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We study the problem of change point localization for covariance matrices in high dimensions. We assume that we
observe a sequence of independent and centered p-dimensional sub-Gaussian random vectors whose covariance
matrices are piecewise constant, and only change at unknown times. We are concerned with the localization task
of estimating the positions of the change points. In our analysis, we allow for all the model parameters to change
with the sample size n, including the dimension p, the minimal spacing between consecutive change points �,
the maximal Orlicz-ψ2 norm B of the sample points and the magnitude κ of the smallest distributional change,
defined as the minimal operator norm of the difference between the covariance matrix at a change point and the
covariance matrix at the previous time point.

We introduce two procedures, one based on the binary segmentation algorithm and the other on its popular
extension known as wild binary segmentation, and demonstrate that, under suitable conditions, both procedures
can consistently estimate the change points. In particular, our second algorithm, called Wild Binary Segmentation
through Independent Projection (WBSIP), delivers a localization error of order B4κ−2 log(n), which is shown
to be minimax rate optimal, save, possibly, for the log(n) term. WBSIP requires the model parameters to satisfy
the scaling �κ2 � pB4 log1+ξ (n), for any ξ > 0, which we demonstrate to be essentially necessary, in the sense
that no algorithm can guarantee consistent localization if �κ2 � pB4. This result reveals an interesting phase
transition effect separating parameter combinations for which the localization task is feasible from the ones for
which it is not.

Keywords: binary segmentation; change point detection; high-dimensional covariance testing; independent
projection; minimax optimal; wild binary segmentation

1. Introduction

Statistical change point analysis is concerned with identifying abrupt changes in the data, generally ob-
served as a time series or as a realization of a stochastic or spatial process, that are due to actual changes
in the underlying distribution and not random fluctuations. Applications of change point analysis are
ubiquitous, and include security monitoring, neuroimaging, financial trading, ecological statistics, cli-
mate change, medical condition monitoring, sensor networks, disease outbreak risk assessment, flu
trend analysis, genetics and various others.

In its most basic form, change point modeling postulates a discrete times series (X1, . . . ,Xn) of vari-
ates whose marginal distributions are piecewise constant. Specifically, for some unknown increasing
subsequence {η1, . . . , ηK} ⊂ {2, . . . , n} of change points,

Xt ∼ Pk, if t ∈ {ηk, . . . , ηk+1 − 1}, for k ∈ {0, . . . ,K}, (1)

1350-7265 © 2021 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
https://doi.org/10.3150/20-BEJ1249
mailto:darenw@galton.uchicago.edu
mailto:yi.yu.2@warwick.ac.uk
mailto:arinaldo@cmu.edu


Optimal covariance change point 555

where η0 = 1, ηK+1 = n + 1, and {P0, . . . ,PK } are probability distributions such that Pk �= Pk−1 for
all k = 1, . . . ,K . One of the main inferential goals in change point analysis is the estimation of the
positions of the change points, a task we will refer to as localization.

The very first, most basic and most studied change point model assumes an independent time series
of random variables with piecewise constant means, that is,

Yt = μt + εt , t = 1, . . . , n, (2)

where (μ1, . . . ,μn) ∈ R
n is such that μt �= μt−1 if and only if t ∈ {η1, . . . , ηK} and the εt ’s are

i.i.d. centered random variables with variance σ 2. Despite its simplicity, the univariate mean change
point model has been a blueprint for studying more complex problems and has led to theoretical and
methodological advances. State-of-the-art methods for this model include recently developed change
point algorithms, such as PELT of Killick, Fearnhead and Eckley [26], WBS of Fryzlewicz [19] and
SMUCE of Frick, Munk and Sieling [18], as well as the renowned binary segmentation (BS) procedure
(see, e.g., Venkatraman [37]). Despite the vast literature on this model, a complete theoretical analysis
of the associated localization task, encompassing the derivation of minimax rates and the characteriza-
tion of phase transition effects, has appeared only very recently; see Wang, Yu and Rinaldo [40].

In this paper, we are concerned with the localization task in the change point model (1) whereby
the data consist of a sequence of independent centered sub-Gaussian vectors and the distributional
changes occurring at the change points take the form of generic changes in the corresponding covari-
ance matrices, measured in the operator norm. We formalize this model next. Below ‖	‖op denotes
the 
2 → 
2-operator norm of a matrix 	 and ‖X‖ψ2 the ψ2 or sub-Gaussian norm of a random vector
X (see Section S.1 for a definition).

Assumption 1 (Covariance change point model). Let X1, . . . ,Xn ∈ R
p be independent, zero mean

random vectors such that E(XtX
�
t ) = 	t and ‖Xt‖ψ2 ≤ B for all t = 1, . . . , n, where B > 0. Let

{η0, . . . , ηK+1} ⊂ {1, . . . , n + 1} be an increasing subsequence of change points such that η0 = 1,
ηK+1 = n + 1 and 	t �= 	t−1 if and only if t ∈ {η1, . . . , ηK }. The minimal spacing between jumps is
such that

min
k=1,...,K+1

{ηk − ηk−1} = � > 0,

and the magnitude of each change is

‖	ηk
− 	ηk−1‖op = κk, k = 1, . . . ,K,

with mink=1,...,K κk = κ > 0, where � and κ are positive quantities.

The parameters p, �, K , B and κ completely characterize the difficulty of the change point local-
ization problem, which intuitively, for a given n, should be increasing in p, B and K , and decreasing
in � and κ . In fact, because of the upper bound K ≤ n

�
, we will not be concerned with the parameter

K . Throughout, we allow p, �, B and κ to be functions of the sample size n, although we do not
make this dependence explicit in our notation for ease of readability. This general setting allows us to
study the localization problem in growing dimensions, with a growing number of change points and of
increasing difficulty, so that, as we gather more data we are able to successfully tackle harder localiza-
tion tasks. We refer to any relationship holding among all the model parameters (p,�,B,κ) and the
sample size n as a scaling.

For a given scaling, we seek to produce estimators of (η1, . . . , ηK) of the form

(X1, . . . ,Xn) 
→ (η̂1, . . . , η̂K̂
) ⊂ {2, . . . , n}
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such that η̂1 < · · · < η̂
K̂

and, with probability tending to 1 polynomially fast in n as n → ∞,

K̂ = K and max
k=1,...,K

|η̂k − ηk| ≤ ε, (3)

where ε = ε(n,p,�,B,κ). We will refer to the quantity ε as the localization error of the estimator
and we will deem such estimator consistent if

lim
n→∞

ε

n
= 0

that is, if, with probability tending to one, the number of change points is estimated perfectly and
the maximal distance between any true change point and the corresponding estimator is vanishing in
sample size. We will refer to the sequence {ε/n} as the localization rate. Our goals are to derive (i)
conditions on the scaling of the model parameters that allow for consistent estimation of the change
points and (ii) computationally-feasible estimators that are consistent and in fact optimal, in the sense
of achieving minimax localization rates.

We conclude this section by noting that the parameters κ and B are not variation independent, as
they satisfy the inequality κ ≤ B2/4. Indeed,

κ ≤ K
max
k=1

‖	ηk
− 	ηk−1‖op ≤ 2

n
max
t=1

‖	t‖op = 2
n

max
t=1

sup
v∈Sp−1

E
[(

v�Xt

)2]
≤ 4

n
max
t=1

‖Xt‖2
ψ2

≤ 4B2, (4)

where Sp−1 is the Euclidean unit sphere in R
p and the second-to-last inequality follows from (S.1) in

Section S.1. In addition to showing that the covariance matrices are all positive definite, the previous
chain of inequalities reveals that the larger the smallest magnitude κ of the changes, the higher the vari-
ance parameter B should be expected to be – two phenomena affecting the difficulty of the localization
task in opposite ways. Interestingly, this feature does not arise in the mean change point localization
problem, where the corresponding parameters are decoupled. The combined effect of κ and B may be
quantified by κB−2, which should be thought of as a signal-to-noise ratio of sort. Clearly, such quan-
tity, and, as a result, the localization task itself, remains invariant with respect to any multiplicative
rescaling of the data by an arbitrary non-zero constant (though of course, not with respect to arbitrary
translations, like in change point localization for means).

1.1. Relevant and related literature

The literature on change point detection is extremely rich and covers a large variety of models. Ar-
guably one of the most studied change point problems is the one concerning the localization for a
univariate piecewise constant signal corrupted by independent additive noise. The list of contributions
in this area is large and includes Yao and Au [44], Wang [43], Lavielle [27], Lavielle and Moulines
[28], Davies and Kovac [15], Davis, Lee and Rodriguez-Yam [16], Harchaoui and Lévy-Leduc [21],
Qian and Jia [35], Rojas and Wahlberg [36], Frick, Munk and Sieling [18], Lin et al. [31] and Li, Guo
and Munk [29].

Among the existing methods, binary segmentation (BS, e.g., Vostrikova [38]) is ‘arguably the most
widely used change point search method’ (Killick, Fearnhead and Eckley [26]). The algorithm goes
through the whole time course and scans for a change point. If one is detected, then the whole time
course is split into two, and the same procedure is deployed separately on the data before and after
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the detected change point. The procedure is carried on recursively until no change point is detected,
or the remaining time course consists of too few time points to continue. Venkatraman [37] proves the
consistency of the BS procedure in the univariate time series mean change point detection, with the
number of change points allowed to increase with the number of time points. Fryzlewicz [19] proposes
a variant of BS, called wild binary segmentation (WBS), which can be viewed as a flexible moving
window technique, or a hybrid of moving window and BS. WBS randomly draws a collection of ran-
dom time intervals, conducts BS on each of them separately, and returns the time point with the largest
CUSUM contrast. This point is deemed a change point and the procedure is then repeated recursively.
Generally, WBS is preferable to BS when many change points are present. In the univariate time series
mean change point detection problem, Venkatraman [37] shows that in order to achieve the estimating
consistency using the BS algorithm, the minimum gap between two consecutive change points should
be at least of order n1−β , where n is the number of time points, and 0 ≤ β < 1/8 (therefore the corre-
sponding localization rate is n5/8+β log(n)); as claimed in Fryzlewicz [19], this rate can be reduced to
log(n) using the WBS algorithm. Overall, the WBS and the multi-scaled method of Frick, Munk and
Sieling [18] are regarded as the state of the art for this problem. Recently, Wang, Yu and Rinaldo [40]
have shown that both WBS and the l0 penalized least square method studied in Boysen et al. [9], which
can be efficiently implemented with the PELT algorithm of Killick, Fearnhead and Eckley [26], deliver
minimax localization rates for this problem.

The literature mentioned above focuses on univariate time series models. However, in the big data
era, data sets are now routinely more complex and of high dimensions. Horváth and Hušková [22]
propose a variant of the CUSUM statistic by summing up the square of the CUSUM statistic in each
coordinate. Cho and Fryzlewicz [13] transform a univariate non-stationary time series into multi-scale
wavelet regime, and conduct BS at each scale in the wavelet context. Jirak [24] allows the dimension p

to tend to infinity together with the sample size n, by taking maxima statistics across panels coordinate-
wise. Cho and Fryzlewicz [14] propose sparsified binary segmentation method which aggregates the
CUSUM statistics across the panel by adding those which exceed a certain threshold. Cho [12] pro-
poses the double CUSUM statistics which, at each time point, picks the coordinate which maximizes
the CUSUM statistic, and de facto transfers the high-dimensional data to a univariate CUSUM statistics
sequence. Aston and Kirch [2] introduce the asymptotic concept of high-dimensional efficiency which
quantifies the detection power of different statistics in this setting. Wang and Samworth [42] study the
mean change point localization problem in high dimensions under appropriate sparsity assumptions.

As for change point detection in more general scenarios, extensions of the sequential probability
ratio test procedure (Wald [39]) can be devised for variance-based change point detection. Based on a
generalized likelihood ratio statistic, Baranowski, Chen and Fryzlewicz [5] tackle a range of univari-
ate time series change point scenarios, including the variance change situations, although theoretical
results are missing. Picard [34] proposes tests on the existence of change points in terms of spectrum
and variance. Inclan and Tiao [23] develop an iterative cumulative sums of squares algorithm to detect
the variance changes. Gombay, Horváth and Hušková [20] propose some tests on detection of possible
changes in the variance of independent observations and obtain the asymptotic properties under the
no-change null hypothesis. Berkes et al. [7], among others, extend the tests and corresponding results
to linear processes, as well as ARCH and GARCH processes. Aue et al. [3] consider the problem of
variance change point detection in a multivariate time series model, allowing the observations to have
m-dependent structures. Note that the consistency results in Aue et al. [3] are in the asymptotic sense
that the number of time points diverges and the dimension of the time series remains fixed. Aue et al.
[3] also require the existence of good estimators of the covariance and precision matrices, and the con-
ditions thereof are left implicit. Barigozzi, Cho and Fryzlewicz [6] deal with a factor model, which
is potentially of high dimension p/n = O(log2(n)), and use the wavelet transforms to make the data
possibly dependent across the timeline. Note that the model in Barigozzi, Cho and Fryzlewicz [6] can
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be viewed as a specific covariance change point problem, where the additional structural assumption
allows the dimensionality to go beyond the sample size. Dette, Pan and Yang [17] considered a high-
dimensional covariance change point detection problem with the dimensionality allowed to exceed the
sample size.

As for the problem of hypothesis testing for high dimensional covariance matrices, which corre-
sponds to the problem of change point detection, the literature is also abundant, and includes the work
of Anderson [1], Johnstone [25], Birke and Dette [8], Cai and Ma [11], Li and Chen [30], Cai, Liu and
Xia [10], to name but only a few.

Our procedures and results have been heavily inspired by two contributions in the recent literature
on change point analysis: Fryzlewicz [19] and Wang and Samworth [42]. Below, we highlight the
differences between our settings and results and theirs.

Our WBSIP procedure utilizes in a fundamental way the WBS algorithm put forward by Fryzlewicz
[19] for change point localization in univariate time series with piecewise constant means. Here we
have carried out a new theoretical analysis of the performance of WBS that resolves some issues
contained in Fryzlewicz [19] and, in addition, yields an optimal dependence on the model parameters,
especially κ . This improvement is non-trivial and may be of independent interest, as it is also directly
applicable to the univariate mean change point localization problem itself; see Wang, Yu and Rinaldo
[40].

The WBSIP procedure further employs sample splitting and independent projections, much like the
methodology inspect of of Wang and Samworth [42] for change point localization of sparse, high-
dimensional means (which too relies on WBS). WBSIP procedure is different in its design, properties
and goals from the algorithm inspect, which, unlike WBSIP, relies on semidefinite programming
and is indirectly targeting the L2 recovery of the support of a sparse mean vector. In contrast, we focus
on the operator norm of the difference of the covariance matrices around the change points. Since the
change point models are different, so are the assumptions we impose; in particular, we do not require
any eigengap condition. As a result, the theoretical analysis of WBSIP calls for different arguments,
and a direct adaptation of the techniques and results of Wang and Samworth [42] to our settings leads
to sub-optimal localization rates.

1.2. List of contributions

We propose and analyze two algorithms for covariance change point localization. The first one, called
BSOP (Binary Segmentation through Operator Norm), is based on a straightforward adaptation to the
covariance setting of the BS algorithm for the univariate mean change point localization problem. The
BSOP algorithm is rather simple to implement and relatively fast. Under appropriate assumptions, we
show in Theorem 2.1 that BSOP can consistently estimate all the change points, but with a sub-optimal
localization rate that exhibits an unfavorable dependence on the dimension p. This finding is consistent
with the conclusions of the analysis of the BS algorithm for the univariate mean localization problem
contained in Fryzlewicz [19], who showed that the BS algorithm is consistent but possibly sub-optimal.

Our second algorithm, called WBSIP (Wild Binary Segmentation through Independent Projections),
is significantly more refined and yields much sharper, in fact almost minimax rate-optimal, localization
rates than BSOP under a set of different and milder assumptions. Specifically, we demonstrate a phase
transition effect over the space of the model parameters: if � � B4pκ−2 log(n) then no consistent
estimator of the locations of the change points exists; see Lemma 3.1. On the other hand, Theorem 2.2
shows that, if � � B4pκ−2 log1+ξ (n), for any ξ > 0, then WBSIP will yield a localization rate of the
order B4κ−2 log(n), independent of p. In fact, up to a log(n) term, this rate turns out to be minimax
optimal; see Lemma 3.2. Thus, WBSIP delivers optimal performance over nearly all scalings for which
consistent localization is possible.
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While consistency of change point estimation for high dimensional mean vectors and covariance
matrices has been recently studied by several authors (see, e.g., Baranowski, Chen and Fryzlewicz [5],
Wang and Samworth [42], Aue et al. [3], Avanesov and Buzun [4]), to the best of our knowledge,
neither the phase transition effect nor the minimax rate optimality have been established elsewhere.
Overall, our lower bound results and the upper bound on the localization rate afforded by WBSIP
procedure provide a complete characterization of the problem of change point localization in the setting
considered here.

The above guarantees hold without assuming any structural property of the underlying covariance
matrices or of their differences, such as sparsity or low rank form. Should these additional assumptions
be made, our procedures and analysis would have to be modified in order to take advantage of such
properties and to obtain consistent localization rates that will presumably allow for a larger dimen-
sion p.

2. Main results

2.1. The covariance CUSUM statistic and the shadow vector

The bulk of our analysis revolves around studying, as a function of t , the mean and fluctuations of
the following matrix-valued statistic, which is a natural generalization to the covariance settings of
the renowned univariate CUSUM statistic (e.g., Page [33], Yao and Au [44]) for mean change point
detection.

Definition 1 (Covariance CUSUM). For X1, . . . ,Xn ∈ R
p , a pair of integers (s, e) such that 0 ≤ s <

e − 1 < n, and any t ∈ {s + 1, . . . , e − 1}, the covariance CUSUM statistic is defined as

S̃
s,e
t =

√
e − t

(e − s)(t − s)

t∑
i=s+1

XiX
�
i −

√
t − s

(e − s)(e − t)

e∑
i=t+1

XiX
�
i .

For any such t , we let 	̃
s,e
t = E[S̃s,e

t ].

One may be tempted to apply the arguments for proving consistency of the BS algorithm for local-
ization in univariate mean change point detection problems, as done in Venkatraman [37], to the covari-
ance CUSUM statistic. Unfortunately, it is non-trivial to prove that the function t 
→ ‖	̃s,e

t ‖op achieves
its local maxima at the change points. To overcome such difficulty, we study instead, for each pair of in-
tegers (s, e), 0 ≤ s < e−1 < n with e−s > 2p log(n), the univariate time series {(v�Xt)

2}t=s+1,...,e of
the squared coefficients of the projection of the data along a one-dimensional linear subspace spanned
by a distinguished unit vector v, which we refer to as a shadow vector. The shadow vector is sim-
ply the leading singular vector of 	̃

s,e
b , where b = arg maxt∈(s+p log(n),e−p log(n)) ‖	̃s,e

t ‖op. As it turns
out, with such a choice of the shadow vector, the local maxima of CUSUM statistic applied to the
corresponding one-dimensional time series approximately coincide with the local maxima of the time
series of the operator norms of the CUSUM covariance statistics. Thus, for the purpose of identifying
the local maxima of the CUSUM covariance statistic, it is enough and in fact much simpler to study
the univariate times series of the squared projections onto the corresponding shadow vector. In turn,
the shadow vector can be estimated (using sample splitting) by the leading singular vector of S̃

s,e

b̂
,

where b̂ = arg maxt∈(s+p log(n),e−p log(n)) ‖S̃s,e
t ‖op. Interestingly, in order to yield consistent and in fact

optimal localization, such an estimator need not be itself consistent; for this reason, we do not need
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Algorithm 1 Binary Segmentation through Operator Norm. BSOP({Xt }es+1, τ )

INPUT: {Xt }et=s+1 ⊂R
p×(e−s), τ > 0.

Initial FLAG ← 0
if e − s > 2p log(n) + 1 and FLAG = 0 then

a ← maxs+p log(n)�≤t≤�e−p log(n)� ‖S̃s,e
t ‖op

if a ≤ τ then
FLAG ← 1

else
b ← arg maxs+p log(n)�≤t≤�e−p log(n)� ‖S̃s,e

t ‖op
add b to the collection of estimated change points
BSOP({Xt }b−1

s+1 , τ )

BSOP({Xt }eb−1, τ )

end if
end if

OUTPUT: The collection of estimated change points.

to impose any eigengap condition on the matrices 	̃
s,e
t . We provide further comments on the uses

and interpretation of the shadow vector projections, which can be generally regarded as a dimension
reduction scheme, below and in Section S.4.2 in the supplemental article Wang, Yu and Rinaldo [41].

2.2. Consistency of the BSOP algorithm

Our first algorithm, called BSOP, stems from a direct adaptation of BS to the matrix setting based on
the distance induced by the operator norm; see Algorithm 1. The BSOP procedure is computationally
and conceptually simple: given any time interval (s, e), BSOP first computes the maximal operator
norm of the covariance CUSUM statistics over the time points in (s + p log(n)�, e − �p log(n)�);
if such maximal value exceeds a predetermined threshold τ , then BSOP will identify the location b

of the maximum as a change point. The interval (s, e) is then split into two subintervals at b and the
procedure is then iterated separately on each of them until an appropriate stopping condition is met.

The BSOP algorithm differs from the standard BS implementation in one aspect: the maximization
of the operator norm of the CUSUM covariance operator is carried out only over the time points in
(s, e) that are away by at least p log(n) from the endpoints of the interval. Such restriction is needed
to obtain adequate tail bounds on the operator norm of the covariance CUSUM statistics S̃

s,e
t . See

Lemma S.1.1 in Section S.1 in the supplemental article Wang, Yu and Rinaldo [41].
To analyze the performance of the BSOP algorithm we will impose the following assumption, which

is, for the most part, modeled after Assumption 3.2 in Fryzlewicz [19], whose notation we adopt.

Assumption 2. For an increasing diverging sequence {an}n=1,2... of positive numbers, a sufficiently
large constant Cα > 0 and a sufficiently small constant cα > 0, assume that �κB−2 ≥ Cαn�an, p ≤
cαn8�−7/ log(n), where � ∈ (7/8,1].

The sequence {an}n=1,2... may diverge arbitrarily slowly and is only needed to manage the case in
which � = 1, which arises for instance, when the number of change points is bounded (in n) and κ

and B are constants. When the parameters κ and B are fixed, the above assumption requires �, the
minimal spacing between consecutive change points, to be of at least slightly smaller order than the size
of the time series. This is precisely Assumption 3.3 in Fryzlewicz [19] (see also Cho and Fryzlewicz
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[14]). The fact that � cannot be too small compared to n in order for the BS algorithm to exhibit good
performance is well known: see, for example Olshen et al. [32]. In Assumption 2, we require also the
dimension p to be upper bounded by n8�−7 log−1(n), which means that p is allowed to diverge as
n → ∞.

Remark 2.1 (Generalizing Assumption 2). In Assumption 2, we impose certain constraints on the
scaling of the quantities B , κ , � and p in relation to n that are captured by a single parameter �,
whose admissible values lie in (7/8,1]. The strict lower bound of 7/8 on � is determined by the
calculations outlined below in (8) and (9). In fact, Assumption 2 may be generalized by allowing for
different types of scaling in n of the signal-to-noise ratio κB−2, the minimal distance � between
consecutive change points and the dimension p. In detail, we may require that κB−2 � n�1 , � � n�2

and p log(n) � n�3 for a given triplet of parameters (�1,�2,�3) in an appropriate subset of [0,1]⊗3.
Such a generalization would then lead to consistency rates in n that depend on all these parameters
simultaneously. However, the range of allowable values of (�1,�2,�3) is not a product set due to
non-trivial constraints among them. We will refrain from providing details and instead rely on the
simpler formulation given in Assumption 2.

Theorem 2.1 (Consistency of BSOP). Under Assumptions 1 and 2, let {η̂k}K̂k=1 be the collection of
the estimated change points from the BSOP({Xt }n1, τ ) algorithm, where the parameter τ satisfies

B2(√p log(n) + 2
√

εn

)
< τ < C1κ�n−1/2, (5)

for some constant C1 ∈ (0,1). Then, there exists a universal constant c > 3 such that

P

(
K̂ = K and max

k=1,...,K
|ηk − η̂k| ≤ εn

)
≥ 1 − 2 × 9pn3−cp, (6)

where

εn = C2B
2κ−1n5/2�−2

√
p log(n), (7)

for some C2 > 0.

The condition (5) on the admissible values of the input parameter τ of the BSOP algorithm is well
defined. Indeed, by Assumption 2, for all pairs (s, e) such that e − s > 2p log(n), we have that

B2
√

p log(n) ≤ B2c1/2
α n4�−7/2 ≤ B2c1/2

α n�n−1/2 ≤ c
1/2
α

Cα

κ�n−1/2 (8)

and

2
√

εnB
2 = 2C

1/2
2 B3κ−1/2n5/4�−1(p log(n)

)1/4 ≤ (
2C

1/2
2 C−1

α c1/4
α

)
Bκ1/2n5/4+�−7/4a−1

n

≤ (
2C

1/2
2 C−1

α c1/4
α

)
κ�n−1/2B−1κ1/2a−1

n ≤ (
4C

1/2
2 C−1

α c1/4
α

)
κ�n−1/2, (9)

where in the chain of inequalities we have used Assumption 2 repeatedly, and the last inequality in (9)
relies on the bound (4). It is also worth noting that the difference between the right-hand side and the
left-hand side of (5) increases as � increases to 1. Finally, we remark that in the proof of Theorem 2.1,
we actually let C1 = 1/8, but this is an arbitrary choice and it essentially depends on the constants Cα

and cα from Assumption 2, see, for instance, (8) and (9).
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Theorem 2.1 implies, that with high probability, the BSOP algorithm will identify all the change
points and estimate their locations consistently, since, due to Assumption 2 and the fact that κ ≤ B2/4,
we have that

εn

n
� B2

κ
�−2n3/2

√
p log(n) �

(
B2

�κ

)2
κ

B2
n3/2n4�−7/2

� n−2�+3/2+4�−7/2a−2
n � a−2

n → 0.

As expected, the localization error afforded by BSOP is decreasing in the signal-to-noise ratio parame-
ter κB−2, and in the minimal distance � between change points and the dimension p. The above bound
yields a family of rates of consistency for BSOP, depending on the scaling of each of the quantities
involved in it. For example, in perhaps the simplest and most favorable scenario where B , κ and the
dimension p are constants, the bound implies a rate for change point localization of the order

εn � n−2�+5/2a−2
n

√
log(n),

which is decreasing in � ∈ (7/8,1]. In particular, when the number of change points is also kept
constant, we have that � = 1, yielding a localization error of order a−2

n

√
n log(n).

As we will see in the next subsection, the dependence on the parameters κ/B2, p and � is sub-
optimal. The advantage of BSOP over the rate-optimal algorithm we introduce next, besides its sim-
plicity, is that BSOP only requires one input parameter, the threshold value τ . Furthermore, when the
spacing parameter � is comparable with the sample size n and when the dimension p of the data grows
slowly with respect with n, then BSOP can still deliver good consistency rates.

2.3. Consistency of the WBSIP algorithm

In this section, we introduce a more complex and effective algorithm for covariance change point
detection, which we name WBSIP for Wild Binary Segmentation through Independent Projections.
The WBSIP algorithm is a generalization of the WBS procedure for mean change point detection
and relies on the properties of shadow vectors mentioned in Section 2.1. WBSIP begins by splitting
the data into halves and by selecting at random a collection of M pairs of integers (s, e) such that
0 ≤ s < e − 1 ≤ n and e − s > 2p log(n) + 1. This sample splitting can be done by separating data
into the odd and even indices subsets. In its second step, WBSIP computes, for each of the M random
integer intervals previously generated, a shadow vector using one half of the data and its corresponding
univariate time series using the other half. The final step of the procedure is to apply the WBS algorithm
over the resulting univariate time series. The details of the algorithm are given in Algorithm 2, which
describes the computation of the shadow vectors by principal component, and Algorithm 3, which
applies WBS to the resulting univariate time series. Besides the reliance on WBS instead of BS, the
other key difference between the WBSIP procedure and the BSOP algorithm considered in the previous
section is the use of sample splitting, which allows to remove the dependence on the dimension p in
the localization rates for WBSIP. Compare the BSOP rate in (7) to (10) below.

Remark 2.2. Wang and Samworth [42] deploys a combination of the WBS algorithm with sample
splitting for the problem of mean change point detection in multivariate settings. Since the authors are
concerned with recovering a sparse leading eigenvector in a possibly ultrahigh-dimensional setting,
their method is inevitably computationally more expensive, and require appropriate assumptions to
yield tight bounds in terms of the sparsity level. This leads to one of the main differences between
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Algorithm 2 Principal Component Estimation PC({Xt }nt=1, {(αm,βm)}Mm=1)

INPUT: {Xt }nt=1, {(αm,βm)}Mm=1
for m = 1, . . . ,M do

if βm − αm > 2p log(n) + 1 then
dm ← arg maxαm+p log(n)�≤t≤�βm−p log(n)� ‖S̃αm,βm

t ‖op

um ← arg max‖v‖=1 |v�S̃
αm,βm

dm
v|

else
um ← 0

end if
end for

OUTPUT: {um}Mm=1.

our approach and theirs – we do no require the shadow vectors to produce consistent estimators of the
eigenspaces related to the population covariance matrices. In particular, our analysis holds without any
eigengap assumption.

In order to analyze the performance of the WBSIP procedure, we will impose the following assump-
tion, which is significantly weaker than Assumption 2.

Algorithm 3 Wild Binary Segmentation through Independent Projection. WBSIP({Xt,Wt }nt=1, (s, e),
{(αm,βm)}Mm=1, τ )

INPUT: Two independent samples, {Wt }nt=1 and {Xt }nt=1, and the threshold parameter τ > 0.
{um}Mm=1 ← PC({Wt }nt=1, {(αm,βm)}Mm=1)

for t ∈ {s, . . . , e} do
for m = 1, . . . ,M do

Yt (um) ← (u�
mXt)

2

end for
end for
for m = 1, . . . ,M do

(sm, em) ← [s, e] ∩ [αm,βm]
if em − sm ≥ 2 log(n) + 1 then

bm ← arg maxsm+log(n)≤t≤em−log(n) |Ỹ sm,em
t (um)| � Recall Definition 1

am ← |Ỹ sm,em

bm
(um)|

else
am ← −1

end if
end for
m∗ ← arg maxm=1,...,M am

if am∗ > τ then
add bm∗ to the set of estimated change points
WBSIP({Xt,Wt }nt=1, (s, bm∗), {(αm,βm)}Mm=1, τ )

WBSIP ({Xt,Wt }nt=1, (bm∗ + 1, e), {(αm,βm)}Mm=1, τ )

end if
OUTPUT: The set of estimated change points.
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Assumption 3. For any ξ > 0, there exists a sufficiently large absolute constant C > 0 such that

�κ2 ≥ Cp log1+ξ (n)B4.

Remark 2.3. We recall that all the parameters �,κ,p and B are allowed to depend on n. Since
κ ≤ B2, and assuming without loss of generality that the constant C in the previous assumption is
larger than 8, we further have that

p log1+ξ (n) ≤ �κ2B−4C−1 ≤ �/8,

which is used repeatedly below. In fact, in the proof we will set C = 32
√

2, a choice born out of
convenience. Finally, the quantity logξ (n) may be replaced by any diverging sequence, such as the
sequence {an}n=1,2,... in Assumption 2.

It is similar to the BSOP algorithm that WBSIP also applies a slight modification to the WBS algo-
rithm as originally proposed in Fryzlewicz [19]. When computing the shadow vectors in Algorithm 2,
the search for the optimal direction onto which projecting the data is restricted, for any given candidate
interval, only to the time points that are at least p log(n) away from the endpoints of the interval. As
remarked in the previous section, this ensures good tail bounds on the operator norms of the matrices
involved. We also remark that in Algorithm 3 the WBS procedure could be replaced with the penalized
least squares procedure analyzed in Wang, Yu and Rinaldo [40] for mean change point localization
in univariate time series, which can be implemented efficiently with dynamic programming using the
PELT algorithm of Killick, Fearnhead and Eckley [26]. With an appropriate choice of penalty param-
eter for PELT, this modification will lead to the same localization rates.

Theorem 2.2 (Consistency of WBSIP). Let Assumptions 1 and 3 hold and let{
(αm,βm)

}M

m=1 ⊂ (0, n)

be a collection of intervals whose endpoints are drawn independently and uniformly from {1, . . . , n}
and such that max1≤m≤M(βm − αm) ≤ C� for an absolute constant C > 0. Set

εk = C1B
4 log(n)κ−2

k , (10)

for an absolute constant C1 > 0. Suppose there exist sufficiently small constant c2 > 0 and sufficiently
large constant c3 > 0 such that the input parameter τ satisfy

c3B
2
√

log(n) < τ < c2κ
√

�. (11)

Then the collection of the estimated change points {η̂k}K̂k=1 returned by WBSIP with input parameters
of (0, n), {(αm,βm)}Mm=1 and τ satisfies

P
{
K̂ = K; |ηk − η̂k| ≤ εk, for all k

}
≥ 1 − 4Mn2−c − 4 × 9pn3−cp − exp

{
log(n/�) − M�/(4Cn)

}
, (12)

for some absolute constant c > 3.

Remark 2.4 (On the constants in Theorem 2.2). The choice of the constant C is essentially arbitrary
but will affect the choice of the constants C1, which is linear in C. In addition, the constant C appears
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in the last term in (12). A large C results in a smaller probability bound and a larger localization error.
This dependence can be tracked in the proof.

The above theorem yields local rates ε1, . . . , εK , one for each change point, which naturally depend
on the magnitudes κk’s of the changes. Since mink κk = κ > 0 by assumption, we can conclude that the
WBSIP algorithm, with appropriate inputs, produces an overall vanishing localization rate. Indeed,

ε

n
≤ ε

�
� B4

κ2�
log(n)� 1

p logξ (n)
→ 0, as n → ∞.

In fact, the above display also shows that the WBSIP algorithm achieves consistency in a stronger
sense: with probability tending to 1, the estimated change points will be away from the corresponding
true change points by an amount that is vanishing in the minimal spacing between change points.

The upper and lower bounds on τ in (11) correspond to the minimal expected magnitude of the
CUSUM statistics at the true change points and to a high probability bound on the order of their largest
sample fluctuation around their means across the whole time course, respectively. In particular, the
lower bound corresponds to the quantity λ2 defined in the proofs (see the Appendix).

The fact that the dimension p does not appear explicitly in the localization rates (10) is an interesting,
if not perhaps surprising, finding. Of course, the dimension does affect (negatively) the performance of
the algorithm through Assumption 3: keeping n and � fixed, a larger value of p implies a larger value
of B4κ−2 in order for that assumption to hold. In turn, this leads to a larger bound in Theorem 2.2.
Furthermore, the dimension p appears in the probability of the event that WBSIP fails to locate all
the change points. We remark that, for a different problem of high-dimensional mean change point
detection, Wang and Samworth [42] also obtained a localization rate independent of the dimension: see
Theorem 3 there. In Section 3 below, we will prove that Assumption 3 is in fact essentially necessary
for any algorithm to produce a localization rate of smaller order than n.

Finally, in Theorem 2.2 it is necessary to choose a large enough number of random intervals M

to obtain high-probability guarantees. In particular, the probabilistic bound (12) shows that M �
n log(n)�−1.

3. Minimax lower bounds and the phase transition effect

In Theorem 2.2 above we have shown that, if the distribution of the data {Xt }nt=1 follows the model
described in Assumption 1, then, under the scaling � ≥ CB4κ−2p log1+ξ (n) for sufficiently large C as
given in Assumption 3, the WBSIP algorithm can, with high probability, estimate all the change points

with a localization error of the order B4

κ2 log(n). Assumption 3 might seem arbitrary at first glance.
In fact, we will show next that consistent estimation of the locations of the change points requires
�κ2

pB4 to diverge, as required in Assumption 3. Therefore, we may conclude that the WBSIP algorithm
guarantees consistent localization under nearly all the parameter scalings for which such a task is
feasible, save for a logξ (n) term.

To that effect, we will consider the following class of data generating distribution. For an integer
� ∈ (1, n) and numbers κ > 0 and σ > 0, let Pκ,�,σ,p,n denote the class of all joint distributions of n

independent vectors (X1, . . . ,Xn) in R
p such that

X1, . . . ,X�
i.i.d.∼ Np(0,	1) and X�+1, . . . ,Xn

i.i.d.∼ Np(0,	2),
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where 	1 and 	2 are positive definite matrices such that

‖	1 − 	2‖op ≥ κ and max
j=1,2

‖	j‖op ≤ σ 2.

Notice that each distribution in Pκ,�,σ,p,n satisfies Assumption 1 with B = 8σ .

Lemma 3.1. Consider the class of distributions

P =P(n) =
{
Pκ,�,σ,p,n : � ≤ min

{
2σ 4p

33κ2
, n/3

}
, κ ≤ σ 2/4

}
.

Then,

inf
η̂

sup
P∈P

EP

(|η̂ − η|) ≥ n/6,

where the infimum is over all estimators of the change point.

The proof of the previous result is based on the construction used in Cai and Ma [11] to obtain
minimax lower bounds for a class of hypothesis testing problems involving covariance matrices. As in
other results in the paper, the choice of the constant 2/33 in the definition of the class P is made out of
convenience.

Lemma 3.1 and Theorem 2.2 together imply that the solution to the covariance change point local-
ization problem undergoes a phase transition in the space of model parameters, which we are able to
characterize up to a poly-logarithmic factor in n. Specifically,

• under the scaling � � B4p log1+ξ (n)/κ2, it is possible to estimate the locations of the change
points with a localization rate of smaller order of n;

• on the other hand, if � � B4p/κ2, then the localization rate of any algorithm is, in the worst case,
of order n.

In our final result, we prove that the upper bound on the localization error that we have obtained for
the WBSIP algorithm, which is of order B4 log(n)κ−2 (see equation (10)), is, up to a logarithmic factor
in n, minimax optimal over the set of distributions satisfying Assumption 3. Thus, the WBSIP proce-
dure is essentially minimax rate-optimal across almost all the parameter scalings for which consistent
localization is feasible. For the lower bound construction, we will consider the same Gaussian setting
introduce above, with one change point.

Lemma 3.2. Consider the class of distributions

Q=Q(n) = {
Pκ,�,σ,p,n : �κ2 ≥ p log(n)σ 4, κ ≤ σ 2/4,4 ≤ � ≤ 4/5(n − 1)

}
.

Then,

inf
η̂

sup
P∈Q

EP

(|η̂ − η|) ≥ σ 4

20κ2
,

where the infimum is over all estimators of the change point.
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Table 1. A summary of main results (all in terms of rates)

Localization error Conditions Result

BSOP B2κ−1n5/2�−2
√

p log(n) �κB−2 � n�an Theorem 2.1
p � n8�−7/ log(n)

WBSIP B4 log(n)κ−2 �κ2 � log1+ξ (n)pB4 Theorem 2.2
Information theoretic B4κ−2 �κ2 � pB4 Lemmas 3.1 and 3.2
lower bounds

4. Discussion

In this paper, we have studied the problem of change point localization in a time series of length n

of independent p-dimensional random vectors with covariance matrices that are piecewise constant.
We allow all the parameters quantifying the difficulty of the problem, namely the dimension p, the
minimal spacing �, the minimal jump size κ , and the sub-Gaussian variance factor B , to change with
the sample size n. We have proposed two procedures based on existing algorithms for change point de-
tection – binary segmentation and wild binary segmentation – both yielding consistent localization. In
particular the algorithm WBSIP, which applies wild binary segmentation to carefully chosen univariate
projections of the data, produces a localization rate that is, up to a logarithmic factor, minimax optimal.
A summary of the main results is collected in Table 1.

We have proved that it is necessary that the dimension p should be of smaller order than n in order for
the localization rates of any procedure to grow slower than the length of the time series. One possible
future direction is to consider different high dimensional settings whereby p is permitted to grow even
faster than n, with additional structural assumptions on the underlying covariance matrices, such as
sparsity or being low rank. For instance, we may model the covariance matrices as spiked matrices with
sparse leading eigenvectors. Another interesting extension is to apply the entry-wise maximum norm
instead of the operator norm to the covariance CUSUM statistics. If the changes are still characterized
in the operator norms, then this modification requires a more careful handling and potentially additional
assumptions. A second extension of interest would be to replace the operator norm of the difference
between consecutive covariance matrices at the change point with the Frobenius norm, in order to
capture higher-order spectral changes. This modification would pose non-trivial technical challenges
but would allow for more general change point models.

Appendix: Main proofs of Theorems 2.1 and 2.2

In this section, we collect the main proofs of Theorems 2.1 and 2.2. We remark that all the numberings
starting with S are the contents in the supplemental article Wang, Yu and Rinaldo [41].

Proof of Theorem 2.1. By induction, it suffices to consider any pair of integers s and e such that
(s, e) ⊂ (0, n) and satisfying

ηr−1 ≤ s ≤ ηr ≤ · · · ≤ ηr+q ≤ e ≤ ηr+q+1, q ≥ −1,

max
{
min{ηr − s, s − ηr−1},min{ηr+q+1 − e, e − ηr+q}} ≤ εn,
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where q = −1 indicates that there is no change point contained in (s, e). It follows that, for sufficiently
small cα > 0 and sufficiently large Cα > 0,

εn

�/4
≤ C2B

2κ−1n5/2
√

p log(n)�−2

�/4

≤ 4C2B
2κ−1n5/2 c

1/2
α n4�−7/2

C3
ακ−3B6n3�

≤ (
4C2c

1/2
α C−3

α

)(
κ2B−4)n�−1

≤ (
κ2B−4)n�−1

≤ 1,

where the second inequality stems from Assumption 2, the third inequality holds by choosing suffi-
ciently small cα and sufficiently large Cα and the last inequality follows from the fact that κ ≤ B2.
Then, for any change point ηj in (s, e), it is either the case that

|ηj − s| ≤ εn,

or that

|ηj − s| ≥ � − εn ≥ � − �/4 = 3�/4.

Similar considerations apply to the other endpoint e. As a consequence, the fact that min{|ηj −e|, |ηj −
s|} ≤ εn implies that ηj is a detected change point found in the previous induction step, while if
min{ηj − s, ηj − e} ≥ 3�/4 we can conclude that ηj ∈ (s, e) is an undetected change point.

In order to complete the induction step, it suffices to show that BSOP({Xt }es+1, τ ) (i) will not find
any new change point in the interval (s, e) if there is none, or if all the change points in (s, e) have
been already detected and (ii) will identify a location b such that |ηj − b| ≤ εn if there exists at least
one undetected change point ηj ∈ (s, e).

Set λ = B2
√

p log(n). Then, the event A1({Xi}ni=1, λ) holds with probability at least 1 − 2 ×
9pn3n−cp , for some universal constant c > 0. The proof will be completed in two steps.

Step 1. First, we will show that on the event A1({Xi}ni=1, λ), BSOP({Xt }es+1, τ ) can consistently
detect or reject the existence of undetected change points within (s, e).

Suppose there exists ηj ∈ (s, e) such that min{ηj − s, ηj − e} ≥ 3�/4. Set δ = p log(n). Then
δ ≤ 3

32�, since

p log(n) ≤ cαn8�−7 ≤ cαn� ≤ cαC−1
α �B−2κ1 ≤ 3�/32,

where the last inequality follows from Assumption 2. With this choice of δ, we apply Lemma S.4.5 in
Section S.4 (where we set c1 = 3/4) and obtain that

max
t=s+δ�,...,�e−δ�

∥∥	̃
s,e
t

∥∥
op ≥ (3/8)κ�(e − s)−1/2.

On the event A1({Xi}ni=1, λ),

max
t=s+δ�,...,�e−δ�

∥∥S̃
s,e
t

∥∥
op ≥ max

t=s+δ�,...,�e−δ�
∥∥	̃

s,e
t

∥∥
op − λ

≥ (3/8)κ�(e − s)−1/2 − λ ≥ (1/8)κ�(e − s)−1/2, (13)
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where the last inequality follows from (8) (in the last step we have set C1 = 1/8). If (5) holds, then, on
the event A1({Xi}ni=1, λ), BSOP({Xt }es+1, τ ) detects the existence of undetected change points if there
are any.

Next, suppose there does not exist any undetected change point within (s, e). Then, one of the fol-
lowing cases must occur.

(a) There is no change point within (s, e);
(b) there exists only one change point ηr within (s, e) and min{ηr − s, e − ηr} ≤ εn;
(c) there exist two change points ηr, ηr+1 within (s, e) and that max{ηr − s, e − ηr+1} ≤ εn.

Observe that if case (a) holds, then on the event A1({Xi}ni=1, λ), we have that

max
t=s+δ�,...,�e−δ�

∥∥S̃
s,e
t

∥∥
op ≤ max

t=s+δ�,...,�e−δ�
∥∥	̃

s,e
t

∥∥
op + λ = λ < τ,

where the last inequality follows from (5). If situation (c) holds, then on the event A1({Xi}ni=1, λ), we
have

max
t=s+δ�,...,�e−δ�

∥∥S̃
s,e
t

∥∥
op ≤ max

t=s+δ�,...,�e−δ�
∥∥	̃

s,e
t

∥∥
op + λ

≤ max
{∥∥	̃s,e

ηr

∥∥
op,

∥∥	̃s,e
ηr+1

∥∥
op

} + λ ≤ 2
√

εnB
2 + λ < τ,

where the first inequality follows from A1({Xi}ni=1, λ), the second inequality from Lemma S.4.4, the
third inequality from Lemma S.4.8 and the last inequality follows from (5). (Both Lemmas are in
Section S.4.2.) Case (b) can be handled in a similar manner. Thus, if (5) holds, then on the event
A1({Xi}ni=1, λ), BSOP({Xt }es+1, τ ) has no false positives when there are no undetected change points
in (s, e).

Step 2. Assume now that there exists a change point ηj ∈ (s, e) such that min{ηj −s, ηj −e} ≥ 3�/4
and let

b ∈ arg max
t=s+δ�,...,�e−δ�

∥∥S̃
s,e
t

∥∥
op.

To complete the proof it suffices to show that |b − ηj | ≤ εn.
Let v be such that

v ∈ arg max
‖u‖=1

∣∣u�S̃
s,e
b u

∣∣.
Consider the univariate time series {Yi(v)}ni=1 and {fi(v)}ni=1 defined in (S.42) and (S.43) in Sec-
tion S.4.2. By Lemma S.4.6, b ∈ arg maxs≤t≤e |Ỹt (v)|. Next, we wish to apply Corollary S.2.1 to the
time series {Yi(v)}ei=s and {fi(v)}ei=s . Towards that end, we first need to ensure that the conditions
required for that result to hold are verified. (Notice that in the statement of Corollary S.2.1, the fi ’s are
assumed to be uniformly bounded by B1, while in this proof the fi(v)’s defined in (S.43) are assumed
to be bounded by 2B2.) First, the collection of the change points of the time series {fi(v)}ei=s+1 is a

subset of {ηk}K+1
k=0 ∩ (s, e). The condition (S.11) and the inequality 2

√
δB2 ≤ (3c1/4)κ�(e − s)−1/2

are straightforward consequences of Assumption 2, while (S.19) follows from the fact that∣∣f̃ s,e
t (v) − Ỹ

s,e
t (v)

∣∣ ≤ ∥∥S̃
s,e
t − 	̃

s,e
t

∥∥
op ≤ λ.

Similarly, (S.18) stems from the relations

max
t=s+δ�,...,�e−δ�

∣∣Ỹ s,e
t (v)

∣∣ = max
t=s+δ�,...,�e−δ�

∥∥S̃
s,e
t

∥∥
op
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≥ max
t=s+δ�,...,�e−δ�

∥∥	̃
s,e
t

∥∥
op

− λ ≥ (1/8)κ�(e − s)−1/2,

where the first inequality holds on the event A1({Xi}ni=1, λ) and the second inequality is due to (13)
and Assumption 2. Thus, all the assumptions of Corollary S.2.1 are met. An application of that result
yields that there exists ηk , a change point of {fi(v)}ei=s satisfying (S.14), such that

|b − ηk| ≤ C2λ(e − s)5/2�−2κ−1 ≤ εn.

The proof is complete by observing that (S.18) implies min{ηj − s, ηj − e} ≥ 3�/4, as discussed in
the argument before Step 1. �

Proof of Theorem 2.2. By induction, it suffices to consider any generic (s, e) ⊂ (0, n) that satisfies

ηr−1 ≤ s ≤ ηr ≤ · · · ≤ ηr+q ≤ e ≤ ηr+q+1, q ≥ −1,

where q = −1 indicates that there is no change point contained in (s, e) and that

either ηr − s ≤ εr or s − ηr−1 ≤ εr−1,

either ηr+q+1 − e ≤ εr+q+1 or e − ηr+q ≤ εr+q .

Note that under Assumption 3, εk ≤ �/8; it, therefore, has to be the case that for any change point
ηp ∈ (0, n), either |ηp −s| ≤ εp or |ηp −s| ≥ �−εp ≥ 3�/4. This means that min{|ηp −e|, |ηp −s|} ≤
εp indicates that ηp is a detected change point in the previous induction step, even if ηp ∈ (s, e). We
refer to ηp ∈ [s, e] as an undetected change point if min{ηp − s, ηp − e} ≥ 3�/4.

In order to complete the induction step, it suffices to show that WBSIP (i) will not detect any new
change point in (s, e) if all the change points in that interval have been previously detected, and (ii)
will find a point b in (s, e) (in fact, in (s + log(n), e − log(n))) such that |ηp − b| ≤ εk if there exists at
least one undetected change point in (s, e). Let

{um}Mm=1 = PC
({Wi}ni=1,

{
(αm,βm)

}M

m=1

)
.

Since the intervals {(αm,βm)}Mm=1 are generated independently from {Xi}ni=1 ∪ {Wi}ni=1, the rest of the
argument is made on the event M, which is defined in Equation (S.5) of Section S.1, and which has
no effects on the distribution of {Xi}ni=1 ∪ {Wi}ni=1.

Step 1. Let λ1 = B2
√

p log(n). In this step, we are to show that, on the event A1({Wi}ni=1, λ1) and
for some c′

1 > 0,

sup
1≤m≤M

∣∣u�
m(	ηk

− 	ηk−1)um

∣∣ ≥ c′
1‖	ηk

− 	ηk−1‖op = c′
1κk for every k = 1, . . . ,K + 1. (14)

On the event M, for any ηk ∈ (0, n), without loss of generality, there exists αk ∈ [ηk −3�/4, ηk −�/2]
and βk ∈ [ηk +�/2, ηk +3�/4]. Thus, [αk,βk] contains only one change point ηk . Using Lemma S.4.5
in Section S.4 and the inequality p log(n) ≤ �/8, we have that

max
t=αk+p log(n)�,...,�βk−p log(n)�

∥∥	̃
αk,βk
t

∥∥
op = ∥∥	̃αk,βk

ηk

∥∥
op ≥ (1/2)‖	ηk

− 	ηk−1‖op
√

�. (15)

Let bk ∈ arg maxt=αk+p log(n)�,...,�βk−p log(n)� ‖S̃αk,βk
t ‖op, where S̃

s,e
t denote the covariance CUSUM

statistics of {Wi}ei=s+1 at evaluated t . Since ‖	ηk
− 	ηk−1‖op = κk , by definition,∣∣u�

k 	̃
αk,βk

bk
uk

∣∣ ≥ ∣∣u�
k S̃

αk,βk

bk
uk

∣∣ − λ1
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= max
t=αk+δ�,...,�βk−δ�

∥∥S̃
αk,βk
t

∥∥
op − λ1

≥ max
t=αk+δ�,...,�βk−δ�

∥∥	̃
αk,βk
t

∥∥
op − 2λ1

≥ (1/2)‖	ηk
− 	ηk−1‖op

√
� − 2λ1

≥ (1/4)‖	ηk
− 	ηk−1‖op

√
�,

where the first and second inequalities hold on the event A1({Wi}ni=1, λ1), the third inequality follows
from (15) and the last inequality from Assumption 3. Next, observe that

	̃
αk,βk
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

t − αk

(βk − αk)(βk − t)
(βk − ηk)(	ηk

− 	ηk−1), t ≤ ηk,√
βk − t

(βk − αk)(t − αk)
(ηk − αk)(	ηk

− 	ηk−1), t ≥ ηk.

Using the above expression, for bk ≥ ηk , we have that

(1/4)‖	ηk
− 	ηk−1‖op

√
� ≤ ∣∣u�

k 	̃
αk,βk

bk
uk

∣∣
=

√
βk − bk

(βk − αk)(bk − αk)
(ηk − αk)

∣∣u�
k (	ηk

− 	ηk−1)uk

∣∣
≤

√
(βk − ηk)(ηk − αk)

βk − αk

∣∣u�
k (	ηk

− 	ηk−1)uk

∣∣
≤ √

2�
∣∣u�

k (	ηk
− 	ηk−1)uk

∣∣.
Therefore, (14) holds with c′

1 = 1/(2
√

2). The case of bk < ηk follows from very similar calculations.
Step 2. In this step, we will show that WBSIP will consistently detect or reject the exis-

tence of undetected change points within (s, e), provided that (14) holds and on the two events
B1({Xi}ni=1, {um}Mm=1, λ2), where λ2 = B2

√
log(n), and M, given in (S.3) and (S.5) in Section S.1,

respectively.
Let am,bm and m∗ be defined as in WBSIP. Denote

Yi(um) = (
u�

mXi

)2 and fi(um) = u�
m	ium.

Let Ỹ
s,e
t (um) and f̃

s,e
t (um) be defined as in (S.42) and (S.43) of Section S.4.2, respectively.

Suppose that there exists a change point ηp ∈ (s, e) such that min{ηp − s, e − ηp} ≥ 3�/4. Let
p log(n) ≤ 3�/32. Then, on the event M, there exists an interval (αm,βm) selected by WBSIP such
that αm ∈ [ηp − 3�/4, ηp − �/2] and βm ∈ [ηp + �/2, ηp + 3�/4].

Denote [sm, em] = [αm,βm] ∩ [s, e] (see details of the WBSIP procedure in Algorithm 3) and we
have that min{ηp − sm, em − ηp} ≥ (1/2)�. Thus, [sm, em] contains at most one change point of the
time series {fi(um)}ni=1. A similar calculation as the one shown in the proof of Lemma S.4.5 gives that

max
sm+log(n)�≤t≤�em−log(n)�

∣∣f̃ sm,em
t (um)

∣∣ ≥ (1/8)
√

�
∣∣u�

m(	ηp − 	ηp−1)um

∣∣,
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where em − sm ≤ (3/2)� is used in the last inequality. Therefore

am = max
sm+log(n)�≤t≤�em−log(n)�

∣∣Ỹ sm,em
t (um)

∣∣
≥ max

sm+log(n)�≤t≤�em−log(n)�
∣∣f̃ sm,em

t (um)
∣∣ − λ2

≥ (1/8)
√

�
∣∣u�

m(	ηp − 	ηp−1)um

∣∣ − λ2,

where the first inequality holds on the event B1({Xi}ni=1, {um}Mm=1, λ2). Thus for any undetected change
point ηp within (s, e), it holds that

am∗ = sup
1≤m≤M

am

≥ sup
1≤m≤M

(1/8)
√

�
∣∣u�

m(	p − 	p−1)um

∣∣ − λ2 ≥ (
c′

1/8
)
κp

√
� − λ2

≥ (
c′

1/16
)
κp

√
�,

where the second inequality follows from (14), and the last inequality from

λ2 = B2
√

log(n) ≤ (
c′

1/16
)
κ
√

�,

by choosing the constant C in Assumption 3 to be at least 4
√

2. Therefore,

am∗ ≥ κs,e
max, (16)

where κ
s,e
max = max{κp : min{ηp − s0, e0 − ηp} ≥ �/16}. Then, WBSIP correctly accepts the existence

of undetected change points on the events (14),

B1
({Xi}ni=1, {um}Mm=1, λ2

)
and M.

Suppose there does not exist any undetected change points within (s, e), then for any (sm, em) =
(αm,βm) ∩ (s, e), one of the following situations must hold.

(a) there is no change point within (sm, em);
(b) there exists only one change point ηr within (sm, em) and min{ηr − sm, em − ηr} ≤ εr or
(c) there exist two change points ηr , ηr+1 within (sm, em) and ηr − sm ≤ εr , em − ηr+1 ≤ εr+1.

Only the calculations of (c) is presented, as the other cases are similar and simple. By Lemma S.4.10,

sup
sm≤t≤em

∥∥	̃
s,e
t

∥∥
op ≤ √

εrκr + √
εr+1κr+1 ≤ 2

√
C1 log(n)B ≤ λ2.

Therefore on the event B1({Xi}ni=1, {um}Mm=1, λ2) given in (S.3), for (sm, em), satisfying (c), we have

max
sm+log(n)�≤t≤�em−log(n)�

∣∣Ỹ sm,em
t (um)

∣∣ ≤ max
sm+log(n)�≤t≤�em−log(n)�

∣∣f̃ sm,em
t (um)

∣∣ + λ2

≤ sup
sm≤t≤em

∥∥	̃
sm,em
t

∥∥
op + λ2 ≤ 2λ2.
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Therefore if (11) holds, then WBSIP will always correctly reject the existence of undetected change
points, on the event B1({Xi}ni=1, {um}Mm=1, λ2).

Step 3. Assume that there exists a change point ηp ∈ (s, e) such that min{ηp − s, ηp − e} ≥ 3�/4.
Let am,bm and m∗ be defined as in WBSIP((s, e), {(αm,βm)}Mm=1, τ ).

To complete the proof it suffices to show that, on the events B1({Xi}ni=1, {um}Mm=1, λ2) and
B2({Xi}ni=1, {um}Mm=1, λ2) given in (S.3) and (S.4) respectively, there exists a change point ηk ∈
[sm∗, em∗] such that min{ηk − s, ηk − e} ≥ 3�/4 and |bm∗ − ηk| ≤ εn.

Consider the univariate time series {Yi(um∗)}ni=1 and {fi(um∗)}ni=1 defined in (S.42) and (S.43).
Since the collection of the change points of the time series {fi(um∗)}em∗

i=sm∗ is a subset of that of

{ηk}K+1
k=0 ∩ [s, e], we may apply Corollary S.2.2 to the time series {Yi(um∗)}em∗

i=sm∗ and {fi(um∗)}em∗
i=sm∗ .

To that end, we will need to ensure that the assumptions of Corollary S.2.2 are verified. Let δ′ = log(n)

and λ = λ2. Observe that (S.33) and (S.34) are straightforward consequences of Assumption 3, (S.31)
and (S.32) follow from the definitions of B1({Xi}ni=1, {um}Mm=1, λ2) and B2({Xi}ni=1, {um}Mm=1, λ2), and
that (S.30) follows from (16).

Thus, all the conditions in Corollary S.2.2 are met, and we therefore conclude that there exists a
change point ηk , which is also a change point of {fi(v)}em∗

i=sm∗ , satisfying

min{em∗ − ηk, ηk − sm∗} > �/4 (17)

and

|bm∗ − ηk| ≤ max
{
C3λ

2
2κ

−2
k , δ′} ≤ εn,

where the last inequality holds because λ2
2κ

−2
k = B4 log(n)κ−2

k ≥ log(n), which is a consequence of
the inequality B2 ≥ κk .

The proof is complete with the following two observations: (i) The change points of {fi(um∗)}ei=s

belong to (s, e) ∩ {ηk}Kk=1; and (ii) Equation (17) and (sm∗ , em∗) ⊂ (s, e) imply that

min{e − ηk, ηk − s} > �/4 > εk.

As discussed in the argument before Step 1, this implies that ηk must be an undetected change point of
{Xi}ni=1 in the covariance structure. �
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