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We give necessary and sufficient conditions for the existence of a phantom distribution function for a stationary
random field on a regular lattice. We also introduce a less demanding notion of a directional phantom distribution,
with potentially broader area of applicability. Such approach leads to sectorial limit properties, a phenomenon
well-known in limit theorems for random fields. An example of a stationary Gaussian random field is provided
showing that the two notions do not coincide. Criteria for the existence of the corresponding notions of the extremal
index and the sectorial extremal index are also given.
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1. Introduction and announcement of results

1.1. Phantom distribution functions for sequences

The notion of a phantom distribution function was introduced by O’Brien [24]. Let {Xn : n ∈ Z} be a
stationary sequence with a marginal distribution function F and partial maxima Mn := max{Xk : 1 ≤
k ≤ n}, n ∈N. We say that a distribution function G is a phantom distribution function for {Xn}, if

sup
x∈R

∣∣P(Mn ≤ x) − G(x)n
∣∣−−−→

n→∞ 0.

This means that G completely describes asymptotic properties (in law) of partial maxima {Xn}. G is
also involved in description of asymptotics of higher order statistic of {Xn} (see [15] and [27]).

If G can be chosen in the form G(x) = Fθ(x), that is, if for some θ ∈ (0,1]
sup
x∈R

∣∣P(Mn ≤ x) − P(X0 ≤ x)θn
∣∣−−−→

n→∞ 0,

then, following Leadbetter [19], we call θ the extremal index of {Xn}. The extremal index is a popular
tool in the stochastic extreme value limit theory (see, e.g., [20]). There exist, however, important classes
of stationary sequences which admit a continuous phantom distribution function, while their extremal
index is 0 (see [7,19]). The latter means only that their partial maxima increase essentially slower than
in the independent case, but does not bring any quantitative information on the growth of Mn. Such
phenomenon occurs, for example, when Lindley’s process has subexponential innovations [1] or when
the continuous target distribution of the random walk Metropolis algorithm has heavy tails [25].

Existence of a phantom distribution function is a quite common property. O’Brien [24] and Rootzén
[26] give explicit formulas for phantom distribution functions of some Markov chains exhibiting Harris
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recurrence. Jakubowski [14], Theorem 16, provides a method of construction of a phantom distribu-
tion function for instantaneous functions of a Markov chain. Doukhan et al. [7], Theorem 6, show, that
any α-mixing sequence with continuous marginals admits a continuous phantom distribution func-
tion. General Theorem 2, ibid., asserts that a stationary sequence {Xn} admits a continuous phantom
distribution function if, and only if, there exists a sequence {vn} and γ ∈ (0,1) such that

P(Mn ≤ vn) −−−→
n→∞ γ,

and for each T > 0 the following Condition BT ({vn}) is fulfilled:

sup
p,q∈N,

p+q≤T ·n

∣∣P(Mp+q ≤ vn) − P(Mp ≤ vn)P(Mq ≤ vn)
∣∣ −−−→

n→∞ 0.

Notice that Condition BT ({vn}) can be satisfied even by non-ergodic sequences (see Theorem 4, ibid.).
Condition BT ({vn}) was introduced in [13].

Another interesting issue is that there are “user-friendly” criteria of existence of a phantom distribu-
tion function for arbitrary (non-stationary) sequences – see [14] and [18], Theorem 3. Such results are
particularly useful in investigating Markov chains “starting at the point”.

1.2. Phantom distribution functions for random fields

As the previous section shows, the theory of phantom distribution functions for random sequences is
essentially closed. It is therefore surprising that the corresponding theory of phantom distributions for
random fields over Zd is still far from being complete.

Let Zd be the d-dimensional lattice built on integers with the standard (coordinatewise) partial order
≤. Let {Xn : n ∈ Zd} be a d-dimensional stationary random field with a marginal distribution function
F and partial maxima defined for j,n ∈ Zd by the formulae

Mj,n := max{Xk : j ≤ k ≤ n}, if j ≤ n, Mj,n := −∞ if j � n.

It is also convenient to define

Mn := M1,n, n ∈ Zd .

Of course, Mn is of interest only if n ∈ Nd (here and in the sequel we distinguish between N =
{1,2, . . .} and N0 = {0} ∪N).

It seems that the first paper that mentions the notion of a phantom distribution function in our rect-
angular setting is [17] and we will follow this paper.

Definition 1.1. We will say that G is a phantom distribution function for {Xn}, if

sup
x∈R

∣∣P(Mn ≤ x) − G(x)n∗ ∣∣ → 0 as n →∞∞∞ (coordinatewise), (1)

where n∗ = n1 · n2 · . . . · nd , if n = (n1, n2, . . . , nd).

Theorem 4.3 ibid. states that m-dependent random fields as well as moving maxima, moving aver-
ages and Gaussian fields satisfying Berman’s condition admit a phantom distribution function in the
above, strong sense. Another family of interesting examples, exploring the idea of a tail field in the
context of the extremal index can be found in [29].
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Note that (1) describes the asymptotic behavior of Mn regardless of the way in which n grows to
∞∞∞ = (∞,∞, . . . ,∞). To make this statement precise, let us define a monotone curve in Nd as a map
ψψψ : N → Nd such that ψψψ(n) → ∞∞∞, for n = 1,2, . . . ψψψ(n) ≤ ψψψ(n + 1) and ψψψ(n) �= ψψψ(n + 1) (hence
{ψψψ(n)∗} is strictly increasing) and, as n → ∞,

ψψψ(n)∗

ψψψ(n + 1)∗
→ 1. (2)

Definition 1.2. We will say that G is a phantom distribution function for {Xn} along a monotone curve
ψψψ , if

sup
x∈R

∣∣P(Mψψψ(n) ≤ x) − G(x)ψψψ(n)∗ ∣∣−−−→
n→∞ 0. (3)

Any function G satisfying (3) will be denoted by Gψψψ . Within such terminology, we have the follow-
ing proposition.

Proposition 1.3. A stationary random field {Xn} admits a continuous phantom distribution function
G if, and only if, there is a continuous G that is a phantom distribution function for {Xn} along every
monotone curve.

Another consequence of (1) is that if x has the property that G(x)n∗
is a “good” approximation of

P(Mn ≤ x), then it is equally good for all other points m with m∗ = n∗. In other words, such x is
a function of the class Lk = {n ∈ Nd;n∗ = k} rather, than of n alone. We formalize this observation
by introducing the notion of a strongly monotone field of levels. We will say that v(·) : Nd → R1 is
strongly monotone, if vm ≤ vn whenever m∗ ≤ n∗. This implies, in particular, that vm = vn, if m∗ = n∗.
Moreover, there exists a non-decreasing sequence {un} such that

vn = un∗ , n ∈ Nd,

and conversely, every non-decreasing sequence {un} defines a strongly monotone field of levels through
the above formula.

We are now able to give a multidimensional analog of [7], Theorem 2.

Theorem 1.4. Let {Xn : n ∈ Zd} be a stationary random field. Then {Xn} admits a continuous phantom
distribution function if, and only if, the following two conditions are satisfied.

(i) There exist γ ∈ (0,1) and a strongly monotone field of levels {vn;n ∈Nd} such that

P(Mn ≤ vn) → γ as n →∞∞∞. (4)

(ii) For every monotone curve ψψψ and every T > 0 the following Condition Bψψψ
T ({vψψψ(n)}) holds.

β
ψψψ
T (n) := max

p(1)+p(2)≤Tψψψ(n)

∣∣∣∣P(Mp(1)+p(2) ≤ vψψψ(n))

−
∏

i∈{1,2}d
P (M(p1(i1),p2(i2),...,pd (id )) ≤ vψψψ(n))

∣∣∣∣ −−−→
n→∞ 0.

(The quantities p(1) and p(2) under maximum take values in Nd
0 ).
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Figure 1. Breaking probabilities into blocks as a consequence of Condition BψψψT ({vψψψ(n)}), for d = 2.

Condition Bψψψ
T ({vψψψ(n)}) looks complicated but it is based on a simple idea. We shall illustrate it in

the two-dimensional case. Notice that for d = 2, we have

β
ψψψ
T (n) = max

p+q≤Tψψψ(n)

∣∣P(Mp+q ≤ vψψψ(n))

− P(Mp ≤ vψψψ(n))P (M(p1,q2) ≤ vψψψ(n))P (M(q1,p2) ≤ vψψψ(n))P (Mq ≤ vψψψ(n))
∣∣

and, moreover, by the stationarity,

P(M(p1,q2) ≤ vψψψ(n)) = P(M(1,p2+1),(p1,p2+q2) ≤ vψψψ(n)),

P (M(q1,p2) ≤ vψψψ(n)) = P(M(p1+1,1),(p1+q1,p2) ≤ vψψψ(n)),

P (Mq ≤ vψψψ(n)) = P(Mp+1,p+q ≤ vψψψ(n)).

It follows that if β
ψψψ
T (n) → 0, as n → ∞, then P(Mp+q ≤ vψψψ(n)) can be approximated by the product

of the four probabilities for maxima over disjoint blocks, as in Figure 1.
By convention, if some coordinate of p or q is 0, then P(Mp+q ≤ vψψψ(n)) breaks into smaller number

of blocks (for d = 2 into 2 or 1 block).

Remark 1.5. Models exhibiting local dependence (like m-dependent or max-m-approximable ran-
dom fields) admit a continuous phantom distribution function by [17], Theorem 4.3, and so, by our
Theorem 1.4, satisfy Condition Bψψψ

T ({vψψψ(n)}).

Remark 1.6. Readers familiar with mixing conditions may dislike the shape of Condition Bψψψ
T ({vψψψ(n)})

for there is no “separation of blocks” like in [21], Coordinatewise mixing, or Ling [22], Condition
A1. Apart from the more complicated form of these conditions (that would be overwhelming in d-
dimensional considerations), they are essentially not easier in verification. We find the form of Condi-
tion Bψψψ

T ({vψψψ(n)}) very useful in theoretical consideration. As a good example of how to check Condition

Bψψψ
T ({vψψψ(n)}) (in one dimension) may serve Theorems 6–9 in [7].

Remark 1.7. The framework of maxima over rectangles may seem to be too restrictive for applica-
tions. It has, however, substantial advantages. First, it preserves the one-dimensional idea of complete
description of asymptotics of maxima in terms of a single field of levels (asymptotic quantiles). Second,
in view of its simplicity, it is a natural candidate to be used in description of local properties of maxima
of locally stationary random fields. Finally, it brings a non-trivial illustration of possible difficulties in
transmission of one-dimensional results to spatial considerations.
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Figure 2. The shaded area is the set U(ψψψ,C) ⊂R2 for C = 2.

Remark 1.8. Given a random field on Zd it is natural to consider quantities M(A) = maxn∈A Xn,
where A ⊂ Zd belongs to a suitable class of subsets A. Operating with quantities M(A) is quite easy
when {Xn} are independent, but passing to weakly dependent fields requires much care. We refer to
[6] and [3] for discussion of possible complications and to [16] for instruction how to deal with the
boundary problems in case of arbitrary sets A.

1.3. Directional and sectorial phantom distribution functions

Suppose that F is continuous. Choose γ ∈ (0,1) and define the following field of levels (in fact,
quantiles):

vn = inf
{
x : P(Mn ≤ x) = γ

}
.

Then {vn} is non-decreasing, we have P(Mn ≤ vn) → γ , but there is no reason to expect that it is
strongly monotone (see Section 1.4).

It follows that the basic observation developed in [7] for sequences fails for phantom distribution
functions for random fields (by our Theorem 1.4). This signalizes a serious difficulty and suggests
that the theory of phantom distribution functions (and of the extremal index) in the sense of strong
definition (1) is restricted to random fields with really short-range dependencies (numerous examples
of which are mentioned in the previous section).

The theory of directional phantom distribution functions, that is developed below, is free of such
drawbacks.

Let {ψψψ(n)} be a monotone curve. We define the class Uψψψ of monotone curves, being a kind of
a “neighbourhood” of ψψψ , as follows. A monotone curve ϕϕϕ belongs to Uψψψ if and only if for some
constant C ≥ 1 and for almost all n ∈ N

ϕϕϕ(n) ∈ U(ψψψ,C) :=
⋃
j∈N

d∏
i=1

[
C−1ψi(j),Cψi(j)

]
.

An example of U(ψψψ,C) is shown in Figure 2.

Definition 1.9. Let {ψψψ(n)} be a monotone curve. We will say that a distribution function G is the
ψψψ -directional phantom distribution function for {Xn}, if G is a phantom distribution function for {Xn}
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along every monotone curve belonging to the set Uψψψ . We shall denote the ψψψ -directional phantom
distribution function by Gψψψ .

Note that we already used the notation Gψψψ to denote the phantom distribution function along ψψψ . But
there is no ambiguity. As we shall see in Theorem 1.12 below any phantom distribution function along
ψψψ is automatically the ψψψ -directional phantom distribution function for {Xn} and conversely.

Remark 1.10. Let ���(n) = (n,n, . . . , n), n ∈ N, denote the diagonal map. Observe that ϕϕϕ belongs to
U��� if, and only if, ϕ1(n),ϕ2(n), . . . , ϕd(n) are of the same order, that is, 1/C ≤ ϕi(n)/ϕj (n) < C for
some C ≥ 1, all i, j ∈ {1,2, . . . , d} and almost all n ∈N. Therefore, the following definition is natural.

Definition 1.11. If G is a ���-directional phantom distribution function, we call it a sectorial phantom
distribution function.

Theorem 1.12. Let {Xn : n ∈ Zd} be a stationary random field and let ψψψ be a monotone curve.
The following statements (i)–(iii) are equivalent.

(i) {Xn} admits a continuous phantom distribution function along ψψψ .
(ii) {Xn} admits a continuous ψψψ -directional phantom distribution function.

(iii) There exist γ ∈ (0,1) and a non-decreasing sequence of levels {vψψψ(n)}, n ∈ N, such that

P(Mψψψ(n) ≤ vψψψ(n)) −−−→
n→∞ γ, (5)

and for every T > 0 Condition Bψψψ
T ({vψψψ(n)}) holds.

Some comments are relevant here.
First, the notion of ψψψ -directional phantom distribution function is essentially weaker than that of

global phantom distribution function. In Section 1.4, we construct a stationary Gaussian random field
{Xn : n ∈ Z2} that admits a sectorial phantom distribution function while the global phantom distribu-
tion function does not exist for {Xn : n ∈ Z2}.

Second, we do not know whether similar examples are common in practice. We would like, however,
to stress the fact that knowing sectorial (or other ψψψ -directional) phantom distribution function can be
sufficient in many problems, because the family Uψψψ is quite large. In fact, “sectorial” results arise in
several areas of the theory of random fields. For instance, Gut [12] gives strong laws for i.i.d. random
fields indexed by a sector and Gadidov [11] deals with such framework for U -statistics.

Third, finding a sectorial (or ψψψ -directional) phantom distribution function is essentially easier than
finding a global one, as Theorem 1.13, stated below for general non-stationary random fields, shows.
Notice that we can directly adopt all the definitions to the non-stationary setting.

Theorem 1.13. Let {Zn : n ∈ Zd} be an arbitrary random field with partial maxima {Mn}n∈Nd and let
ψψψ be a monotone curve.

Then {Zn : n ∈ Zd} admits a ψψψ -directional continuous phantom distribution function if, and only if,
there exist γ ∈ (0,1) and a non-decreasing sequence of levels {vψψψ(n)} such that

P(M(�q1ψ1(n)�,�q2ψ2(n)�,...,�qdψd(n)�) ≤ vψψψ(n)) −−−→
n→∞ γ q1q2···qd . (6)

for every d-tuple q = (q1, q2, . . . , qd) ∈ Qd , where Q is a dense subset of R+. (Here and in what
follows �·� stands for the floor function.)
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Remark 1.14. In the case of sectorial phantom distribution function (i.e., if ψψψ = ���) relation (6) takes
especially simple form

P(M(�q1n�,�q2n�,...,�qdn�) ≤ v���(n)) −−−→
n→∞ γ q1q2···qd , (q1, q2, . . . , qd) ∈Qd .

Remark 1.15. Theorem 1.13 is a multidimensional counterpart of [18], Theorem 3, (see also [14],
Theorem 2, Corollary 5).

1.4. Example

1.4.1. Tools for analysis of extremes of Gaussian families

The analysis of the example we are going to construct requires the whole power of classic methods
developed in sixties and seventies of the twentieth century and summarized in an exhaustive manner in
[20], Part II. In this theory, the central position is occupied by the so-called normal comparison lemma
([20], Theorem 4.2.1) which we will use in the form of the Berman inequality restated below as (7).

Let (W1,W2, . . . ,Wn) and (Z1,Z2, . . . ,Zn) be two standardized normal random vectors, i.e.
EWj = EZj = 0 and EW 2

j = EZ2
j = 1, j = 1,2, . . . , n. Let 	W

i,j (resp. 	Z
i,j ) be the covariance of

Wi and Wj (resp. Zi and Zj ), 1 ≤ i, j ≤ n. Finally, let ωi,j = max{|	W
i,j |, |	Z

i,j |}, 1 ≤ i, j ≤ n and
assume that

max
i �=j

ωi,j = δ < 1.

Then we have ∣∣∣P(
max

1≤j≤n
Wj ≤ u

)
− P

(
max

1≤j≤n
Zj ≤ u

)∣∣∣
≤ L(δ)

∑
1≤i<j≤n

∣∣	W
i,j − 	Z

i,j

∣∣ exp

(
− u2

1 + ωi,j

)
, (7)

where L(δ) = 1/(2π
√

1 − δ2). In particular, if Z1,Z2, . . . ,Zn are independent then we obtain∣∣∣P(
max

1≤j≤n
Wj ≤ u

)
− (u)n

∣∣∣≤ L(δ)
∑

1≤i<j≤n

|ri,j | exp

(
− u2

1 + |ri,j |
)

, (8)

where ri,j = 	W
i,j and (x) is the distribution function of a standard normal random variable.

Given these tools it was possible to demonstrate possible distributional limits of partial maxima
for stationary standardized Gaussian sequences {Xj } with the covariance sequence rn = EXnX0, n =
0,1,2, . . .. In particular,

if rn lnn → 0, then under some centering and normalization Mn converge to a Gumbel distri-
bution (in fact:  is a phantom distribution function for {Xj }) – see [20], Theorem 4.3.3;

if rn lnn → c ∈ (0,∞) then under the same centering and normalization as above Mn converge
in law to the convolution of Gumbel and normal distributions (but no phantom distribution function
exists) – see [20], Corollary 6.5.2;

if both rn → 0 and rn lnn → ∞ monotonically then under some centering and normalization
Mn converge to the normal law (and no phantom distribution function exists) – see [20], Theorem 6.6.4.
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1.4.2. The idea

It was proved in [17], Section 3.2, that a stationary Gaussian random field {X(i,j)}(i,j)∈Z2 with the
covariance field

ri,j = E(X(i,j)X(0,0)), (i, j) ∈N2
0,

satisfying the two-dimensional Berman condition

ri,j ln(i · j) → 0 as (i, j) → (∞,∞),

admits a (global) phantom distribution function .
We are going to provide an example of a stationary Gaussian random field with the covariance field

satisfying

ri,j ∼ C
ln ln |i|
ln |i|

1

ln |j | as (i, j) → (∞,∞), (9)

for some C > 0. Such a field satisfies the Berman condition rn,n lnn2 → 0 along the diagonal. On the
other hand, we have

r�n/ lnn�,�lnn� lnn → C, as n → ∞,

as well as

r�n/ ln lnn�,�ln lnn� lnn → +∞ as n → ∞,

that is, the Berman condition is violated along some monotone curves.
By the analogy with the three cases discussed in the previous paragraph one may guess that we have

a phantom distribution function (namely ) along the diagonal (hence {X(i,j)} admits a sectorial phan-
tom distribution function) and that no phantom distribution function is suitable along some monotone
curves (hence, there is no global phantom distribution function). This guess is right, but the covariance
structure of random variables contributing to the maxima over rectangles is more complicated than in
the one-dimensional case. Therefore the transmission to random fields is not automatic and we have to
perform carefully all computations.

1.4.3. The construction of a random field

We shall construct a stationary Gaussian random field X = {X(i,j), (i, j) ∈ Z2} with mean zero, unit
variance and covariance function EX(i,j)X(0,0) = ri,j of the form

ri,j = η1(i)η2(j),

where η1(θ) and η2(θ) are characteristic functions of symmetric distributions on R1 (hence, real func-
tions).

Both η1 and η2 will be defined according to Polya’s recipe (see, e.g., [9], p. 509).
Take γ1 > 0 and consider the polygon connecting points

(0,1),

(
1, γ1

(
27

ln(ln 27)

ln 27
− 26

ln(ln 28)

ln 28

))
,

(
28, γ1

ln(ln 28)

ln 28

)
,

(
29, γ1

ln(ln 29)

ln 29

)
, . . .

It is a graph of a function η
γ1
1 defined on R+. Let �1 consists of γ1 with the property that η

γ1
1 is a

convex function on R+. This set is non-empty. Indeed, f (x) = ln(ln(x))/ ln(x) is a convex function
on (27 − κ,+∞), for some κ > 0. Therefore, η

γ1
1 is convex on [27,+∞) for every γ1 > 0 and the
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problem is reduced to simple geometrical considerations involving the first three points in the above
series. A direct calculation shows that γ1 = 0.3 ∈ �1.

In a similar way, we construct functions η
γ2
2 on the base of points

(0,1),

(
1, γ2

(
2

ln 2
− 1

ln 3

))
,

(
3, γ2

1

ln 3

)
,

(
4, γ2

1

ln 4

)
, . . . .

Functions η
γ2
2 are convex for γ2 ∈ �2 ⊂ (0,+∞), with γ2 = 0.1 ∈ �2.

Let � ⊂ �1 × �2 consists of points (γ1, γ2) satisfying additionally

γ1 > 1/4, γ1

(
27

ln(ln 27)

ln 27
− 26

ln(ln 28)

ln 28

)
< γ2

(
2

ln 2
− 1

ln 3

)
<

1 − 2γ1

1 + 2γ1
. (10)

Again direct calculation shows that (0.3,0.1) ∈ � and so � is non-empty.
Let (γ1, γ2) ∈ �. Set η1(θ) = η

γ1
1 (θ), η2(θ) = η

γ2
2 (θ), θ ≥ 0 and extend η1 and η2 to even func-

tions by reflection. By Polya’s recipe both η1 and η2 are characteristic functions. In particular, both
{η1(i)}i∈Z and {η2(j)}j∈Z are positive definite sequences.

It follows that ri,j = η1(i)η2(j) is a covariance field on Z2. Moreover, by (10) it satisfies

δ := sup
(i,j)∈Z2\{(0,0)}

ri,j <
1 − 2γ1

1 + 2γ1
<

1

3
, (11)

and for i and j with sufficiently large absolute values we have even more than (9):

ri,j = γ1γ2
ln ln |i|
ln |i|

1

ln |j | .

1.4.4.  is a sectorial phantom distribution function

We shall prove that

sup
x∈R

∣∣P(Mn ≤ x) − (x)n
2 ∣∣−−−→

n→∞ 0, (12)

where n = (n,n) = ���(n), Mn = max(i,j)∈[1,n]×[1,n] X(i,j). Applying Theorem 1.12, we will conclude
that  is a ���-directional (or sectorial) phantom distribution function for X.

As in [20], Section 4.3, in order to prove (12) it is sufficient to show that for every c > 0

P
(
Mn ≤ un(c)

)= 
(
un(c)

)n2 + o(1),

where levels {un(c)} are such that n2(1 − (un(c))) → c. Note that for n large enough

exp

(
− (un(c))2

2

)
=

√
2πcun(c)

n2

(
1 + o(1)

)≤ 2
√

πcun(c)

n2
= K(c)

un(c)

n2
(13)

and that

un(c) ∼ √
4 lnn as n → ∞. (14)

We have by (8) ∣∣P (
Mn ≤ un(c)

)− 
(
un(c)

)n2 ∣∣
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≤ L(δ)
∑

(i,j),(k,l)∈{1,2,...,n}2
(i,j) �=(k,l)

Cov(X(i,j),X(k,l)) exp

(
− (un(c))2

1 + ri−k,j−l

)

≤ 4L(δ)n2
∑

0≤i,j≤n
(i,j) �=(0,0)

ri,j exp

(
− (un(c))2

1 + ri,j

)
, (15)

where we have used the stationarity and the fact that ri,j > 0, i, j ∈ Z. Repeating the steps of the proof
of [20], Lemma 4.3.2, choose α, 0 < α < 1−3δ

1+δ
, (it is possible by (11)) and split the sum in the last line

of (15) in two parts �1(n) =∑
(i,j)∈An

and �2(n) =∑
(i,j)∈Bn

, where

An = {⌈
nα

⌉
, . . . , n

}× {⌈
nα

⌉
, . . . , n

}
and Bn = {0,1, . . . , n}2 \ (An ∪ {0}).

(Here and in the sequel �·� denotes the ceiling function). First, let us find the asymptotics of the part
involving �2(n). We have for large n

4L(δ)n2�2(n) ≤ 4L(δ)n2(2n1+α − (⌈
nα

⌉− 1
)2) exp

(
− (un(c))2

1 + δ

)

≤ 8L(δ)K(c)
2

1+δ n3+α

(
un(c)

n2

) 2
1+δ

by (13)

∼ 8L(δ)K(c)
2

1+δ (4 lnn)
1

1+δ nα+3− 4
1+δ → 0 by (14) and the choice of α.

Next, let us notice that for i, j ≥ �nα� and n large enough

ri,j ≤ ln(lnnα)

(lnnα)2
≤ α−2 ln lnn

(lnn)2
.

Therefore, setting δ′
n = supi,j∈An

ri,j and using (14) we obtain that δ′
n(un(c))2 → 0, as n → ∞. Keep-

ing this relation in mind, we can proceed as follows.

4L(δ)n2�1(n) = 4L(δ)n2
∑

(i,j)∈An

ri,j exp

(
− (un(c))2

1 + ri,j

)

= 4L(δ)n2 exp
(−(

un(c)
)2) ∑

(i,j)∈An

ri,j exp

(
(un(c))2ri,j

1 + ri,j

)

≤ 4L(δ)
(
K(c)

)2
n2
(

un(c)

n2

)2

n2δ′
n exp

(
δ′
n

(
un(c)

)2) by (13)

= 4L(δ)
(
K(c)

)2
δ′
n

(
un(c)

)2 exp
(
δ′
n

(
un(c)

)2)−−−→
n→∞ 0.

1.4.5. There is no global phantom distribution function

Let us consider the monotone curve

ψψψ(n) = (�n/ lnn�, �lnn�), n ∈ N.
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By Proposition 1.3, it is enough to show that  is not a phantom distribution function for
{X(i,j), (i, j) ∈ Z2} along ψψψ .

We will show first that

sup
x∈R

∣∣P(Mψψψ(n) ≤ x) − P(M̃n ≤ x)
∣∣ −−−→

n→∞ 0, (16)

where for each n ∈ N, M̃n is the maximum of ψψψ(n)∗ standard normal random variables ξ1, ξ2, . . . ,

ξψψψ(n)∗ with ρn = cov(ξi, ξj ) = γ1γ2
lnn

, i �= j . As in the case of (12), we have to prove that

P
(
Mψ(n) ≤ wn(c)

)= P
(
M̃n ≤ wn(c)

)+ o(1),

for sequences of levels {wn(c)} such that P(M̃n ≤ wn(c)) → c ∈ (0,1). Later we shall show that
{wn(c)} satisfies

exp

(
−wn(c)

2

2

)
≤ K ′(c)wn(c)

n
and wn(c) ∼ √

2 lnn. (17)

By virtue of (7), and similarly as in the case of (15),∣∣P (
Mψ(n) ≤ wn(c)

)− P
(
M̃n ≤ wn(c)

)∣∣
≤ 4L(δ)n

∑
(i,j)∈Dn

|ri,j − ρn| exp

(
− (wn(c))

2

1 + ωi,j

)
,

where Dn = {(i, j) : 0 ≤ i ≤ n
lnn

,0 ≤ j ≤ lnn} \ {(0,0)} and ωi,j = max{ri,j , ρn} = ri,j on Dn. Let

us split the set of indices Dn in three smaller parts, Dn = D
(1)
n � D

(2)
n � D

(3)
n , where D

(1)
n = {(i, j) :

0 ≤ i ≤ nα,0 ≤ j ≤ lnn} \ {(0,0)}, D
(2)
n = {(i, j) : nα < i ≤ n

lnn
,0 ≤ j ≤ (lnn)β} and D

(3)
n = {(i, j) :

nα < i ≤ n
lnn

, (lnn)β < j ≤ lnn}, where the parameters α and β will be chosen later.
By (11), we have δ < (1 − 2γ1)/(1 + 2γ1), or, equivalently, 2γ1 < (1 − δ)/(1 + δ). So we can find

α satisfying

2γ1 < α <
1 − δ

1 + δ
.

From (17), we have as n → ∞,

n
∑

(i,j)∈D
(1)
n

|ri,j − ρn| exp

(
− (wn(c))

2

1 + ri,j

)
≤ nnα lnn exp

(
− (wn(c))

2

1 + δ

)

≤ (
K ′(c)

) 2
1+δ nα+1 lnn

(
wn(c)

n

) 2
1+δ

∼ (√
2K ′(c)

) 2
1+δ nα− 1−δ

1+δ (lnn)
2+δ
1+δ → 0.

The estimate for the term related to the sum over (i, j) ∈ D
(2)
n is a bit more challenging. For indices

(i, j) ∈ D
(2)
n we have |ri,j − ρn| ≤ ri,j ≤ γ1

α
ln lnn
lnn

=: δn. Therefore, we obtain

n
∑

(i,j)∈D
(2)
n

|ri,j − ρn| exp

(
− (wn(c))

2

1 + ri,j

)
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≤ γ1

α
n

n

lnn
(lnn)β

ln lnn

lnn
exp

(
− (wn(c))

2

1 + δn

)

≤ γ1

α

(
K ′(c)

)2
n2(lnn)β−2 ln lnn

(√
2 lnn

n

)2

n2δn

= γ1

α

(
K ′(c)

)2
(lnn)β−1 ln lnn exp

(
2
γ1

α

ln lnn

lnn
lnn

)
= γ1

α

(
K ′(c)

)2
(lnn)β+2γ1/α−1 ln lnn. (18)

Because γ1 < α/2, we can find a positive β satisfying the inequality β + 2γ1/α − 1 < 0. For such β

the expression in (18) tends to 0.
It remains to show that the term related to the sum over (i, j) ∈ D

(3)
n vanishes as n → ∞. Denote

δ′
n = max

(i,j)∈D
(3)
n

ri,j and notice that δ′
n ≤ γ1γ2

αβ
/ lnn. We need a special decomposition.

n
∑

(i,j)∈D
(3)
n

|ri,j − ρn| exp

(
− (wn(c))

2

1 + ri,j

)
≤ n exp

(
− (wn(c))

2

1 + δ′
n

) ∑
(i,j)∈D

(3)
n

(ri,j − ρn)

=
{

n2

lnn
exp

(
− (wn(c))

2

1 + δ′
n

)}
·
{

lnn

n

∑
(i,j)∈D

(3)
n

(ri,j − ρn)

}
= I1(n) · I2(n).

Using (17) we obtain the boundedness of {I1(n)}.

I1(n) = n2

lnn
exp

(
− (wn(c))

2

1 + δ′
n

)
≤ (

K ′(c)
)2 n2

lnn

(
wn(c)

n

)2(
n

wn(c)

)2
γ1γ2
αβ

/ lnn

∼ (
K ′(c)

)2 n2

lnn

2 lnn

n2
e

2
γ1γ2
αβ

(
1 + o(1)

)= O(1).

We will conclude the proof of (16) by showing that I2(n) → 0 as n → ∞. We have

lnn

n

∑
(i,j)∈D

(3)
n

(ri,j − ρn) = lnn

n

∑
(i,j)∈D

(3)
n

ri,j − lnn

n

(
n

lnn
− nα

)(
lnn − (lnn)β

)
ρn

= γ1γ2
lnn

n

(
n/ lnn∑
i=nα

ln ln i

ln i

)(
lnn∑

j=(lnn)β

1

ln j

)
− γ1γ2

(
1 + O

(
(lnn)β−1)).

We shall estimate the two sums appearing above. By integration by parts, we have for 1 < a < b∫ b

a

ln t
et

t
dt ≤ a

a − 1
lnb

eb

b
and

∫ b

a

et

t
dt ≤ a

a − 1

eb

b
.

Therefore

n/ lnn∑
i=nα

ln ln i

ln i
≤
∫ n/ lnn

nα/2

ln lny

lny
dy =

∫ lnn−ln lnn

α lnn/2
ln t

et

t
dt
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≤ α lnn/2

α lnn/2 − 1
ln(lnn − ln lnn)

elnn−ln lnn

lnn − ln lnn
= n ln lnn

(lnn)2

(
1 + O

(
ln lnn

lnn

))
.

Similarly

lnn∑
j=(lnn)β

1

ln j
≤
∫ lnn

(lnn)β/2

1

lny
dy =

∫ ln lnn

β ln lnn/2

et

t
dt

≤ β ln lnn/2

β ln lnn/2 − 1

eln lnn

ln lnn
= lnn

ln lnn

(
1 + O

(
1

ln lnn

))
.

Finally, we get

I2(n) ≤ γ1γ2

{(
1 + O

(
1

ln lnn

))(
1 + O

(
ln lnn

lnn

))
− (

1 + O
(
(lnn)β−1))}−−−→

n→∞ 0.

To complete the proof of (16), we have to verify (17).

Proposition 1.16. There exists a continuous strictly increasing distribution function H such that for
every x ∈R

P
(
an(M̃n − bn) ≤ x

)−−−→
n→∞ H(x),

where

an = √
2 lnn, bn = √

2 lnn − ln lnn + ln(4π)

2
√

2 lnn
, n ∈ N.

For each c ∈ (0,1), let x = x(c) be such that H(x) = c and let yn(c) = x(c)/an + bn.
If P(M̃n ≤ wn(c)) → c ∈ (0,1), then |wn(c) − yn(c)| = o(1/

√
lnn) and {wn(c)} satisfies (17).

Proof. The proof of the first part of the proposition coincides, in fact, with a part of the proof of
[20], Theorem 6.5.1, (see also [23]). But these results deal basically with partial maxima of stationary
sequences, while here we have a complicated covariance structure of a random field. Therefore, we
provide a complete argument.

We may and do assume that ψψψ(n)∗ = n. By the definition, M̃n is equal in law to
√

1 − ρnM̂n+√
ρnζ ,

where M̂n is the maximum of a sequence of n independent standard normal random variables and ζ is
standard normal independent of M̂n. We thus obtain

P
(
an(M̃n − bn) ≤ x

)= P(
√

1 − ρnM̂n + √
ρnζ ≤ x/an + bn)

=
∫ ∞

−∞
P
(
M̂n ≤ (1 − ρn)

−1/2(x/an + bn − √
ρnz)

)
ϕ(z) dz

=
∫ ∞

−∞
(

(
(1 − ρn)

−1/2(x/an + bn − √
ρnz)

))n
ϕ(z) dz

−→
∫ +∞

−∞
exp

(− exp(−x − γ1γ2 +√
2γ1γ2z)

)
ϕ(z) dz =: H(x),

because (see the proof of [20], Theorem 6.5.1)(
1 − γ1γ2

lnn

)−1/2(
x/an + bn −

√
γ1γ2

lnn
z

)
= x + γ1γ2 − √

2γ1γ2z

an

+ bn + o
(
(an)

−1).
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Assume that P(M̃n ≤ wn(c)) → c ∈ (0,1). Consider levels yn(c) = x(c)/an + bn. Let x′ < x(c) <

x′′. We have eventually

x′ − x(c)

an

= x′/an + bn − yn(c) ≤ wn(c) − yn(c) ≤ x′′/an + bn − yn(c) = x′′ − x(c)

an

.

Because x′ and x′′ can be chosen arbitrarily close,∣∣wn(c) − yn(c)
∣∣ = o

(
(an)

−1).
This clearly implies (17). �

Given (16), it is not difficult to prove that (x) is not a phantom distribution function for {X(i,j)}
along ψψψ . Because H(x) does not coincide with the Gumbel standardized distribution H0, we have
H0(x0) �= H(x0) for some x0. And we have proved that P(M̃n ≤ x0/an + bn) → H(x0), while we
know that (x0/an + bn)

n → H0(x0).

1.5. Extremal indices

We will use the results of the previous sections to provide a complete theory of the extremal index for
maxima of random fields in the rectangular setting. Recall that F stands for the marginal distribution
function of {Xn}.

Definition 1.17. We say that θ ∈ (0,1] is the extremal index for {Xn}, if the function G given by
G(x) := P(X0 ≤ x)θ , x ∈R, is a phantom distribution function for {Xn}.

If G(x) := P(X0 ≤ x)θ , for some θ ∈ (0,1], is a ψψψ -directional (resp. sectorial) phantom distribution
function for {Xn}, then we say that θ is the ψψψ -directional (resp. sectorial) extremal index for {Xn}.

Remark 1.18. This definition of the (global) extremal index is taken from [17]. We note that a “more
classical” definition of the (global) extremal index for random fields was proposed in [4], see also
[28] and [10]. These papers, however, did not bring conclusive results. For instance, the formula for
calculating the extremal index proposed in [10] does not work for a simple 1-dependent random field
given in [17], Example 5.5.

Examples of calculation of the global extremal index for a variety of random fields on the lattice Zd

can be found in [2] (moving averages and moving maxima), [17] (models with local dependence) and
[29] (regularly varying random fields). Some related work for Gaussian random fields is given in [22].

If we know a lot about the structure of a model it is possible to define other extremal-index-like
notions. As examples can serve papers [5] and [8]. We do not know, however, whether the techniques
developed here can be adopted to the setting of these papers.

Remark 1.19. As the example provided in Section 1.4 shows, the notion of the sectorial extremal
index is essentially weaker than the notion of the (global) extremal index. Indeed, the random field
considered in this example has the sectorial extremal index θ = 1, while the (global) extremal index
does not exist.

Within the theory of phantom distribution functions, we have nice criteria for the existence of the
extremal index and the sectorial extremal index.
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Theorem 1.20. Let {Xn : n ∈ Zd} be a stationary random field. Then {Xn} has the extremal index
θ ∈ (0,1] if, and only if, there exist γor , γin ∈ (0,1) and a strongly monotone field of levels {vn;n ∈ Nd}
such that

P(Mn ≤ vn) → γor , F (vn)n∗ → γin as n →∞∞∞, θ = lnγor

lnγin

, (19)

and for every monotone curve ψψψ and every T > 0 Condition Bψψψ
T ({vψψψ(n)}) holds.

Theorem 1.21. Let {Xn : n ∈ Zd} be a stationary random field. Then {Xn} has the ψψψ -directional
extremal index θ ∈ (0,1] if, and only if, there exist γor , γin ∈ (0,1) and a non-decreasing sequence of
levels {vψψψ(n)}, n ∈ N, such that

P(Mψψψ(n) ≤ vψψψ(n)) −−−→
n→∞ γor , F (vψψψ(n))

nd −−−→
n→∞ γin, θ = lnγor

lnγin

, (20)

and for every T > 0 Condition Bψψψ
T ({vψψψ(n)}) holds.

Remark 1.22. Upon substitution ψψψ =���, Theorem 1.21 gives criteria for the existence of the sectorial
extremal index θ ∈ (0,1].

By analogy to the case of sequences we can introduce also the value of the extremal index 0 to
describe the situation when the maxima of the random field increase essentially slower than in the
independent case. It is reasonable here to comply with formulas (19) and (20).

Definition 1.23. Suppose that {Xn} admits a continuous phantom distribution function (resp. ψψψ -
directional continuous phantom distribution function). If there exists a strongly monotone field {vn}
(resp. non-decreasing sequence {vψψψ(n)}) of levels such that γor ∈ (0,1) and γin = 0 or γin ∈ (0,1) and
γor = 1, then we say that the extremal index (resp. the ψψψ -directional extremal index) of {Xn} is 0.

Remark 1.24. Similarly as in [7], Theorem 3, one can show that the extremal index 0 reflects tail
properties of the phantom distribution function and the marginal distribution and therefore does not
depend on the particular choice of the sequence of levels used in calculation of γor and γin.

The following example modifies the construction given in [7], Theorem 4, and shows that the above
definition is not empty. It also demonstrates the efficiency of Theorem 1.13.

Example 1.25. We shall construct {Xn} as a mixture of i.i.d. random fields on Z2. Let � = N×RN
2

and let �((k, (xj)j∈N2) = k, Xn((k, (xj)j∈N2)) = xn, for n ∈ N2. Choose a strictly increasing sequence
{un} ∈R and for k ∈N define a purely jump distribution function Fk by

Fk(x) =
⎧⎨⎩0 if x < uk2,

1 − 1

n
if un ≤ x < un+1, n ≥ k2.

Now set

P(� = k) = 1

k(k + 1)
, k = 1,2, . . . ,
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and define the conditional distribution of {Xn} given � = k as the product μ⊗N
2

k , where the probability
measure μk corresponds to the distribution function Fk .

Given {un} one can define a strongly monotone field of levels by the formula

v(m,n) = um·n, m,n ≥ 1.

For q1, q2 > 0 and a monotone curve ψψψ we have

P(M(�q1ψ1(n)�,�q2ψ2(n)�) ≤ vψψψ(n)) =
∞∑

k=1

P(� = k)F
�q1ψ1(n)�·�q2ψ2(n)�
k (uψψψ(n)∗),

and if ψψψ(n)∗ ≥ k2

F
�q1ψ1(n)�·�q2ψ2(n)�
k (uψψψ(n)∗) =

(
1 − 1

ψψψ(n)∗

)�q1ψ1(n)�·�q2ψ2(n)�
−−−→
n→∞ e−q1q2 .

Therefore

P(M(�q1ψ1(n)�,�q2ψ2(n)�) ≤ vψψψ(n)) −−−→
n→∞ e−q1q2, q1, q2 > 0. (21)

By Theorem 1.13 {Xn} admits a continuous phantom distribution function along every monotone curve,
hence by Theorem 1.12 Condition Bψψψ

T ({vψψψ(n)}) holds for every monotone curve ψψψ and every T > 0.
And relation (4) in Theorem 1.4 is given by (21) with q1 = q2 = 1. It follows that {Xn} admits a global
continuous phantom distribution function.

We shall show that the global extremal index of {Xn} is 0. We have γor = e−1, so it is enough to
show that γin = 0, or that

ψψψ(n)∗P(X(1,1) > vψψψ(n)) −−−→
n→∞ ∞,

along any monotone curve ψψψ . We have, indeed,

ψψψ(n)∗P(X(1,1) > vψψψ(n)) =
∞∑

k=1

P(� = k)ψψψ(n)∗
(
1 − Fk(vψψψ(n))

)
=

∞∑
k=1

P(� = k)ψψψ(n)∗
(
I
(
k >

√
ψψψ(n)∗

)+ (
1/ψψψ(n)∗

)
I
(
k ≤√

ψψψ(n)∗
))

=ψψψ(n)∗
( ∞∑

k=�√ψψψ(n)∗�+1

1

k(k + 1)

)
+

�√ψψψ(n)∗�∑
k=1

1

k(k + 1)

≥ ψψψ(n)∗

�√ψψψ(n)∗� + 1
−−−→
n→∞ ∞.

2. Auxiliary results and proofs of theorems and propositions

2.1. Proof of Proposition 1.3

Clearly, if G is a phantom distribution function for {Xn}, then it is a phantom distribution function for
{Xn} along every monotone curve. So assume the latter property and suppose that G does not satisfy
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(1). It follows that there exists a number ε > 0, a monotone sequence m(n) →∞∞∞ and a sequence {xn}
such that ∣∣P(Mm(n) ≤ xn) − G(xn)

m(n)∗ ∣∣> ε, n ∈N.

The point is that m(n) need not satisfy (2) and so it is not a monotone curve according to our definition.
But we can always find a monotone curve ψψψ(n) such that m(n) =ψψψ(mn) for some increasing sequence
{mn}. Indeed, let us begin with m(1) and connect it with m(2) by a sequence of points that in each step
increases only by one in one coordinate. Then proceed the same way with points m(2) and m(3), etc.
The obtained map ψψψ(·) : N → Nd satisfies (2). And G cannot be a phantom distribution function for
ψψψ .

2.2. The mixing-like condition

Let β
ψψψ
T (n, k) for n, k ∈N, k ≥ 2, be defined as

β
ψψψ
T (n, k) := sup

p(1)+···+p(k)≤Tψψψ(n)

∣∣∣∣P(Mp(1)+···+p(k) ≤ vψψψ(n))

−
∏

i∈{1,...,k}d
P (M(p1(i1),...,pd (id )) ≤ vψψψ(n))

∣∣∣∣,
where p(1),p(2), . . . ,p(k) take values in Nd

0 . Then β
ψψψ
T (n,2) = β

ψψψ
T (n) is the term appearing in the

definition of Condition Bψψψ
T ({vψψψ(n)}). We are able to control the growth of β

ψψψ
T (n, k).

Lemma 2.1. The following inequality holds.

β
ψψψ
T (n, k) ≤ kdβ

ψψψ
T (n), k ≥ 2. (22)

Proof. Let us take k ≥ 3 and p(1),p(2), . . . ,p(k) ∈ Nd
0 satisfying the assumption p(1) + p(2) + · · · +

p(k) ≤ Tψψψ(n). Define q(1) := p(1), q(2) := p(2), . . . , q(k − 2) := p(k − 2), q(k − 1) := p(k − 1) +
p(k), so that

q(1) + 2(2) + · · · + q(k − 1) = p(1) + p(2) + · · · + p(k) ≤ Tψψψ(n).

Then we obtain the following estimate.∣∣∣∣P(Mp(1)+···+p(k) ≤ vψψψ(n)) −
∏

j∈{1,2,...,k}d
P (M(p1(j1),...,pd (jd )) ≤ vψψψ(n))

∣∣∣∣
≤
∣∣∣∣P(Mq(1)+q(2)+···+q(k−1) ≤ vψψψ(n)) −

∏
i∈{1,2,...,k−1}d

P (M(q1(i1),...,qd (id )) ≤ vψψψ(n))

∣∣∣∣
+
∣∣∣∣ ∏
i∈{1,2,...,k−1}d

P (M(q1(i1),...,qd (id )) ≤ vψψψ(n)) −
∏

j∈{1,2,...,k}d
P (M(p1(j1),...,pd (jd )) ≤ vψψψ(n))

∣∣∣∣
≤ β

ψψψ
T (n, k − 1) + |�1 − �2|.
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Let Dk(r) consists of all i = (i1, i2, . . . , id ) ∈ {1,2, . . . , k − 1}d such that the number of s with the
property that is = k − 1 equals r . Next, for i ∈ Dk(r) define Ek(r, i) as the set of j = (j1, j2, . . . , jd) ∈
{1,2, . . . , k}d such that js = is , if is �= k − 1 and js ∈ {k − 1, k}, if is = k − 1. Let us observe that for
i ∈Dk(0) we have Ek(0, i) = {i} and that for each i = (i1, i2, . . . , id ) ∈ Dk(r)∣∣∣∣P(M(q1(i1),...,qd (id )) ≤ vψψψ(n)) −

∏
j∈Ek(r,i)

P (M(p1(j1),...,pd (jd )) ≤ vψψψ(n))

∣∣∣∣ ≤ β
ψψψ
T (n).

Taking into account these relations and using the obvious expansions:

�1 =
d∏

r=0

∏
i∈Dk(r)

P (M(q1(i1),...,qd (id )) ≤ vψψψ(n)),

�2 =
d∏

r=0

∏
i∈Dk(r)

∏
j∈Ek(r,i)

P (M(p1(j1),...,pd (jd )) ≤ vψψψ(n)),

we obtain that

|�1 − �2| ≤ β
ψψψ
T (n)

d∑
r=1

#Dk(r) = (
(k − 1)d − (k − 2)d

)
β

ψψψ
T (n)

=
(

d−1∑
r=0

(k − 1)d−1−r (k − 2)r

)
β

ψψψ
T (n) ≤ d(k − 1)d−1β

ψψψ
T (n).

It follows that for k ≥ 3

β
ψψψ
T (n, k) ≤ β

ψψψ
T (n, k − 1) + d(k − 1)d−1β

ψψψ
T (n).

Iterating the above relation, we get (22). �

Lemma 2.2. Let N(n) = (N1(n),N2(n), . . . ,Nd(n)) ∈ Nd , N(n) → ∞∞∞. Suppose that q1, q2, . . . , qd ∈
N are such that for some T0 > 0, (q1N1(n), q2N2(n), . . . , qdNd(n)) ≤ T0ψψψ(n), n ∈ N. If Condition
Bψψψ

T0
({vψψψ(n)}) holds, then we have, as n → ∞,

P(M(q1N1(n),q2N2(n),...,qdNd(n)) ≤ vψψψ(n))

= P(M(N1(n),N2(n),...,Nd (n)) ≤ vψψψ(n))
q1q2...qd + o(1). (23)

Proof. Fix n ∈ N. We can represent (q1N1(n), q2N2(n), . . . , qdNd(n)) as the sum of s = q1 +
q2 + · · · + qd specific components, namely q1 components (N1(n),0, . . . ,0), q2 components
(0,N2(n),0, . . . ,0), etc. Keeping the order, let us denote these components by p(1),p(2), . . . ,p(s).
By Lemma 2.1, as n → ∞,

P(M(q1N1(n),q2N2(n),...,qdNd(n)) ≤ vψψψ(n)) −
∏

i∈{1,...,s}d
P (M(p1(i1),...,pd (id )) ≤ vψψψ(n)) → 0.

It remains to identify ∏
i∈{1,...,s}d

P (M(p1(i1),...,pd (id )) ≤ vψψψ(n))
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with

P(M(N1(n),N2(n),...,Nd(n)) ≤ vψψψ(n))
q1q2...qd .

Consider a typical term Pi = P(M(p1(i1),...,pd (id )) ≤ vψψψ(n)), i ∈ {1,2, . . . , s}d . If some coordinate pj (ik)

is 0, then Pi = 1, for we have max∅ = −∞ by the well-known convention. If all coordinates are non-
zero, then p1(i1) = N1(n),p2(i2) = N2(n), . . . ,pd(id) = Nd(n), Pi = P(M(N1(n),...,Nd(n)) ≤ vψψψ(n))

and this can be achieved in q1q2 . . . qd ways. �

Corollary 2.3. In assumptions of Lemma 2.2, if Condition Bψψψ
T ({vψψψ(n)}) is satisfied for every T > 0,

then (23) holds for any q1, q2, . . . , qd ∈ N.

Corollary 2.4. Suppose that {N(n)} ⊂Nd , N(n) →∞∞∞, {k(n)} ⊂Nd and for some T0 > 0(
k1(n)N1(n), k2(n)N2(n), . . . , kd(n)Nd(n)

)≤ T0ψψψ(n), n ∈ N.

If Condition Bψψψ
T0

({vψψψ(n)}) holds and (k1(n) + · · · + kd(n))dβ
ψψψ
T0

(n) → 0, as n → ∞, then

P(M(k1(n)N1(n),k2(n)N2(n),...,kd (n)Nd (n)) ≤ vψψψ(n)) = P(MN(n) ≤ vψψψ(n))
k(n)∗ + o(1).

Proof. Proof follows by a careful inspection of the proof of Lemma 2.2. �

Recall that �x� denotes the integer part of x ∈ R1. We extend this functions to vectors x =
(x1, x2, . . . , xd) ∈ Rd in a natural way:

�x� := (�x1�, �x2�, . . . , �xd�).
The next fact is of independent interest and therefore for the future purposes we state it as a theorem.

Theorem 2.5. Let {N(n)} ⊂Nd , N(n) →∞∞∞ and satisfies N(n) ≤ T0ψψψ(n), n ∈N, for some T0 > 0. Let
Condition Bψψψ

T0(1+ε)({vψψψ(n)}) holds, for some ε > 0.

Suppose that kn → ∞ in such a way that as n → ∞ both kd
nβ

ψψψ
T0

(n) → 0 and kn = o(Ni(n)), i =
1,2, . . . , d .

Then, as n → ∞,

P(MN(n) ≤ vψψψ(n)) = P(M(�N1(n)/kn�,�N2(n)/kn�,...,�Nd(n)/kn�) ≤ vψψψ(n))
kd
n + o(1) (24)

= exp
(−kd

nP (M(�N1(n)/kn�,�N2(n)/kn�,...,�Nd(n)/kn�) > vψψψ(n))
)+ o(1). (25)

Proof. From Corollary 2.4, we obtain that

P(MN(n) ≤ vψψψ(n)) ≤ P(M(kn�N1(n)/kn�,kn�N2(n)/kn�,...,kn�Nd(n)/kn�) ≤ vψψψ(n))

= P(M(�N1(n)/kn�,�N2(n)/kn�,...,�Nd(n)/kn�) ≤ vψψψ(n))
kd
n + o(1) =: Vn.

To get the other bound, for each n ∈ N find numbers ln,1, ln,2, . . . , ln,d in N such that

(kn + ln,i − 1)
⌊
Ni(n)/kn

⌋≤ Ni(n) < (kn + ln,i )
⌊
Ni(n)/kn

⌋
, i = 1,2, . . . , d.
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In other words,

ln,i =
⌊

Ni(n) − kn�Ni(n)/kn�
�Ni(n)/kn�

⌋
+ 1,

what implies

ln,i = o(kn), i = 1,2, . . . , d. (26)

This in turn implies that for large n

(kn + ln,i )
⌊
Ni(n)/kn

⌋≤ T0(1 + ε0)ψψψ(n), i = 1,2, . . . , d.

Therefore, we can again apply Corollary 2.4.

P(MN(n) ≤ vψψψ(n))

≥ P(M((kn+ln,1)�N1(n)/kn�,(kn+ln,2)�N2(n)/kn�,...,(kn+ln,d )�Nd(n)/kn�) ≤ vψψψ(n))

= P(M(�N1(n)/kn�,�N2(n)/kn�,...,�Nd(n)/kn�) ≤ vψψψ(n))
∏d

i=1(kn+ln,i ) + o(1) =: Un.

From (26), we get Un − Vn = o(1) and so (24) holds.
Relation (25) is equivalent to (24), since (am)m − exp(−m(1 − am)) → 0, as m → ∞, for arbitrary

{am} ⊂ [0,1]. �

Proposition 2.6. Let {R(n)} ⊂Rd+, R(n) →∞∞∞ and q1, q2, . . . , qd ∈ N. Suppose that for some T0 > 0(
q1R1(n), q1R2(n), . . . , qdRd(n)

)≤ T0ψψψ(n), n ∈N.

If for some ε > 0 Condition Bψψψ

T0(1+ε)({vψψψ(n)}) holds, then, as n → ∞,

P(M(�q1R1(n)�,�q2R2(n)�,...,�qdRd(n)�) ≤ vψψψ(n))

= P(M(�R1(n)�,�R2(n)�,...,�Rd(n)�) ≤ vψψψ(n))
q1q2...qd + o(1). (27)

Proof. Let us notice first that

P(M(�q1R1(n)�,�q2R2(n)�,...,�qdRd(n)�) ≤ vψψψ(n))

≤ P(M(q1�R1(n)�,q2�R2(n)�,...,qd�Rd(n)�) ≤ vψψψ(n))

= P(M(�R1(n)�,�R2(n)�,...,�Rd(n)�) ≤ vψψψ(n))
q1q2...qd + o(1),

where the last equality holds by Lemma 2.2. Therefore, it is enough to find expressions Un and
Vn such that Vn − Un = o(1) and Un ≤ P(M(�q1R1(n)�,�q2R2(n)�,...,�qdRd(n)�) ≤ vψψψ(n)), while Vn ≥
P(M(q1�R1(n)�,q2�R2(n)�,...,qd�Rd(n)�) ≤ vψψψ(n)).

Let rn → ∞ in such a way that rd
n β

ψψψ

T0(1+ε)
(n) → 0 and rn = o(Ri(n)), i = 1,2, . . . , d . Then for

n large enough we have qi�Ri(n)� ≥ (rn − 1)�qiRi(n)/rn�, i = 1,2, . . . , d , and therefore by Corol-
lary 2.4

P(M(q1�R1(n)�,q2�R2(n)�,...,qd�Rd(n)�) ≤ vψψψ(n))

≤ P(M((rn−1)�q1R1(n)/rn�,(rn−1)�q2R2(n)/rn�,...,(rn−1)�qdRd(n)/rn�) ≤ vψψψ(n))

= P(M((�q1R1(n)/rn�,�q2R2(n)/rn�,...,�qdRd(n)/rn�) ≤ vψψψ(n))
(rn−1)d + o(1) := Vn.
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In order to find Un we shall proceed like in the proof of Theorem 2.5. Let sn,i ∈ N, i = 1,2, . . . , d ,
be such that

(rn + sn,i − 1)
⌊
qiRi(n)/rn

⌋≤ ⌊
qiRi(n)

⌋
< (rn + sn,i)

⌊
qiRi(n)/rn

⌋
, i = 1,2, . . . , d,

or, equivalently,

sn,i =
⌊�qiRi(n)� − rn�qiRi(n)/rn�

�qiRi(n)/rn�
⌋

+ 1.

Applying Corollary 2.4, we get

P(M(�q1R1(n)�,�q2R2(n)�,...,�qdRd(n)�) ≤ vψψψ(n))

≥ P(M((rn+sn,1)�q1R1(n)/rn�,(rn+sn,2)�q2R2(n)/rn�,...,(rn+sn,d )�qdRd(n)/rn�) ≤ vψψψ(n))

= P(M(�q1R1(n)/rn�,�q2R2(n)/rn�,...,�qdRd(n)/rn�) ≤ vψψψ(n))
∏d

i=1(rn+sn,i ) + o(1) =: Un.

Since sn,i = o(rn), i = 1,2, . . . , d , we get Un − Vn = o(1) and so (27) holds. �

2.3. Fields of monotone levels

In this section, we shall examine previous results in conjunction with properties of the sequence of
levels {vψψψ(n)}.

Proposition 2.7. If Condition Bψψψ

1 ({vψψψ(n)}) holds for a monotone sequence of levels {vψψψ(n)} that satis-
fies (5), then

vψψψ(n) ↗ F∗,

where F∗ = sup{x : F(x) < 1}.

Proof. If vψψψ(n0) ≥ F∗ for some n0, then P(Mψψψ(n) ≤ vψψψ(n)) = 1 for all n ≥ n0 and (5) cannot hold. So
assume that for some η > 0 vψψψ(n) ≤ (1 − η)F∗, n ∈ N. Then for some a > 0 we have P(X111 ≤ vψψψ(n)) ≤
1 − a, n ∈N.

Let kn → ∞ in such a way that kd
nβ

ψψψ

1 (n) → 0. Then by (24)

P(Mψψψ(n) ≤ vψψψ(n)) ≤ P(Mkn�ψψψ(n)/kn� ≤ vψψψ(n)) = P(M�ψψψ(n)/kn� ≤ vψψψ(n))
kd
n + o(1)

≤ P(X1 ≤ vψψψ(n))
kd
n + o(1) ≤ (1 − a)k

d
n + o(1) → 0.

This again contradicts (5) and so vψψψ(n) ↗ F∗. �

Proposition 2.8. Suppose (5) holds for some monotone sequence of levels {vψψψ(n)} and some γ ∈ (0,1)

and Condition Bψψψ
T ({vψψψ(n)}) holds for every T > 0.

(i) For every d-tuple t = (t1, t2, . . . , td) ∈ (0,∞)d ,

P(M(�t1ψ1(n)�,�t2ψ2(n)�,...,�tdψd (n)�) ≤ vψψψ(n)) −−−→
n→∞ γ t1t2···td . (28)
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(ii) If a set A ⊂ [0,∞)d does not contain any sequence {t(n)} with the property that ti1(n) → ∞
and ti2(n) → 0 for some i1 �= i2 ∈ {1,2, . . . , d}, then

sup
t∈A

∣∣P(M(�t1ψ1(n)�,�t2ψ2(n)�,...,�tdψd (n)�) ≤ vψψψ(n)) − γ t1t2···td ∣∣ −−−→
n→∞ 0.

Proof. First consider t1 = 1/q1, t2 = 1/q2, . . . , td = 1/qd , where q1, q2, . . . , qd ∈ N. Set Ri(n) =
ψψψi(n)/qi . By Proposition 2.6,

γ ←− P(Mψψψ(n) ≤ vψψψ(n)) = P(M(�ψ1(n)/q1�,�ψ2(n)/q2�,...,�ψd(n)/qd�) ≤ vψψψ(n))
q1q2···qd + o(1),

hence

P(M(�ψ1(n)/q1�,�ψ2(n)/q2�,...,�ψd(n)/qd� ≤ vψψψ(n)) −→ γ 1/(q1q2···qd ) = γ t1t2···td .

By another application of Proposition 2.6, we have for p1,p2, . . . , pd ∈ N,

P(M(�p1ψ1(n)/q1�,�p2ψ2(n)/q2�,...,�pdψd(n)/qd�) ≤ vψψψ(n))

= P(M(�ψ1(n)/q1�,�ψ2(n)/q2�,...,�ψd(n)/qd�) ≤ vψψψ(n))
p1p2···pd + o(1)

= γ
p1p2···pd
q1q2 ···qd + o(1) = γ t1t2···td + o(1),

if t1 = p1/q1, t2 = p2/q2, . . . , td = pd/qd .
We have proved (28) over the countable dense set Qd+. The pointwise convergence over Rd+ follows

then by the monotonicity of maps

s �→ P(M(�s1ψ1(n)�,�s2ψ2(n)�,...,�sdψd(n)�) ≤ vψψψ(n))

and the continuity of the limiting map s �→ γ s1s2···sd .
Part (ii) of Proposition 2.8 is, in fact, a general statement on convergence of monotone functions to

a continuous function on [0,∞)d . For the sake of notational simplicity, we shall restrict our attention
to the case d = 2. The general case can be proved analogously.

Let A ⊂ [0,∞)2 be a set fulfilling the assumptions of part (ii) of Proposition 2.8. Let {t(n)} ⊂ A be
a sequence converging to some t ∈ [0,∞]2. We have to prove that

P(M(�t1(n)ψ1(n)�,�t2(n)ψ2(n)�) ≤ vψψψ(n)) − γ t1(n)t2(n) −−−→
n→∞ 0. (29)

We shall consider the following three situations: (a) t ∈ (0,∞)2; (b) max{t1, t2} < ∞ and min{t1, t2} =
0; (c) max{t1, t2} = ∞ and min{t1, t2} > 0. The case (d) max{t1, t2} = ∞ and min{t1, t2} = 0 is ex-
cluded by the assumptions on the set A.

Suppose that t ∈ (0,∞)2. Then (t1 −ε, t2 −ε) ≤ (t1(n), t2(n)) ≤ (t1 +ε, t2 +ε) for sufficiently large
n ∈N and every ε > 0. By the monotonicity and part (i), we get for small ε

γ (t1+ε)(t2+ε) ←− P(M(�(t1+ε)ψ1(n)�,�(t2+ε)ψ2(n)�) ≤ vψψψ(n))

≤ P(M(�t1(n)ψ1(n)�,�t2(n)ψ2(n)�) ≤ vψψψ(n))

≤ P(M(�(t1−ε)ψ1(n)�,�(t2−ε)ψ2(n)�) ≤ vψψψ(n)) −→ γ (t1−ε)(t2−ε).

Hence,

lim
n→∞P(M(�t1(n)ψ1(n)�,�t2(n)ψ2(n)�) ≤ vψψψ(n)) = γ t1t2 = lim

n→∞γ t1(n)t2(n),

and condition (29) is satisfied in case (a).
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Now consider t = (t1,0) with t1 ∈ [0,∞). Then γ t1(n)t2(n) → 1. Similarly, for every ε > 0 we have
by part (i)

1 ≥ P(M(�t1(n)ψ1(n)�,�t2(n)ψ2(n)�) ≤ vψψψ(n))

≥ P(M(�(t1+ε)ψ1(n)�,�εψ2(n)�) ≤ vψψψ(n)) → γ (t1+ε)ε.

Passing with ε → 0 gives us (29) in case (b).
Next, assume that t = (∞, t2) for some t2 ∈ (0,∞]. Then γ t1(n)t2(n) → 0. Moreover, for all R > 0,

ε > 0 and sufficiently large n ∈N we have

0 ≤ P(M(�t1(n)ψ1(n)�,�t2(n)ψ2(n)�) ≤ vψψψ(n))

≤ P(M(�Rψ1(n)�,�(t2−ε)ψ2(n)�) ≤ vψψψ(n)) −→ γ (t2−ε)R.

Passing with R → ∞ gives (29) in case (c) and completes the proof of part (ii) of the proposition. �

2.4. Proof of Theorem 1.4

2.4.1. Necessity

Suppose that G is a continuous distribution function. Take γ ∈ (0,1) and for n ∈Nd define

vn = inf
{
x : G(x)n∗ = γ

}
.

Then the field of levels {vn} is strongly monotone.
If G is a phantom distribution function for {Xn}, then

P(Mn ≤ vn) = G(vn)n∗ + o(1) = γ + o(1),

hence condition (i) of the theorem is satisfied.
Next, let ψψψ be a monotone curve and let T > 0. We want to verify Condition Bψψψ

T ({vψψψ(n)}). Assume
that p(n) → ∞ and q(n) → ∞ satisfy additionally

p(n) + q(n) ≤ Tψψψ(n), n ∈ N.

Passing to a subsequence, if necessary, we can assume that

pi(n)

ψi(n)
→ si ∈ [0, T ], qi(n)

ψi(n)
→ ti ∈ [0, T ], i = 1,2, . . . , d.

We have

P(Mp(n)+q(n) ≤ vψψψ(n)) = G(vψψψ(n))
(p(n)+q(n))∗ = G(vψψψ(n))

ψψψ(n)∗ (p(n)+q(n))∗
ψψψ(n)∗ −→ γ

∏d
i=1(si+ti ).

Consider the following expansion.

d∏
i=1

(si + ti ) =
∑

I0⊂{1,2,...,d}

∏
i∈I0

si ×
∏
j /∈I0

tj =
∑

I0⊂{1,2,...,d}
�I0 .
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It is clear that each term γ �I0 is a common limit for both G(vψψψ(n))
r(n)∗ and P(Mr(n) ≤ vψψψ(n)), where

ri(n) =
{

pi(n) if i ∈ I0;
qi(n) if i /∈ I0.

We have proved that the difference between the two expressions appearing in Condition Bψψψ
T ({vψψψ(n)})

tends to zero.
The same is also true if some coordinate of p(n) or q(n) remains bounded along a subsequence,

since then the corresponding terms in the expansion converge to 1. Indeed, suppose that for example,
p1(n) ≤ K , n ∈N. Then for large n

lim
n→∞P(M(p1(n),...,pd (n)) ≤ vψψψ(n)) ≥ lim

n→∞P(M(�εψ1(n)�,�T ψ2(n)�,...,�T ψd(n)�) ≤ vψψψ(n))

= lim
n→∞G(vψψψ(n))

εT d−1ψψψ(n)∗ = γ εT d−1 ↗ 1 as ε → 0.

2.4.2. Sufficiency

Let {vn} be a strongly monotone field of levels such that P(Mn ≤ vn) −→ γ , for some γ ∈ (0,1).
We shall show that along every monotone curve ψψψ(n) there exists a continuous phantom distribution

function Gψψψ and that all these functions are strictly tail-equivalent in the sense of [7], that is, if Gψψψ ′
and Gψψψ ′′ are phantom distribution functions along monotone curves ψψψ ′ and ψψψ ′′, respectively, then

(Gψψψ ′)∗ = (Gψψψ ′′)∗ and
1 − Gψψψ ′(x)

1 − Gψψψ ′′(x)
→ 1 as x → (Gψψψ ′)∗−.

Applying [7], Proposition 1, p. 700, one gets that

sup
x∈R

∣∣Gψψψ ′(x)n − Gψψψ ′′(x)n
∣∣−→ 0. (30)

If (30) holds for all pairs ψψψ ′ and ψψψ ′′, then it is enough to set G = G���, where ���(n) = (n,n, . . . , n).
So let us take any monotone curve ψψψ(n) and assume that Condition Bψψψ

T ({vψψψ(n)}) holds for every
T > 0.

We define Gψψψ by the following formula.

Gψψψ(x) :=

⎧⎪⎨⎪⎩
0 if x < vψψψ(1);
γ 1/ψψψ(n)∗ if x ∈ [vψψψ(n), vψψψ(n+1));
1 if x ≥ v∞ := sup{vψψψ(n) : n ∈ N}.

(31)

Notice that by Lemma 2.7 vψψψ(n) ↗ F∗ = (Gψψψ)∗.
We want to prove that for every sequence {xn} ⊂R

P(Mψψψ(n) ≤ xn) − Gψψψ(xn)
ψψψ(n)∗ −→ 0.

It is easy to see that the only nontrivial case is when xn ↗ (Gψψψ)∗. For each n ∈ N, let mn be such that
vψψψ(mn) ≤ xn < vψψψ(mn+1) and let

t1(n) = ψ1(n)

ψ1(mn)
, t2(n) = ψ2(n)

ψ2(mn)
, . . . , td(n) = ψd(n)

ψd(mn)
.



1052 A. Jakubowski, I. Rodionov and N. Soja-Kukieła

By the monotonicity of ψψψ(n), for given n either t1(n), t2(n), . . . , td(n) ≤ 1, or ti (n) ≥ 1, i = 1,2, . . . , d ,
so that the set A = {t(n) = (t1(n), t2(n), . . . , td(n));n ∈ N} satisfies the assumption of part (ii) in
Proposition 2.8. Consequently

P(Mψψψ(n) ≤ xn) ≥ P(Mψψψ(n) ≤ vψψψ(mn))

= P(M(t1(n)ψ1(mn),t2(n)ψ2(mn),...,td (n)ψd(mn)) ≤ vψψψ(mn))

= γ t1(n)·t2(n)···td (n) + o(1).

Similarly

P(Mψψψ(n) ≤ xn) ≤ P(Mψψψ(n) ≤ vψψψ(mn+1))

= γ
t1(n)·t2(n)···td (n)

ψψψ(mn)∗
ψψψ(mn+1)∗ + o(1) = γ t1(n)·t2(n)···td (n) + o(1).

Therefore

P(Mψψψ(n) ≤ xn) = γ
ψψψ(n)∗

ψψψ(mn)∗ + o(1) = Gψψψ(xn)
ψψψ(n)∗ + o(1),

and our claim follows. It remains to replace the purely discontinuous distribution function Gψψψ with
another that is continuous and strictly tail-equivalent to Gψψψ . This can be done following for example,
[7], pp. 703–704.

Remark 2.9. Note that so far we have used only the monotonicity of levels {vψψψ }!

In order to prove the strict tail-equivalence of all Gψψψ , we need a slight improvement of [7], Proposi-
tion 1.

Lemma 2.10. Let {φ(n)} ⊂ N be increasing and such that φ(n)/φ(n + 1) → 1. If two distribution
functions G and H satisfy

lim
n→∞G(vn)

φ(n) = lim
n→∞H(vn)

φ(n) = γ ∈ (0,1),

for some non-decreasing sequence of levels {vn}, then G and H are strictly tail-equivalent.

Proof. We mimic [7], p. 701. Let xn ↗ G∗ = H∗ and let mn be such that vmn ≤ xn < vmn+1, n ∈ N.
Then

φ(mn)
(
1 − G(vmn+1)

)≤ φ(mn)
(
1 − G(xn)

)≤ φ(mn)
(
1 − G(vmn)

)
.

Then both φ(mn)(1 − G(vmn)) −→ − logγ and

φ(mn)
(
1 − G(vmn+1)

)= φ(mn)

φ(mn + 1)
φ(mn + 1)

(
1 − G(vmn+1)

)−→ − logγ,

and so φ(mn)(1−G(xn)) −→ − logγ . But we can repeat this procedure for H equally well. Therefore

lim
n→∞

1 − G(xn)

1 − H(xn)
= lim

n→∞
φ(mn)(1 − G(xn))

φ(mn)(1 − H(xn))
= 1. �

Let Gψψψ ′ and Gψψψ ′′ be phantom distribution functions defined by (31) for monotone curves ψψψ ′ and
ψψψ ′′.



Directional phantom distribution functions 1053

By the very definition Gψψψ ′(vψψψ ′(n))
ψψψ ′(n)∗ −→ γ . So it is enough to show that also

Gψψψ ′′(vψψψ ′(n))
ψψψ ′(n)∗ −→ γ.

Let mn be such that ψψψ ′′(mn)
∗ ≤ψψψ ′(n)∗ <ψψψ ′′(mn + 1)∗. Clearly, we have

lim
n→∞

ψψψ ′′(mn)
∗

ψψψ ′(n)∗
= lim

n→∞
ψψψ ′′(mn + 1)∗

ψψψ ′(n)∗
= 1. (32)

Since vn is strongly monotone, we have also vψψψ ′′(mn) ≤ vψψψ ′(n) ≤ vψψψ ′′(mn+1), hence

Gψψψ ′′(vψψψ ′′(mn))
ψψψ ′(n)∗ ≤ Gψψψ ′′(vψψψ ′(n))

ψψψ ′(n)∗ ≤ Gψψψ ′′(vψψψ ′′(mn+1))
ψψψ ′(n)∗ .

By (32) the first and the third terms converge to γ , and so Gψψψ ′ and Gψψψ ′′ are strictly tail-equivalent.
This completes the proof of Theorem 1.4.

2.5. Proof of Theorem 1.12

Implication (ii) ⇒ (i) is a matter of definitions. Implication (i) ⇒ (iii) can be proved the same way as
the necessity in Section 2.4.1 (with obvious modifications).

We may also profit from the proof of Theorem 1.4 in the proof of implication (iii) ⇒ (ii). Let ψψψ be a
monotone curve satisfying assumption (iii) of Theorem 1.12. By Remark 2.9 function Gψψψ defined by
(31) is a phantom distribution function for {Xn} along ψψψ . We want to show that it is also a phantom
distribution function for {Xn} along any other ϕϕϕ ∈ Uψψψ , i.e. that for any xn ↗ (Gψψψ)∗ = F∗ we have

P(Mϕϕϕ(n) ≤ xn) − Gψψψ(xn)
ϕϕϕ(n)∗ −→ 0.

For each n ∈N, let mn be such that vψψψ(mn) ≤ xn < vψψψ(mn+1) and let

t1(n) = ϕ1(n)

ψ1(mn)
, t2(n) = ϕ2(n)

ψ2(mn)
, . . . , td(n) = ϕd(n)

ψd(mn)
.

We are going to show that the set A = {t(n) = (t1(n), t2(n), . . . , td (n));n ∈ N} satisfies the assumption
of part (ii) in Proposition 2.8. By the definition of the class Uψψψ , let C ≥ 1 be such that for almost all
n ∈N

ϕϕϕ(n) ∈
⋃
j∈N

d∏
i=1

[
C−1ψi(j),Cψi(j)

]
.

This means that for n ≥ n0 there is jn → ∞ such that

C−1ψi(jn) ≤ ϕi(n) ≤ Cψi(jn), i = 1,2, . . . , d.

Depending on whether jn ≤ mn or jn ≥ mn we get that either t1(n), t2(n), . . . , td(n) ≤ C or
t1(n), t2(n), . . . , td(n) ≥ C−1. Hence, we may apply Proposition 2.8 (ii) and we can estimate

P(Mϕϕϕ(n) ≤ xn) ≥ P(Mϕϕϕ(n) ≤ vψψψ(mn))

= P(M(t1(n)ψ1(mn),t2(n)ψ2(mn),...,td (n)ψd(mn)) ≤ vψψψ(mn))

= γ t1(n)·t2(n)···td (n) + o(1),
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and

P(Mϕϕϕ(n) ≤ xn) ≤ P(Mϕϕϕ(n) ≤ vψψψ(mn+1))

= γ
t1(n)·t2(n)···td (n)

ψψψ(mn)∗
ψψψ(mn+1)∗ + o(1) = γ t1(n)·t2(n)···td (n) + o(1).

Therefore,

P(Mϕϕϕ(n) ≤ xn) = γ
ϕϕϕ(n)∗

ψψψ(mn)∗ + o(1) = Gψψψ(xn)
ϕϕϕ(n)∗ + o(1),

and Theorem 1.12 follows.

2.6. Proof of Theorem 1.13

Functions

fn(s) = P(M(�s1ψ1(n)�,�s2ψ2(n)�,...,�sdψd(n)�) ≤ vψψψ(n)), n ∈ N, f∞(s) = γ s1s2···sd ,

are non-increasing on [0,+∞)d and f∞ is continuous. Therefore, we can apply part (ii) of Proposi-
tion 2.8 and deduce that {fn} converges to f∞ uniformly on any set A possessing the property described
therein.

Suppose that ϕϕϕ ∈ Uψψψ , that is, there exist C ≥ 1, n0 and jn → ∞, defined for n ≥ n0, such that

C−1ψi(jn) ≤ ϕi(n) ≤ Cψi(jn), i = 1,2, . . . , d, n ≥ n0.

Then we can proceed as in the proof of Theorem 1.12 and verify that G defined by (31) is a phantom
distribution function for {Zn : n ∈ Zd} along ϕϕϕ. This proves the sufficiency part. The necessity follows
as in the general case.

2.7. Proof of Theorems 1.20 and 1.21

In view of Theorems 1.4 and 1.12 and Definition 1.17, it is enough to show that Fθ is tail equivalent to
a phantom distribution function G (resp. a ψψψ -directional phantom distribution function Gψψψ ) for {Xn}.

But by (20), we have

G(vn)n∗ → γor ,
(
Fθ(vn)

)n∗ = (
F(vn)n∗)θ → γ θ

in = γor ,

and we can apply Lemma 2.10. The reasoning leading to Theorem 1.21 differs only by notation.
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