,, = O(b,,) denote that there exists an N and a positive constant ¢ > 0 such that forn > N, a,, < cby;
let a,, = O(b,,) denote a, = O(b,) and 1/a, = O(1/by,); finally, let a,, = o(b,) denote that a,, /b, — 0
as n — oo. To ease the notational burden, we will often denote a generic positive constant as C*, and
allow it to vary between lines.

2.2. The class of distributions

2.2.1. Light tails

The first class of distributions on R¢ which we consider in this paper consist of a class of homothetic,
light-tailed densities (consult [S] for an in-depth study). Consider a density f = g oy with g(x) :=
Cexp(—y¥(x)) and y the gauge function of a rotund set D, where  is a von Mises function. Namely,
is assumed to be twice continuously differentiable outside the origin, such that

e y/(t)>0forallr>0
e Y(t) > ooast— oo
e (1/¥')(t)—>0,ast— co.

A simple example of a Von Mises function is the power function (x) = x7 /7 with T > 0. Therefore,
as g is continuous and decreasing, f satisfies (7), so that f is a homothetic density. We shall refer to a
density f that satisfies

f()=Cexp(-y(y(x), xeRY,
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as a density with an exponentially-decaying tail. Additionally, such densities f are light-tailed because
g is rapidly varying in the sense of

lim =
1= g(t)

g(tx) oo if0<x<1,
0 if x> 1.

Under this setup, let a(¢) := 1/y’(¢) and suppose that
&= lim a(t,). 8)
n—o00

We can show that g is rapidly varying by noting that a(t)/t — 0 as t — co, which follows from
(1/¢")'(t) — 0 in the case that & = co. Continuing on, let us define ¢ := ¢ oy for any von Mises
function ¢ and gauge function y, and denote similarly ¢4 := i o y 4. It will be useful to define an affine
transformation «,,, defined by

an(u,v) := (Vina(tn)u, tn + a(t,)v). 9)
Furthermore, it is convenient to abbreviate the determinant of a;,. Namely,
Gn 1= | det(an)| = (alta)in) " a(,).

We offer the following lemma to establish the asymptotic behavior of . It can be shown that such g
as described above lie in the Gumbel max-domain of attraction [4, cf. Proposition 6.5].

Lemma 2.6. For a density f with exponentially-decaying tail, a gauge function vy of a rotund set in
correct initial position, and & > 0,

P(n(x) +y) = @(@n(0)) ~|ull® /2 +v + £ (Vy(ea), y), 10)

almost everywhere for (x,y) € R4 x R? and ay, is as defined at (9). Also, the convergence in (10) is
uniform in x or y if they are contained in a bounded subset of RY.

Proof. By Proposition 9.11 in [4], it suffices to show that

3 @)+ =@ ()| - €Ty e ),

and that a(t,)/a(t,;(y)) — 1 as n — oo, where t;,(y) a nonnegative real number between y(a,(x) + y)
and y(a,(0)). First, set y,, 1= y/(t, + a(ty)v) and x,, := @, (x)/(t, + a(t,)v). As y € C2, Taylor’s theorem
[24, cf. Theorem 2.7.2], yields that

Y(xn + yn) = ¥(xn) = Vy(xn), yn) + ra(yn)s (11)

where

d

d

1

rn(yn) = 5 Zl Zl Dij')’(xn + an}’n)}’n,i)’n,j’
i=1 j=
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where y,; is the i" coordinate of y,, D; ;v are the (continuous) second partial derivatives of vy, and
ay € (0,1) depend on x,,y,. The quantity x,, + a,y, — eq, as n — oo, and yp, ;yn j/llynll — 0 as well.
Continuing on, we have that the limit of (11) multiplied by #,, + a(t,)v is equal to

(Vy(xn),yn) " 'n(Yn)
[l ynl llynl

Y(an(x) +y) = y(@n(x)) = ||yl — (Vy(eq),y),

as yn/llynll = ¥/|ly|| and Vy is continuous. Uniformity of this convergence in x or y follows if either
x or y are contained in a bounded set. Second, to show a(t,)/a(t;(y)) — 1, let us set s,(y) := (¢, (y) —
tn)/a(ty) so thatt;(y) = t,, + a(ty)sn(y). Now, it is straightforward to see that

[1,(3) = tal < ly(an(x) + y) = y(@n(0))], (12)

where the righthand side of (12), divided by a(t,), converges to
lull® /2 +v +&E(Vy(eq).y)|-

Therefore, {s,(y)}n>1 is a bounded sequence for all y € R4, and uniformly so in x or y if x = (u,v) or
y are restricted to a bounded set. In conclusion, the mean value theorem yields

la(t, () = a(tn)l/a(tn) < a’(t;)|sn(y)] > 0, n — oo,

where #,;* — oo as n — oo as it is between 7;;(y) and f, and a’ vanishes at infinity. |

Proposition 2.7. For a density f with exponentially-decaying tail and y the gauge function of a rotund
set D, we have

p(Hy) ~ 2r)\9"D72| det(A 0 ay)| f4(@n(0))
=20 225(0)g(tn)gns
where we recall that q,, = | det(ay,)| and {p(0) = det(A) > 0.

Proof. The proof follows directly from Theorem 8.6 in [4] and Proposition 5.4 in [3]. O

In Proposition 2.7, fa(@,(0)) = g(ya(0.1,)) = g(t,), because ya(e;) = 1. For the sake of complete-
ness, we restate part 2 of Proposition 5.4 in [3].

Proposition 2.8. Suppose that fo = Ce~?AX) where A is an initial transformation that brings D into
correct initial position. Then, there exists an N € N and a function fy € L'(R?), such that for n > N we
have that

Ja(an(x))

fa(@n(0)) H{y >0} < fo).

2.2.2. Heavy tails

The second class of densities that we consider are those f = g oy, where v is the gauge function of
rotund set D and g is a regularly varying density generator. In other words, we let g be a regularly
varying function with tail index a > d, so that for x > 0

lim 8(tx) =x¢
1= g(r)
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When this holds we denote this by g € RV_,. Note that when g is continuous and nonincreasing f is
homothetic in the sense of (7), just like the light-tailed case.

2.3. Standard assumption

Having defined all the necessary quantities, we restate here the standard assumption used throughout
the paper (unless considering the conditional setup, or otherwise noted).

Definition 2.9 (Standard assumption). Throughout the paper we will fix a rotund set D (see Defi-
nition 2.4). Let (r,), > be a positive sequence that tends to a finite limit. Recall that Sy ,,(6) denotes
the U-statistic defined at (6)—namely, Si(P,, N Hy,,r;,)—where P, is a Poisson point process on R4
satisfying E[P,(A)] =n fA f(x)dx for each Borel set A c R4 and

Hy = Hy(0) = {x € R :(0,x) > 1a{p(6)),
with #,, — oo and {p () the support function at angle 6 € S d=1 of the rotund set D. Furthermore, f is

assumed to have the form f = g oy where g is a density generator which governs the tail behavior of f
and v is the gauge function of the rotund set D, which governs the shape of the level sets of f.

Note that both Theorem 1.1 and Corollary 1.2 seen at the beginning of the paper hold under the
standard assumption.

3. Moment convergence

3.1. Light tails

We begin with a treatment of moment convergence for the class of light-tailed densities encountered
in the previous section. Recall that the quantity £ is defined at (8)—see Section 2.2.1. The normaliz-
ing constants i , for the covariance in Proposition 3.1 differ depending on the behavior of ng(t,)rd.
Specifically, for the following regimes we have

[ng(t,)* 1 rdk g, if ng(ty)rd — 0,
Thn =  ng(tn)qn if ng(ta)ry — x €(0,00), (13)
[ng ()1 2k g, if ng(t)rd — .

Proposition 3.1. Under the standard assumption, for a density f with exponentially-decaying tail with
£>0and 6 € 4 we have

[Sea®]  _ Crazn(®) /(Rd)k /0 Oy [ [y = —re A7 Gidea))
i=1

= [ng(t) < rf gy (k+ D!

k
X exp { —(k+1y—r&! Z (Vy(p(@)),y,»)} dv dy,

i=1
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and for 1y, defined as at (13),

T kv .
U+ Ji)! if ng(tn)r,‘f — 0,
k+1 2k+1-£
. _ 7
nlgrgo Tk’InVar(Sk,n(@)) = —X k.t 5 if ng(tn)rg — x €(0,00),
f;l 5!((1{ +1 —5)!)
k,1 .
W if ng(tn)rfll — 00,

where Cy g = [2r/(k + D]@-D/2 gpg Iy ¢ is the integral defined at (23).
Furthermore, if 61,0, € SV and 0, # +0, then

Jim 77}, Cov(Syn(61). Sk.n(62)) =0,
If 01 = —0,, then Cov(Sk_,(61), Sk n(62)) = 0 for all n.

Remark 3.2. For the proof of a central limit theorem when & > 0, we need conditions which ensure
the limiting terms 7 , mentioned above are positive in the limit. Such conditions are not difficult to
satisfy in practice. For example, if in addition to conditions (H1)—(H4) above we have the existence of
ko and My such that

diam({x, . ..,xx}) < ko implies that h’f(xo,. coxg) >0,

and h’l< (x0,...,Xk) = My > 0 when h’l‘ (x0, - - -, X ) > 0—as is satisfied for non-induced subgraph counts
(and simplex counts)—then J; o > O for any values of £ > 0 and any behavior of r, considered in this
article. These “general conditions” are not unreasonable, and are employed throughout [2]. Given that
an induced subgraph is feasible [17], or realizable as an induced subgraph of a geometric graph, then
we can guarantee a positive integral by taking & = co or r;;, — 0 as n — oo.

Proof. Since #,, is Poisson, we have via the multivariate Mecke formula [12, cf. Theorem 4.4]
nk+1 k k
B O = Gy [ Moo [ 1 € ol (14)
Consider (14) and make the change of variables xy = x and x; = x + r,,y;. Further make the change

x = (Ao ay)(x). Then E[Sk ,(0)] is equal to

n**1rdk| det(A o ay)|
(k + 1)' (R4 )k+1

BX 0,31, . ., yi) falan())1{v > 0}

k
[ ] [f (Al@n(x)) + rnyi) HA(@n(x)) + ryi € Hn}] dxdy

nk 1 rdk g 25 (0) fa(n (0))FF! X Sfalay (x))
(k+1)! /(Rd)mh Oy YT 200 1{v=0}

fA an(x)+ A~ l(rnyl
Sa(@n(0))

dxdy.  (15)

1{<an<x> + A (ryi).ea) > 1y}

<[]

i=1
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Continuing with (15), we know that

falom(x) _
falan(0))

by Proposition 9.11 in [4] and (2). Additionally, note that

exp (= [w(rat@n() = ¥ (ral@n(©O))] ) = exp (= ull2/2 = v), n = e,

1{(an(x) + A™ (rmyi).ea) > tn} = Ha(t)v + (A7 (rayi)ea) > 0}
= l{v > _M;

a(tn)
_r<A_l()’i)»ed>}

— 00, 16
¢ (16)

—>1{v2

almost everywhere for y; and v. If € = co or r = 0 the limit in (16) becomes l{v > 0}. We must now
contend with the term

Sfa (a'n(x) +A™! (rnyi))
fa(an(0)) '

for which it suffices to recognize
alan(x) + A7 uyi) = palan(©) ~lull® /2+v + & (Tyalea). A~ ryi))
by Lemma 2.6. Note that

aleq + 1A (rnyi) — valeq) _
t

(Vya(ea). 4™ (ray) = lim ~ (VPO 31).

Therefore, the integral term in (15) (barring demonstration that the dominated convergence assumption
holds) tends to

k
/(Rd)kﬂ HO.y1...3)1{v 2 0} H vz —re (A7 () ea)}

k
xexp{ — ke Dl 2+ v) - rg Y <Vy<p<e>>,yi>} dxdy.

i=1

Now we must show that dominated convergence assumption holds for (15). As hf is uniformly
bounded by property (H4), then

k
O3,y < M ] [lvill < <},
i=1
by definition, where « is defined in property (H2) of hf Furthermore, we have that

Sfa (a'n(x) + A_l("n)’i
fa(an(0))

) H{{@n(x) + A (ryi).ea) 2 ta} < 1, (17)
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because ya(an(x) + A~ (rnyi)) = tn = ya(@n(0)) by (3) and the fact that y is increasing. That the
quantity
Sa(an(x))/ fa(@n(0)1{v = 0}
has an integrable upper bound follows from Proposition 2.8 (taken from [3]).
Now, let us consider the asymptotics of the covariance. The case when 6; = —6, follows from the

spatial independence of the Poisson process. Let us then consider 6 # —6;. In this case H(61)NH(6,) #
. Standard results, such as Proposition 7.2 in [13], yield that

k+1 p2k+2-¢ —_— C o
CoV(Skn(01),Skn(62) = ). )2E[hrn XD U Xk (X 0 X)

=1 f'((k +1 —5)'
XX U X, € HaO0D}X U X © Hu(02)} ] (18)

where X]EI) ,X,EZ),Xg are i.i.d. collections of k + 1 — €,k + 1 — ¢ and ¢ points with density f, respectively.
For a fixed ¢, the expectation term in (18) equals

k k
hrn(XQ,. s XP—1,XE5- - .,xk)hrn(xo,. s X1 X +15- - .,X2k+1_[)
(Rd)2k+2—€

2k+1-€

x 1_[ 1{x; € Hy(601), i € {0,....k}}1{x; € Hy(62), i ¢ {€,....k}} f(xi)dxi. (19)
i=0

Now, make the changes of variable xo = x and x; = x +r,y; fori=1,...,2k+ 1 — € as well as x —
(A o a,)(x) where A = Ag, is the initial transformation associated to 6;. We get

i 02 (01)qn faln(0)) 2 / RE Q.31 Ye1,Y6 530 (20)
(Rd)2k+2—/’
X HE O, Y1+ Vo1 Ykt 15 - s Yara1-0)1{v = 0} 1{ @ (x) EA_l(1[’77n(92))}Zéﬁgf-(ﬂ2
P e - fa(@n(0))
2Ue+1-¢
X l—[ Il{(an(x) + A (rpyi)eq) >t i €1{1,.. .,k}}
i=1
n A71 nYi
X I{A(an(x)) +rpy; € Hy(60), i ¢ {¢,.. .,k}} Jala (]‘)2(—5:”(0))(r 0) dy; | dx.
A key observation in the above is that
Han(x) € A7 (Ha(62)) }
= 1{(Va(tn)/tau, 1 + alty)/tyv) € A7 (H(62)) }
— 1{es e A7 (H(62)) }, ae. n — . (1)

However, 1{e; € A™1(H(6,)) } =0 as e; € A1 (H(6,)) is equivalent to p(6;) € H(65), which cannot
occur unless 61 = 6, as the boundary D is smooth. Before proceeding to the limit of the variance, we
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will demonstrate that dominated convergence assumption holds for 6; # —6,. This is much the same as
in the case of the expectation, e.g. where the h’l‘ terms can be bounded above by M?> H?ffl_[ 1 { || yi|| <
K} and we can apply (17)—the only difference is we must now find an integrable upper bound for

2k+1-¢ 1
falan(x)+ A (rayi)
i:k]_L 1{ A(@n(x)) + ruyi € Ha(62)} AERE) (22)

However, this does not present a great deal of difficulty as if A(a,(x)) + r,y; € H,(62), then

V(A(a/n(x)) + rn)’i) =vyalan + A_l(rnYi)) 2 In,

by another application of (3). Again we note that ¢ increasing, so if the indicator in (22) holds, we have

Salan(x) + A7 (rnyi))
Ja(an(0))

as desired. Thus the dominated convergence assumption is satisfied.

Now, let us show what the limit of the variance is, i.e. let us set 8 = > = 8 in (20). Suppose that we
denote yo = (0,y1,...,Y¢-1), Y1 = Ve, - ., V&) and ¥2 = (Y41, - - -» Y2k +1-¢)- Then the same argument as
in the proof of the convergence of the expectation yields a limit of

= exp (= [Wra(an(x) + A7 ) ~w(i)] ) < 1.

2k+1-€
k k —1/4-1
Ti = 1 [] [1{vz-rea™
k.t ZD(H)/UMM[hl(yo,yl)hl(yo,yz) {v=0} || {vz-re (A ).ea)}

2k+1-€
XeXp{—(2k+2—5)(|IMII2/2+V)—r§‘1 > <Vy(p(e>),yi>}ldxdy (23)

i=1

for the integral in (20). O

We now assess the limiting behavior of certain moments of Sy () in the case of a much lighter tail.
Throughout the below, define b(t,,) := +/a(t, ), and let

B:= lim b(t,)

Let us suppose that r,, — r € (0,00) and let us define the normalizing sequence wy ; by

[ng(tn)gn]**! if ng(tn)gn — 0,
Wkni=11 if ng(t,)gn — x € (0,0), (24)
[ng(tn)gn )™ if ng(tn)gn — co.

The integrals 7 , seen in the limit of the variance of Proposition 3.3 can be shown to be positive
under the “general conditions” discussed in Remark 3.2. Actually, all that is necessary in the case
that 8 = 0 is that the constant cg (5) is positive. The loss of dimension phenomenon, as discussed
in the introduction, is expressed in Proposition 3.3 by the fact that the limit integral in the case 8 €
(0,00)—such as is the case when the density generator g is Gaussian—is an integral with respect to a
product of R?~! rather than R<.
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Proposition 3.3. Suppose that r,, — r € (0,00), and assume that h'r‘ is a.e. continuous. Under the stan-
dard assumption, for a density f with exponentially-decaying tail with B € [0,00) and 6 € S%~! we have

for >0

k

HE((ABu0.0)...... ABur. 0)) | | &4 dug,

i=0

L ESea@] _ zp()! [
n—oo [”l(g"(l‘n)‘]n]k_'—1 (k + 1)' (RA-1)k+1

and if =0,
. E[Sk..(0)] C](()[ZD(Q)(zn)(d—l)/2]k+l
= [ng(tn)gn]**! (k+1)!
where clg is as defined at (5). Additionally, for any 6 € S4~ and Wi n as defined at (24),

)

i kst )
Tt it ng(ty)gn — 0,
k+l1 2k+1-¢
. _ I
Jim @ Var(Si (@) = 45 X Tl g(r,)g, — x € (0.00),
“o(k+1-0))
ﬂ if ng(ty)gn — oo

where Iy ¢ defined as at (26). Furthermore, if 61,0, € SV and 0, # +0, then
lim w;;, Cov(Skn(61). Sk.n(62)) =0,
If 61 = —0,, then COV(Sk,n(Ql), Sk,n(ez)) =0jforall n.

Proof. For ease of exposition, suppose that r;, is constant throughout, so that we may assume r = 1. The
same expectation as in (14) holds. Define A, := A o @, and make the change of variable x; — A, (x;)
foralli=0,1,...,k, to get

(nzp(8)qn )k+l

k
k ) ) .
(k+1)! '/(Rd)kH i (An(x0).. ... An(ee) g l{vl = O}fA(an(x,)) dx;.

As h¥ is translation invariant then h'l‘ (X + A0,1,)) = h’]‘ (X), hence if x; = (u;,v;), then

hy(An(x0)...... An(x)) = iy (A(B(tn)uo. altn)vo).. ... A(D(tn )ug. altn)vi)
N h]f (A(Buo,0),...,A(Bug,0)), ae. n— oo,
by the assumed continuity a.e. and as a(t,) — 0 as n — oo, as b(t,,) is bounded above by some constant.
If =0, we get
Y (A),...,A(0)) =c}.

The rest of the result follows in exactly the same manner as the proof of the limit of the expectation in
Proposition 3.1, using Proposition 2.8 for the dominated convergence assumption and the boundedness
of the family (hf, r > 0).
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We begin by proving that the normalized covariance converges to zero. First, we use the formula of
(18) and investigate the expectation term at (19), which can be bounded above by

2k+1-¢€
/(Rd)zm ¢ M*1{x) € Hy(62)} nl{x, € Hu(61)} f(xi) 1_[ 1{x; € Hu(62)} f(xj) dx.
j=k+1
If we make the changes of variable x; — (Ag, o @) (x;) for i =0,...,k and x; > (Ag, o @) (x;) for
j=k+1,....,2k +1—-¢, we have
Mz[qng(ln)]Zkﬂ_gZD(Ql)kHZD(Gz)kH_E/ Han(x0) € A7 (Ha(62)) }
(Rd)2k+2—(’
k fA (an(x;)) 2RH=E fA (an(xi ))
[Ttz P T =0 220
0 fAq, fag (@n(0) ) Jaq, (an(O))

which can be seen to converge to 0 if 81 # 6, by the assumed smoothness of the boundary d D—see (21).
Additionally, the dominated convergence condition follows from liberally applying Proposition 2.8.

We now demonstrate the limit for the variance; that is, when 8| = 8, = 6. As with the covariance
above, we proceed as at (18) and expand the expectation out as in (19). After making the changes
of variable x; — A,(x;) for all i = 0,1,...,2k + 1 — £, (with A, = A o @), if we denote Aj(x;) :=
A(b(t,)u;i,a(t,)v;), we have

[ZD(G)qan(an(O))]Zkﬂ_[/ (A5 (x0).. ... Ap(xx) (25)
(Rd)2k+2—t’
X BN (A% (x0), - o, Al (xp=1), Al (Xk1)s - - -, Al (X2 41-2))
2k+1-¢
Sfalan(x;))

To show the dominated convergence assumption holds, we again repeatedly apply Proposition 2.8. If
61 = 6, then the integral in (25) converges to

L= [ W (ABuo, 0., AGBug, 0) 6)
(Rd—l )Zk +2-C
2k+1-C )
X h]f ((A(BM0,0), . '7A(BM€—1’O)’A(ﬂuk+l’0)7' . "A(ﬁu2k+l—f70)) l—l e_HuiH /2 dui~
i=0

When ng(t,)g, — oo, then the 2k + 1 exponent term dominates (corresponding to Ji ;) and when
ng(ty)gn — 0, then the k + 1 exponent term in the covariance sum dominates. All terms contribute
when ng(t,)q, — x € (0,00). O

3.2. Conditional expectation

The results in Proposition 3.3 can be stated quite naturally in terms of conditional probabilities. Con-
sider a Poisson process with intensity nf,, where f;, is the density f conditioned to lie in H,(6). In
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other words, we consider the conditional quantity SZ n(@) = Sk(PfZ ,rn), where SD,? has intensity nf;,
and is f;; defined by

f(x)l{x EHn}
an f(x)dx

As p(Hy) ~ 21)4=D/2715(6)g(t,)gn by Proposition 2.7, then we can restate the limit for the expectation
from Proposition 3.3 as

Sn(x) =

E[S; ,(0)] 1 k

) , _ k uill/2 g,,.
nlgllo nk+1 (27r)<d—1>/2(k+1)!/(Rd_l)kﬂ hl((A(ﬁ”‘)’o)""’Aw”"’o))ge dui.

We may contrast this growth with that established in Proposition 3.1, where if we take r,, — r € (0,00)
and & > 0, we get that

E[S; ,(0)] = 0" /q}),

which is much slower than the growth rate of E[S* ,(0)] in the case that ¢ =0 and 3 < co. This makes
intuitive sense, as the observations in the case of a hghter tail will cluster towards the support hyper-
plane associated with H,, more than in the case of a heavier tail. Theorem 5.1 establishes a result for
this phenomenon in terms of Kolmogorov distance to a standard normal distribution, for both the light
and heavy tail cases.

3.3. Heavy tails

Here we consider a density generator g € RV_,. Similarly to the exponentially-decaying tail cases
above, we can establish moment convergence here. However, unlike in the previous cases, the covari-
ance does not tend to zero. For proving the dominated convergence assumption, we will rely heavily on
Potter’s bounds' (cf. Proposition 2.6 in [19]). That is, for any e > 0 there exists some #o such that for
t >1tpand x > 1 we have

8UY) (1 4 purve, @7)
8(1)
As with the case of light tails, we define a normalizing sequence
[ng(ta)]* 1! if ng(ta)rif — 0,
Uk 1= | ng(tn )iy if ng(ta)r} — x €(0,00), (28)
[ng(e) Pl if ng(t)r! — oo.

Proposition 3.4. Under the standard assumption, for a density f with a nonincreasing regularly vary-
ing density generator g having tail index a > d, we have for 6 € S~ that

E[Ska@®)] 1
n—=o [ng(t,) K+ rdke,  (k+1)!

'/(Rd)kﬂ Ry Oy = 1}ya(x) *** dxdy,

1A lower bound also holds here but we have no use for it.
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Furthermore, we have for any 61,0, € S9N and Uk, n as defined at (28) that

Hi k41

(k+1)!
k+1 -
H ke,

if ng(tn)r,‘f -0,

lim vy}, Cov(Si (1), Skn(02) =1 ), —————— if ngltn)rsl = x € (0,00),
n—eo T =0 ((k+1-0))
k,1

(k1

if ng(ty)rs — oo,

where Hy, ¢ is defined at (30).

Proof. As itessentially follows the same logic, we omit the proof for the expectation case and focus on
that of the covariance. Of course, we must suppose that 6 # —6,. Per usual, we expand the covariance
as at (18) and consider the integral at (19). Recall the notation yg = (0,y1,...,Y¢-1), Y1 = (Vs - -» V&)
and y2 = (Vk+1s- - -» Y2k+1-¢) as in (23). Making the changes of variable xy = x and x; = x + r,,y; for

i=1,...,2k+1—¢as well as x — ¢, x yields an integral term of
r,‘f@k“_f)tfg(tn)z“z_g /(Rd)zwf Y (Yo, 1) X (y0, y2)1{tnx + rayo € Ha(61) N Hy(62)}
X {tnx + ruy1 C Huy(01)}1{tnx + rny> C Hu(62)} g(;"(+()x))
n
21—11[( g(twy(x ;‘(Zr)l/tn))’i)) dxdy. 29

by the positive homogeneity of the gauge function. By (3), we have that
Y(tpx +rpyi) 2ty i=0,1,...,2k+1-4¢,

in the case that t,x + r,y; € H,(0) (for any 8 € $¢~1), where for convenience yo = 0. Hence, applying
positive homogeneity again yields that for any n € (0, — d), there exists an N such that if » > N and if
thx + ryyi € Hy(0), then

g(tny(x))
g(tn)

by Potter’s bound (27) and the fact we may elect to choose n < 1. If we note that v = yp is the gauge
function of a bounded open (convex) set D containing the origin, then there exists centered open balls
B(0,s) and B(0,u), s,u > 0 such that B(0,s) ¢ D c B(0,u). The open (Euclidean) balls have gauge
functions ypg(o,s)(x) = ||x||/s for any s > 0. Therefore, yp(0,.)(x) < ¥p(x) < ¥B(0,5)(x). Hence, we have

< 2,)/(x)—(l’+77’

/ y(x)"* 11 {y(x) > 1} dx <u®" / 1= 1{||x|| > s} dx.
R4 Rd
This integral is bounded by

o0
C*‘/. Wd—l—a+77 dw < oo
s
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by a standard polar coordinate transform. The assumption on g implies that when f,,x + r, y; € H,(6)
that

g(tny(x + ("n/tn))’i))

g(tn)
hence upon appropriate normalization—and properties (H2) and (H4) of the kernels (hX), »o—the
dominated convergence assumption holds. The quality of convergence of regularly varying functions

is uniform on intervals bounded away from 0, hence we get our desired limit consisting of the sum of
integral terms

<lI,

Hp = / 1 ooy DI (o)1 {x € H(6)) 0 H(B2)}y(x) @C*2 O dxdy.  (30)
(Rd)2k+2—{> D

3.4. Conditional variance

The following corollary about the conditional variance is crucial to the comparison of the speed of weak
convergence in Section 5. For ease of comparison, let us assume that r,, — r € (0, 0), for continuity of
the analogy of the unconditional case. Determining the asymptotics for the case when r,, — 0 would
be simple, however. We state the results solely in terms of their asymptotics as constants can be readily
calculated from Propositions 3.1 and 3.3. We only state the limit for the conditional variance when
1, = o(n'/?). This obviates the need to state every regime and includes the rate of divergence of 7, seen
in the central limit theorems.

Corollary 3.5. Suppose that f = g oy has an exponentially-decaying tail, y is the gauge function of a
rotund set D, and our point process P,'f is conditioned to lie in the diverging halfspace Hy(6) for some
0 € 8471, Assume that t,, = o(nl/d) and t,, — co. Then when ¢ =0 and 8 < oo, we have

Var(S; ,(6)) = ©(n**1),

and

n2k+1

2k
qn

Var(S; ,(0)) = G)( ), when & > 0.

If g is nonincreasing and regularly varying with tail index a > d then

n2k+l
Var(SZ’n(G)) = @(W) .
n

In the above, we allow the asymptotics to include the situation where the variance tends to 0.

Proof. Note that g,, = o(t?), so this implies g,, = o(n). The proof for the first two parts follows from
Proposition 2.7 and careful inspection of (18), (20), and (25). For the heavy-tailed case, we see that

ptttn) = oo [ ST ax~ gioid [ yax

upon application of Potter’s bounds to demonstrate dominated convergence. Then we may follow the
logic of the light-tailed case from Equation (29). O
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4. Central limit theorems and asymptotic (in)dependence

In this section, we establish finite-dimensional weak convergence of

(Sk,n(gl)s cee ’Sk,n(gm)) s

when g has an exponentially-decaying tail with & > 0, and when g € RV_,. We also establish weak
convergence of Sk ,(0) when £ =0 and S < oo, in the light tail case. For these proofs, we will apply a
modification of Theorem 6.2 from [18] to obtain our bounds. We will use the Cramér-Wold device to
establish finite-dimensional convergence in the case that & > 0, [6, cf. Section 3.9]. The Kolmogorov
distance dg (X,Y) between two random variables X and Y is defined as

dg(X,Y) :=sup |P(X <x) - P(Y < x)|.
x€eR

If one our random variables is a standard normal random variable Z, then convergence in the Kol-
mogorov distance implies weak convergence to a standard normal distribution—i.e. a central limit
theorem. Before continuing, we need a bound on the L* norm of /%, subject to lying in the intersection
of certain number of diverging halfspaces.

Lemma 4.1. If f = g oy has an exponentially-decaying tail and y is the gauge function of a rotund set
D, we have in general that

k
/(Rd)kﬂ [hfn (XO, e ,Xk)] 4 1_[ 1{Xi € Hn(gl) NN Hn(Hm)}f(xl)dxl = 0((g([n)qn)k+1)’ (31)
i=0

and when & > O the integral term in (31) satisfies
O(g(tn)* i gn).

If f is heavy-tailed with density generator g that is nonincreasing and varies regularly with tail index
a > d we have that the integral term in (31) satisfies

O(g (1)< rdked)

Proof. We may assume that 6; # —0; for any 1 <i < j < m, as otherwise H,(6;) N H,(6;) = @. The
first part follows from the upper bounds from (H4),

1{x; € Hy(61) N -+~ N Hy(0)} < 1{x; € Hy(0))}, (32)

and Proposition 2.7. The second part follows from the proof of dominated convergence in Proposi-
tion 3.1 after the application of (32), where we may replace hlr‘n with [hlr‘n ]* with no change to the proof

besides replacing M with M*. The final part, for heavy tails, follows from the proof of dominated
convergence in Proposition 3.4. O

Our aim is to prove central limit theorems for Sy ,(6) and .| a;Sk ,(6;) for non-zero scalars
ai,...,an € R. Without loss of generality we consider only Z:.Z 1 @iSk,n(0;) and denote it by G,,(Py,).
For G, (P, there exists a symmetric measurable map #,, : (R4)*! — [0, ) such that

1
GuX) =gy D, ha(wox), (33)

(X0, )€ XET!
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satisfies (H2), (H3) and (H4). With little difficulty, one can see that for the specific case of
2, aiSk,n(6;) one has

m
(X0, . ..xk) = hf (x0,...,xk) Z ail{(xo,. .., xx) € Hu(6;)**1}.
i1

We define

k
2
e T

and let By, (k) = SUP,, cpd np(B(y,4«(n))), where in the specific instance here, k(1) = «r,,. Denoting

G_n(Pn) = (Gn(Pn) - E[Gn(Pn)])/ Var(Gn(Pn))’

note that

Var(Gn(P)) = Y > @iajCov(Si.n(60:). Sk.n(6)))
i=1 j=1

We will now state a version of Theorem 6.2 in [18]—updated using the Kolmogorov distance bound of

Theorem 4.2 in [21]—for a generic probability density f.

Theorem 4.2. Let Z denote a standard normal random variable and dk the Kolmogorov distance and
suppose that Py, is a Poisson process on R¢ with intensity n.f, where f is any bounded, a.e. continuous
density. Let G,,(Py,) be defined as at (33) and let h,, be any nonnegative symmetric measurable map
satisfying (H2), (H3), and (H4) (where k may depend on n). If Var(G,(Py,)) > 0O, then

n(k+l)/2(1 vV Bn(K)3k/2) Hh}%”f
Var(Gn(Pn))

dK(G‘n(SD,,),Z) <o : (34)

where cy > 0 depends only on k.

Proof. We follow the proof of Theorem 6.2 in [18] but begin with the result of Theorem 4.2 in [21]
rather than the Wasserstein distance bound of the former article. By the properties of h,, G, is a
local U-statistic according to the definition of [18]. It is also absolutely convergent, in the sense that
E[G,(Pn)?] < o0, by property (H4) and the fact that P, (R?) is almost surely finite. O

4.1. Light tails

We can now give the finite-dimensional central limit theorems when & > 0 in our light-tailed case.
Notice that when ng(t,)rd — y € (0,00], then nré — co. Recall that the condition below on I e>0is

often easy to satisfy—see Remark 3.2.

Theorem 4.3. Under the standard assumption, suppose that f has an exponentially-decaying tail with
& > 0. Assume that nr,‘f — oo and suppose that Iy ¢ > 0 for some € =1,...,k+1and all 6 € S41 Then
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foranymeN and 04,...,0,, € S91 e have the result that

. 1
di (Gn(Pu). Z) = O ————].
K( ) ) (\/nqng(tn)3"+1)

Thus for Ty, as defined at (13) it is sufficient that ngng(t,)>* 1 — 0o as n — oo for

-1/2
7 n/ (Sk,n(gl) = E[Sk,n(0D]- - s Sk,n(0m) = E[Sk,n(gm)]) = (W)L, n— oo,
where W(0,),...,W(6y,) are independent mean zero Gaussians with

Var(W(6)) = lim T,;l Var(Sg_n(6)).

Proof. First, we will consider the numerator in (34). Let C* be a generic positive constant that may
vary across lines. As f is bounded, we can bound B, (k) above by C*nrd. Here, B, (k)3k12 is greater
than 1 eventually. Thus, for n large enough we may bound the numerator of (34) by

ok ([ng(tn)]k+lr;llkqn) 1/2(nrd)3k/2

by Lemma 4.1; now the constant C* depends on m. By Proposition 3.1 it is evident that

m
T, Var(Gu(Pu)) ~ T b, > aiVar(Si n(6:)).
i=1
Let us consider first the case where ng(tn)rff — 0 as n — oo, so that 1y , = [ng(ts )]kJrl dk
assumed positivity of 7 , we have that for large enough n that (34) is bounded above by

qn- By the

d\3k/2
SN U
[ng(ta) ¥+ 1rdk gy,

simplifying terms and multiplying by [g(t,)/g(t,)]* yields our result. In the case of ng(t,)ré — ., the
normalization term for the variance is 7 , = ng(t,)gn, and (34) is bounded above by

D Sl (1(C0 79 bl

\/ng(tn)Qn \/HQng(tn)3k+l '

Finally, in the case that ng(t,)r¢ — co, we have that Tn = [ng(ty )P +1r2dk g, and we can bound (34)
above by

1

\ HQng(tn)3k+l

after canceling terms. O

C*

We see a sample from our setup in Figure 3. Theorem 4.3 says that as n — oo the number of edges in
H,(7/2) is asymptotically independent of the number of edges in H,, (77 /4). This can be seen because
the H, (7 /2) N H, (77 /4) contains no edges whereas each individual region contains hundreds. Heuris-
tically, these regions are “asymptotically disjoint”, which implies independence of the S ,(6) via the
Poisson assumption.
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ma A

H,(7r/4)

Figure 3. A realization of the random geometric graph G(#y,2) where #,, = log n/4 and n = 2000. Identifying S !
with [0,27), the outer support halfspaces Hy, () for 6 = /2 and 6 = 7x /4 are shown in red. Here we take y = Yegg,
and ¢ to be the identity function. The set {yegg < 1} is depicted in blue.

Remark 4.4. In the case when ng(t,,)r,‘f — 0and nrf — oo, the Kolmogorov distance satisfies

0( [ri g (ta)1* )
Vngng(tn )3 +1 ’

so that in fact we have the stronger result that liminf,, e, ng,g(t,)***! > 0 suffices for a central limit
theorem to hold.

We will now give the rate of convergence in Kolmogorov distance for the central limit theorem in
the “light-tailed” case. Remember that in this case we have assumed r,, — r € (0,00).

Theorem 4.5. Under the standard assumption, suppose that f has an exponentially-decaying tail with
& =0and B € [0,00). Suppose also that Ii 1 > 0 for all 6 € 41 Then for any m e N and 6,. . .,6,, €
$4=1 we have the result that

_ 1
(Ga(Pn).7) = O( g () HT )

Therefore, if n[g(ty)gn]**! — oo
(18(1)a) /D (Sk,0(01) = BLSk (DL Sk (O) = ELSkn(Om)]) = (WO, 11— oo,
where W(6),...,W(0,,) are independent mean zero Gaussians with
Var(W(0) = T 1(6)/ (k 1),
where Iy 1 is defined at (26).

Proof. If n[g(t,)gn]3**! — co as n — o, then ng(ty)gn — o, as ¢,g(t,) can be shown to converge to
0. Recall that C* is a positive constant that may vary between lines, as in the proof of Theorem 4.3. Let
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us take r, = r, thus 1V B,,(k)*/2 < C*n3*/2 for large enough n. Using the first bound in Lemma 4.1,
we have that the numerator of (34) is bounded above by

C*Vl2k+l/z[g(tn)qn](k+1)/2- (35)

Thus, by the convergence of the variance and positivity of Z; 1 > 0, (35) eventually yields an upper
bound on (34) of

*n2k+1/2[g(tn)qn](k+l)/2 _ C*
(g (tn)gn ! V[ gng(tn) PR
(For a more detailed treatment, see the proof of Theorem 4.3). O

We are finally in a position to prove Corollary 1.2.

Proof of Corollary 1.2. Let y; , = E[Sk_,(6;)] and 07 ,, = +/Var(Sk_,(0;) for i = 1,2. The probability

P(Sk,n(el) < Sl,mSk,n(QZ) < S2,n) =

=51,

p Sie,n(01) = u1,n <y Sic,n(62) = 2.5 <s)
Ol,n 02 n

~ ®O(s1)D(s7),

where O is the standard normal distribution function. Thus for any € > 0 and n large enough we have
by Theorem 4.3 or 4.5 that

‘P(Sk,n(gl) < S Skon(02) < 52.0) —P(Sk,n(01) < 51,0)P(Sk,n(02) < 52,)

+€

< |0(51)0(52) = P(Sk (01) < 51,0 P(Skn(02) < 52,0)

< |0(51) = B(Sk,n(01) < 51.0) +e

+ ‘(D(tz) — P(Sk,n(62) < 52,1)

< 3e. O

4.2. Heavy tails

From the representation in (30), we may associate a measure to each H , in (30) in Proposition (3.4).
Specifically, we may define the measure v, , on Borel sets A of R by

Vio(A) = / BX (0,3 1)1 (yo. y2)1{x € A} y(x)™¥@*+270 dx dy. (36)
(Rd)2k+2—£’

From Proposition 3.4 we can see that in the case of heavy tails, asymptotic independence is no longer
the case. For completeness, we demonstrate a finite-dimensional central limit theorem for the heavy
tail case as well.

Theorem 4.6. Under the standard assumption, suppose that f has a heavy tail with density generator
g that is nonincreasing and regularly varying with tail index a > d. Assume that nr,‘f — oo and suppose
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that Hi ¢ > 0 for some € =1,...,k + 1 and all 6 € gd-1, Then for any m € N and 64,...,0,, € S9-1 e
have the result that

) 1
dK(Gn(P,,),Z) - o(m).

Thus for v 5 as defined at (28) it is sufficient that nt,”llg(tn)y“rl — 00 as n — oo for
U (Skn(00) = BLSkn (@) Skn(On) = ELSkn(On)]) = (G(0)) 1y 11— oo,
where G = (G(0), 6 € S~V is a Gaussian process with covariance function
C(61,62) := v, (H(61) N H(62)),

and vy, is an absolutely continuous control measure defined by

Vi k+1(A)
k+ 1)

k+1 _
X2k+l gvh’g(A)

if ng(tn)r,‘f -0,

Vi(A) := > if ng(ta)r — x € (0,00),
S O((k+1-0)1)
vi1(A) .
Z’]’;!)z if ng(t,,)r,‘ll — 00,

for any Borel set A € R, where V¢ is defined at (36).

Proof. The proof of this result is the same, mutis mutandis, as Theorem 4.3. Indeed, the differing
covariance asymptotics in Proposition 3.4 do not affect the proof in any way. U

On a final note, the same point as mentioned in Remark 4.4 after Theorem 4.3 holds for Theorem 4.6,
replacing g, with z¢.

5. Conditional convergence bounds

We conclude by rigorously establishing that the Kolmogorov distance bounds from Theorem 4.2 for
local U-statistics are smaller for lighter tails. Though we do not know if the upper bound in (34) is
sharp—Theorem 5.1 below, along with Corollary 3.5—yield strong support to the intuitive conclusion
that the greater clustering of points in the case of a lighter tail yields faster convergence to a normal
distribution, in the conditional case. This is especially true upon recognition that g, — oo when & > 0.

Suppose for simplicity that r,, = € (0, ). First, we must recognize that || 2 || [f (whereay =1anda =
0 otherwise) can in this setup be bounded above by a constant, using property (H4) of 2X. Additionally,
we use the trivial bound

/ l{x € B(y,4/<r)}fn(x)dx <1
R4

Careful examination of Corollary 3.5 shows that the 7; | and Hj; terms dominate the variance asymp-
totically. Denote S; , (6) = (S} ,(6) —E[S} (0)]) /[ Var(S; , (6).
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Theorem 5.1. Suppose that Ii | > 0 and Hy. | > 0. For the conditional setup as outlined in Section 3.2,
we have for any 0 € S~ that if t,, = o(n'19) then for a heavy-tailed density generator

3 (2
dx (5;,(6).2) = 0( - )

For a light-tailed density generator,

_ g2k
di (8¢ ,(0),Z) = O(L), when & > 0,

n

and

dk (S ,(0).Z) = 0(L when & =0 and B < .

)

Proof. The proof follows a similar formula to the ones above, noting the changes to the bounds of
Bn(x)*/% and A 7 of this section. Applying Corollary 3.5 yields the desired asymptotics, upon taking
n so large that the scaled variance is close to Iy ; (respectively Hy ;). ]

In Theorem 5.1 there is no dependence on the rate at which H,, diverges in the case of a Gaussian
distribution or lighter tails. We surmise that this transition occurs when & = 0 and g8 = oo, the regime as
of yet uninvestigated.
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