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Consider the following distribution dependent SDE:

dXt = σt (Xt ,μXt
)dWt + bt (Xt ,μXt

)dt,

where μXt
stands for the distribution of Xt . In this paper for non-degenerate σ , we show the strong well-posedness

of the above SDE under some integrability assumptions in the spatial variable and Lipschitz continuity in μ about
b and σ . In particular, we extend the results of Krylov–Röckner (Probab. Theory Related Fields 131 (2005) 154–
196) to the distribution dependent case.

Keywords: Distribution dependent SDEs; Zvonkin’s transformation; singular drifts; superposition principle;
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1. Introduction

Let P(Rd) be the space of all probability measures over (Rd,B(Rd)), which is endowed with the weak
convergence topology. Consider the following distribution dependent stochastic differential equation
(abbreviated as DDSDEs):

dXt = bt (Xt ,μXt )dt + σt (Xt ,μXt )dWt, (1)

where b : R+ × Rd × P(Rd) → Rd and σ : R+ × Rd × P(Rd) → Rd ⊗ Rd are two Borel measur-
able functions, W is a d-dimensional standard Brownian motion on some filtered probability space
(�,F , (Ft )t≥0,P), and μXt := P ◦ X−1

t is the time marginal of Xt at time t . By Itô’s formula, it is
easy to see that μXt satisfies the following non-linear Fokker–Planck equation (abbreviated as FPE) in
the distributional sense:

∂tμXt = (
L σX

t

)∗
μXt + div

(
bX
t μXt

)
, (2)

where σX
t (x) := σt (x,μXt ), bX

t (x) := bt (x,μXt ), and (L σX

t )∗ is the adjoint operator of the following
second order partial differential operator

L σX

t f (x) := 1

2

d∑
i,j,k=1

(
σ ik

t σ
jk
t

)
(x,μXt )∂i∂jf (x). (3)

We note that if

σX
t (x) =

∫
Rd

σt (x, y)μXt (dy), bX
t (x) =

∫
Rd

bt (x, y)μXt (dy),
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then DDSDE (1) is also called mean-field SDE or McKean–Vlasov SDE in the literature, which natu-
rally appears in the studies of interacting particle systems and mean-field games (see [3,5,13,20,24,27],
in particular, [4] and references therein).

Up to now, there are numerous papers devoted to the study of this type of nonlinear FPEs and
DDSDE (1). In [9], Funaki showed the existence of martingale solutions for (1) under broad condi-
tions of Lyapunov’s type and also the uniqueness under global Lipschitz assumptions. His method is
based on a suitable time discretization. Thus, the well-posedness of FPE (2) is also obtained. More
recently, under some one-side Lipschitz assumptions, Wang [28] showed the strong well-posedness
and some functional inequalities to DDSDE (1). In [10], Hammersley, Siska and Szpruch proved the
existence of weak solutions to SDE (1) on a domain D ⊂ Rd with continuous and unbounded coeffi-
cients under Lyapunov-type conditions. Moreover, uniqueness is also obtained under some functional
Lyapunov conditions. Notice that all the above results require the continuity of coefficients. In [7], Chi-
ang obtained the existence of weak solutions for time-independent SDE (1) with drifts that have some
discontinuities. When the diffusion matrix is uniformly non-degenerate and b, σ are only measurable
and of at most linear growth, by using the classical Krylov estimates, Mishura and Veretennikov [21]
showed the existence of weak solutions. The uniqueness is also proved when σ does not depend on μ

and is Lipschitz continuous in x and b is Lipschitz continuous with respect to μ with Lipschitz con-
stant linearly depending on x (see also [16]). It should be noted that by Schauder’s fixed point theorem
and Girsanov’s theorem, Li and Min [17] also obtained the existence and uniqueness of weak solutions
when b is bounded measurable and σ is nondegenerate and Lipschitz continuous. On the other hand, by
a purely analytic argument, Manita and Shaposhnikov [19] and Manita, Romanov and Shaposhnikov
[18] showed the existence and uniqueness of solutions to the nonlinear FPE (2) under quite general
assumptions. As observed in [1], by a result of Trevisan [25] (see Theorem 5.1 below), one in fact
can obtain the well-posedness of DDSDE (1) from [19] and [18]. In [1], a technique is developed to
prove weak existence of solutions to (1) by first solving (2) which works also for coefficients whose
dependence on μXt is of “Nemytskii-type”, that is, are not continuous in μXt in the weak topology.

In this work we are interested in extending Krylov–Röckner’s result [14] to the singular distribution
dependent case, that is not covered by all of the above results. More precisely, we want to show the
well-posedness of the following DDSDE:

dXt =
(∫

Rd

bt (Xt , y)μXt (dy)

)
dt + √

2 dWt, (4)

where b : R+ ×Rd ×Rd → Rd is a Borel measurable function and satisfies

(Hb) |bt (x, y)| ≤ ht (x − y) for some h ∈ L
q

loc(R+; L̃p(Rd)), where p,q ∈ (2,∞) satisfy d
p

+ 2
q

<

1, and L̃p(Rd) is the localized Lp-space defined by (13) below.

Here the advantage of using the localized space L̃p(Rd) is that for any 1 ≤ p ≤ p′ ≤ ∞,

L∞(
Rd

) + Lp′(
Rd

) ⊂ L̃p′(
Rd

) ⊂ L̃p
(
Rd

) p>d⊂ Kd−1,

where Kd−1 is the usual Kato’s class defined by

Kd−1 :=
{
f : lim

ε→0
sup
x∈Rd

∫
|x−y|≤ε

|x − y|1−df (y)dy = 0

}
.
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We note that the above DDSDE is not covered by Huang and Wang’s recent results [11] since μ →∫
Rd bt (x, y)μ(dy) is not weakly continuous. In fact, if we let

Bt(x,μ) :=
∫
Rd

bt (x, y)μ(dy) =: μ(
bt (x, ·)), μ ∈ P

(
Rd

)
, (5)

then by |bt (x, y)| ≤ ht (x − y), we only have∣∣∣∣∣∣Bt(·,μ) − Bt

(·,μ′)∣∣∣∣∣∣
p

≤ |||ht |||p
∥∥μ − μ′∥∥

TV, (6)

where ‖ · ‖TV is the total variation distance, and ||| · |||p is defined by (13) below.
Throughout this paper, we assume d ≥ 2. One of the main results of this paper is stated as follows

(but see also Section 4 for corresponding results when the diffusion matrix σ is non-degenerate, but
not constant).

Theorem 1.1. Under (Hb), for any β > 2 and initial random variable X0 with finite β-order moment,
there is a unique strong solution to SDE (4). Moreover, the following assertions hold:

(i) The time marginal law μt of Xt uniquely solves the following nonlinear FPE in the distribu-
tional sense:

∂tμt = �μt + div
(
μt

(
bt (x, ·))μt

)
, lim

t↓0
μt(dy) = P ◦ X−1

0 (dy) (7)

in the class of all measures such that t → μt is weakly continuous and∫ T

0

∫
Rd

∫
Rd

∣∣bt (x, y)
∣∣μt(dy)μt (dx)dt < ∞, ∀T > 0.

(ii) μt(dy) = ρX
t (y)dy and (t, y) → ρX

t (y) is continuous on (0,∞) ×Rd and satisfies the follow-
ing two-sided estimate: for any T > 0, there are constants γ0, c0 ≥ 1 such that for all t ∈ (0, T ]
and y ∈Rd ,

c−1
0 Pt/γ0μ0(y) ≤ ρX

t (y) ≤ c0Pγ0tμ0(y),

where Ptμ0(y) := (2πt)−d/2
∫
Rd e−|x−y|2/(2t)μ0(dx) is the Gaussian heat semigroup.

(iii) If divx b = 0, then for each t > 0, ρX
t (·) ∈ C1(Rd) and we have the following gradient estimate:

for any T > 0, there are constants γ1, c1 ≥ 1 such that for all t ∈ (0, T ] and y ∈Rd ,∣∣∇ρX
t (y)

∣∣ ≤ c1t
−1/2Pγ1tμ0(y).

Example 1. Let bt (x, y) := at (x, y)/|x − y|α for some α ∈ [1,2), where at (x, y) : R+ ×Rd ×Rd →
Rd satisfies that for some κ > 0, ∣∣at (x, y)

∣∣ ≤ κ|x − y|.
Then it is easy to see that b satisfies (Hb) for some p > d and q = ∞.

Remark 1. Here an open question is to show the following propagation of chaos (see [24]): Given
N ∈N, let XN,j , j = 1, . . . ,N solve the following SDEs

dX
N,j
t = 1

N

N∑
i=1

bt

(
X

N,j
t ,X

N,i
t

)
dt + √

2 dW
j
t , j = 1, . . . ,N,
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where W
j· , j = 1, . . . ,N are N -independent d-dimensional Brownian motions. Let X be the unique

solution of SDE (4) in Theorem 1.1. Is it possible to show that

XN,1· → X· in distribution as N → ∞?

It should be noticed that when b is bounded measurable, the above propagation of chaos has been
shown by Lacker in [16]. However, for singular drift b, it seems to be open.

To show the existence of a solution to DDSDE (4), by the well-known result for bounded measurable
drift b obtained in [21] (see also [16,17] and [31]), for each n ∈ N, there is a solution to the following
distribution dependent SDE:

dXn
t =

(∫
Rd

bn
t

(
Xn

t , y
)
μXn

t
(dy)

)
dt + √

2 dWt, Xn
0 = X0, (8)

where bn
t (x, y) := (−n) ∨ bt (x, y) ∧ n. By the well-known results in [29], one can show the following

uniform Krylov estimate: For any p1, q1 ∈ (1,∞) with d
p1

+ 2
q1

< 2 and T > 0, there is a constant

C > 0 such that for any f ∈ L̃
p1
q1 (T ),

sup
n

E
(∫ T

0
ft

(
Xn

t

)
dt

)
≤ CT |||f |||

L̃
p1
q1 (T )

. (9)

By this estimate and Zvonkin’s technique, we can further show the tightness of Xn· in the space of
continuous functions. However, since b is allowed to be singular, it is not obvious by taking the limit
n → ∞ to obtain the existence of a solution. Indeed, one needs the following Krylov estimate: for
suitable p0, q0 ∈ (1,∞) and any f : R+ ×Rd ×Rd →R+,

sup
n

E
(∫ t

0
fs

(
Xn

s , X̃n
s

)
ds

)
≤ |||f |||

L̃
p0
q0 (T )

,

where X̃n· is an independent copy of Xn. When b is bounded measurable, such an estimate is easy to get
by considering (Xn, X̃n) as an R2d -dimensional Itô process and using the classical Krylov estimates
(see [21]). While for singular b, such simple observation fails in order to obtain best integrability
index p. We overcome this difficulty by a simple duality argument (see Lemma 2.6 below). Moreover,
concerning the uniqueness, under assumption (6), we shall employ Girsanov’s transformation as usual.

This paper is organized as follows: In Section 2, we prepare some well-known results and tools for
later use. In Section 3, we show the existence of weak and strong solutions to DDSDE (1) when the
drift satisfies (Hb), and the diffusion coefficient is uniformly nondegenerate and bounded Hölder con-
tinuous. In Section 4, we prove the uniqueness of weak and strong solutions to (1) in two cases: the
coefficients b and σ are Lipschitz continuous in the third variable with respect to the Wasserstein met-
ric; drift b is Lipschitz continuous in the third variable with respect to the total variation distance and
the diffusion coefficient does not depend on the distribution. In Section 5, we present some applications
to nonlinear FPE (2) and prove Theorem 1.1.

Finally, we collect some frequently used notations and conventions for later use.

• For θ > 0, Pθ (R
d) := {μ ∈ P(Rd) : ∫

Rd |x|θμ(dx) < ∞}.
• For R > 0, set BR := {x ∈Rd : |x| < R}.
• For a function f :Rd →R, MRf (x) := supr∈(0,R)

1
|Br |

∫
Br

|f |(x + y)dy.
• Let Stoch be the set of all measurable stochastic processes on (�,F ,P) that are stochastically

continuous.
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• Let b : R+ ×Rd ×P(Rd) → Rd be a measurable vector field. For X ∈ Stoch, define

bX
t (x) := bt (x,μXt ), μXt := P ◦ X−1

t . (10)

• For a signed measure μ, we denote by ‖μ‖TV := sup‖f ‖∞≤1 |μ(f )| the total variation of μ.
• For j = 1,2, we introduce the index set Ij as following:

Ij :=
{
(p, q) ∈ (1,∞) : d

p
+ 2

q
< j

}
. (11)

• For a matrix σ , we use ‖σ‖HS to denote the Hilbert–Schmidt norm of σ .
• We use A � B (resp. �) to denote A ≤ CB (resp. C−1B ≤ A ≤ CB) for some unimportant

constant C ≥ 1, whose dependence on the parameters can be traced from the context.

2. Preliminaries

In this section, we recall some well-known results. We first introduce the following spaces and notations
for later use. For (α,p) ∈ R+ × (1,∞), the usual Bessel potential space Hα,p is defined by

Hα,p := {
f ∈ L1

loc

(
Rd

) : ‖f ‖α,p := ∥∥(I− �)α/2f
∥∥

p
< ∞}

,

where ‖ · ‖p is the usual Lp-norm, and (I− �)α/2f is defined by Fourier transform

(I− �)α/2f := F−1((1 + | · |2)α/2Ff
)
.

Notice that for n ∈ N, an equivalent norm in Hn,p is given by

‖f ‖n,p = ‖f ‖p + ∥∥∇nf
∥∥

p
.

For T > S ≥ 0, p,q ∈ (1,∞) and α ∈R+, we introduce space-time function spaces

L
p
q (S,T ) := Lq

([S,T ];Lp
)
, H

α,p
q (S,T ) := Lq

([S,T ];Hα,p
)
.

Let χ ∈ C∞
c (Rd) be a smooth function with χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| > 2. For r > 0

and z ∈Rd , define

χz
r (x) := χ

(
(x − z)/r

)
. (12)

Fix r > 0. We introduce the following localized Hα,p-space:

H̃ α,p :=
{
f ∈ H

α,p

loc

(
Rd

)
, |||f |||α,p := sup

z

∥∥f χz
r

∥∥
α,p

< ∞
}
, (13)

and the localized space-time function space H̃
α,p
q (S,T ) with norm

|||f |||
H̃

α,p
q (S,T ) := sup

z∈Rd

∥∥χz
r f

∥∥
H

α,p
q (S,T )

< ∞. (14)

For simplicity we shall write

H̃
α,p
q (T ) := H̃

α,p
q (0, T ), L̃

p
q (T ) := H̃

0,p
q (0, T ),
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and

H̃
α,p
q :=

⋂
T >0

H̃
α,p
q (T ), L̃

p
q :=

⋂
T >0

L̃
p
q (T ).

The following lemma list some easy properties of H̃α,p
q (see [34] and [29]).

Proposition 2.1. Let p,q ∈ (1,∞), α ∈ R+ and T > 0.

(i) For r �= r ′ > 0, there is a C = C(d,α, r, r ′,p, q) ≥ 1 such that

C−1 sup
z

∥∥f χz
r ′
∥∥
H

α,p
q (T )

≤ sup
z

∥∥f χz
r

∥∥
H

α,p
q (T )

≤ C sup
z

∥∥f χz
r ′
∥∥
H

α,p
q (T )

. (15)

In other words, the definition of H̃α,p
q does not depend on the choice of r .

(ii) Let α > 0, p,q ∈ [1,∞) and p′ ∈ [p,
pd

d−pα
1pα<d + ∞ · 1pα>d ]. It holds that for some C =

C(d,α,p,p′) > 0,

|||f |||
L̃

p′
q (T )

≤ C|||f |||
H̃

α,p
q (T ). (16)

(iii) For any k ∈N, there is a constant C = C(d, k,α,p, q) ≥ 1 such that

C−1|||f |||
H̃

α+k,p
q (T )

≤ |||f |||
H̃

α,p
q (T ) + ∣∣∣∣∣∣∇kf

∣∣∣∣∣∣
H̃

α,p
q (T )

≤ C|||f |||
H̃

α+k,p
q (T )

.

(iv) Let (ρε)ε∈(0,1) be a family of mollifiers in Rd and fε(t, x) := f (t, ·) ∗ρε(x). For any f ∈ H̃
α,p
q ,

it holds that fε ∈ L
q

loc(R;C∞
b (Rd)) and for some C = C(d,α,p, q) > 0,

|||fε|||H̃α,p
q (T ) ≤ C|||f |||

H̃
α,p
q (T ), ∀ε ∈ (0,1), (17)

and for any ϕ ∈ C∞
c (Rd),

lim
ε→0

∥∥(fε − f )ϕ
∥∥
H

α,p
q (T )

= 0. (18)

(v) Let Zd be the d-dimensional integer lattice. For r := p
p−1 and s := q

q−1 , define

|||f |||′̃
L

p
q (T )

:= sup
z∈Zd

‖1Qzf ‖
L

p
q (T ), |||g|||∗̃

Lr
s (T )

:=
∑
z∈Zd

‖1Qzg‖Lr
s (T ),

where

Qz := �d
i=1(zi , zi + 1], z = (z1, . . . , zd) ∈ Zd . (19)

Then we have

|||f |||
L̃

p
q (T ) � |||f |||′̃

L
p
q (T )

= sup
|||g|||∗̃

L
r
s (T )

≤1

∣∣∣∣
∫ T

0

∫
Rd

ft (x)gt (x)dx dt

∣∣∣∣ (20)

and

|||g|||∗̃
Lr

s (T )
= sup

|||f |||′
L̃
p
q (T )

≤1

∣∣∣∣
∫ T

0

∫
Rd

ft (x)gt (x)dx dt

∣∣∣∣. (21)
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Proof. The first four conclusions can be found in [34], Proposition 4.1. We only prove (v). The equiv-
alence between |||f |||

L̃
p
q (T ) and |||f |||′̃

L
p
q (T )

is obvious by definition. Concerning the others, we note that

by Hölder’s inequality,∫ T

0

∫
Rd

ft (x)gt (x)dx dt =
∑
z∈Zd

∫ T

0

∫
Rd

1Qz(x)ft (x)gt (x)dx dt

≤
∑
z∈Zd

‖1Qzf ‖
L

p
q (T )‖1Qzg‖Lr

s (T ) ≤ |||f |||′̃
L

p
q (T )

|||g|||∗̃
Lr

s (T )
. (22)

On the other hand, assume that zn is a sequence in Zd so that for Qn := Qzn ,

lim
n→∞‖1Qnf ‖

L
p
q (T ) = |||f |||′̃

L
p
q (T )

. (23)

If we take

gt (x) := 1Qn(x)|ft (x)|p−1

‖1Qnft‖p−q
p

(∫ T

0
‖1Qnft‖q

p dt

)1/q−1

with the convention 0/0 = 0, then by easy calculations, we have |||g|||∗̃
Lr

s (T )
= 1 and

∫ T

0

∫
Rd

ft (x)gt (x)dx dt =
(∫ T

0
‖1Qnft‖q

p dt

)1/q

= ‖1Qnf ‖
L

p
q (T ),

which together with (22) and (23) yields (20). Similarly, if we take

ft (x) :=
∑
z∈Zd

1Qz(x)|gt (x)|r−1

‖1Qzgt‖r−s
r

·
(∫ T

0
‖1Qzgt‖s

r dt

)1/s−1

,

then |||f |||′̃
L

p
q (T )

= 1 and

∫ T

0

∫
Rd

ft (x)gt (x)dx dt =
∑
z∈Zd

(∫ T

0
‖1Qzgt‖s

r dt

)1/s

= |||g|||∗̃
Lr

s (T )
,

which together with (22) yields (21). �

We now recall the following result about Lq(Lp)-solvability of PDE (see [29]).

Theorem 2.2. Let (p, q) ∈ I1 (see (11)) and T > 0. Assume that σt (x,μ) = σt (x) and bt (x,μ) =
bt (x) are independent of μ, and satisfy that for some c0 ≥ 1, γ ∈ (0,1] and for all t ≥ 0, x, y, ξ ∈ Rd ,

c−1
0 |ξ | ≤ ∣∣σ ∗

t (x)ξ
∣∣ ≤ c0|ξ |, ∥∥σt (x) − σt (y)

∥∥
HS ≤ c0|x − y|γ , (24)

and |||b|||
L̃

p
q (T ) ≤ κ0 for some κ0 > 0, Then for any λ ≥ 1 and f ∈ L̃

p
q (T ), there exists a unique solution

u ∈ H̃
2,p
q (T ) to the following backward parabolic equation:

∂tu + (
L σ

t − λ
)
u + b · ∇u = f, u(T , x) = 0. (25)

Moreover, letting � := (γ, c0, d,p, q, κ0, T ), we have the following:
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(i) For any α ∈ [0,2 − 2
q
), there is a c1 = c1(α,�) > 0 such that for all λ ≥ 1,

λ
1− α

2 − 1
q |||u|||

H̃
α,p∞ (T ) + |||u|||

H̃
2,p
q (T )

≤ c1|||f |||
L̃

p
q (T ). (26)

(ii) Let (σ ′, b′, f ′) be another set of coefficients satisfying the same assumptions as (σ, b, f ) with
the same parameters (γ, c0, κ0). Let u′ be the solution of (25) corresponding to (σ ′, b′, f ′).
For any α ∈ [0,2 − 2

q
), there is a constant c2 = c2(α,�) > 0 such that for all λ ≥ 1,

λ
1− α

2 − 1
q
∣∣∣∣∣∣u − u′∣∣∣∣∣∣

H̃
α,p∞ (T )

≤ c2
∣∣∣∣∣∣f − f ′∣∣∣∣∣∣

L̃
p
q (T )

+ c2|||f |||
L̃

p
q (T )

(∥∥σ − σ ′∥∥
L∞(T )

+ ∣∣∣∣∣∣b − b′∣∣∣∣∣∣
L̃

p
q (T )

)
. (27)

Proof. The existence and uniqueness of u ∈ H̃
2,p
q (T ) as well as the first conclusion are proved in [29],

Theorem 3.1. We only show (ii). Let w = u′ − u. Then

∂tw + (
L σ ′

t − λ
)
w + b′ · ∇w = (

L σ
t − L σ ′

t

)
u + (

b − b′) · ∇u + f ′ − f.

By (26) and Hölder’s inequality, we have

λ
1− α

2 − 1
q |||w|||

H̃
α,p∞ (T ) �

∣∣∣∣∣∣(L σ
t − L σ ′

t

)
u + (

b − b′) · ∇u + f ′ − f
∣∣∣∣∣∣
L̃

p
q (T )

�
∥∥σ ′ − σ

∥∥
L∞(T )

∣∣∣∣∣∣∇2u
∣∣∣∣∣∣
L̃

p
q (T )

+ ∣∣∣∣∣∣b′ − b
∣∣∣∣∣∣
L̃

p
q (T )

· ‖∇u‖L∞(T ) + ∣∣∣∣∣∣f ′ − f
∣∣∣∣∣∣
L̃

p
q (T )

.

Estimate (27) now follows by Sobolev’s embedding (16) due to d
p

+ 2
q

< 1 and (26). �

Remark 2. It should be noted that if b is bounded measurable, then the assertions in Theorem 2.2 hold
for all p,q ∈ (1,∞).

The following stochastic Gronwall inequality for continuous martingales was proved by Scheutzow
[22], and for general discontinuous martingales in [30].

Lemma 2.3 (Stochastic Gronwall’s inequality). Let ξ(t) and η(t) be two nonnegative càdlàg Ft -
adapted processes, At a continuous nondecreasing Ft -adapted process with A0 = 0, Mt a local mar-
tingale with M0 = 0. Suppose that

ξ(t) ≤ η(t) +
∫ t

0
ξ(s)dAs + Mt, ∀t ≥ 0. (28)

Then for any 0 < q < p < 1 and τ > 0, we have

[
E

(
ξ(τ )∗

)q]1/q ≤
(

p

p − q

)1/q(
EepAτ /(1−p)

)(1−p)/pE
(
η(τ)∗

)
, (29)

where ξ(t)∗ := sups∈[0,t] ξ(s).

We also recall the following result about maximal functions (see [29], Lemma 2.1).
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Lemma 2.4.

(i) For any R > 0, there exists a constant C = C(d,R) such that for any f ∈ L∞(Rd) with ∇f ∈
L1

loc(R
d) and Lebesgue-almost all x, y ∈ Rd ,∣∣f (x) − f (y)

∣∣ ≤ C|x − y|(MR|∇f |(x) +MR|∇f |(y) + ‖f ‖∞
)
, (30)

where MR is defined at the end of the introduction.
(ii) For any p > 1 and R > 0, there is a constant C = C(R,d,p) such that for any T > 0 and all

f ∈ L̃
p
q (T ),

|||MRf |||
L̃

p
q (T ) ≤ C|||f |||

L̃
p
q (T ). (31)

We introduce the following notion about Krylov’s estimates.

Definition 2.5. Let p,q ∈ (1,∞) and T ,κ > 0. We say a stochastic process X ∈ Stoch satisfies
Krylov’s estimate with index p, q and constant κ if for any f ∈ L̃

p
q (T ),

E
(∫ T

0
ft (Xt )dt

)
≤ κ|||f |||

L̃
p
q (T ). (32)

The set of all such X will be denoted by Kp,q
T ,κ .

For a space-time function ft (x, y) : R+ ×Rd ×Rd → R and p1,p2, q0 ∈ [1,∞], we also introduce
the norm

|||f |||
L̃

p1,p2
q0 (T )

:= sup
z,z′∈Rd

(∫ T

0

(∫
Qz′

∥∥1Qzft (·, y)
∥∥p2

p1
dy

) q0
p2

) 1
q0

.

The following lemma is an easy consequence of Proposition 2.1(v).

Lemma 2.6. Let p1,p2, q0, q1, q2 ∈ (1,∞) with 1
q1

+ 1
q2

= 1 + 1
q0

and T ,κ1, κ2 > 0. Let X ∈ Kp1,q1
T ,κ1

and Y ∈ Kp2,q2
T ,κ2

be two independent processes. Then for any ft (x, y) ∈ L̃
p1,p2
q0 (T ),

E
(∫ T

0
ft (Xt , Yt )dt

)
≤ κ1κ2|||f |||

L̃
p1,p2
q0 (T )

. (33)

Proof. Let Z1 = X and Z2 = Y . First of all, by Krylov’s estimate (32), for each i = 1,2, there is a
function ρZi ∈ L

ri
si (T ) with ri = pi

pi−1 , si = qi

qi−1 so that

∫ T

0

∫
Rd

ft (x)ρZi

t (x)dx dt = E
(∫ T

0
ft

(
Zi

t

)
dt

)
≤ κi |||f |||

L̃
pi
qi

(T )
≤ κi‖f ‖

L
pi
qi

(T )
.

By Proposition 2.1(v), we further have

∣∣∣∣∣∣ρZi ∣∣∣∣∣∣∗
L̃

ri
si

(T )
:=

∑
z∈Zd

∥∥1Qzρ
Zi ∥∥

L
ri
si

(T )
≤ κi, i = 1,2,
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where Qz is defined by (19). Now by the independence of X, Y and Hölder’s inequality, we have

E
(∫ T

0
ft (Xt , Yt )dt

)
=

∫ T

0

∫
Rd

∫
Rd

ft (x, y)ρX
t (x)ρY

t (y)dx dy dt

=
∑
z∈Zd

∑
z′∈Zd

∫ T

0

∫
Rd

∫
Rd

1Qz(x)1Qz′ (y)ft (x, y)ρX
t (x)ρY

t (y)dx dy dt

≤
∑
z∈Zd

∑
z′∈Zd

‖1Qz×Qz′ f ‖
L

p1,p2
q0 (T )

∥∥1Qzρ
X
∥∥
L

r1
s1 (T )

∥∥1Qz′ ρ
Y
∥∥
L

r2
s2 (T )

≤ κ1κ2 sup
z,z′∈Zd

‖1Qz×Qz′ f ‖
L

p1,p2
q0 (T )

= κ1κ2|||f |||
L̃

p1,p2
q0 (T )

,

which gives (33). The proof is complete. �

Now we prove the following convergence lemmas, which have independent interest and will be
crucial for showing the existence of solutions in Section 3.

Lemma 2.7. Let Xn,Y n,X,Y ∈ Stoch be such that for each t ≥ 0, Xn
t converges to Xt almost surely

and Yn
t converges to Yt in distribution. Let p,q > 1 and T ,β, κ > 0. Suppose that Xn ∈ Kp,q

T ,κ for each
n ∈N, and for some C1 > 0,

sup
n

sup
t∈[0,T ]

E
∣∣Xn

t

∣∣β ≤ C1. (34)

If for each (t, x), μ → bt (x,μ) is continuous with respect to the weak convergence topology and for
some γ > 1 and C2 > 0,

sup
Z∈Stoch

∣∣∣∣∣∣bZ
∣∣∣∣∣∣
L

γp
γ q (T )

≤ C2, (35)

where bZ is defined by (10), then

lim
n→∞ E

(∫ T

0

∣∣bYn
t

(
Xn

t

) − bY
t (Xt )

∣∣dt

)
= 0. (36)

Proof. To prove (36), it suffices to show the following:

lim
n→∞ E

(∫ T

0

∣∣bYn

t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣dt

)
= 0, (37)

lim
n→∞ E

(∫ T

0

∣∣bY
t

(
Xn

t

) − bY
t (Xt )

∣∣dt

)
= 0. (38)

We first look at (37). Since μYn
t

weakly converges to μYt for each t ≥ 0, by the assumption we have

b
Yn
t (x)

n→∞→ bY
t (x), ∀(t, x) ∈ R+ ×Rd . (39)
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For fixed R,M > 0, since Xn ∈ Kp,q
T ,κ (see (32)), by the definitions we have

E
(∫ T

0
1BR

(
Xn

t

)∣∣bYn
t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣dt

)

≤ κ
∣∣∣∣∣∣1BR

(
bYn − bY

)∣∣∣∣∣∣
L̃

p
q (T )

�
∥∥1BR

(
bYn − bY

)
1|bYn−bY |≤M

∥∥
L

p
q (T )

+ ∥∥1BR

(
bYn − bY

)
1|bYn−bY |>M

∥∥
L

p
q (T )

≤ ∥∥1BR

(
bYn − bY

)
1|bYn−bY |≤M

∥∥
L

p
q (T )

+ ∥∥1BR

∣∣bYn − bY
∣∣γ ∥∥

L
p
q (T )

/Mγ−1.

By the dominated convergence theorem and (39), the first term converges to zero as n → ∞ for each
M > 0. By (35), the second term converges to zero uniformly in n as M → ∞. Thus, we obtain that
for any R > 0,

lim
n→∞ E

(∫ T

0
1BR

(
Xn

t

)∣∣bYn
t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣dt

)
= 0. (40)

On the other hand, by Hölder and Chebyshev’s inequalities and (34), we have

E
(∫ T

0
1Bc

R

(
Xn

t

)∣∣bYn
t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣dt

)

≤
∫ T

0
P
(∣∣Xn

t

∣∣ > R
) γ−1

γ
(
E

∣∣bYn
t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣γ ) 1
γ dt

≤ sup
t∈[0,T ]

P
(∣∣Xn

t

∣∣ > R
) γ−1

γ T
γ−1
γ

(∫ T

0
E

∣∣bYn
t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣γ dt

) 1
γ

≤
(

C1T

Rβ

) γ−1
γ

κ
1
γ
∣∣∣∣∣∣bYn − bY

∣∣∣∣∣∣
L

γp
γ q (T )

(35)≤
(

C1T

Rβ

) γ−1
γ

κ
1
γ · 2C2.

Combining this with (40), we obtain (37).
Next, we show (38). Let b

Y,ε
t (x) := bY

t (·) ∗ �ε(x) be a mollifying approximation of bY . By Proposi-
tion 2.1(iv) and (34), as above one can derive that

lim
ε→0

sup
n∈N∪{∞}

E
(∫ T

0

∣∣bY,ε
t

(
Xn

t

) − bY
t

(
Xn

t

)∣∣dt

)
= 0, (41)

where we have used the convention X∞ := X. On the other hand, since by (32),

sup
n

E
(∫ T

0

∣∣bY,ε
t

(
Xn

t

) − b
Y,ε
t (Xt )

∣∣γ dt

)
≤ C

∣∣∣∣∣∣bY,ε
∣∣∣∣∣∣γ
L̃

γp
γ q (T )

,

and for fixed ε > 0 and any t > 0, x → b
Y,ε
t (x) is continuous, by the dominated convergence theorem,

we have

lim
n→∞ E

(∫ T

0

∣∣bY,ε
t

(
Xn

t

) − b
Y,ε
t (Xt )

∣∣dt

)
= 0,

which together with (41) yields (38). �
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There are, of course, many examples where the weak continuity assumption of μ → bt (x,μ) in the
above lemma is not satisfied, as in the following interesting case:

bt (x,μ) =
∫
Rd

b̄t (x, y)μ(dy), (42)

where b̄ : R+ × Rd × Rd → R is a bounded measurable function. Obviously the weak continuity of
μ → b(t, x,μ) does not hold. However, in this case we still have the following limiting result.

Lemma 2.8. Let Xn,Y n,X,Y ∈ Stoch be such that for each t ≥ 0, Xn
t converges to Xt almost surely

and Yn
t converges to Yt in distribution. Let p1,p2, q0, q1, q2 ∈ (1,∞) with 1

q1
+ 1

q2
= 1 + 1

q0
and

T ,β, κ > 0. Suppose that Xn ∈ Kp1,q1
T ,κ and Yn ∈ Kp2,q2

T ,κ for each n ∈ N, and that there is a constant
C1 > 0 such that

sup
n

sup
t∈[0,T ]

E
(∣∣Xn

t

∣∣β + ∣∣Yn
t

∣∣β) ≤ C1. (43)

Let γ > 1. Then for any b̄ ∈ L̃
γp1,γp2
γ q0 (T ), we have

lim
n→∞ E

(∫ T

0

∣∣bYn

t

(
Xn

t

) − bY
t (Xt )

∣∣dt

)
= 0. (44)

Proof. Let N∞ := N∪{∞} and Y∞ := Y , X∞ := X. Since bYn
only depends on the distribution of Yn,

by Skorohod’s representation, without loss of generality we may assume that (Xn)n∈N∞ and (Y n)n∈N∞
are independent, and (Xn

t , Y n
t ) → (Xt , Yt ) a.e. as n → ∞ for each t . Notice that by the assumptions

and (33),

sup
n∈N∞

E
(∫ T

0

∣∣b̄t

(
Xn

t , Y n
t

)∣∣γ dt

)
≤ κ2|||b̄|||γ

L̃
γp1,γp2
γ q0 (T )

< ∞. (45)

Let b̄ε
t (x, y) = b̄t ∗ �ε(x, y) be a mollifying approximation of b̄. As in the proof of (37), we have

lim
ε→0

sup
n∈N∞

E
(∫ T

0

∣∣b̄ε
t

(
Xn

t , Y n
t

) − b̄t

(
Xn

t , Y n
t

)∣∣dt

)
= 0. (46)

Thus, to prove (44), it suffices to show that for fixed ε ∈ (0,1),

lim
n→∞ E

(∫ T

0

∣∣b̄ε
t

(
Xn

t , Y n
t

) − b̄ε
t

(
Xn

t , Yt

)∣∣dt

)
= 0,

lim
n→∞ E

(∫ T

0

∣∣b̄ε
t

(
Xn

t , Yt

) − b̄ε
t (Xt , Yt )

∣∣dt

)
= 0,

which follows by (45) and the dominated convergence theorem. �

3. Existence of weak and strong solutions

In this section, we show the weak existence and strong existence of DDSDEs with singular drifts. First
of all, we recall the notions of martingale solutions and weak solutions for (1). Let C be the space of
all continuous functions from R+ to Rd , which is endowed with the usual Borel σ -field B(C). The set
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of all probability measures on (C,B(C)) is denoted by P(C). Let wt be the coordinate process over
C, that is,

wt(ω) = ωt , ω ∈C.

For t ≥ 0, let Bt (C) = σ {ws : s ≤ t} be the natural filtration. For a probability measure P ∈ P(C), the
expectation with respect to P will be denoted by E if there is no confusion.

Definition 3.1 (Martingale solutions). We call a probability measure P ∈P(C) a martingale solution
of DDSDE (1) with initial distribution ν ∈P(Rd) if P ◦ w−1

0 = ν and for any f ∈ C∞(Rd),

∫ t

0

∣∣L σP

s f
∣∣(ws)ds +

∫ t

0

∣∣bPs · ∇f
∣∣(ws)ds < ∞, P-a.s.,∀t > 0,

where σP
t (x) := σt (x,μP

t ) and bPt (x) := bt (x,μP
t ), μP

t := P ◦ w−1
t , and

M
f
t := f (wt ) − f (w0) −

∫ t

0

(
L σP

s f
)
(ws)ds −

∫ t

0

(
bPs · ∇f

)
(ws)ds, (47)

is a continuous local Bt (C)-martingale under P. All the martingale solutions of DDSDE (1) with coef-
ficients σ , b and initial distribution ν are denoted by M σ,b

ν .

Definition 3.2 (Weak solutions). Let (X,W) be two Rd -valued continuous adapted processes on some
filtered probability space (�,F , (Ft )t≥0,P). We call(

�,F , (Ft )t≥0,P;X,W
)

a weak solution of DDSDE (1) with initial distribution ν ∈ P(Rd) if

(i) P ◦ X−1
0 = ν and W is a d-dimensional standard Ft -Brownian motion.

(ii) For all t > 0, it holds that∫ t

0
|bs |(Xs,μXs )ds +

∫ t

0

∥∥σsσ
∗
s

∥∥
HS(Xs,μXs )ds < ∞, P-a.s.

and

Xt = X0 +
∫ t

0
bs(Xs,μXs )ds +

∫ t

0
σs(Xs,μXs )dWs, P-a.s. (48)

Remark 3. It is well known that weak solutions and martingale solutions are equivalent (cf. [23]),
which means that for any P ∈ M σ,b

ν , there is a weak solution(
�,F , (Ft )t≥0,P;X,W

)
to DDSDE (1) with initial distribution ν ∈ P(Rd) such that

P= P ◦ X−1.

Now we make the following assumptions about σ and b:
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(Hσ,b) For each t , x, the mapping μ → σt (x,μ) is weakly continuous, and there are c0 ≥ 1 and
γ ∈ (0,1] such that for all t ≥ 0, x, x′, ξ ∈ Rd and μ ∈ P(Rd),

c−1
0 |ξ | ≤ ∣∣σt (x,μ)ξ

∣∣ ≤ c0|ξ |, ∥∥σt (x,μ) − σt

(
x′,μ

)∥∥
HS ≤ c0

∣∣x − x′∣∣γ . (49)

The drift b satisfies one of the following conditions:
(i) For each t , x, the mapping μ → bt (x,μ) is weakly continuous, and for some (p, q) ∈

I1 and κ0 > 0,

sup
Z∈Stoch

∣∣∣∣∣∣bZ
∣∣∣∣∣∣
L̃

p
q (T )

≤ κ0 < ∞. (50)

(ii) b has the form (42) with b̄ satisfying (Hb).

It should be noticed that under (Hb), (50) holds. Indeed, by definition we have

∣∣∣∣∣∣bZ
∣∣∣∣∣∣q
L̃

p
q (T )

= sup
z∈Rd

∫ T

0

∥∥∥∥χz
r

∫
Rd

b̄s(·, y)μZs (dy)

∥∥∥∥q

p

ds

≤ sup
z∈Rd

∫ T

0

∥∥∥∥χz
r

∫
Rd

hs(· − y)μZs (dy)

∥∥∥∥q

p

ds

≤ sup
z∈Rd

∫ T

0

∫
Rd

∥∥χ
z−y
r hs

∥∥q

p
μZs (dy)ds

≤
∫ T

0
sup
z∈Rd

∥∥χz
r hs

∥∥q

p
μZs

(
Rd

)
ds =

∫ T

0
|||hs |||qp ds.

To show the existence of weak solutions, we first establish the following a priori estimates.

Lemma 3.3. Let β > 0. Under (Hσ,b), for any ν ∈ Pβ(Rd) and Z ∈ Stoch, there is a unique weak
solution (�,F , (Ft )t≥0,P;X,W) to the following SDE:

dXt = bZ
t (Xt )dt + σZ

t (Xt )dWt, P ◦ X−1
0 = ν.

Moreover, letting � = (d,p, q, c0, γ, κ0, β), we have

(i) For any T > 0, there is a C1 = C1(�,T ) > 0 such that

E
(

sup
t∈[0,T ]

|Xt |β
)

≤ C1
(
E|X0|β + 1

)
, (51)

and for any δ ∈ (0, T ),

E
(

sup
t,s∈[0,T ],|t−s|≤δ

|Xt − Xs |β
)

≤ C1δ
β/2. (52)

(ii) For any (p1, q1) ∈ I2 and T > 0, there is a constant C2 = C2(p1, q1,�,T ) > 0 such that for
all 0 ≤ t0 < t1 ≤ T and f ∈ L̃

p1
q1 (t0, t1),

E
(∫ t1

t0

fs(Xs)ds|Ft0

)
≤ C2|||f |||

L̃
p1
q1 (t0,t1)

. (53)



Well-posedness of DDSDEs with singular drifts 1145

Proof. The proof of this lemma is essentially contained in [32]. For the reader’s convenience, we
sketch the proofs below. We use Zvonkin’s transformation to kill the drift bZ (cf. [35]). For λ,T > 0,
consider the following backward PDE:

∂tu + (
L σZ

t − λ
)
u + bZ · ∇u + bZ = 0, u(T , x) = 0.

Since bZ ∈ L̃
p
q (T ) with (p, q) ∈ I1, by Theorem 2.2, for λ ≥ 1, there is a unique solution u ∈ H̃

2,p
q (T )

solving the above PDE. Moreover, for any α ∈ [0,2− 2
q
), there is a constant c1 = c1(α,�,T ) > 0 such

that for all λ ≥ 1,

λ
1− α

2 − 2
q |||u|||

H̃
α,p∞ (T ) + |||u|||

H̃
2,p
q (T )

≤ c1
∣∣∣∣∣∣bZ

∣∣∣∣∣∣
L̃

p
q (T )

. (54)

In particular, since d
p

+ 2
q

< 1, by (16) we can choose λ large enough so that

‖u‖L∞(T ) + ‖∇u‖L∞(T ) ≤ 1/2.

Now if we define

�t(x) := x + ut (x),

then it is easy to see that

|x − y|/2 ≤ ∣∣�t(x) − �t(y)
∣∣ ≤ 2|x − y|, (55)

and

∂t� + L σZ

t � + bZ · ∇� = λu. (56)

By the generalized Itô formula and (56), we have

Yt := �t(Xt ) = �0(X0) + λ

∫ t

0
us(Xs)ds +

∫ t

0

(
σZ

s · ∇�s

)
(Xs)dWs

= �0(X0) +
∫ t

0
b̃s(Ys)ds +

∫ t

0
σ̃s(Ys)dWs, (57)

where

σ̃ := (
σZ · ∇�

) ◦ �−1, b̃ := λu ◦ �−1.

Moreover, by (54), (55) and the Sobolev embedding (16), it is easy to see that for some c2 = c2(�,T ) >

0 and γ0 = γ0(γ,p, q) ∈ (0,1),

c−1
2 |ξ | ≤ ∣∣σ̃t (x)ξ

∣∣ ≤ c2|ξ |, ∥∥σ̃t (x) − σ̃t (y)
∥∥

HS ≤ c2|x − y|γ0 , (58)

and

‖b̃‖L∞(T ) + ‖∇b̃‖L∞(T ) ≤ 4λ. (59)

By well-known results, SDE (57) admits a unique weak solution (cf. [23]). Moreover, as in [32], one
can check that Xt := �−1

t (Yt ) solves the original SDE.
(i) Let β > 0. By (58) and (59), estimate (51) directly follows by BDG’s inequality. We prove (52).

Fix δ ∈ (0, T ). Let τ be any stopping time less than T − δ. By equation (57) and BDG’s inequality, we
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have

E
(

sup
r∈[0,δ]

|Yτ+r − Yτ |β
)
� E

(∫ τ+δ

τ

∣∣b̃s(Xs)
∣∣ds

)β

+ E

∣∣∣∣ sup
r∈[0,δ]

∫ τ+r

τ

σ̃s(Xs)dWs

∣∣∣∣β

� ‖b̃‖β

L∞(T )
δβ + ‖σ̃‖β

L∞(T )
δβ/2 ≤ Cδβ/2,

which yields (52) by [33], Lemma 2.7 and (55).
(ii) It was proved in [29], Lemma 4.1, that for any (p1, q1) ∈ I2, there is a constant C2 =

C2(p1, q1,�,T ) > 0 such that for all 0 ≤ t0 < t1 ≤ T and f ∈ L̃
p1
q1 (t0, t1),

E
(∫ t1

t0

fs(Ys)ds|Ft0

)
≤ C2|||f |||

L̃
p1
q1 (t0,t1)

.

By a change of variable and (55) again, we obtain (53). �

Remark 4. An important conclusion of (ii) above is the following Khasminskii’s type estimate (see
[30], Lemma 3.5): For any λ,T > 0 and f ∈ L̃

p1
q1 (T ) with (p1, q1) ∈ I2,

E exp

(
λ

∫ T

0

∣∣fs(Xs)
∣∣ds

)
≤ C3, (60)

where C3 only depends on λ, �, p1, q1, T and |||f |||
L̃

p1
q1 (T )

.

Now we can show the following weak existence result.

Theorem 3.4. Let β > 0. Under (Hσ,b), for any ν ∈Pβ(Rd), there exists a weak solution(
�,F , (Ft )t≥0,P;X,W

)
to DDSDE (1) with P ◦ X−1

0 = ν.

Proof. For n ∈N, consider the following approximating SDE:

Xn
t = Xn

0 +
∫ t

0
bn
s

(
Xn

s ,μXn
s

)
ds +

∫ t

0
σs

(
Xn

s ,μXn
s

)
dWs, (61)

where

bn
s (x,μ) := (−n) ∨ bs(x,μ) ∧ n in case (i) of

(
Hσ,b

)
,

and

b̄n
s (x, y) := (−n) ∨ b̄s(x, y) ∧ n in case (ii) of

(
Hσ,b

)
.

Since bn is bounded measurable, by [21] or [31], Theorem 1.2, there is a weak solution(
�,F , (Ft )t≥0,P;Xn,W

)
to DDSDE (61) with P ◦ (Xn

0 )−1 = ν. Moreover, since

sup
Z∈Stoch

∣∣∣∣∣∣bn,Z
∣∣∣∣∣∣
L̃

p
q (T )

≤ sup
Z∈Stoch

∣∣∣∣∣∣bZ
∣∣∣∣∣∣
L̃

p
q (T )

≤ κ0,

by Lemma 3.3, the following uniform estimates hold:
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(i) For any T > 0, there is a constant C1 > 0 such that

sup
n

E
(

sup
t∈[0,T ]

∣∣Xn
t

∣∣β)
≤ C1

(
E|X0|β + 1

)
,

and for all δ ∈ (0, T ),

sup
n

E
(

sup
t,s∈[0,T ],|t−s|≤δ

∣∣Xn
t − Xn

s

∣∣β)
≤ C1δ

β/2.

(ii) Let (p1, q1) ∈ I2. For any T > 0, there is a C2 > 0 such that for all f ∈ L̃
p1
q1 (T ),

sup
n

E
(∫ T

0
fs

(
Xn

s

)
ds

)
≤ C2|||f |||

L̃
p1
q1 (T )

.

Now by (i), the laws Qn of (Xn,W) in C × C are tight. Let Q be any accumulation point of Qn.
Without loss of generality, we assume that Qn weakly converges to some probability measure Q. By
Skorokhod’s representation theorem, there are a probability space (�̃, F̃ , P̃) and random variables
(X̃n, W̃ n) and (X̃, W̃ ) defined on it such that

(
X̃n, W̃ n

) → (X̃, W̃ ), P̃-a.s. (62)

and

P̃ ◦ (
X̃n, W̃ n

)−1 =Qn = P ◦ (
Xn,W

)−1
, P̃ ◦ (X̃, W̃ )−1 =Q. (63)

Define F̃ n
t := σ(W̃n

s , X̃n
s ; s ≤ t). We note that

P(Wt − Ws ∈ ·|Fs) = P(Wt − Ws ∈ ·) ⇒ P̃
(
W̃n

t − W̃n
s ∈ ·|F̃ n

s

) = P̃
(
W̃n

t − W̃n
s ∈ ·).

In other words, W̃n is an F̃ n
t -Brownian motion. Thus, by (61) and (63) we have

X̃n
t = X̃n

0 +
∫ t

0
bn
s

(
X̃n

s ,μ
X̃n

s

)
ds +

∫ t

0
σs

(
X̃n

s ,μ
X̃n

s

)
dW̃n

s .

By (ii), (62), Lemmas 2.7, 2.8 and [12], Theorem 6.22, page 383, one can take limits as n → ∞ to
obtain

X̃t = X̃0 +
∫ t

0
bs(X̃s,μX̃s

)ds +
∫ t

0
σs(X̃s,μX̃s

)dW̃s.

Here we only check that the assumptions of Lemma 2.8 are satisfied in the case that b takes the form
(42) with b̄ satisfying (Hb). Clearly, by (ii) above, for any (p1, q1) ∈ I2, there is a κ > 0 such that for
each n ∈N,

X̃n ∈ Kp1,q1
T ,κ .

We note that |b̄t (x, y)| ≤ ht (x − y), where for some (p, q) ∈ I1, h ∈ L̃
p
q . One can choose γ > 1 so

that dγ
p

+ 2γ
q

< 1. Now if we take p1 = p
γ

, q0 = q
γ

, q1 = 2q
q+2γ

, then it is easy to see that (p1, q1) ∈ I2
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and

b̄ ∈ L̃
p,∞
q = L̃

γp1,∞
γ q0 ⊂

⋂
p′≥1

L̃
γp1,p

′
γ q0 .

Thus one can apply Lemma 2.8 to conclude that

lim
n→∞ Ẽ

(∫ t

0

∣∣bs

(
X̃n

s ,μ
X̃n

s

) − bs(X̃s,μX̃s
)
∣∣ds

)
= 0.

Moreover, as in showing (46), we also have

lim
m→∞ sup

n
Ẽ

(∫ t

0

∣∣b̄m
s − b̄s

∣∣(X̃n
s , Y n

s

)
ds

)
= 0,

where Yn· is an independent copy of X̃n· . The proof is thus complete. �

About the existence of strong solutions, we have the following corollary.

Corollary 3.5. Let β > 0. Under (Hσ,b), if for some (p1, q1) ∈ I1,

sup
Z∈Stoch

∣∣∣∣∣∣∇σZ
∣∣∣∣∣∣
L̃

q1
p1 (T )

< ∞,

then for any initial random variable X0 with finite β-order moment, there exists a strong solution to
DDSDE (1).

Proof. Let (�,F , (Ft )t≥0,P;X,W) be a weak solution of DDSDE (1). Define

bX
t (x) := bt (x,μXt ), σX

t (x) := σt (x,μXt ), μXt := P ◦ X−1
t .

Consider the following SDE:

dZt = bX
t (Zt )dt + σX

t (Zt )dWt.

Under the assumption of the theorem, it has been shown in [29] that there is a unique strong solution
to this equation. Since X also satisfies the above equation, by strong uniqueness, we obtain that X = Z

is a strong solution. �

Remark 5. Although we have shown the existence of strong or weak solutions, the uniqueness of
strong solutions or weak solutions is a more difficult problem.

4. Uniqueness of strong and weak solutions

In this section, we study the uniqueness of strong and weak solutions. We introduce the following
assumptions about the dependence on the third variable μ:

(Aσ,b
θ ) Let θ ≥ 1. We assume (49) and for some (p, q), (p1, q1) ∈ I1,

sup
Z∈Stoch

∣∣∣∣∣∣bZ
∣∣∣∣∣∣
L̃

p
q (T )

< ∞, sup
Z∈Stoch

∣∣∣∣∣∣∇σZ
∣∣∣∣∣∣
L̃

p1
q1 (T )

< ∞,
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and there are � ∈ L
q

loc(R+) and a constant c1 ≥ 1 such that for any two random variables X,
Y with finite θ -order moments,∣∣∣∣∣∣bt (·,μX) − bt (·,μY )

∣∣∣∣∣∣
p

≤ �t‖X − Y‖θ ,∥∥σt (·,μX) − σt (·,μY )
∥∥∞ ≤ c1‖X − Y‖θ ,

(64)

where ‖ · ‖θ stands for the Lθ -norm in the probability space (�,F ,P).

Notice that (64) is equivalent to that for all μ,μ′ ∈Pθ (R
d),∥∥bt (·,μ) − bt

(·,μ′)∥∥
p

≤ �tWθ

(
μ,μ′),∥∥σt (·,μ) − σt

(·,μ′)∥∥∞ ≤ c0Wθ

(
μ,μ′),

where Wθ is the usual Wasserstein metric of θ -order. In particular, (Aσ,b
θ )⇒(Hσ,b). For convenience,

we would like to use (64) rather than introducing the Wasserstein metric.

Remark 6. We note that in [11], (64) is assumed to hold for p = ∞.

We first show the following strong uniqueness result.

Theorem 4.1. Let θ ≥ 1 and β > θ . Under (Aσ,b
θ ), for any initial random variable X0 with finite

β-order moment, there is a unique strong solution to DDSDE (1).

Proof. Below we fix p,q ∈ I1, and without loss of generality, we consider the time interval [0,1] and
assume that for some γ > 1,

‖�‖Lγq(0,1) + sup
Z∈Stoch

∥∥bZ
∥∥
L

γ q
γp(1)

< ∞. (65)

Otherwise, we may choose γ > 1 so that 2γ
q

+ dγ
p

< 1 holds and replace (p, q) with (p/γ, q/γ ). The
existence of strong solutions has been shown in Corollary 3.5. We only need to prove the pathwise
uniqueness. Let X, Y be two strong solutions defined on the same probability space with same starting
points X0 = Y0 a.s. We divide the proof into three steps and use the convention that all the constants
below will be independent of T ∈ [0,1].

(i) Let T ∈ (0,1) and λ > 0. We consider the following backward PDE:

∂tu
X + (

L σX

t − λ
)
u + bX · ∇uX + bX = 0, uX

T (x) = 0. (66)

By Theorem 2.2, for λ ≥ 1, there is a unique solution uX ∈ H̃
2,p
q (T ) solving the above PDE. Moreover,

for any α ∈ [0,2 − 2
q
), there is a constant c1 > 0 such that for all λ ≥ 1 and T ∈ [0,1],

λ
1− α

2 − 2
q
∣∣∣∣∣∣uX

∣∣∣∣∣∣
H̃

α,p∞ (T )
+ ∣∣∣∣∣∣uX

∣∣∣∣∣∣
H̃

2,p
q (T )

≤ c1
∣∣∣∣∣∣bX

∣∣∣∣∣∣
L̃

p
q (T )

. (67)

In particular, since d
p

+ 2
q

< 1, by (16), we can choose λ large enough so that

∥∥uX
∥∥
L∞(T )

+ ∥∥∇uX
∥∥
L∞(T )

≤ 1/2, ∀T ∈ [0,1]. (68)
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Below we shall fix such a λ and define

�X
t (x) := x + uX

t (x).

It is easy to see that

∂t�
X + L σX

t �X + bX · ∇�X = λuX.

(ii) By the generalized Itô formula (cf. [29], Lemma 4.1), we have

X̃t := �X
t (Xt ) = �X

0 (X0) + λ

∫ t

0
uX

s (Xs)ds +
∫ t

0
σ̃ X

s (Xs)dWs, (69)

where

σ̃ X := σX · ∇�X.

Similarly, we define Ỹt := �Y
t (Yt ), and for simplicity write

ξt := Xt − Yt , ξ̃t := X̃t − Ỹt .

Noting that by (68),

|x − y| ≤ 2
∣∣�X

t (x) − �X
t (y)

∣∣ ≤ 2
∣∣�X

t (x) − �Y
t (y)

∣∣ + 2
∥∥uX − uY

∥∥
L∞(T )

and ∣∣�X
t (x) − �Y

t (y)
∣∣ ≤ 2|x − y| + ∥∥uX − uY

∥∥
L∞(T )

,

we have

|ξt | ≤ 2|ξ̃t | + 2
∥∥uX − uY

∥∥
L∞(T )

, |ξ̃t | ≤ 2|ξt | +
∥∥uX − uY

∥∥
L∞(T )

. (70)

By (69) and again Itô’s formula, we have for any β ≥ 1,

|ξ̃t |β = |ξ̃0|β + βλ

∫ t

0
|ξ̃s |β−2〈ξ̃s , u

X
s (Xs) − uY

s (Ys)
〉
ds

+ β

∫ t

0
|ξ̃s |β−2〈(σ̃ X

s (Xs) − σ̃ Y
s (Ys)

)∗
ξ̃s ,dWs

〉

+ β

(
β

2
− 1

)∫ t

0
|ξ̃s |β−4

∣∣(σ̃ X
s (Xs) − σ̃ Y

s (Ys)
)∗

ξ̃s

∣∣2 ds

+ β

2

∫ t

0
|ξ̃s |β−2

∥∥σ̃ X
s (Xs) − σ̃ Y

s (Ys)
∥∥2

HS ds

:= I1 + I2 + I3 + I4 + I5.

Since by (68), ∣∣uX
t (x) − uY

t (y)
∣∣ ≤ |x − y| + ∥∥uX − uY

∥∥
L∞(T )

,



Well-posedness of DDSDEs with singular drifts 1151

by Young’s inequality we obtain

I2 �
∫ t

0
|ξ̃s |β ds + λ

∫ t

0

∣∣uX
s (Xs) − uY

s (Ys)
∣∣β ds

�
∫ t

0

(|ξ̃s |β + λ|ξs |β
)

ds + λβT
∥∥uX − uY

∥∥β

L∞(T )
.

Let

gX
s (x) := ∣∣∇2uX

s (x)
∣∣ + ∣∣∇σX

s (x)
∣∣ + ∥∥∇uX

∥∥
L∞(T )

+ ∥∥σX
∥∥
L∞(T )

.

By the definition of σ̃ X , we also have that∣∣σ̃ X
s (x) − σ̃ Y

s (y)
∣∣

≤ ∥∥σY
∥∥
L∞(T )

∣∣∇�X
s (x) − ∇�Y

s (y)
∣∣ + ∣∣σX

s (x) − σY
s (y)

∣∣ · ∥∥∇�X
∥∥
L∞(T )

≤ ∥∥σY
∥∥
L∞(T )

(∣∣∇uX
s (x) − ∇uX

s (y)
∣∣ + ∣∣∇uX

s (y) − ∇uY (s, y)
∣∣)

+ (∣∣σX
s (x) − σX

s (y)
∣∣ + ∣∣σX

s (y) − σY
s (y)

∣∣) · ∥∥∇�X
∥∥
L∞(T )

(30)
� |x − y|(M1g

X
s (x) +M1g

X
s (y)

) + ∥∥∇uX − ∇uY
∥∥
L∞(T )

+ ∥∥σX
s − σY

s

∥∥∞.

Hence,

I4 + I5 �
∫ t

0

(|ξs |β + |ξ̃s |β
)(
MgX

s (Xs) +MgX
s (Ys)

)2 ds

+ T
∥∥∇uX − ∇uY

∥∥β

L∞(T )
+

∫ t

0

∥∥σX
s − σY

s

∥∥β

∞ ds.

Combining the above calculations and noting that |ξ̃0| ≤ ‖uX
0 − uY

0 ‖∞, we obtain

|ξ̃t |β �
∥∥uX − uY

∥∥β

H
1,∞∞ (T )

+
∫ t

0

(|ξ̃s |β + |ξs |β + ‖ξs‖β
θ

)
ds

+
∫ t

0

(|ξs |β + |ξ̃s |β
)(
M1g

X
s (Xs) +M1g

X
s (Ys)

)2 ds + Mt, (71)

where Mt is a continuous local martingale.
(iii) Now we define

At := t +
∫ t

0

(
M1g

X
s (Xs) +M1g

X
s (Ys)

)2
ds.

By (71) and (70), we obtain that for all t ∈ [0, T ],

|ξs |β + |ξ̃s |β �
∥∥uX − uY

∥∥β

H
1,∞∞ (T )

+
∫ t

0
‖ξs‖β

θ ds +
∫ t

0

(|ξs |β + |ξ̃s |β
)

dAs + Mt.

Note that by the assumption and (31),

(s, x) → (
M1

∣∣∇2uX
s (x)

∣∣)2 ∈ L̃
p/2
q/2(T )



1152 M. Röckner and X. Zhang

and

(s, x) → (
M1

∣∣∇σX
s (x)

∣∣)2 ∈ L̃
p1/2
q1/2 (T ).

Since (
p
2 ,

q
2 ), (

p1
2 ,

q1
2 ) ∈ I2, by Khasminskii’s estimate (60), we have

E expγAT < ∞, ∀γ > 0,∀T ∈ [0,1].
Thus we can use the stochastic Gronwall inequality (29) to derive that

sup
s∈[0,T ]

‖ξs‖β
θ =

(
sup

s∈[0,T ]
E|ξs |θ

)β/θ

�
∥∥uX − uY

∥∥β

H
1,∞∞ (T )

+
∫ T

0
‖ξs‖β

θ ds. (72)

Noticing that by (64),

∣∣∣∣∣∣bX − bY
∣∣∣∣∣∣
L̃

p
q (T )

≤
(∫ T

0
�
q
t ‖Xt − Yt‖q

θ dt

)1/q

≤ ‖�‖Lq(0,T ) sup
t∈[0,T ]

‖ξt‖θ

and ∥∥σX − σY
∥∥
L∞(T )

≤ c0 sup
t∈[0,T ]

‖Xt − Yt‖θ = c0 sup
t∈[0,T ]

‖ξt‖θ ,

we have by (27),∥∥uX − uY
∥∥
H

1,∞∞ (T )
�

∣∣∣∣∣∣bX − bY
∣∣∣∣∣∣
L̃

p
q (T )

+ ∣∣∣∣∣∣bX
∣∣∣∣∣∣
L̃

p
q (T )

(∥∥σX − σY
∥∥
L∞(T )

+ ∣∣∣∣∣∣bX − bY
∣∣∣∣∣∣
L̃

p
q (T )

)
�

(‖�‖Lq(0,T ) + ∣∣∣∣∣∣bX
∣∣∣∣∣∣
L̃

p
q (T )

)
sup

t∈[0,T ]
‖ξt‖θ

(65)
� T

γ−1
γ q sup

t∈[0,T ]
‖ξt‖θ .

Substituting this into (72), we obtain

sup
s∈[0,T ]

‖ξs‖β
θ ≤ CT

β(γ−1)
γ q sup

t∈[0,T ]
‖ξt‖β

θ , T ∈ (0,1),

where C does not depend on T ∈ (0,1). By choosing T small enough, we get ‖ξt‖β
θ = 0 for all t ∈

[0, T ]. By shifting the time T , we obtain the uniqueness. �

It is obvious that b defined in (42) does not satisfy (64). Below we shall relax it to the weighted total
variation norm by Girsanov’s transformation. The price we have to pay is that we need to assume that
the diffusion coefficient does not depend on the time marginal law of X. For θ ≥ 1, let

φθ (x) := 1 + |x|θ .

(Ãσ,b
θ ) Let θ ≥ 1. We assume (49), σt (x,μ) = σt (x) and for some (p, q), (p1, q1) ∈ I1,

sup
Z∈Stoch

∣∣∣∣∣∣bZ
∣∣∣∣∣∣
L̃

p
q (T )

< ∞, |||∇σ |||
L̃

p1
q1 (T )

< ∞,

and there is an � ∈ L
q

loc(R+) such that for all μ,μ′ ∈P(Rd) and t ≥ 0,∣∣∣∣∣∣b(t, ·,μ) − b
(
t, ·,μ′)∣∣∣∣∣∣

p
≤ �t

∥∥φθ · (μ − μ′)∥∥
TV. (73)
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It should be noted that [26], Theorem 6.15, implies,

Wθ

(
μ,μ′) ≤ c

∥∥φθ · (μ − μ′)∥∥1/θ

TV .

Theorem 4.2. Let θ ≥ 1 and β > 2θ . Under (Ãσ,b
θ ), for any initial random variable X0 with finite β-

order moment, there is a unique weak solution to DDSDE (1), which is also a unique strong solution.

Proof. We use the Girsanov transform in the same way as in [21] to show the weak uniqueness, and
so also the strong uniqueness. Since under the assumptions of the theorem, weak solutions are also
strong solutions (see Corollary 3.5), without loss of generality, let X(i), i = 1,2 be two solutions of
SDE (1) defined on the same probability space (�,F ,P) and with the same Brownian motion and
starting point ξ . That is,

dX
(i)
t = σt

(
X

(i)
t

)
dWt + bt

(
X

(i)
t ,μ

(i)
t

)
dt, X

(i)
0 = ξ, (74)

where μ
(i)
t = P ◦ (X

(i)
t )−1. We want to show μ

(1)
t = μ

(2)
t .

Since σt (x,μ) = σt (x) satisfies (24) under our assumptions, it is well known that there is a unique
weak solution to SDE

dZt = σt (Zt )dWt, Z0 = ξ.

Let β > 2θ . Since σ is bounded, it is easy to see that

sup
t∈[0,T ]

E|Zt |β ≤ C
(
E|ξ |β + 1

)
. (75)

Define

b̃(i)
s (x) := σ−1

s (x) · bX(i)

s (x), W̃
(i)
t := Wt −

∫ t

0
b̃(i)
s (Zs)ds

and

E (i)
T := exp

{∫ T

0
b̃(i)
s (Zs) · dWs − 1

2

∫ T

0

∣∣b̃(i)
s (Zs)

∣∣2 ds

}
.

Since
∣∣∣∣∣∣b̃(i)

∣∣∣∣∣∣
L̃

p
q (T )

≤ ∣∣∣∣∣∣bX(i) ∣∣∣∣∣∣
L̃

p
q (T )

< ∞ for some (p, q) ∈ I1, by Khasminskii’s estimate (60), we
have

E exp

{
γ

∫ T

0

∣∣b̃(i)
s (Zs)

∣∣2 ds

}
≤ CT,γ , ∀γ > 0, (76)

and for any γ ∈R,

E
(
E (i)

T

)γ ≤ CT,γ < ∞. (77)

Hence, for each i = 1,2, EE (i)
T = 1, and W̃ (i) is still a Brownian motion under E (i)

T P, and

dZt = σt (Zt )dW̃
(i)
t + bX(i)

t (Zt )dt, Z0 = ξ.

Since the above SDE admits a unique strong solution (see also (74)), we have

(
E (i)

T P
) ◦ Z−1

T = P ◦ (
X

(i)
T

)−1 = μ
(i)
T , i = 1,2.
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Therefore, for δ = β
β−θ

< 2, by Hölder’s inequality, we get

∥∥φθ · (μ(1)
T − μ

(2)
T

)∥∥
TV = ∥∥φθ · ((E (1)

T P
) ◦ Z−1

T − (
E (2)

T P
) ◦ Z−1

T

)∥∥
TV

≤ E
(
φθ (ZT )

∣∣E (1)
T − E (2)

T

∣∣) ≤ ∥∥φθ (ZT )
∥∥

δ/(δ−1)

∥∥E (1)
T − E (2)

T

∥∥
δ

= ∥∥1 + |ZT |θ∥∥
β/θ

∥∥E (1)
T − E (2)

T

∥∥
δ

(75)≤ C
∥∥E (1)

T − E (2)
T

∥∥
δ
. (78)

Noting that

dE (i)
t = E (i)

t b̃
(i)
t (Zt ) · dWt,

we have

d
(
E (1)

t − E (2)
t

) = (
E (1)

t b̃
(1)
t (Zt ) − E (2)

t b̃
(2)
t (Zt )

) · dWt.

By Itô’s formula, we have

d
∣∣E (1)

t − E (2)
t

∣∣2 = ∣∣E (1)
t b̃

(1)
t (Zt ) − E (2)

t b̃
(2)
t (Zt )

∣∣2 dt + Mt

≤ 2
∣∣E (1)

t − E (2)
t

∣∣2∣∣b̃(1)
t (Zt )

∣∣2 dt + 2
∣∣E (2)

t

(
b̃

(1)
t (Zt ) − b̃

(2)
t (Zt )

)∣∣2 dt + Mt,

where M is a continuous local martingale. Since δ < 2, by the stochastic Gronwall inequality (29) and
(76), we obtain

∥∥E (1)
T − E (2)

T

∥∥2
δ
�

∫ T

0
E

∣∣E (2)
t

(
b̃

(1)
t (Zt ) − b̃

(2)
t (Zt )

)∣∣2 dt.

Since (p, q) ∈ I1, one can choose γ ∈ (1,1/(d/p + 2/q)) so that

(
p/(2γ ), q/(2γ )

) ∈ I2.

Thus by Hölder’s inequality and Krylov’s estimate (53), we further have

∥∥E (1)
T − E (2)

T

∥∥2
δ

(77)
�

(∫ T

0
E

∣∣b̃(1)
t (Zt ) − b̃

(2)
t (Zt )

∣∣2γ dt

) 1
γ

�
∣∣∣∣∣∣∣∣b̃(1) − b̃(2)

∣∣2γ ∣∣∣∣∣∣1/γ

L̃
p/(2γ )

q/(2γ )
(T )

= ∣∣∣∣∣∣b̃(1) − b̃(2)
∣∣∣∣∣∣2
L̃

p
q (T )

�
(∫ T

0

∣∣∣∣∣∣bt

(·,μ(1)
t

) − bt

(·,μ(2)
t

)∣∣∣∣∣∣q
p

dt

) 2
q

(73)
�

(∫ T

0
�
q
t

∥∥φθ · (μ(1)
t − μ

(2)
t

)∥∥q

TV dt

) 2
q

,

which together with (78) yields

∥∥φθ · (μ(1)
T − μ

(2)
T

)∥∥q

TV ≤ C

∫ T

0
�
q
t

∥∥φθ · (μ(1)
t − μ

(2)
t

)∥∥q

TV dt.
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By Gronwall’s inequality, we obtain∥∥φθ · (μ(1)
T − μ

(2)
T

)∥∥q

TV = 0 ⇒ μ
(1)
T = μ

(2)
T .

The proof is thus complete. �

5. Application to nonlinear Fokker–Planck equations

In this section, we present some applications to nonlinear Fokker–Planck equations. First of all we
recall the following superposition principle: one-to-one correspondence between DDSDE (1) and non-
linear Fokker–Planck equation (2), which was first proved in [1,2], and is based on a result for linear
Fokker–Planck equations due to Trevisan [25] (see also [8,15] for the special linear case where the
coefficients are bounded). We repeat the argument from [1,2] here.

Theorem 5.1 (Superposition principle). Let μt : R+ → P(Rd) be a continuous curve such that for
each T > 0, ∫ T

0

∫
Rd

(∣∣(σ ik
t σ

jk
t

)
(x,μt )

∣∣ + ∣∣bt (x,μt )
∣∣)μt(dx)dt < ∞. (79)

Then μt solves the nonlinear Fokker–Planck equation (2) in the distributional sense if and only if there
exists a martingale solution P ∈ M σ,b

ν to DDSDE (1) so that for each t > 0,

μt = P ◦ w−1
t .

In particular, if there is at most one element in Mσ,b
ν with time marginal μt := μXt , t ≥ 0, satisfying

(79), then there is at most one solution to (2) satisfying (79).

Proof. If P ∈ M σ,b
ν and μt = P ◦ w−1

t , then by (79) and Itô’s formula, it is easy to see that μt solves
(2). Now we assume μt solves (2). Consider the following linear Fokker–Planck equation:

∂t μ̃t = (
L σμ

t

)∗
μ̃t + div

(
b

μ
t · μ̃t

)
,

where b
μ
t (x) := bt (x,μt ) and σ

μ
t (x) := σt (x,μt ). Since μt is a solution of the above linear Fokker–

Planck equation, by [25], Theorem 2.5, there is a martingale solution P ∈ M σμ,bμ

ν so that

μt = P ◦ w−1
t .

In particular, P ∈ M σ,b
ν . The last assertion is then obvious and thus the proof is complete. �

From the above superposition principle and our well-posedness results, we can obtain the following
well-posedness result about the nonlinear Fokker–Planck equations.

Theorem 5.2. In the situations of Theorems 4.1 and 4.2, there is a unique continuous curve μt solving
the nonlinear Fokker–Planck equation (2).

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence and uniqueness of solutions to the nonlinear FPE (7) are conse-
quences of Theorem 4.2 and Theorem 5.1. We now aim to show the existence and smoothness of the
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density ρX
t (y). Let μt be the solution of the Fokker–Planck equation (7). We consider the following

SDE:

dXt = b
μ
t (Xt )dt + √

2 dWt, X0 = ξ, (80)

where b
μ
t (x) := ∫

Rd bt (x, y)μt (dy). Since bμ ∈ L̃
p
q , where d

p
+ 2

q
< 1, it is well known that the operator

� + bμ · ∇ admits a heat kernel ρbμ(s, x; t, y) (see [6], Theorems 1.1 and 1.3), which is continuous in
(s, x; t, y) on {(s, x; t, y) : 0 ≤ s < t < ∞, x, y ∈ Rd} and satisfies the following two-sided estimate:
For any T > 0, there are constants c0, γ0 > 1 such that for all 0 ≤ s < t ≤ T and x, y ∈ Rd

c−1
0 (t − s)−d/2e−γ0|x−y|2/(t−s) ≤ ρbμ(s, x; t, y) ≤ c0(t − s)−d/2e−|x−y|2/(γ0(t−s)),

and the gradient estimate: for some c1, γ1 > 1,

∣∣∇xρbμ(s, x; t, y)
∣∣ ≤ c1(t − s)−(d+1)/2e−|x−y|2/(γ1(t−s)).

If divx b ≡ 0, then ρbμ(s, x; t, y) = ρ−bμ(s, y; t, x), and so in this case,

∣∣∇yρbμ(s, x; t, y)
∣∣ ≤ c1(t − s)−(d+1)/2e−|x−y|2/(γ1(t−s)).

In particular, the density of the law of Xt is just given by

ρX
t (y) =

∫
Rd

ρ(0, x; t, y)
(
P ◦ X−1

0

)
(dx) = Eρ(0,X0; t, y).

Strong uniqueness of SDE (80) ensures that ρX
t (y)dy = μt(dy). The desired estimates now follow

from the above estimates. �
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