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We study posterior contraction behaviors for parameters of interest in the context of Bayesian mixture modeling,
where the number of mixing components is unknown while the model itself may or may not be correctly specified.
Two representative types of prior specification will be considered: one requires explicitly a prior distribution on the
number of mixture components, while the other places a nonparametric prior on the space of mixing distributions.
The former is shown to yield an optimal rate of posterior contraction on the model parameters under minimal
conditions, while the latter can be utilized to consistently recover the unknown number of mixture components,
with the help of a fast probabilistic post-processing procedure. We then turn the study of these Bayesian procedures
to the realistic settings of model misspecification. It will be shown that the modeling choice of kernel density
functions plays perhaps the most impactful roles in determining the posterior contraction rates in the misspecified
situations. Drawing on concrete posterior contraction rates established in this paper we wish to highlight some
aspects about the interesting tradeoffs between model expressiveness and interpretability that a statistical modeler
must negotiate in the rich world of mixture modeling.
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1. Introduction

Mixture models are one of the most useful tools in a statistician’s toolbox for analyzing heterogeneous
data populations. They can be a powerful black-box modeling device to approximate the most com-
plex forms of density functions. Perhaps more importantly, they help the statistician express the data
population’s heterogeneous patterns and interpret them in a useful way [30,33,34]. The following are
common, generic and meaningful questions a practitioner of mixture modeling may ask: (I) how many
mixture components are needed to express the underlying latent subpopulations, (II) how efficiently
can one estimate the parameters representing these components and, (III) what happens to a mixture
model based statistical procedure when the model is actually misspecified?

How to determine the number of mixture components is a question that has long fascinated mix-
ture modelers. Many proposed solutions approached this as a model selection problem. The num-
ber of model parameters, hence the number of mixture components, may be selected by optimizing
with respect to some regularized loss function; see, for example, [6,26,30] and the references therein.
A Bayesian approach to regularization is to place explicitly a prior distribution on the number of mix-
ture components, for example, [36,39–41]. A convenient aspect of separating out the modeling and
inference questions considered in (I) and (II) is that once the number of parameters is determined, the
model parameters concerned by question (II) can be estimated and assessed via any standard parametric
estimation methods.

In a number of modern applications of mixture modeling to heterogeneous data, such as in topic
modeling, the number of mixture components (the topics) may be very large and not necessarily a
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meaningful quantity [3,49]. In such situations, it may be appealing for the modeler to consider a non-
parametric approach, where both (I) and (II) are considered concurrently. The object of inference is
now the mixing measure which encapsulates all unknowns about the mixture density function. There
were numerous works exemplifying this approach [11,24,29]. In particular, the field of Bayesian non-
parametrics (BNP) has offered a wealth of prior distributions on the mixing measure based on which
one can arrive at the posterior distribution of any quantity of interest related to the mixing measure [21].

A common choice of such priors is the Dirichlet process [2,10,45], resulting in the famous Dirichlet
process mixture models [1,8,31]. Dirichlet process (DP) and its variants have also been adopted as a
building block for more sophisticated hierarchical modeling, thanks to the ease with which computa-
tional procedures for posterior inference via Markov Chain Monte Carlo can be implemented [42,50].
Moreover, there is a well-established asymptotic theory on how such Bayesian nonparametric mixture
models result in asymptotically optimal estimation procedures for the population density. See, for in-
stance, [14,16,46] for theoretical results specifically on DP mixtures, and [15,47,52] for general BNP
models. The rich development in both algorithms and theory in the past decades has contributed to the
widespread adoption of these models in a vast array of application domains.

For some time there was a misconception among quite a few practitioners in various application
domains, a misconception that may have initially contributed to their enthusiasm for Bayesian non-
parametric modeling, that the use of such nonparametric models eliminates altogether the need for
determining the number of mixture components, because the learning of such a quantity is “automatic”
from the posterior samples of the mixing measure. The implicit presumption here is that a consistent
estimate of the mixing measure may be equated with a consistent estimate of the number of mixture
components. This is not correct, as has been noted, for instance, by [29] in the context of mixing
measure estimation. More recently, [35] explicitly demonstrated that the common practice of drawing
inference about the number of mixture components via the DP mixture, specifically by reading off the
number of support points in the Dirichlet’s posterior sample, leads to an asymptotically inconsistent
estimate.

Despite this inconsistency result, it will be shown in this paper that it is still possible to obtain a con-
sistent estimate of the number of mixture components using samples from a Dirichlet process mixture,
or any Bayesian nonparametric mixture, by applying a simple and fast post-processing procedure on
samples drawn from the DP mixture’s posterior. On the other hand, the parametric approach of placing
an explicit prior on the number of components yields both a consistent estimate of the number of mix-
ture components, and more notably, an optimal posterior contraction rate for component parameters,
under a minimal set of conditions. It is worth emphasizing that all these results are possible only under
the assumption that the model is well-specified, that is, the true but unknown population density lies in
the support of the induced prior distribution on the mixture densities.

As George Box has said, “all models are wrong”, but more relevant to us, all mixture models are
misspecified in some way. The statistician has a number of modeling decisions to make when it comes
to mixture models, including the selection of the class of kernel densities, and the support of the space
of mixing measures. The significance of question (III) comes to the fore, because if the posterior
contraction behavior of model parameters is very slow due to specific modeling choices, one has to be
cautious about the interpretability of the parameters of interest. A very slow posterior contraction rate
in theory implies that a given data set probably has relatively very slow influence on the movement of
mass from the prior to the posterior distribution.

In this paper we study Bayesian estimation of model parameters with both well-specified and mis-
specified mixture models. There are two sets of results. The first results resolve several outstanding
gaps that remain in the existing theory and current practice of Bayesian parameter estimation, given
that the mixture model is well-specified. The second set of results describes posterior contraction prop-
erties of such procedures when the mixture model is misspecified. We proceed to describe these results,
related works and implications to the mixture modeling practice.
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1.1. Well-specified regimes

Consider discrete mixing measures G = ∑k
i=1 piδθi

. Here, p = (p1, . . . , pk) is a vector of mixing
weights, while atoms {θi}ki=1 are elements in a given compact space � ∈ R

d . Mixing measure G is
combined with a likelihood function f (·|θ) with respect to Lebesgue measure μ to yield a mixture
density: pG(·) = ∫

f (·|θ) dG(θ) = ∑k
i=1 pif (·|θi). When k < ∞, we call this a finite mixture model

with k components. We write k = ∞ to denote an infinite mixture model. The atoms θi ’s are represen-
tatives of the underlying subpopulations.

Assume that X1, . . . ,Xn are i.i.d. samples from a mixture density pG0(x) = ∫
f (x|θ) dG0(θ), where

G0 is a discrete mixing measure with unknown number of support points k0 < ∞ residing in �. In the
overfitted setting, that is, an upper bound k0 ≤ k is given so that one may work with an overfitted
mixture with k mixture components, Chen [5] showed that the mixing measure G0 can be estimated
at a rate n−1/4 under the L1 metric, provided that the kernel f satisfies a second-order identifiability
condition – this is a linear independence property on the collection of kernel function f and its first
and second order derivatives with respect to θ .

Asymptotic analysis of Bayesian estimation of the mixing measure that arises in both finite and
infinite mixtures, where the convergence is assessed under Wasserstein distance metrics, was first in-
vestigated by Nguyen [37]. Convergence rates of the mixing measure under a Wasserstein distance can
be directly translated to the convergence rates of the parameters in the mixture model. Under the same
(second-order) identifiability condition, it can be shown that either maximum likelihood estimation
method or a Bayesian method with a non-informative (e.g., uniform) prior yields a (logn/n)1/4 rate
of convergence [22,24,37]. Note, however, that n−1/4 is not the optimal pointwise rate of convergence.
Heinrich and Kahn [20] showed that a distance based estimation method can achieve n−1/2 rate of con-
vergence under W1 metric, even though their method may not be easy to implement in practice. [23]
described a minimum Hellinger distance estimator that achieves the same optimal rate of parameter
estimation.

An important question in Bayesian analysis is whether there exists a suitable prior specification for
mixture models according to which the posterior distribution on the mixing measure can be shown to
contract toward the true mixing measure at the same fast rate n−1/2. Rousseau and Mengersen [43]
provided an interesting result in this regard, which states that for overfitted mixtures with a suitable
Dirichlet prior on the mixing weights p, assuming that an upper bound to the number of mixture
component is given, in addition to a second-order type identifiability condition, then the posterior
contraction to the true mixing measure can be established by the fact that the mixing weights associated
with all redundant atoms of mixing measure G vanish at the rate close to the optimal n−1/2.

In our first main result given in Theorem 3.1, we show that an alternative and relatively common
choice of prior also yields optimal rates of convergence of the mixing measure (up to a logarith-
mic term), in addition to correctly recovering the number of mixture components, under considerably
weaker conditions. In particular, we study the mixture of finite mixture (MFM) prior, which places an
explicit prior distribution on the number of components k and a (conditional) Dirichlet prior on the
weights p, given each value of k. This prior has been investigated by Miller and Harrison [36]. Com-
pared to the method of [43], no upper bound on the true number of mixture components is needed.
In addition, only first-order identifiability condition is required for the kernel density f , allowing our
results to apply to popular mixture models such as location-scale Gaussian mixtures. We also note that
the MFM prior is one instance in a class of modeling proposals, eg, [39–41] for which the established
convergence behavior continues to hold. In other words, from an asymptotic standpoint, all is good on
the parametric Bayesian front.

Our second main result, given in Theorem 3.2, is concerned with a Bayesian nonparametric model-
ing practice. A Bayesian nonparametric prior on mixing measures places zero mass on measures with
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finite support points, so the BNP model is misspecified with respect to the number of mixture compo-
nents. Indeed, when G0 has only finite support the true density pG0 lies at the boundary of the support
of the class of densities produced by the BNP prior. Despite the inconsistency results mentioned ear-
lier on the number of mixture components produced by Dirichlet process mixtures, we will show that
this situation can be easily corrected by applying a post-processing procedure to the samples generated
from the posterior distribution arising from the DP mixtures, or any sufficiently well-behaved Bayesian
nonparametric mixture models. By “well-behaved” we mean any BNP mixtures under which the pos-
terior contraction rate on the mixing measure can be guaranteed by an upper bound using a Wasserstein
metric [37].

Our post-processing procedure is simple, and motivated by the observation that a posterior sam-
ple of the mixing measure tends to produce a large number of atoms with very small and vanishing
weights [18,35]. Such atoms can be ignored by a suitable truncation procedure. In addition, similar
atoms in the metric space � can also be merged in a systematic and probabilistic way. Our procedure,
named Merge-Truncate-Merge algorithm, is guaranteed to not only produce a consistent estimate of the
number of mixture components but also retain the posterior contraction rates of the original posterior
samples for the mixing measure. Theorem 3.2 provides a theoretical basis for the heuristics employed
in practice in dealing with mixtures with unknown number of components [18,40].

1.2. Misspecified regimes

There are several ways a mixture model can be misspecified: either in the kernel density function f ,
or the mixing measure G, or both. Thus, in the misspecified setting, we assume that the data samples
X1, . . . ,Xn are i.i.d. samples from a mixture density pG0,f0 , namely, pG0,f0(x) = ∫

f0(x|θ)G0(dθ),
where both G0 and f0 are unknown. The statistician draws inference from a mixture model pG,f , still
denoted by pG for short, where G is a mixing measure with support on compact �, and f is a chosen
kernel density function. In particular, a Bayesian procedure proceeds by placing a prior on the mixing
measure G and obtaining the posterior distribution on G given the n-data sample. In general, the true
data generating density pG0 lies outside the support of the induced prior on pG. We study the posterior
behavior of G as the sample size n tends to infinity.

The behavior of Bayesian procedures under model misspecification has been investigated in the
foundational work of [27,28]. These papers focus primarily on density estimation. In particular, as-
suming that the true data generating distribution’s density lies outside the support of a Bayesian prior,
then the posterior distribution on the model density can be shown to contract to an element of the
prior’s support, which is obtained by a Kullback–Leibler (KL) projection of the true density into the
prior’s support [27].

It can be established that the posterior of pG contracts to a density pG∗ , where G∗ is a proba-
bility measure on � such that pG∗ is the (unique) minimizer of the Kullback–Leilber divergence
K(pG0,f0 ,pG) among all probability measure G on �. This mere fact is readily deduced from the
theory of [27], but the outstanding and relevant issue is whether the posterior contraction behavior car-
ries over to that of G, and if so, at what rate. In general, G∗ may not be unique, so posterior contraction
of G cannot be established. Under identifiability, G∗ is unique, but still G∗ �= G0.

This leads to the question about interpretability when the model is misspecified. Specifically, when
f �= f0, it may be unclear how one can interpret the parameters that represent mixing measure G,
unless f can be assumed to be a reasonable approximation of f0. Mixing measure G, too, may be
misspecified, when the true support of G0 may not lie entirely in �. In practice, it is a perennial
challenge to explicate the relationship between G∗ and the unknown G0. In theory, it is mathematically
an interesting question to characterize this relationship, if some assumption can be made on the true
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G0 and f0, but this is beyond the scope of this paper. Regardless of the truth about this relationship, it
is important for the statistician to know how impactful a particular modeling choice on f and G can
affect the posterior contraction rates of the parameters of interest.

The main results that we shall present in Theorem 4.1 and Theorem 4.2 are on the posterior con-
traction rates of the mixing measure G toward the limit point G∗, under very mild conditions on the
misspecification of f . In particular, we shall require that the tail behavior of function f is not much
heavier than that of f0 (cf. condition (P.5) or (P.5’) in Section 4). Specific posterior contraction rates
of contraction for G are derived when f is either Gaussian or Laplace density kernel, two represen-
tatives for supersmooth and ordinary smooth classes of kernel densities [9]. A key step in our proofs
lies in several inequalities which provide upper bound of Wasserstein distances on mixing measures
in terms of weighted Hellinger distances, a quantity that plays a fundamental role in the asymptotic
characterization of misspecified Bayesian models [27].

It is interesting to highlight that the posterior contraction rate for the misspecified Gaussian location
mixture is the same as that of well-specified setting, which is nonetheless extremely slow, in the order
of (1/ logn)1/2. On the other hand, using a misspecified Laplace location mixture results in some loss
in the exponent γ of the polynomial rate n−γ . Although the contrast in contraction rates for the two
families of kernels is quite similar to what is obtained for well-specified deconvolution problems for
both frequentist methods [9,55] and Bayesian methods [13,37], our results are given for misspecified
models, which can be seen in a new light: since the model is misspecified anyway, the statistician
should be “free” to choose the kernel that can yield the most favorable posterior contraction for the
parameters of his/ her model. In that regard, Laplace location mixtures may be preferred to Gaussian
location mixtures, provided that the limit G∗ is not too far from the true G0. When this is not the case,
that is, when the bias of the misspecified model is too large due to the use of Laplace mixtures, it
is more advisable to adopt Gaussian kernels instead, despite the latter’s lagging posterior contraction
behavior. Although it is quite clear that the ultimate model choice under misspecification will reside
on resolving the tension between aforementioned bias and contracting variance, a satisfactory formu-
lation and solution for such a model choice problem which accounts for parameter estimation and
interpretability remains an interesting and important open question.

Additionally, we note that the relatively slow posterior contraction rate for G is due to the fact that
the limiting measure G∗ in general may have infinite support, regardless of whether the true G0 has
finite support or not. From a practical standpoint, it is difficult to interpret the estimate of G if G∗ has
infinite support. However, if G∗ happens to have a finite number of support points, which is bounded
by a known constant, say k, then by placing a suitable prior on G to reflect this knowledge we show that
the posterior of G contracts to G∗ at a relatively fast rate (logn/n)1/4. This is the same rate obtained
under the well-identified setting for overfitted mixtures.

1.3. Further remarks

The posterior contraction theorems in this paper provide an opportunity to re-examine several aspects
of the fascinating picture about the tension between a model’s expressiveness and its interpretability.
They remind us once again about the tradeoffs a modeler must negotiate for a given inferential goal
and the information available at hand. We enumerate a few such insights:

(1) “One size does not fit all”: Even though the family of mixture models as a whole can be excellent
at inferring about population heterogeneity and at density estimation as a black-box device, a
specific mixture model specification cannot do a good job at both. For instance, a Dirichlet
process mixture of Gaussian kernels may yield an asymptotically optimal density estimation
machine but it performs poorly when it comes to learning of parameters.
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(2) “Finite versus infinite”: If the number of mixture components is known to be small and an ob-
ject of interest, then employing an explicit prior on this quantity results in the optimal posterior
contraction rate for the model parameters and thus is a preferred method. When this quantity
is known to be high or not a meaningful object of inference, Bayesian nonparametric mix-
tures provide a more attractive alternative as it can flexibly adapt to complex forms of densities.
Regardless, one can still consistently recover the true number of mixture components using a
nonparametric approach.

(3) “Some forms of misspecification are more useful than others”. When the mixture model is mis-
specified, careful design choices regarding the (mispecified) kernel density and the support of
the mixing measure can significantly speed up the posterior contraction behavior of model pa-
rameters. For instance, a heavy-tailed and ordinary smooth kernel such as the Laplace, instead
of the Gaussian kernel, is shown to be especially amenable to efficient parameter estimation.

The remainder of the paper is organized as follows. Section 2 provides necessary backgrounds
about mixture models, Wasserstein distances and several key notions of strong identifiability. Section 3
presents posterior contraction theorems for well-misspecified mixture models for both parametric and
nonparametric Bayesian models. Section 4 presents posterior contraction theorems when the mixture
model is misspecified. In Section 5, we provide illustrations of the Merge-Truncate-Merge algorithm
via a simulation study. Proofs of technical results are provided in the supplementary material [19].

Notation. Given two densities p,q (with respect to the Lebesgue measure μ), the total variation
distance is given by V (p,q) = (1/2)

∫ |p(x) − q(x)|dμ(x). Additionally, the squared Hellinger dis-
tance is given by h2(p, q) = (1/2)

∫
(
√

p(x) − √
q(x))2 dμ(x). Furthermore, the Kullback–Leibler

(KL) divergence is given by K(p,q) = ∫
log(p(x)/q(x))p(x) dμ(x) and the squared KL divergence

is given by K2(p, q) = ∫
log(p(x)/q(x))2p(x)dμ(x). For a measurable function f , let Qf denote

the integral
∫

f dQ. For any κ = (κ1, . . . , κd) ∈ N
d , we denote ∂ |κ|f

∂θκ (x|θ) = ∂ |κ|f
∂θ

κ1
1 ...∂θ

κd
d

(x|θ) where

θ = (θ1, . . . , θd). For any metric d on �, we define the open ball of d-radius ε around θ0 ∈ � as
Bd(ε, θ0). We use D(ε,	, d̃) to denote the maximal ε-packing number for a general set 	 under a
general metric d̃ on 	. Additionally, the expression an � bn will be used to denote the inequality up
to a constant multiple where the value of the constant is independent of n. We also denote an � bn if
both an � bn and an � bn hold. Furthermore, we denote Ac as the complement of set A for any set A

while B(x, r) denotes the ball, with respect to the l2 norm, of radius r > 0 centered at x ∈R
d . Finally,

we use Diam(�) = sup{‖θ1 − θ2‖ : θ1, θ2 ∈ �} to denote the diameter of a given parameter space �

relative to the l2 norm, ‖ · ‖, for elements in R
d .

2. Preliminaries

We recall the notion of Wasserstein distance for mixing measures, along with the notions of strong
identifiability and uniform Lipschitz continuity conditions that prove useful in Section 3.

Mixture model. Throughout the paper, we assume that X1, . . . ,Xn are i.i.d. samples from a true but
unknown distribution PG0 with given density function

pG0 :=
∫

f (x|θ) dG0(θ) =
k0∑

i=1

p0
i f

(
x|θ0

i

)
,
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where G0 = ∑k0
i=1 p0

i δθ0
i

is a true but unknown mixing distribution with exactly k0 number of support

points, for some unknown k0. Also, {f (x|θ), θ ∈ � ⊂R
d} is a given family of probability densities (or

equivalently kernels) with respect to a sigma-finite measure μ on X where d ≥ 1. Furthermore, � is
a chosen parameter space, where we empirically believe that the true parameters belong to. In a well-
specified setting, all support points of G0 reside in �, but this may not be the case in a misspecified
setting.

Regarding the space of mixing measures, let Ek := Ek(�) and Ok := Ok(�) respectively, denote
the space of all mixing measures with exactly and at most k support points, all in �. Additionally,
denote G := G(�) = ∪k∈N+ Ek the set of all discrete measures with finite supports on �. Moreover,
G(�) denotes the space of all discrete measures (including those with countably infinite supports) on
�. Finally, P(�) stands for the space of all probability measures on �.

Wasserstein distance. As in [22,37] it is useful to analyze the identifiability and convergence of
parameter estimation in mixture models using the notion of Wasserstein distance, which can be de-
fined as the optimal cost of moving masses transforming one probability measure to another [51].
Given two discrete measures G = ∑k

i=1 piδθi
and G′ = ∑k′

i=1 p′
iδθ ′

i
, a coupling between p and p′ is a

joint distribution q on [1 . . . , k] × [1, . . . , k′], which is expressed as a matrix q = (qij )1≤i≤k,1≤j≤k′ ∈
[0,1]k×k′

with marginal probabilities
∑k

i=1 qij = p′
j and

∑k′
j=1 qij = pi for any i = 1,2, . . . , k and

j = 1,2, . . . , k′. We use Q(p,p′) to denote the space of all such couplings. For any r ≥ 1, the r-th
order Wasserstein distance between G and G′ is given by

Wr

(
G,G′) = inf

q∈Q(p,p′)

(∑
i,j

qij

∥∥θi − θ ′
j

∥∥r
)1/r

,

where ‖ · ‖ denotes the l2 norm for elements in R
d . It is simple to see that if a sequence of probability

measures Gn ∈ Ok0 converges to G0 ∈ Ek0 under the Wr metric at a rate ωn = o(1) for some r ≥ 1 then
there exists a subsequence of Gn such that the set of atoms of Gn converges to the k0 atoms of G0, up
to a permutation of the atoms, at the same rate ωn.

Strong identifiability and uniform Lipschitz continuity. The key assumptions that will be used to an-
alyze the posterior contraction of mixing measures include uniform Lipschitz condition and strong
identifiability condition. The uniform Lipschitz condition can be formulated as follows [22].

Definition 2.1. We say the family of densities {f (x|θ), θ ∈ �} is uniformly Lipschitz up to the order
r , for some r ≥ 1, if f as a function of θ is differentiable up to the order r and its partial derivatives
with respect to θ satisfy the following inequality

∑
|κ|=r

|
(

∂ |κ|f
∂θκ

(x|θ1) − ∂ |κ|f
∂θκ

(x|θ2)

)
γ κ | ≤ C‖θ1 − θ2‖δ‖γ ‖

for any γ ∈ R
d and for some positive constants δ and C independent of x and θ1, θ2 ∈ �. Here,

γ κ = ∏d
i=1 γ

κi

i where κ = (κ1, . . . , κd).

The first order uniform Lipschitz condition is satisfied by many popular classes of density functions,
including Gaussian, Student’s t, and skew-normal family. Now, strong identifiability condition of the
rth order is formulated as follows.
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Definition 2.2. For any r ≥ 1, we say that the family {f (x|θ), θ ∈ �} (or in short, f ) is identifiable in
the order r , for some r ≥ 1, if f (x|θ) is differentiable up to the order r in θ and the following holds

A1. For any k ≥ 1, given k different elements θ1, . . . , θk ∈ �. If we have α
(i)
η such that for almost

all x

r∑
l=0

∑
|η|=l

k∑
i=1

α(i)
η

∂ |η|f
∂θη

(x|θi) = 0

then α
(i)
η = 0 for all 1 ≤ i ≤ k and |η| ≤ r .

Many commonly used families of density functions satisfy the first order identifiability condition,
including location-scale Gaussian distributions and location-scale Student’s t-distributions. Technically
speaking, strong identifiability conditions are useful in providing the guarantee that we have some
sort of lower bounds of Hellinger distance between mixing densities in terms of Wasserstein metric
between mixing measures. For example, if f is identifiable in the first order, we have the following
inequality [22]

h(pG,pG0)� W1(G,G0) (1)

for any G ∈ Ek0 . It implies that for any estimation method that yields the convergence rate n−1/2 for
density pG0 under the Hellinger distance, the induced rate of convergence for the mixing measure G0
is n−1/2 under W1 distance.

3. Posterior contraction under well-specified regimes

In this section, we assume that the mixture model is well-specified, that is, the data are i.i.d. samples
from the mixture density pG0 , where mixing measure G0 has k0 support points in compact parameter
space � ⊂ R

d . Within this section, we assume further that the true but unknown number of components
k0 is finite. A Bayesian modeler places a prior distribution  on a suitable subspace of G(�). Then the
posterior distribution over G is given by:

(G ∈ B|X1, . . . ,Xn) =
∫
B

∏n
i=1 pG(Xi) d(G)∫

G(�)

∏n
i=1 pG(Xi) d(G)

(2)

We are interested in the posterior contraction behavior of G toward G0, in addition to recovering the
true number of mixture components k0.

3.1. Prior results

The customary prior specification for a finite mixture is to use a Dirichlet distribution on the mixing
weights and another standard prior distribution on the atoms of the mixing measure. Let H be a distri-
bution with full support on �. Thus, for a mixture of k components, the full Bayesian mixture model
specification takes the form:

p = (p1, . . . , pk) ∼ Dirichletk(γ /k, . . . , γ /k),

θ1, . . . , θk
i.i.d.∼ H,
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X1, . . . ,Xn|G =
k∑

i=1

piδθi

i.i.d.∼ pG. (3)

Suppose for a moment that k0 is known, we can set k = k0 in the above model specification. Thus,
we would be in an exact-fitted setting. Provided that f satisfies both first-order identifiability condition
and the uniform Lipschitz continuity condition, H is approximately uniform on �, then according
to [22,37] it can be established that as n tends to infinity,


(
G ∈ Ek0(�) : W1(G,G0) � (logn/n)1/2|X1, . . . ,Xn

) pG0−→ 0. (4)

The (logn/n)1/2 rate of posterior contraction is optimal up to a logarithmic term.
When k0 is unknown, there may be a number of ways for the modeler to proceed. Suppose that an

upper bound of k0 is given, say k0 < k. Then by setting k = k in the above model specification, we have
a Bayesian overfitted mixture model. Provided that f satisfies the second-order identifability condition
and the uniform Lipschitz continuity condition, H is again approximately uniform distribution on �,
then it can be established that [22,37]:


(
G ∈Ok(�) : W2(G,G0) � (logn/n)1/4|X1, . . . ,Xn

) pG0−→ 0. (5)

This result does not provide any guarantee about whether the true number of mixture components k0

can be recovered. The rate (upper bound) (logn/n)1/4 under W2 metric implies that under the posterior
distribution the redundant mixing weights of G contracts toward zero at the rate (logn/n)1/2, but the
posterior contraction to each of the k0 atoms of G0 occurs at the rate (logn/n)1/4 only.

Interestingly, it can be shown by Rousseau and Mengersen [43] that with a more judicious choice of
prior distribution on the mixing weights, one can achieve a near-optimal posterior contraction behavior.
Specifically, they continued to employ the Dirichlet prior, but they required the Dirichlet’s hyperparam-
eters set to be sufficiently small: γ /k ≤ d/2 in (3) where k = k, d is the dimension of the parameter
space �. Then, under some conditions on kernel f approximately comparable to the second-order iden-
tifiability and the uniform Lipschitz continuity condition defined in the previous section, they showed
that for any ε > 0, as n tends to infinity



(
∃I ⊂ {1, . . . , k}, |I | = k − k0 s.t.

∑
i∈I

pi < n−1/2+ε |X1, . . . ,Xn

)
pG0−→ 1. (6)

For a more precise statement along with the complete list of sufficient conditions leading to claim (6),
we refer the reader to the original theorem of [43]. Although their theorem is concerned with only the
behavior of the redundant mixing weights pi , where i ∈ I , which vanish at a near-optimal rate n−1/2+ε ,
it can be deduced from their proof that the posterior contraction for the true atoms of G0 occurs at
this near-optimal rate as well. [43] also showed that this performance may not hold if the Dirichlet’s
hyperparameters are set to be sufficiently large. Along this line, concerning the recovery of the number
of mixture components k0, [4] demonstrated the convergence of the posterior mode of the number of
components to the true number of components k0 at a rate n−ρ , where ρ depends on k −k0, the number
of redundant components forced upon by our model specification. Finally, we note that in addition to
Dirichlet-type prior specifications, other types of prior specifications have also been taken up by other
researchers [12,53].
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3.2. Optimal posterior contraction via a parametric Bayesian mixture

We will show that optimal posterior contraction rates for mixture model parameters can be achieved by
a natural Bayesian extension on the prior specification, even when the upper bound on the number of
mixture component k is unknown. The modeling idea is simple and truly Bayesian in spirit: since k0 is
unknown, let K be a natural-valued random variable representing the number of mixture components.
We endow K with a suitable prior distribution qK on the positive integers. Conditioning on K = k, for
each k, the model is specified as before:

K ∼ qK, (7)

p = (p1, . . . , pk)|K = k ∼ Dirichletk(γ /k, . . . , γ /k),

θ1, . . . , θk|K = k
i.i.d.∼ H,

X1, . . . ,Xn|G =
k∑

i=1

piδθi

i.i.d.∼ pG. (8)

This prior specification is called mixture of finite mixtures (MFM) model [36,41,48]. In the sequel,
we show that the application of the MFM prior leads to the optimal posterior contraction rates for the
model parameters. Interestingly, such guarantees can be established under very mild conditions on the
kernel density f : only the uniform Lipschitz continuity and the first-order identifiability conditions
will be required. The first-order identifiability condition is the minimal condition for which the optimal
posterior contraction rate can be established by the proof technique employed, since this condition
is also necessary for exact-fitted mixture models to receive the n−1/2 posterior contraction rate. We
proceed to state such conditions.

(P.1) The parameter space � is compact, while kernel density f is first-order identifiable and admits
the uniform Lipschitz property up to the first order.

(P.2) The base distribution H is absolutely continuous with respect to the Lebesgue measure μ

on R
d and admits a density function g(·). Additionally, H is approximately uniform, that is,

minθ∈� g(θ) > c0 > 0.
(P.3) There exists ε0 > 0 such that

∫
(pG0(x))2/pG(x)dμ(x) ≤ M(ε0) as long as W1(G,G0) ≤ ε0

for any G ∈ Ok0 where M(ε0) depends only on ε0, G0, and �.
(P.4) The prior qK places positive mass on the set of natural numbers, that is, qK(k) > 0 for all

k ∈ N.

Theorem 3.1. Under assumptions (P.1), (P.2), (P.3), and (P.4) on MFM, we have that

(a) (K = k0|X1, . . . ,Xn) → 1 a.s. under PG0 .
(b) Moreover,


(
G ∈ G(�) : W1(G,G0) � (logn/n)1/2|X1, . . . ,Xn

) → 1

in PG0 -probability.

The proof of Theorem 3.1 is deferred to Appendix A.1. We now make several remarks regarding the
conditions required in the theorem.

(i) It is worth stating up front that these conditions are almost minimal in order for the optimal
posterior contraction to be guaranteed, and are substantially weaker than previous works (as
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discussed above). In particular, assumption (P.1) is crucial in establishing that the Hellinger
distance h(pG,pG0) ≥ C0W1(G,G0) where C0 is some positive constant depending only on
G0 and �. Assumption (P.2) and (P.4) are standard conditions on the support of the prior so that
posterior consistency can be guaranteed for any unknown G0 with unknown number of support
atoms residing on �. The role of (P.3) is to help control the growing rate of KL neighborhood,
which is central in the analysis of posterior convergence rate of mixing measures. This as-
sumption is held for various choices of kernel f , including location families and location-scale
families. Therefore, the assumptions (P.1), (P.2), (P.3) and (P.4) are fairly general and satisfied
by most common choice of kernel densities.

(ii) Condition (P.2) may be replaced by the following weaker condition:
(P.2’) The base distribution H is absolutely continuous with respect to the Lebesgue measure

μ on R
d and admits a density function g(·). Additionally, H must contain sufficient

mass near the atoms of G0, that is, minθ :‖θ−θ0
i ‖≤ε g(θ) ≥ c0 > 0 for some ε > 0.

We prefer (P.2) which is required for unknown G0 and is a reasonable assumption in practice.
(iii) The contraction rate with respect to the W1 norm for strongly identifiable family of densi-

ties is OP ((log(n)/n)1/2). The contraction rates relative to the Lq norms for q ≥ 1 can be
obtained by Lemma D.4 and it is easy to show that the corresponding contraction rates are
OP ((log(n)/n)1/2q) for 1 ≤ q ≤ 2 and OP ((log(n)/n)1/q) for q ≥ 2.

Theorem 3.1 provides a positive endorsement for employing the MFM prior when the number of
mixture components is unknown, but is otherwise believed to be finite and an important quantity of
inferential interest. The papers of [36,41] discuss additional favorable properties of this class of models.
However, when the true number of mixture components is large, posterior inference with the MFM may
still be inefficient in practice. This is because much of the computational effort needs to be expended
for the model selection phase, so that the number of mixture components can be reliably ascertained.
Only then does the fast asymptotic rate of parameter estimation come meaningfully into effect.

3.3. A posteriori processing for BNP mixtures

Instead of placing a prior distribution explicitly on the number of mixture components when this quan-
tity is unknown, another predominant approach is to place a Bayesian nonparametric prior on the mix-
ing measure G, resulting in infinite mixture models. Bayesian nonparametric models such as Dirichlet
process mixtures and the variants have remarkably extended the reach of mixture modeling into a vast
array of applications, especially those areas where the number of mixture components in the modeling
is very large and difficult to fathom, or when it is a quantity of only tangential interest. For instance,
in topic modeling applications of web-based text corpora, one may be interested in the most “popular”
topics, the number of topics is less meaningful [3,38,50,54]. DP mixtures and variants can also serve
as an asymptotically optimal device for estimating the population density, under standard conditions
on the true density’s smoothness, see, for example, [16,17,44,46].

Since a nonparametric Bayesian prior such as the Dirichlet process places zero probability on mixing
measures with finite number of supporting atoms, the Dirichlet process mixture’s posterior is incon-
sistent on the number of mixture components, provided the true number of mixture components is
finite [35]. It is well known in practice that Dirichlet process mixtures tend to produce many small
extraneous components around the “true” clusters, making them challenging to use to draw conclusion
about the true number of mixture components when this becomes a quantity of interest [18,32]. In this
section, we describe a simple posteriori processing algorithm that consistently estimates the number of
components for any general Bayesian prior, even without the exact knowledge of its structure as long
as the posterior for that prior contracts at some known rate to the true G0.
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Our starting point is the availability of a mixing measure sample G that is drawn from the posterior
distribution (G|X1, . . . ,Xn), where X1, . . . ,Xn are i.i.d. samples of the mixing density pG0 . Under
certain conditions on the kernel density f , it can be established that for some Wasserstein metric Wr ,
as n → ∞


(
G ∈ G(�) : Wr(G,G0) ≤ δωn|X1, . . . ,Xn

) pG0−→ 1 (9)

for all constant δ > 0, while ωn = o(1) is a vanishing rate. Thus, ωn can be taken to be (slightly) slower
than actual rate of posterior contraction of the mixing measure. Concrete examples of the posterior
contraction rates in infinite and (overfitted) finite mixtures are given in [13,22,37].

The posterior processing algorithm operates on an instance of mixing measure G, by suitably merg-
ing and truncating atoms that provide the support for G. The only inputs to the algorithm, which we
call Merge-Truncate-Merge (MTM) algorithm is G, in addition to the upper bound of posterior con-
traction rate ωn, and a tuning parameter c > 0. The tuning parameter c is useful in practice, as we
shall explain, but in theory the algorithm “works” for any constant c > 0. Thus, the method is almost
“automatic” as it does not require any additional knowledge about the kernel density f or the space of
support � for the atoms. It is also simple and fast. We shall show that the outcome of the algorithm
is a consistent estimate of both the number of mixing components and the mixing measure. The latter
admits a posterior contraction rate’s upper bound ωn as well.

The detailed pseudocode of MTM algorithm is summarized in Algorithm 1. At a high level, it con-
sists of two main stages. The first stage involves a probabilistic procedure for merging atoms that may
be clustered near one another. The second stage involves a deterministic procedure for truncating extra-
neous atoms and merging them suitably with the remaining ones in a systematic way. The driving force
of the algorithm lies in the asymptotic bound on the Wasserstein distance, that is, Wr(G,G0) ≤ cωn

with high probability. When cωn is sufficiently small, there may be many atoms that concentrate around
each of the supporting atoms of G0. Although G0 is not known, such clustering atoms may be merged
into one, by our first stage of probabilistic merging scheme. The second stage (truncate-merge) is also
necessary in order to obtain a consistent estimate of k0, because there remain distant atoms which carry
a relatively small amount of mass. They will need to be suitably truncated and merged with the other
more heavily supported atoms. In other words, our method can be viewed as a formal procedure of the
common practices employed by numerous practitioners.

We proceed to present the theoretical guarantee for the outcome of Algorithm 1.

Theorem 3.2. Let G be a posterior sample from posterior distribution of any Bayesian procedure,
namely, (·|X1, . . . ,Xn) according to which the upper bound (9) holds for all δ > 0. Let G̃ and k̃ be
the outcome of Algorithm 1 applied to G, for an arbitrary constant c > 0. Then the following hold as
n → ∞.

(a) (k̃ = k0|X1, . . . ,Xn) → 1 in PG0 -probability.
(b) For all δ > 0, (G ∈ G(�) : Wr(G̃,G0) ≤ δωn|X1, . . . ,Xn) −→ 1 in PG0 -probability.

We add several comments concerning this theorem.

(i) The proof of this theorem is deferred to Appendix A.2, where we clarify carefully the roles
played by each step of the MTM algorithm.

(ii) Although it is beyond the scope of this paper to study the practical viability of the MTM algo-
rithm, for interested readers, we present a brief illustration of the algorithm via simulations in
Section 5.

(iii) In practice, one may not have a mixing measure G sampled from the posterior (·|X1, . . . ,Xn)

but a sample from G itself, say Fn, the empirical distribution function. Then one can apply
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Algorithm 1 Merge-Truncate-Merge Algorithm

Input: Posterior sample G = ∑
i piδθi

from (9), rate ωn, constant c.
Output: Discrete measure G̃ and its number of supporting atoms k̃.

{Stage 1: Merge procedure:}
1: Reorder atoms {θ1, θ2, . . . } by simple random sampling without replacement with corresponding

weights {p1,p2, . . . }.
let τ1, τ2, . . . denote the new indices, and set E = {τj }j as the existing set of atoms.

2: Sequentially for each index τj ∈ E , if there exists an index τi < τj such that ‖θτi
− θτj

‖ ≤ ωn,
then:

update pτi
= pτi

+ pτj
, and remove τj from E .

3: Collect G′ = ∑
j :τj ∈E pτj

δθτj
.

write G′ as
∑k

i=1 qiδφi
so that q1 ≥ q2 ≥ . . . .

{Stage 2: Truncate-Merge procedure:}
4: Set A= {i : qi > (cωn)

r}, N = {i : qi ≤ (cωn)
r}.

5: For each index i ∈ A, if there is j ∈ A such that j < i and qi‖φi − φj‖r ≤ (cωn)
r , then

remove i from A and add it to N .

6: For each i ∈ N , find atom φj among j ∈A that is nearest to φi

update qj = qj + qi .

7: Return G̃ = ∑
j∈A qj δφj

and k̃ = |A|.

the MTM algorithm to Fn instead. Assume that Fn is sufficiently close to G, in the sense
that Wr(Fn,G) � Wr(G,G0), it is straightforward to extend the above theorem to cover this
scenario.

Practical implications. At this point, one may look forward to some guidance regarding the modeling
choices of parametrics versus nonparametrics. Even in the tight arena of Bayesian mixture modeling,
the jury may still be out. The results in this section seems to provide a stronger theoretical support for
the former, when it comes to the efficiency of parameter estimation and the corresponding model inter-
pretation. However, as we will see in the next section, when the mixture model is misspecified, the fast
posterior contraction rate offered by the use of the MFM prior is no longer valid. On the other hand,
Bayesian nonparametric models are more versatile in adapting to complex forms of population densi-
ties. In many modern applications it is not meaningful to estimate the number of mixing components,
only the most “significant” ones in a sense suitably defined. Perhaps a more meaningful question con-
cerning a Bayesian nonparametric mixture model is whether it is capable of learning selected mixture
components in an efficient way.

4. Posterior contraction under model misspecification

In this section, we study the posterior contraction behavior of the mixing measure under the realistic
scenarios of model misspecification. There are several ways a mixture model can be misspecified, due
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to the misspecification of the kernel density function f , or the support of the mixing measure G, or
both. From here on, we shall assume that the data population follows a mixture distribution composed
of unknown kernel density f0 and unknown mixing measure G0 — thus, in this section the true density
shall be denoted by pG0,f0 to highlight the possibility of misspecification.

To avoid heavy subscripting, we continue to use pG instead of pG,f to represent the density func-
tion of the mixture model that we operate on. The kernel density f is selected by the modeler. Ad-
ditionally, G is endowed with a suitable prior  on the space of mixing measures with support be-
longing to compact parameter space �. By Bayes rule (Eq. (2)) one obtains the posterior distribution
(G|X1, . . . ,Xn), where the n-i.i.d. sample X1, . . . ,Xn are generated by pG0,f0 . It is possible that
f �= f0. It is also possible that the support of G0 does not reside within �. In practice, the statistical
modeler would hope that the kernel choice of f is not too different from the true but unknown f0. Oth-
erwise, it would be unclear how one can interpret the parameters that represent the mixing measure G.
Our goal is to investigate the posterior contraction of (G|X1, . . . ,Xn) in such situations, as sample
size n tends to infinity. The theory is applicable for a broad class of prior specification on the mixing
measures on �, including the MFM prior and a nonparametric Bayesian prior such as the Dirichlet
process.

A fundamental quantity that arises in the theory of Bayesian misspecification for density estimation
is the minimizer of the Kullback–Leibler (KL) divergence from the true population density to a density
function residing in the support of the induced prior on the space of densities pG, which we shall
assume to exist (cf. [27]). Moreover, assume that the KL minimizer can be expressed as a mixture
density pG∗ , where G∗ is a probability measure on �. We may write

G∗ ∈ arg min
G∈P(�)

K(pG0,f0 ,pG). (10)

We will see in the sequel that the existence of the KL minimizer pG∗ entails its uniqueness. In general,
however, G∗ may be non-unique. Thus, define

M∗ := {
G∗ ∈P(�) : G∗ ∈ arg min

G∈P(�)

K(pG0,f0 ,pG)
}
.

It is challenging to characterize the set M∗ in general. However, a very useful technical property
can be shown as follows:

Lemma 4.1. For any G ∈P(�) and G∗ ∈M∗, it holds that
∫ pG(x)

pG∗ (x)
pG0,f0(x) dx ≤ 1.

By exploiting the fact that the class of mixture densities is a convex set, the proof of this lemma is
similar to that of Lemma 2.3 of [27], so it is omitted. This leads quickly to the following fact.

Lemma 4.2. For any two elements G1,∗,G2,∗ ∈ M∗, pG1,∗(x) = pG2,∗(x) for almost all x ∈X .

In other words, the mixture density pG∗ is uniquely identifiable. Under a standard identifiability
condition of the kernel f , which is satisfied by the examples considered in this section, it follows that
G∗ is unique. Due to the model misspecification, in general G∗ �= G0. The best we can hope for is that
the posterior distribution of the mixing measure G contracts toward G∗ as n tends to infinity.

The goal of the remaining of this section is to study the posterior contraction behavior of the (mis-
specified) mixing measure G towards the unique G∗.

Following the theoretical framework of [27] and [37], the posterior contraction behavior of the mix-
ing measure G can be obtained by studying the relationship of a weighted version of Hellinger distance
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and corresponding Wasserstein distances between G and the limiting point G∗. In particular, for a fixed
pair of mixture densities pG0,f0 and pG∗ , the weighted Hellinger h between two mixture densities is
defined as follows [27].

Definition 4.1. For G1,G2 ∈ P(�),

h
2
(pG1 ,pG2) := 1

2

∫ (√
pG1(x) − √

pG2(x)
)2 pG0,f0(x)

pG∗(x)
dx.

It is clear that when G∗ = G0 and f = f0, the weighted Hellinger distance reduces to the standard
Hellinger distance. In general they are different due to misspecification. According to Lemma 4.1, we
have h(pG1,pG2) ≤ 1 for all G1,G2 ∈ P(�).

Choices of prior on mixing measures. As in the previous section, we work with two representative
priors on the mixing measure: the MFM prior and the Dirichlet process prior. Both prior choices may
contribute to the model misspecification, if the true mixing measure G0 lies outside of the support of
the prior distribution.

Recall the MFM prior specification given in Eq. (7). We also need a stronger condition on qK :

(P.4’) The prior distribution qK on the number of components satisfies qk � k−α0 for some α0 > 1.

The α0 > 1 condition is placed in order to ensure that qK is a proper distribution on natural numbers.
Note that the assumption with prior on the number of components qK is mild and satisfied by many
distributions, such as Poisson distribution. In order to obtain posterior contraction rates, one needs to
make sure the prior places sufficient mass on the (unknown) limiting point of interest. For the MFM
prior, such a condition is guaranteed by the following lemma.

Lemma 4.3. Let  denote the prior for generating G based on MFM (7), where H admits condition
(P.2) and qK admits (P.4’). Fix r ≥ 1. Then the following holds, for any G∗ ∈ P(�)


(
G : Wr

r (G,G∗) ≤ (
2r + 1

)
εr

)
� γ�(γ )D!qD

D

(
c0

(
ε

Diam(�)

)d)D(
1

D

(
ε

Diam(�)

)r)γ (D−1)/D

(11)

for all ε sufficiently small so that D(ε,�,‖.‖) > γ . Here, D = D(ε,�,‖.‖) and qD stand for the
maximal ε-packing number for � under ‖.‖ norm and the prior weight (K = D), respectively.

The proof of Lemma 4.3 is provided in Appendix A.3. Alternatively, for a Dirichlet process prior,
G is distributed a priori according to a Dirichlet measure with concentration parameter γ > 0 and base
measure H satisfying condition (P.2). An analogous concentration bound for such a prior is given in
Lemma 5 of [37].

It is somewhat interesting to note that the difference in the choices of prior under misspecification
does not affect the posterior contraction bounds that we can establish. In particular, as we have seen
for the definition, G∗ does not depend on a specific choice of prior distribution (only its support). Due
to misspecification, G∗ may have infinite support, even if the true G0 has a finite number of support
points. When G∗ has infinite support, the posterior contraction toward G∗ becomes considerably slower
compared to the well-specified setting. In addition to the structure of G∗, we will see in the sequel that
the modeler’s specific choice of kernel density f proves to be especially impactful on the rate of
posterior contraction.
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4.1. Gaussian location mixtures

Consider a class of kernel densities that belong to the supersmooth location family of density functions.
A particular example that we focus on in this section is a class of Gaussian distributions with some fixed
covariance matrix �. More precisely, f has the following form:

{
f (·|θ), θ ∈ � ⊂R

d : f (x|θ) := exp(−(x − θ)��−1(x − θ)/2)

|2π�|−1/2

}
, (12)

where | · | stands for matrix determinant. Note that, Gaussian kernel is perhaps the most popular choice
in mixture modeling.

With the Gaussian location kernel, it is possible to obtain a lower bound on the Hellinger distance
between the mixture densities in terms of the Wasserstein distance between corresponding mixing
measures [37]. More useful in the misspecified setting is a key lower bound for the weighted Hellinger
distance in terms of the Wasserstein metric, which is given below in Prop. 4.1. In order to establish this
bound, we shall require a technical condition relating f to the true f0 and G0. This condition is stated
by assumption (P.5) or a weaker version (P.5’).

(P.5) The support of G0, namely, supp(G0) is a bounded subset of Rd . Moreover, there are some
constants C0,C1, α > 0 such that for any R > 0,

sup
x∈Rd ,θ∈�,θ0∈supp(G0)

f (x|θ)

f0(x|θ0)
1‖x‖2≤R ≤ C1 exp

(
C0R

α
)
.

The condition in (P.5) that the support of G0 has the same dimension d is purely for the sake of
interpretability, if the quantity of inferential interest is the mixing measure G. This is also related to
the condition in (P.5) on the density ratio f (x/θ)/f0(x|θ0). In fact, both conditions on the support
of G0 and on f0 are not strictly necessary from a technical standpoint; only a “black-box” condition
directly placed on the true density pG0,f0 will be sufficient. Accordingly, (P.5) may be replaced by the
following weaker condition.

(P.5’) Assume that there are some constants C0,C1, α > 0 such that for any R > 0,

sup
x∈Rd ,θ∈�

f (x|θ)

pG0,f0(x)
1‖x‖2≤R ≤ C1 exp

(
C0R

α
)
.

It is simple to verify that (P.5) implies (P.5’).

Examples. In the following examples, the statistician decides to fit the data with a Gaussian location
mixture model pG,f , where the kernel f (x|θ) corresponds to a Gaussian kernel with mean parameter
θ ∈ � ⊂R

d , a fixed non-degenerate covariance � as given by Eq. (12). In addition, the mixing measure
G ∈ P(�).

1. If f0 is a Gaussian kernel with mean parameter in a bounded set �0 ⊂ R
d and fixed non-

degenerate covariance �0, and G0 ∈P(Rd), then the true density pG0,f0 corresponds to a Gaus-
sian location mixture. The model may be misspecified due to either �0 �= �, or supp(G0) �⊂ �,
or both. In this case, (P.5) is satisfied for all α ≥ 2. The constant C0 depends on �,�0 as well as
supp(G0) and �. On the other hand, C1 depends on the eigenvalues of �, �0 as well as the value
of α.
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2. If f0 is a Gaussian kernel with both mean and covariance parameter varying in some compact
subsets of Rd and positive definite d × d matrices, respectively, so that the true density pG0,f0

corresponds to a Gaussian location-scale mixture. In this case, (P.5) is not applicable, but (P.5’)
holds with all α ≥ 2. The constant C0 depends on �,� as well as the compact subsets corre-
sponding to the location and covariance parameters. On the other hand, C1 depends on the value
of α chosen, � as well as the compact subset corresponding to the covariance parameter.

3. If f0 is a Student’s t kernel, with both mean and covariance parameter varying in some compact
subsets of R

d and positive definite d × d matrices, respectively, then pG0,f0 corresponds to a
location-scale mixture of t distributions. In this scenario too, (P.5) may not be applicable, but
(P.5’) is, for all α > 0. Both C0 and C1 depend on the choice of α. In addition, C0 depends on
�,� as well as the compact subsets corresponding to the location and covariance parameters,
while C1 depends on � as well as the compact subset corresponding to the covariance parameter.

4. If f0 is a Laplace kernel with mean parameter in a bounded set �0 ⊂ R
d , fixed covariance �0,

fixed scale parameter λ0, and G0 ∈ P(Rd), (P.5) is satisfied for all α > 0. Both C0 and C1 depend
on the choice of α. In addition C0 depends on �,� as well as the compact subsets corresponding
to the location and covariance parameters, while C1 depends on � as well as the compact subset
corresponding to the covariance parameter.

Proposition 4.1. Let f be a Gaussian kernel given by (12), � a bounded subset of Rd . Moreover,
assume that f,� and the true data generating distribution PG0,f0 satisfy either condition (P.5) or (P.5’)
for some α ≤ 2. Then, there exists ε0 > 0 depending on � and �, such that for any G,G′ ∈ P(�),
whenever h(pG,pG′) ≤ ε0, the following inequality holds

h(pG,pG′) ≥ C exp
(−(

1 + 8λmax
(
λ−1

min + C0
))

/W 2
2

(
G,G′)).

Here, λmax and λmin are respectively the maximum and minimum eigenvalue of �. C is a constant de-
pending on the parameter space �, the dimension d , the covariance matrix �, G0 and C1 in condition
(P.5) or (P.5’).

The proof of Proposition 4.1 is provided in Appendix A.4. We are ready to prove the first main result
of this section.

Theorem 4.1. Assume that f satisfies condition specified in Prop. 4.1, and  is an MFM prior on
P(�) specified in Lemma 4.3. Then, as n tends to infinity, the following holds



(
G ∈ G(�) : W2(G,G∗)�

(
log logn

logn

)1/2∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability.

The proof of Theorem 4.1 is given in Appendix D.1. The same posterior contraction behaviors hold if
we replace MFM prior by the Dirichlet process prior with no change in the proof, except that Lemma 5
of [37] is used in place of Lemma 4.3.

The above theorem provides a result on parameter estimation in the misspecified context. We also
provide a result on density estimation as follows, even though it is not the primary focus of the paper.

In order to facilitate the presentation, we denote

‖pG1 − pG2‖L̃q
:=

(∫
pG0,f0(x)

pG∗(x)

∣∣pG1(x) − pG2(x)
∣∣q dx

)1/q

.
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It is clear that when G∗ = G0 and f = f0, the L̃q norm becomes the standard Lq norm. In general, we
define L̃q norm between mixing densities to account for the model misspecification.

Proposition 4.2. Assume that  is either the Dirichlet process prior or the MFM prior on P(�)

specified in Lemma 4.3. If f is a multivariate Gaussian kernel with covariance �, then we have



(
G ∈ G(�) : ‖pG − pG∗‖L̃q

�
(

(log(n))2

n

)1/q(d+2)∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability for 1 ≤ q ≤ 2.
Furthermore, for q ≥ 2 we obtain



(
G ∈ G(�) : ‖pG − pG∗‖L̃q

�
(

(log(n))2

n

)2/q(d+2)∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability.

The proof of Proposition 4.2 is provided in Section D.2 in the Appendix.

4.2. Laplace location mixtures

Next, we consider a class of multivariate Laplace kernel, a representative in the family of ordinary
smooth density functions. It was shown by [37] that under a Dirichlet process location mixture with a
Laplace kernel, assuming the model is well-specified, the posterior contraction rate of mixing measures
to G0 is of order n−γ for some constant γ > 0. Under the current misspecification setting, we will be
able to derive contraction rates toward G∗ in the order of n−γ ′

for some constant γ ′ dependent on γ .
The density of location Laplace distributions is given by:

f (x|θ) = 2

λ(2π)d/2

K(d/2)−1(
√

2/λ
√

(x − θ)��−1(x − θ))

(
√

λ/2
√

(x − θ)��−1(x − θ))(d/2)−1
, (13)

where � and λ > 0 are respectively fixed covariance matrix and scale parameter such that |�| = 1.

Here, Kv is a Bessel function of the second kind of order v. As discussed in [7], Km(x) ∼
√

π
2x

exp(−x)

as |x| → ∞. Therefore, there exists R̃ such that as long as ‖x − θ‖ > R̃, we have

f (x|θ) �
exp(−

√
2
λ
‖x − θ‖�−1)

(‖x − θ‖�−1)(d−1)/2
,

where we use the shorthand notation ‖y‖�−1 = √
y��−1y. To ease the ensuing presentation, we de-

note

τ(α) :=
√

2/(λλmax)

(
√

2/(λλmin) + √
2/(λλmax) + C0)1/α

.

The following proposition provides a key lower bound of weighted Hellinger distance in terms of the
Wasserstein metric.
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Proposition 4.3. Let f be a Laplace kernel given by (13) for fixed � and λ such that |�| = 1. More-
over, f,� and G0 satisfy either condition (P.5) or (P.5’) for some α ≥ 1. Then, there exists ε0 > 0
depending on �, λ and �, such that for any G,G′ ∈ P(�), whenever h(pG,pG′) ≤ ε0, the following
inequality holds

(
log

1

h(pG,pG′)

)d/(2α)

exp

(
−τ(α)

(
log

1

h(pG,pG′)

)1/α)
≥ CW

2/m

2

(
G,G′).

for any positive constant m < 4/(4 + 5d). Here, λmax and λmin are respectively, the maximum and
minimum eigenvalue of �. The constant C depends on the parameter space �, the dimension d , the
covariance matrix �, the scale parameter λ, G0 and C1 in (P.5) or (P.5’).

The proof of Proposition 4.3 is provided in Appendix A.5. Given the above result, the posterior
contraction rate for mixing measures G in the location family of Laplace mixture distributions can be
obtained from the following result.

Theorem 4.2. Assume that f is given by equation (13) for fixed � and λ such that |�| = 1. Addition-
ally, assume that f satisfies condition specified in Prop. 4.3, and  an MFM prior on P(�) specified
in Lemma 4.3. Then, as n tends to infinity, the following holds



(
G ∈ G(�) : W2(G,G∗)� exp

(
−mτ(α)

2

(
logn − log logn

2(d + 2)

)1/α)∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability for any positive constant m < 4/(4 + 5d).

The proof of Theorem 4.2 is straightforward using the result in Proposition 4.3 and analogous to the
proof argument of Theorem 4.1; therefore, it is omitted. Note that, identical to the Gaussian kernel case,
a similar contraction behavior also holds for the Laplace kernel with the Dirichlet process prior. The
proof can be obtained similar to the MFM prior by invoking Lemma 5 of [37] instead of Lemma 4.3.

We see from Theorems 4.1 and 4.2 that for parameter estimation, the Laplace kernel provide a faster
contraction as compared to Gaussian kernels. However, the following result suggests that it may be the
opposite when it comes to density estimation for misspecified scenarios.

Proposition 4.4. Assume that  is either the Dirichlet process prior or the MFM prior on P(�)

specified in Lemma 4.3. If f is a multivariate Laplace distribution given by equation (13) for fixed �

and λ such that |�| = 1, then we arrive at



(
G ∈ G(�) : ‖pG − pG∗‖L̃q

�
(

(log(n))2

n

)1/q(2d+1)∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability for 1 ≤ q ≤ 2.
When q ≥ 2, we find that



(
G ∈ G(�) : ‖pG − pG∗‖L̃q

�
(

(log(n))2

n

)2/q(2d+1)∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability.
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The proof of Proposition 4.4 is analogous to that of Proposition 4.2 and is therefore omitted. The
rates obtained for Propositions 4.2 and 4.4 are probably not sharp and may be improved upon, perhaps
under additional assumptions.

Note that we only need condition (P.5’) for the proofs of Theorem 4.2 and Proposition 4.3 to hold.
Condition (P.5) is a stricter condition which ensures (P.5’). Relevant examples of condition (P.5) or
(P.5’) are provided as follows.

Examples. In the examples that follow, the statistician decides to fit the data with a Laplace location
mixture model pG,f , where the kernel f (x|θ) corresponds to a Laplace kernel with mean parameter
θ ∈ � ⊂ R

d , a fixed non-degenerate covariance � with |�| = 1 and a scale parameter λ > 0, as given
by Eq. (13). In addition, the mixing measure G ∈P(�).

1. If f0 is a Gaussian kernel with mean parameter in a bounded set �0 ⊂ R
d and fixed non-

degenerate covariance �0, and G0 ∈P(Rd), then the true density pG0,f0 corresponds to a Gaus-
sian location mixture. In this case, (P.5) is satisfied for all α ≥ 2. The constant C0 depends on
λ,�,�0 as well as supp(G0) and �. On the other hand, C1 depends on the eigenvalues of λ,�,
�0 as well as the value of α.

2. If f0 is a Gaussian kernel with both mean and covariance parameter varying in some compact
subsets of Rd and positive definite d × d matrices, respectively, so that the true density pG0,f0

corresponds to a Gaussian location-scale mixture. In this case, (P.5) is not applicable, but (P.5’)
holds with all α ≥ 2. The constant C0 depends on �,� as well as the compact subsets corre-
sponding to the location and covariance parameters. On the other hand, C1 depends on the value
of α chosen, � as well as the compact subset corresponding to the covariance parameter.

3. If f0 is a Student’s t kernel, with both mean and covariance parameter varying in some compact
subsets of R

d and positive definite d × d matrices, respectively, then pG0,f0 corresponds to a
location-scale mixture of t distributions. In this scenario too, (P.5) may not be applicable, but
(P.5’) is, for all α > 0. Both C0 and C1 depend on the choice of α. In addition C0 depends on
�,� as well as the compact subsets corresponding to the location and covariance parameters,
while C1 depends on � as well as the compact subset corresponding to the covariance parameter.

4. If f0 is a Laplace kernel with mean parameter in a bounded set �0 ⊂ R
d , fixed covariance �0,

fixed scale parameter λ0, and G0 ∈P(Rd), (P.5) is satisfied for all α ≥ 1. Both C0 and C1 depend
on the choice of α. In addition C0 depends on �,� as well as the compact subsets corresponding
to the location and covariance parameters, while C1 depends on � as well as the compact subset
corresponding to the covariance parameter.

5. If f0 is a Laplace kernel with mean, scale and covariance parameters varying in some compact
subsets of R+, Rd and positive definite d × d matrices with determinant 1, respectively, so that
the true density pG0,f0 corresponds to a Laplace location-scale mixture. In this case, (P.5’) holds
with all α ≥ 1. The constant C0 depends on �,λ,� as well as the compact subsets corresponding
to the location, scale and covariance parameters. On the other hand, C1 depends on the value of α

chosen, � as well as the compact subsets corresponding to the scale and covariance parameters.

Remarks. (i) It is worth noting that compared to the well-specified setting, the posterior contrac-
tion upper bound obtained for Gaussian location mixtures remains the same slow logarithmic rate
(log logn/ logn)1/2. For Laplace mixtures, when the truth f0 satisfies condition (P.5) with α ≤ 1, the
posterior contraction upper bound obtained under misspecification remains a polynomial rate of the
form n−γ ′

modulo a logarithmic term. Due to misspecification there is a loss of a constant factor in the
exponent γ ′, which is dependent on the shape of the kernel density as it is captured by the term τ(α).

(ii) Although Gaussian mixtures have proved to be an asymptotically optimal density estimation
device under suitable and mild conditions (cf. [16]), the results obtained in this section raise some
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cautions for Gaussian kernels as a choice for mixture modeling under model misspecification, even if
the true G0 has finite number of support points, when the primary interest is in the quality of model
parameter estimates. Mixtures of heavy-tailed and ordinary smooth kernel densities such as the Laplace
prove to be more amenable to efficient parameter estimation. Thus, the modeler may be tempted to
select for f , say, a Laplace kernel over a supersmooth kernel such as Gaussian kernel, provided that
either condition (P.5) or (P.5’) is valid.

(iii) It is interesting to consider the scenario where the true kernel f0 happens to be a Gaussian
kernel: if we use either a well-specified or a misspecified Gaussian kernel to fit the data, the posterior
contraction bound is the extremely slow (log logn/ logn)1/2 accordingly to Theorem 4.1. This rate
may be too slow to be practical interpretation of parameters. If the statistician is too impatient to get
to the truth G0, because sample size n is not sufficiently large, he may well decide to select a Laplace
kernel f instead. Despite the intentional misspecification, he might be comforted by the fact that the
posterior distribution of G contracts at an exponentially faster rate to a G∗ given by Theorem 4.2 for
α = 2. It is of interest, in theory at least, in this scenario to study the relation between G∗ and true G0,
given certain assumptions on the true density pG0,f0 .

Practical implications. All models are misspecified in practice. The question of model choice in
general, and kernel selection in particular is a challenging one, especially when one seeks the mixing
measure G as a device for representing the heterogeneity of the data population. When the kernel family
is misspecified, in general positions the limiting mixing measure G∗ almost always has infinite support.
This means in practice when we employ (Bayesian) nonparametric models, the more data we have the
more heterogeneous patterns will show up via posterior estimates. As such, Theorems 4.1 and 4.2
inform us how the choice of the (likely misspecified) kernel affects the quality of the estimates for G.
In the language of Bayesian inference, the theorems quantify in an asymptotic sense the role of data
sample in transforming the prior distribution to the posterior distribution on the quantity of interest,
whereas the matter of consistency toward the truth G0 is left unknown (and in fact, unknowable in
practice). At the same time, these theorems are not viewed by the authors as an endorsement of one
kernel choice over another. For the purpose of interpreting latent subpopulations, it does not make sense
to use G as a device for heterogeneity of the data population unless the kernel choice f is believed to
be meaningful for subpopulations of interest, that is, f is sufficiently close to the true f0. This is how a
practitioner typically assumes. Once such a kernel choice f has been made, we have shown that some
(misspecified) kernels result in more efficient estimates, and hence more amenable to interpretation,
than others.

4.3. When G∗ has finite support

The source of the deterioration in the statistical efficiency of parameter estimation under model mis-
specification is ultimately due to the increased complexity of the limiting point G∗. Even if the true
G0 has a finite number of support points, this is not the case for G∗ in general. Unfortunately, it is
very difficult to gain concrete information about G∗ both in practice and in theory, due to the lack of
knowledge about the true pG0,f0 . When some precious information about G∗ is available, specifically,
suppose that we happen to know G∗ has a bounded number of support points k∗ such that k∗ < k for
some known k. Then it is possible to devise a new prior specification on the mixing measure G so
that one can gain a considerably improved posterior contraction rate toward G∗. We will show that it
is possible to obtain the contraction rate of the order (logn/n)1/4 under W2 metric — this is the same
rate of posterior contraction one would get with overfitted mixtures in the well-specified regime.
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In order to analyze the convergence rate of mixing measure under that setting of k∗, we introduce
a relevant notion of integral Lipschitz property, which is a generalized form of the uniform Lipschitz
property for the misspecification scenarios.

Definition 4.2. For any given r ≥ 1, we say that the family of densities f admits the integral Lipschitz
property up to the order r with respect to two mixing measures G0 and G∗, if f as a function of
θ is differentiable up to the order r and its partial derivatives with respect to θ satisfy the following
inequality ∑

|κ|=r

∣∣∣∣
(

∂ |κ|f
∂θκ

(x|θ1) − ∂ |κ|f
∂θκ

(x|θ2)

)
γ κ

∣∣∣∣ ≤ C(x)‖θ1 − θ2‖δ‖γ ‖r

for any γ ∈R
d and for some positive constants δ independent of x and θ1, θ2 ∈ �. Here, C(x) is some

function such that
∫

C(x)
pG0,f0 (x)

pG∗ (x)
dx < ∞.

It is clear that when f has integral Lipschitz property up to the order r , for some r ≥ 1, with respect
to G0 and G∗, then it will admit uniform Lipschitz property up to the order r . We can verify that the
first order intergral Lipschitz property is satisfied by many popular kernels, including location-scale
Gaussian distribution and location-scale Cauchy distribution.

In the following, we shall work with the MFM prior (7). Moreover,

(M.0) qK places positive masses on K ∈ {1, . . . , k} and 0 mass elsewhere, where k � k∗ is a fixed
number.

Given that k∗ is finite, we obtain a key lower bound of weighted Hellinger distance in terms of the
Wasserstein metric under strong identiability of f :

Proposition 4.5. Assume that f is second order identifiable and admits uniform integral Lipschitz
property up to the second order. Then, for any G ∈ Ok , the following inequality holds

h(pG,pG∗) �W 2
2 (G,G∗).

The proof of Proposition 4.5 is in Appendix B.2. Before stating the final theorem of this section, we
will need following assumptions:

(M.1) The assumptions of Proposition 4.5 hold, that is, f is second order identifiable and admits
uniform integral Lipschitz property up to the second order.

(M.2) There exists ε0 > 0 such that
∫
(pG0,f0(x))pG∗(x)/pG(x)dμ(x) ≤ M∗(ε0) whenever we

have W1(G,G∗) ≤ ε0 for any G ∈ Ok∗ where M∗(ε0) depends only on ε0, G∗, G0, and
�.

(M.3) The parameter γ in Dirichlet distribution in MFM satisfies γ < k. Additionally, the base
distribution H satisfies Assumption (P.2).

Theorem 4.3. Assume k0 < ∞, and assumptions (M.0), (M.1), (M.2) and (M.3) hold. Then we have
that,


(
G ∈ G(�) : W2(G,G∗) � (logn/n)1/4|X1, . . . ,Xn

) → 1

in pG0,f0 -probability.

The proof of Theorem 4.3 is deferred to Section D.6.
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Figure 1. Initial distribution G.

Further remarks. The above theorem raises a promising prospect for combating model misspecifica-
tion, by having the modeler fit the data to an underfitted mixture model pG. Unfortunately, this theorem
does not address this scenario, under which the limiting mixing measure would correspond to the KL
minimizer

G∗∗ = arg min
G∈Ok(�)

K(pG0,f0 ,pG).

for some k < ∞, provided that this quantity exists (compare this with G∗ given in (10)). Due to the
lack of convexity of the class of mixture densities with bounded number of mixture components, the
theory developed in this section (tracing back to the work of [27]) is not applicable. Thus, posterior
contraction behaviors in an underfitted mixture models remain an interesting open question.

5. Simulation studies

In this section, we provide an illustration of the MTM algorithm’s behavior via a simple simulation
study. Figures 1, 2, 3 and 4 illustrate the different stages in the application of MTM algorithm 1. In
each figure, green dots denote the atoms in the set of “remaining atoms” at each stage, with weights
proportional to their sizes. Red dots denote the supporting atoms of the true mixing measure G0. Black

Figure 2. After first stage-“merge”.
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Figure 3. After second stage-“truncation”.

circles denote balls of radius ωn around each of the “remaining atoms”. Blue circles denote balls of
radius ωn

4k0
around the atoms of G0.

Starting with an input measure G represented in Figure 1, the first stage of the algorithm (merge
procedure, from line 1 to line 4) merges nearby atoms to produce G′, which is represented by Figure 2.
There remains some atoms that carry very small mass, they are suitably truncated (via line 5 in the
algorithm), and then merged accordingly (via line 6). Figure 3 and Figure 4 represent the outcome
after these two steps of the algorithm. Observe how the atoms in each of the blue circles are merged to
produced a reasonably accurate estimate of the corresponding atom of G0. The number of such circles
gives the correct number of the supporting atoms of G0.

Next, we illustrate the performance of the MTM algorithm as it is applied to the samples from a
Dirichlet process mixture, given the data generated by mixtures of three location Gaussian distribu-
tions:

pG0(·) =
3∑

i=1

p0
i N

(·|μ0
i ,�

0),

Figure 4. After second stage-“merge”.
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Figure 5. Case A.

where N (·|μ,�) is the Gaussian distribution with mean vector μ and covariance matrix �. For simu-
lation purposes, we consider the following four different settings (n is the sample size):

1. Case A: μ0
1 = (0.8,0.8), μ0

2 = (0.8,−0.8), μ0
3 = (−0.8,0.8), �0 = 0.05I3, n = 500.

2. Case B: μ0
1 = (0.8,0.8), μ0

2 = (0.8,−0.8), μ0
3 = (−0.8,0.8), �0 = 0.05I3, n = 1500.

3. Case C: μ0
1 = (1.8,1.8), μ0

2 = (1.8,−1.8), μ0
3 = (−1.8,1.8), �0 = 0.05I3, n = 500.

4. Case D: μ0
1 = (0.8,0.8), μ0

2 = (0.8,−0.8), μ0
3 = (−0.8,0.8), �0 = 0.01I3, n = 1500.

Here, I3 is the identity matrix of dimension 3. Additionally, the weight vector for all these cases is
chosen as p0 = (p0

1,p
0
2,p

0
3) = (0.4,0.3,0.3).

As mentioned above, a Dirichlet process prior with an uniform prior base measure H in the region
[−6,6] × [−6,6], along with concentration parameter α = 1. This choice of prior enables us to sam-
ple significantly larger numbers of components of the mixing measure than the true number of three
components.

It is known that the contraction rate of mixing measures under location Gaussian DPMM is
C̃(log(n)−1/2) with respect to the Wasserstein-2 norm, for some constant C̃ which depends on �0

Figure 6. Case B.
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Figure 7. Case C.

(the covariance matrix), the location parameters μ0
i and the weights p0

i [37]. For our purpose, in or-
der for ωn to satisfy Equation (9), we may choose any ωn as long as ωn

log(n)−1/2 → ∞. We selected

ωn = (
log(log(n))
(log(n))

)1/2 for all our applications of the MTM algorithm.
The MTM algorithm is provably consistent (in the asymptotic sense) for all chosen constants c > 0.

In practice for n being fixed, the input c to Algorithm 1 should be chosen so that C̃

(log(log(n)))1/2 ≤ c.
Moreover, for finite n it is not expected that the posterior probability for k = k0 is close to 1. How-
ever, for identifying the number of components the posterior mode provides a reasonable estimate. In
particular, (1 − ∑3

i=1
c

p0
i

) forms a useful lower bound on the posterior mass at the true parameter as

identified in Equation (13) in the supplement. To identify k = k0 consistently using the posterior mode
safely, one needs to choose c < c0, with c0 satisfying (1 − ∑3

i=1
c0

p0
i

) > 1/2. The exact computation of

the upper bound c0 and the lower bound C̃
(log(log(n)))

for c may be unrealistic but a reasonable estimate
may be possible. Nonetheless, we simply considered a large range of c and show there is a range where
we can robustly identify the true number of components via the posterior mode.

For the DP mixture’s posterior computation, we make use of the non-conjugate split-merge sampler
of Jain and Neal [25] with (5,1,1,5) scheme, that is, 5 scans to reach the split launch state, 1 split-
merge move per iteration, 1 Gibbs scan per iteration, and 5 moves to reach the merge launch state. We
run our experiments for two settings corresponding to sample sizes 500 and 1500. The sampler had
2000 burn-in iterations followed by 18,000 sample iterations (a total 20,000), with each 10th iteration
being counted.

The experiments run for DP mixture-based sampler, followed by application of the MTM procedure
for 4 different values of the tuning parameter c in Algorithm 1, namely, for c = 0.45,0.5,0.55,1.0. The
proportional frequencies are plotted in Figure 5 and Figure 6 respectively, along with the proportional
frequencies for DP mixture. The uniform base measure for the Dirichlet Process prior is chosen so as
to enable easier creation of newer components in the split-merge scheme. As a consequence the DP
mixture’s posterior yields quite bad results as far as the number of mixture components is concerned.
However, even under that case, we can recover the true number of components by considering the mode
of the frequency distribution after an application of the MTM algorithm on the posterior samples, with
appropriate constant c. It is expected, however, that a large choice of c would underestimate the number
of components. This is also what is observed from the simulations, where the procedure breaks down
when c = 1.0.
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Figure 8. Case D.

We perform the experiments under four different settings of data populations. In particular, Figure 7
consists of data generated from mixture of Gaussians with more widely spread location parameter val-
ues. In this case, it is expected that the convergence to the true number of components via Algorithm 1
will be faster for the posterior mode, in comparison to the situation where the location parameters are
closer together. This is indeed what is observed in our simulations. The value of the covariance matrix
�0, on the other hand does not seem to noticeably affect the results. This is again expected, since the
prior support [−6,6]× [−6,6] is quite large in comparison to the eigenvalues of the covariance matrix
chosen.
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