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Due to the surge of data storage techniques, the need for the development of appropriate techniques to identify
patterns and to extract knowledge from the resulting enormous data sets, which can be viewed as collections of
dependent functional data, is of increasing interest in many scientific areas. We develop a similarity measure for
spectral density operators of a collection of functional time series, which is based on the aggregation of Hilbert–
Schmidt differences of the individual time-varying spectral density operators. Under fairly general conditions, the
asymptotic properties of the corresponding estimator are derived and asymptotic normality is established. The
introduced statistic lends itself naturally to quantify (dis)-similarity between functional time series, which we
subsequently exploit in order to build a spectral clustering algorithm. Our algorithm is the first of its kind in the
analysis of non-stationary (functional) time series and enables to discover particular patterns by grouping together
‘similar’ series into clusters, thereby reducing the complexity of the analysis considerably. The algorithm is simple
to implement and computationally feasible. As a further application, we provide a simple test for the hypothesis
that the second order properties of two non-stationary functional time series coincide.
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1. Introduction

The surge in data storage techniques over the past two decades has led to more and more data sets that
are almost continuously recorded on their domain of definition. The development of tools to model
these type of data is the main focus of functional data analysis. In functional data analysis, the variables
of interest are perceived as random smooth functions that vary on a continuum D, that is, X(τ), τ ∈ D.
While the intrinsically infinite variation of such random functions can be considered a rich source
of information, extracting relevant information to identify patterns becomes more and more a chal-
lenge. This is especially the case when the data are collected sequentially over time and the curves
exhibit serial dependence, that is, when the data set consists of a collection of d functional time series,
{Xi,t (τ ) : τ ∈ D}t∈Z,i∈1,...,d . This type of data arises naturally in a wide range of scientific disciplines
such as astronomy, biology, finance, meteorology, medicine or yet engineering (see, for example, As-
ton and Kirch [3], Zhang and Shao [65], Tavakoli and Panaretos [55] for applications in brain imaging,
molecular biophysics and climatology, respectively).

In addition, in most real-world applications, the second order characteristics of time series change
gradually over time. In meteorology, the distribution of the daily records of temperature, precipitation
and cloud cover for a region – viewed as three related functional surfaces – may change over time due
to global climate changes. Other relevant examples appear in the study of cognitive functions such as
high-resolution recordings from local field potentials, EEG and MEG or from the financial industry
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where implied volatility of an option as a function of moneyness changes over time. The develop-
ment of appropriate exploratory techniques that allow to discover patterns or anomalies is therefore of
foremost interest for this type of data.

The most widely used technique for this preliminary step of data exploration is known as cluster
analysis. Clustering is concerned with partitioning a data set into a set of disjoint homogeneous groups
(clusters) of realizations. Unlike supervised learning, clustering does not rely on prior knowledge of
the groups or on building classifiers based upon a training set. It is therefore especially meaningful
when little is known about the nature of the process and the data set is large.

A large body of literature on clustering (and related learning techniques) of ordinary time series has
been published. Depending on the goal of the application, clustering algorithms can differ in a variety
of aspects such as the representation of the data, how similarities are measured, and in the way clusters
are constructed. The first two aspects are known to be crucial in terms of efficiency and accuracy of
the solution and this is what most research focuses on (see Section 5 of Aghabozorgi, Sirkhorshidi and
Wah [2], for a full taxonomy of the different aspects of clustering time series). For instance, in paramet-
ric approaches clusters are usually built based upon similarity of their estimated parameters (see, e.g.,
Kalpakis, Gada and Puttagunta [40], Corduas and Piccolo [15]), some of which take a Bayesian ap-
proach (Bauwens and Rombouts [5], Frühwirth-Schnatter and Kaufmann [26], Juárez and Steel [38]).
Nonparametric methods are often based on comparing similarity of the estimated power spectra, which
is a research topic in its own right (see, e.g., Coates and Diggle [14], Eichler [21], Dette [19], Dette and
Hildebrandt [20], Jentsch and Pauly [37]). This approach is among others taken in Kakizawa, Shumway
and Taniguchi [39], Savvides, Promponas and Fokianos [52], Fokianos and Promponas [25], Holan and
Ravishanker [31], and also in Euán, Ombao and Ortega [22], who consider clustering time series based
on a total variation distance between spectral densities. A wavelet-based approach can be found in
Vlachos et al. [62].

Clustering and classification methods have also been extended to non-stationary time series. For
example, Sakiyama and Taniguchi [51] use the framework of locally stationary time series (Dahlhaus
[16]) for clustering while Chandler and Polonik [10] use it to develop a shape-based approach discrim-
inant analysis. Another branch of literature focuses on piecewise stationary processes using Smooth
Localized Complex EXponentials (SLEX) transforms – which were introduced by Ombao et al. [47]
– or variations thereof (see, e.g., Huang, Ombao and Stoffer [33], Harvill, Kohli and Ravishanker [29]
for clustering approaches and Böhm et al. [6] for classification of multivariate series).

In contrast to the Euclidean case, the literature on cluster analysis for functional data is less rich.
Several methods have been developed for clustering i.i.d. functional data (Jacques and Preda [36],
Chamroukhi and Nguyen [9], and references therein). A popular technique is to first reduce dimen-
sion by projecting the curves onto a basis of finite dimension and then to apply a standard classical
clustering algorithm such as k-means (see Peng and Müller [49], Abraham et al. [1]). More recently,
Delaigle, Hall and Pham [18] consider clustering the i.i.d. curves from two populations based upon dif-
ferences in mean by applying a weighted k-means algorithm on a carefully chosen univariate projection
of the data. Alternatively, nonparametric methods have been proposed that use specific distances for
functional data (Ferraty and Vieu [23], Ieva et al. [34]) as well as parametric (Bayesian) approaches
that assume the data are drawn from a particular probability distribution (see Jacques and Preda [35],
Heard, Holmes and Stephens [30], among others). Another interesting recent approach that deals with
sparsely clustered i.i.d. functional data is given by Floriello and Vitelli [24].

Despite of the vast amount of literature available on various data structures, existing methods are
inappropriate to cluster possibly non-stationary functional time series. Compared to the i.i.d. case,
the intrinsically infinite nature of the underlying functions is much more complex due to the fact that
the variation in the process is not static as there is serial correlation between the functions. Hence,
a clustering approach must be able to capture the complex within-curves dynamics as well as the
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between-curve dynamics. At the same time, it needs to be efficient to apply because each element of
a functional time series is intrinsically high dimensional. Furthermore, we must take into account the
fact that these dynamics are not necessarily temporally constant. In this article, we address this prob-
lem from several perspectives. We develop a new measure to compare the second order properties of
non-stationary functional time series. This measure is based on the aggregation of Hilbert–Schmidt
differences of the individual time-varying spectral density operators (see van Delft and Eichler [61]).
Under fairly general conditions, the asymptotic properties of the corresponding estimator are derived
and asymptotic normality is established. We then use this methodology for two purposes. Firstly, we
consider this measure and its estimate to develop a new spectral clustering algorithm for functional
time series, which are allowed to be non-stationary and do not require structural modeling assump-
tions such as linearity. Our algorithm is novel in the sense that, not only is it the first of its kind for
exploratory analysis of functional time series, but moreover because – to the best of our knowledge –
spectral clustering has also not yet been considered for Euclidean-valued time series. The underlying
principle of spectral clustering is to reformulate the problem into a graph partitioning problem (see
Figure 3). Geometrical properties of graphs can be conveniently described by the spectral properties
of the corresponding graph Laplacian (see, e.g., Chung [13], Chung and Radcliffe [12], von Luxburg
[63]). Using these properties, we can detect clusters in non-convex regions which classical clustering
techniques may not be able to find. Furthermore, it can be solved efficiently via classical linear algebra
operations. Broadly speaking, one can view spectral clustering as a dimension reduction technique that
enhances the clustering properties before the actual clustering step. We will show that our introduced
measure of similarity provides a meaningful basis for the adjacency matrix underlying the graph Lapla-
cian. Secondly, we use this measure to develop a particularly simple level α-test for the hypothesis of
equality of two time-varying spectral density operators, which uses the quantiles of the standard normal
distribution.

The structure of this paper is as follows. We first introduce necessary notation and background on
the type of processes considered in this paper. We then define a measure of similarity for a pair of
functional time series and derive a consistent estimator to construct an empirical adjacency matrix. In
Section 3, the spectral clustering algorithm is discussed in detail and it is shown that the algorithm
based upon an empirical graph Laplacian – a transformation of the estimated adjacency matrix – is
consistent. In Section 4, we discuss the application of hypothesis testing, whereas in Section 5 we
study the properties of our algorithm in finite samples. The proofs of the main statements are provided
in the Appendix. Several auxiliary results and an illustration of the clustering method by means of an
application to high-resolution meteorological data can be found in the Online Supplement (van Delft
and Dette [60]).

2. A measure of similarity

In this section, we introduce a measure of similarity for functional time series which is appropriate to
use as a basis for a similarity matrix to cluster functional time series.

2.1. Notation

First, let us introduce some necessary notation. For a separable Hilbert space H, we denote the inner
product as 〈·, ·〉 : H × H → C and its induced norm by ‖ · ‖. The Banach space of bounded linear
operators A : H → H with operator norm |||A|||∞ = sup‖x‖≤1 ‖Ax‖ shall be denoted by L(H), the
adjoint of A ∈ L(H) by A†. A ∈ L(H) is called self-adjoint if A = A† and nonnegative definite if
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〈Ax,x〉 ≥ 0 for each x ∈ H. If well-defined, we denote the trace of A ∈ L(H) by Tr(A). A compact
operator A ∈ L(H) belongs to the Schatten class of order 1 ≤ p < ∞, denoted by A ∈ Sp(H), if
|||A|||pp =∑j≥1 s

p
j (A) < ∞, where {sj (A)}j≥1 are the singular values of A. Operators that belong

to the Banach spaces (S1(H), |||·|||1) or (S2(H), |||·|||2) will be referred to as trace-class operators and
Hilbert–Schmidt operators, respectively. We remark in particular that (S2(H), |||·|||2) is a Hilbert space
with the inner product given by 〈A,B〉HS = Tr(AB†) =∑j≥1〈Aej ,Bej 〉 for each A,B ∈ S2(H) and
{ej }j≥1 an orthonormal basis of H. For f,g ∈ H, we define the tensor product f ⊗ g :H⊗H → H as
the bounded linear operator

(f ⊗ g)v = 〈v,g〉f ∀v ∈H.

We consider the Hilbert space H = L2
C
([0,1]) of equivalence classes of square integrable measurable

functions f : [0,1] → C with inner product
∫ 1

0 f (τ)g(τ ) dτ , where the complex conjugate of x ∈ C

is denoted as usual by x. Additionally, we denote HR = L2
R
([0,1]). Since the mapping T : H ⊗H →

S2(H) defined by the linear extension of T (f ⊗ g) = f ⊗ g is an isometric isomorphism, it defines a
Hilbert–Schmidt operator with the kernel in L2

C
([0,1]2) given by (f ⊗ g)(τ, σ ) = f (τ)g(σ ) for each

τ, σ ∈ [0,1] in an L2-sense. We refer to Section S1 of the Online Supplement for further details and
background.

2.2. A measure of similarity for functional time series

The main object of this paper is a collection of d stochastic processes {Xi,t,T }t=1,...,T ;T ∈N i = 1, . . . , d ,
for fixed d , that take values in HR. This is is without loss of generality since the theory holds for any
separable Hilbert space. We tacitly assume that the Xi,t,T are zero-mean random elements defined
on some common probability space (�,B,P) with E‖Xi,t,T ‖2

2 < ∞. We call such processes weakly
stationary if the second order dynamics are invariant under time translations and hence can be described
via a sequence of lag h covariance operators Ch := E(Xt+h ⊗Xt) = E(Xh ⊗X0), ∀t, h ∈ Z, which are
elements of S1(H). In this paper, the second order dynamics are assumed to be well-defined but are
moreover allowed to change over time. Processes of this type fit the framework of locally stationary
functional time series as defined in van Delft and Eichler [61] – which extends the concept of local
stationarity (Dahlhaus [16]) to the function space – and encompasses weakly stationary functional
processes as a subclass. Asymptotic properties of these processes can be described by so-called infill-
asymptotics, such that, as T → ∞, we obtain more and more observations at a local level.

Definition 2.1. A process {Xt,T }t=1,...,T ;T ∈N is called functional locally stationary if, for all rescaled
times u = t/T ∈ [0,1], there exists an HR-valued strictly stationary process {X(u)

t : t ∈ Z} such that∥∥Xt,T − X
(u)
t

∥∥
2 ≤

(∣∣∣∣ t

T
− u

∣∣∣∣+ 1

T

)
P

(u)
t,T a.s. (2.1)

for all 1 ≤ t ≤ T , where {P (u)
t,T }t=1,...,T ;T ∈N is a positive real-valued process such that for some ρ > 0

and C < ∞ the process satisfies E(|P (u)
t,T |ρ) < C for all t and T and uniformly in u ∈ [0,1].

What we will exploit throughout this paper is that the full second order dynamics of the triangular
array {Xt,T }t=1,...,T ;T ∈N are then completely and uniquely characterized by the time-varying spectral
density operator

Fu,ω := 1

2π

∑
h∈Z

Cu,he
−iωh, (2.2)
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Figure 1. Functional time series from 3 different distributions. Each series {Xi,t (τ ) : τ ∈ [0,1]}T
t=1, i = 1, . . . ,9

consists of T = 512 curves on the domain [0,1].

where Cu,h = E(X
(u)
t+h ⊗ X

(u)
t ) is the local lag h covariance operator at time u of the approximating

process {X(u)
t : t ∈ Z}. For processes that satisfy equation (2.1) and

∑
h∈Z |||Cu,h|||p < ∞, (2.2) is a

well-defined nonnegative definite hermitian element of Sp(H) for each u ∈ [0,1], ω ∈ [−π,π]. If the
process is in fact weakly stationary, we can drop the dependence on local time and thus Fu,ω ≡ Fω.
This uniquely characterizing object of a functional time series lends itself naturally as a basis for a
measure of similarity.

Example. We have generated 90 zero-mean functional time series uniformly from three groups (these
are the models I, II, III described in detail in Section 5), which should be clustered according to their
second order properties. Each series consists of T = 512 functions and exemplary we depict 9 series
in Figure 1 (three from each distribution) to visualize the difficulties of this task. The second order
structure of a stationary processes can be captured in Z×HR ×HR in the time domain or [−π,π] ×
H × H in the frequency domain and is hard to inspect visually. This is even more problematic for
non-stationary functional time series. As can be seen, a visual inspection of the curves alone makes
an assessment of the second order properties almost impossible for 6 of them, while 3 of them appear
more obvious to distinguish from the other 6.



474 A. van Delft and H. Dette

More specifically, let F (i1)
u,ω and F (i2)

u,ω denote the time-varying spectral density operator of processes
{Xi1,t,T }t=1,...,T ;T ∈N and {Xi2,t,T }t=1,...,T ;T ∈N, respectively. As a measure of pairwise similarity be-
tween two functional time series we consider

Ai1,i2 :=
∫ 1

0

∫ π

−π
|||F (i1)

u,ω −F (i2)
u,ω |||22 dωdu∫ 1

0

∫ π

−π
|||F (i1)

u,ω |||22 + |||F (i2)
u,ω |||22 dωdu

. (2.3)

Clearly, if this distance is zero then processes {Xi1,t,T }t=1,...,T ;T ∈N and {Xi2,t,T }t=1,...,T ;T ∈N must have
the same second order properties and hence must belong to the same cluster. While other distance met-
rics than the Hilbert–Schmidt distance metric could be considered, distance metrics used in existing
literature on Euclidean-valued data do not necessary lend themselves naturally to be generalized to
infinite dimensional spaces. Furthermore, the embedding of the operators into a Hilbert space is ben-
eficial in our context as it allows us to exploit geometrical properties and notions, both for theory and
computation.

Proposition 2.1. For processes that adhere to Definition 2.1, the distance Ai1,i2 takes values in the
interval [0,1].

Proof. Observe that we can write the numerator as∫ 1

0

∫ π

−π

∣∣∣∣∣∣F (i1)
u,ω

∣∣∣∣∣∣2
2 + ∣∣∣∣∣∣F (i2)

u,ω

∣∣∣∣∣∣2
2 dωdu −

∫ 1

0

∫ π

−π

〈
F (i1)

u,ω ,F (i2)
u,ω

〉
HS −

∫ 1

0

∫ π

−π

〈
F (i2)

u,ω ,F (i1)
u,ω

〉
HS.

The claim therefore follows from an application of the Cauchy Schwarz inequality and from the fact
that the last two terms are nonnegative. For the latter, observe that F (i1)

u,ω and F (i2)
u,ω are Hermitian and

nonnegative definite. Separability of H therefore ensures these have a real-valued discrete spectrum.
More specifically, these operators admit an eigendecomposition with nonnegative eigenvalues, say
{ν(i1)

u,ω,j }j≥1 and {ν(i2)
u,ω,k}k≥1, respectively. The composite operator F (i1)

u,ωF (i2)
u,ω is also a well-defined

element of S1(H) and hence has a finite trace. Using the properties of the Hilbert–Schmidt inner-
product and the tensor product, we find

〈
F (i1)

u,ω ,F (i2)
u,ω

〉
HS = Trace

(
F (i1)

u,ωF (i2)
u,ω

)= ∞∑
j,k=1

ν
(i1)
u,ω,j ν

(i2)
u,ω,k

∣∣〈φ(i2)
u,ω,k, φ

(i1)
u,ω,j

〉∣∣2 ≥ 0,

where {φ(i1)
u,ω,j }j≥1 and {φ(i2)

u,ω,k}k≥1 denote the eigenfunctions of F (i1)
u,ω and F (i2)

u,ω , respectively. �

The local scaling via the denominator is an essential aspect for its usage in a spectral clustering
procedure. Differences in scales can lead spectral clustering to fail. Most similarity graphs rely upon
a global scaling parameter of which the optimal value is difficult to determine and which can highly
affect the clustering performance (see von Luxburg [63]). By accounting for local scales, our method
avoids this issue. We discuss this further in Section 5.

Squared L2-distances are quite popular in statistical inference for time series. In the context of func-
tional data analysis van Delft, Characiejus and Dette [59] recently used an (unweighted) L2-distance to
measure deviations from stationarity. We emphasize however that the measure (2.3) is of a very differ-
ent nature. On the one hand, it does not vanish for stationary time series as it is constructed to compare
the second order structure of two possibly non-stationary functional time series. On the other hand,
and more importantly, it uses a scaling which is of particular importance for the clustering procedure
constructed below. As a consequence, the investigation of the stochastic properties of corresponding
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estimators of (2.3) is by no means trivial (see Appendix A and B and the Online Supplement for more
details).

For the consistent estimation of Ai1,i2 we split the sample into M blocks with N elements inside each
of these blocks so that T = MN = M(T )N(T ) for each T ∈ N, where M ∈N and N is an even number.
M and N correspond to the number of terms used in a Riemann sum approximating the integrals in
(2.3) with respect to du and dω and therefore they have to be reasonable large. The functional discrete
Fourier transform (fDFT) at time point u, is a random function with values in L2

C
([0,1]) defined by

D
u,ω
i := 1√

2πN

N−1∑
s=0

Xi,�uT �−N/2+s+1,T e−iωs. (2.4)

The local periodogram tensor for the i-th time series is given by

I
u,ω
i := D

u,ω
i ⊗ D

u,ω
i , (2.5)

for i = 1, . . . , d . We base our estimator upon a linear combination of the following Hilbert–Schmidt
inner products

Fi1i2 = 1

T

M∑
j=1

�N/2�∑
k=1

〈
I

uj ,ωk

i1
, I

uj ,ωk−1
i2

〉
HS. (2.6)

In particular, a suitable and (symmetric) estimator for the distance (2.3) is given by

Âi1,i2 := Fi1i1 + Fi2i2 − Fi1i2 − Fi2i1

(Fi1i1 + Fi2i2)
. (2.7)

To ease notation, we provide empirical quantities with ·̂. The dependence of these quantities on T is
therefore implicit. We obtain under suitable regularity conditions, which are postponed to Section 4,
the following result.

Theorem 2.1 (consistency). Suppose Assumption 4.1 with m = 8 and Assumption 4.2 hold. Then

Âi1,i2 −Ai1,i2 = Op

(
T −1/2).

We remark that under suitable moment conditions the estimator is moreover asymptotically multi-
variate normal (Theorem 4.1) and therefore lends itself for other statistical applications such as a test
for equality of time-varying spectral density operators. We shall briefly discuss this application together
with more details on the statistic Âi1,i2 in Section 4. In the next section, we define a similarity graph
based upon the measure (2.7) and introduce a spectral clustering algorithm to cluster the functional
time series.

Remark 2.1. The current approach is based on clustering the different series by means of similarity of
the full second order structure, that is, over all time and frequency. However, the result can be shown
to hold true when we restrict this to a given time-frequency band, provided the sample length is split
appropriately (see Assumption 4.2). By replacing the scaling factor in (2.6) with 1/N and dropping
the sum over j , we can moreover obtain a

√
N -consistent estimator at a given time point, that is,

for the measure in (2.3) with the outer integrals removed. This can be shown in spirit of Theorem A.1.
However, in order to make the estimator pointwise consistent in frequency direction, one has to smooth
the local periodogram tensor over a certain frequency band using a kernel smoother which requires an
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Figure 2. Heat map of the value of the estimates Âi,j of Ai,j plotted for all pairs i, j = 1, . . . ,90 in random
order (left); and ordered by cluster (right).

additional tuning parameter (see, e.g., Tavakoli and Panaretos [55], van Delft [58], and references
therein).

Example (continued). For 6 of the 9 functional time series depicted in Figure 1, it is difficult to
visually distinguish the series and their second order properties. This becomes infeasible for all 90
series. However, we can use the measure Â to identify similarities. A heat map of the corresponding
estimates for all 90 time series are displayed in Figure 2(a). As can be seen, the empirical measure
gives the pairs of time series different weights ranging between 0 and 1, but it is difficult to identify
any structure. For the sake comparison, we ordered the times series assuming knowledge of the clusters
in the right part of Figure 2(b). We observe that the similarity measure Â makes the clusters visible.

3. Spectral clustering of functional time series

In this section, we develop a spectral clustering algorithm which consists of a several steps. We start by
translating the problem of clustering d functional time series into k clusters into a graph partitioning
problem using the previously defined similarity measure. Secondly, we construct a spectral embedding
using an empirical graph Laplacian, which is shown to have spectral properties that converge to those
of the population graph Laplacian. We then use the embedded points to cluster the data by means of a
k-means algorithm and subsequently show that the number of misclustered points converges to zero as
T → ∞.

3.1. Construction of the graph

We construct an undirected similarity graph G = (V ,E), where V denotes the set of vertices and E

denotes the set of edges. Denote the set [d] := {1, . . . , d}. To each family of random curves, Xi :=
{Xi,t,T }t,T , i ∈ [d], we relate a node vi ∈ V and describe the similarity between node vi1 and vi2 via
nonnegative weights on the edges. These weights are given by the empirical adjacency matrix which
is defined as the following transformation of the matrix Â= {Âi1,i2 : i1, i2 = 1, . . . , d} in (2.7);

Ŵ = e−Â ∈R
d×d . (3.1)
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Figure 3. Illustration of the map from the space of functional time series (left) into a graph partitioning problem
(right). The first 6 processes of Figure 1 are depicted in the left graph. The right graph gives the corresponding
undirected similarity graph, where node vi corresponds to process i. The value on the edge between node vi1 and

vi2 , i1 �= i2 ∈ {1, . . . ,6} correspond to entry (i1, i2) of the matrix Ŵ in (3.1).

This is illustrated in Figure 3 for the first 6 processes depicted in Figure 1. The clustering problem
then becomes equivalent to partitioning the similarity graph into connected components such that nodes
with pairwise high weights on the edges are put into to the same component while nodes with low
weights are put into different components.

We note that the theory developed in this paper is applicable for any continuous weight function.
However, and as already mentioned below Proposition (2.1), the function (3.1) does not rely explicitly
upon specification of a global scaling parameter. This is an important advantage compared to classical
spectral clustering approaches, where the most common choice for the similarity graph is the classical
Gaussian similarity function, and for which it is well-known the method can be very sensitive to the
global scaling parameter (see, e.g., von Luxburg [63]). It will be demonstrated in Section 5.2 that our
method is robust to the choice of global scaling parameters.

3.2. The spectral embedding

The main ingredient to our algorithm is the empirical graph Laplacian

L̂ = I − D̂−1/2Ŵ D̂−1/2, (3.2)

where I denotes the identity matrix, D̂ = diag({D̂i}di=1) denotes the degree matrix of Ŵ which carries

the degree of vertex vi as its i-th diagonal element, that is, D̂i =∑d
j=1 Ŵi,j . This Laplacian can be

viewed as a perturbed version of the unknown population Laplacian

L = I − D−1/2WD−1/2, (3.3)

where W = e−A is the population adjacency matrix and D is the corresponding degree matrix. Note
that we use a normalized Laplacian instead of the matrix L̃ = D − W . This has several advantages and
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especially shows a better performance if d is large (von Luxburg, Belkin and Bousquet [64]) and can
also be applied to irregular graphs, i.e., graphs of which the vertices have different degrees.

There exists a whole field dedicated to the study of the matrices L and L̃, called spectral graph theory
(see, e.g., Chung [13]) and in the following we briefly summarize the important properties necessary for
our approach. A good summary for statistical purposes can be found in the tutorial of von Luxburg [63].
The matrix L in (3.3) is symmetric and positive-definite and therefore has an eigendecomposition, say
L = U��U with � = diag({λi}di=1) ∈R

d×d
≥0 . In the case where G = (V ,E) is an undirected weighted

graph with nonnegative weights, its spectrum provides information on the connectivity of the graph.
More specifically, 0 is an eigenvalue of the matrix L and its multiplicity, say k, equals the number
of connected components G1, . . . ,Gk in the graph G. Furthermore, the eigenspace of the eigenvalue
0 is spanned by the vectors D1/21Gi

i = 1, . . . , k, where 1Gi
∈ R

d denotes the indicator vector on
component Gi (see, e.g., Chung [13]).

To understand the usefulness of these properties, suppose for a moment that our graph has exactly k

disconnected components where the nodes belonging to different components are infinitely far apart,
that is, have zero weight. If we collect the k eigenvectors that belong to the eigenvalue 0 of the matrix
L and subsequently row-normalize this matrix, we obtain a matrix of indicator vectors

U := [1G1 , . . . ,1Gk
] ∈R

d×k. (3.4)

Per row of U , there will be exactly one nonzero element indicating the component to which it be-
longs to. In practice, one never encounters the ideal situation that the nullspace of the empirical graph
Laplacian is perfectly spanned by (scaled) indicator vectors because the empirical similarity graph,
by construction, consists of only one connected component. Nevertheless, the information about the
structure of k clusters is still completely contained in the eigenvectors that belong to the smallest k

eigenvalues of empirical graph Laplacian L̂. In particular, these eigenvectors provide a relaxation solu-
tion to the Normalized minimal cut problem (Shi and Malik [53]), which has the objective to partition
the graph into k disjoint components by ‘cutting’ it at the edges of which the total sum of normalized
weights (relative to the volume of the partitioning component) is minimized. In order to exploit this
information, we embed the infinite-dimensional processes Xi into the space spanned by the k eigen-
vectors that belong to the k smallest eigenvalues by representing the i-th process by the i-th row of U .
The embedded points then provide a representation of Xi in R

k of which the clustering properties are
enhanced. As a result, a simple algorithm such as k-means can be applied to the embedded points to
identify the clusters.

To be precise, let Û·,1, . . . , Û·,k ∈ R
d denote the row-normalized k eigenvectors of the empirical

graph Laplacian L̂ defined in (3.2) corresponding to the smallest k eigenvalues. Note that the matrix
L̂ is an estimator of the Laplacian (3.3) and shares some of the nice properties of the matrix L. If the
estimator L̂ is consistent (as shown below), one can expect that the k smallest eigenvalues (counted
with their multiplicities) are close to 0. However, since L̂ is a ‘perturbed’ Laplacian, its eigenvectors
corresponding to eigenvalues with multiplicity larger than 1 can only be identified up to an orthogonal
rotation, while those with multiplicity 1 can be identified up to a sign. As explained below, row nor-
malization avoids this additional source of unidentifiability among the eigenvectors corresponding to
the k smallest eigenvalues. These row-normalized eigenvectors can therefore be uniquely identified. In
order to guarantee that the embedding of our data as the rows of the matrix

Û := [Û·,1, . . . , Û·,k] ∈R
d×k, (3.5)

is meaningful for clustering we will show that L̂ is ‘close’ to L measured by a suitable norm such that
the spectral properties of L̂ converge to their population counterparts. The approach that we take to
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establish consistency of the empirical Laplacian as T tends to infinity is based on perturbation theory
comparing the matrices L̂ and L (see also Ng, Jordan and Weiss [46], Rohe, Chatterjee and Yu [50]).
The proofs are technical and rely on several auxiliary results which are relegated to the Appendix.
Using consistency of Â and the symmetry of L, we can show that the distance in operator norm
between L̂ and L converges to zero in probability.

Lemma 3.1. Under the conditions of Theorem 2.1

∀ε > 0, lim
T →∞P

(|||L̂ − L|||∞ > ε
)= 0.

To analyze the concentration of Û , we use a slight modification of the classical Davis–Kahan Sin �

theorem (Stewart and Sun [54]). This theorem provides an upper bound on the sinus of the principal an-
gles between the eigenspaces ÛO – for some orthonormal rotation matrix O ∈R

k×k – and U , in terms
of the spectral grap δ, the dimension of the space k and on the size of the perturbation |||H |||∞. Rather,
Lemma B.1 in the Appendix can be used to bound the Euclidean distance between the unnormalized
empirical eigenvectors Û and their population counterparts U up to rotation. For the row-normalized
matrix Û , we avoid the additional source of unidentifiability caused by the rotation matrix. We derive
the following result.

Lemma 3.2. The matrix Û defined in (3.5) satisfies

‖Û − U‖2 ≤ 4
√

k√
mini ‖Ui,·‖2

2

|||L̂ − L|||∞
λk+1

≤ 4
√

k

√
Cmax

mini Di

|||L̂ − L|||∞
λk+1

where λk+1 is the (k + 1)-th smallest eigenvalue of L and where Cmax = maxi

∑
i1,i2∈Gi

Wi1,i2 . Hence,
under the conditions of Lemma 3.1,

∀ε > 0, lim
T →∞P

(‖Û − U‖2 > ε
)= 0.

These results thus justify to use the rows Û1,·, . . . , Ûd,· of (3.5) to embed the d functional time
series. Each embedded point Ûi,· then represents a process Xi (or node) in k dimensions, where these
k dimensions can be seen as the features. Based on this representation, one can cluster the data using
k-means. This step is analyzed next. We remark that our treatment of the spectral embedding by means
of row-normalized eigenvectors of the graph Laplacian is therefore similar to Ng, Jordan and Weiss
[46], who first investigated the use of a symmetric Laplacian in the context of spectral clustering.

Example (continued). For the example, the eigenvalues in Figure 4(a) indicate the empirical graph
Laplacian has one connected component. This is not surprising as we have a fully connected graph.
The first eigenvector is therefore approximately constant, which can be seen in Figure 4(b), while
the second and third are approximately constant on the clusters. The second eigenvector (Figure 4(c))
allows to separate the first 3 series from the rest, while the third eigenvector indicates to separate the
last three from the first 6 series (Figure 4(d)).

3.3. Clustering the embedded points using k-means

In this section, we analyze the final step where k-means is applied to the embedded points Û1,·, . . .,
Ûd,· ∈ R

k . We show that the k-means algorithm clusters with high probability the data correctly. More
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Figure 4. The spectrum of L̂ and the three row-normalized eigenvectors corresponding to the three smallest
eigenvalues λ̂1 ≤ λ̂2 ≤ λ̂3.

specifically, we derive a non-asymptotic bound on the number of points that are misclustered and show
under regularity conditions that this converges to zero as T → ∞.

The k-means objective aims to partition the d embedded points Û1,·, . . . , Ûd,· ∈ R
k into k clusters

{C1, . . . ,Ck} in such a way that the pairwise squared deviations of points within the same cluster is
minimized. The algorithm thus returns the centroids {c�

1, . . . , c
�
k} from the objective function

min
{c1,...,ck}⊂Rk

∑
i

min
j

‖Ûi,· − cj‖2
2.

The data points Ûi,· and Ûj,· are then put in the same cluster if c�
i = c�

j . More formally, but equivalently,

for Û defined in (3.5) the k-means algorithm should return a matrix C� ∈ R
d×k with at most k unique

rows such that

C� = arg min
C∈M(d,k)

‖Û − C‖2
2. (3.6)

where M(d, k) = {M ∈ R
d×k : M has at most k distinct rows}.

To analyze the algorithm, we need to define what we mean with a point being correctly clustered.
Let C� as in (3.6), that is, the matrix returned from applying the k-means algorithm to Û . Intuitively, a
point Ûi,· is correctly clustered if there is no other row of the population matrix U defined in (3.4) that
is closer to C�

i,· than the i-th row. Using this intuition, we can provide a meaningful definition of the
set of correctly clustered point (Lemma B.2) and hence of its complement set. The next theorem gives
a non-asymptotic bound on the number of misclustered points.

Theorem 3.1. Assume the graph has k components. Then the cardinality of the set of misclustered
points, denoted by |�|, satisfies

|�| ≤ ιk
1

mini ‖Ui,·‖2
2

|||L̂ − L|||2∞
λ2

k+1

≤ ιk
Cmax

mini Di

|||L̂ − L|||2∞
λ2

k+1

(3.7)

for some constant ι > 0 and where Cmax = maxi

∑
i1∈Gi

∑
i2∈Gi

Wi1,i2 denotes the maximum sum of all
entries of any of the components. If the conditions underlying Theorem 2.1 hold, then |�| converges to
zero in probability as T → ∞.

This upper bound implies that the probability of misclustering is affected by various properties of
the (data-induced) similarity graph. Firstly, one can see it is an increasing function of the number
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Figure 5. The embedded points Û[1,·], . . . , Û[90,·] (left) and the result of applying k-means to these points where
the color indicates the cluster the point belongs to (right).

of clusters k. Secondly, it is a decreasing function of the minimum degree. In particular, the second
inequality implies that for an unbalanced graph, as measured by the maximal sum of all entries of
any of the groups relative to the minimal degree mini Di , the probability to miscluster has a less tight
upper bound. In other words, if the graph contains isolated vertices and has many points that are highly
concentrated, we can expect a higher probability to miscluster. Thirdly, it is a decreasing function of
the distance between the zero eigenvalues and the first nonzero eigenvalue λk+1. Finally, it is affected
by the accuracy of L̂ as an estimator for L.

Example (continued). For the example, the embedded points are shown in the left graph of Figure 5.
Applying k-means identifies all clusters exactly, where the colors indicate the cluster the respective
data points belong to. The data have in fact been represented in such an effective way that a simple
k-means algorithm can ‘easily’ identify the clusters.

3.4. The choice of k

So far, we have considered the case where the number of clusters k is known. In the remaining part
of this section we briefly discuss a data driven choice of k. This problem has received much atten-
tion within the clustering literature and a wide range of methods has been developed (see Gordon
[27], Theodoridis and Koutroumbas [56], for overviews) and compared (see Milligan and Cooper [45],
Tibshirani, Walther and Hastie [57], and references therein). Most methods to pick k are formulated in
terms of optimizing a relative criterion. For different choices of k, the quality of the clustering structure
is evaluated according to some measure, such as the intra-cluster dispersion. The number of clusters is
then specified to be the value of k for which this criterion is optimized.

There is however no universally optimal method because the definition of ‘optimal’ number of clus-
ters can highly depend on the application and on the method used to cluster to data. If the data is well
separated and there are clear distinguishable clusters then there are several successful methods that
will correctly detect the underlying clusters. However, in noisy data sets with overlapping clusters, dif-
ferent methods will detect different number of clusters. In the case of spectral clustering, an intuitive
alternative would be to pick the number of clusters k such that the first λ1, . . . , λk eigenvalues of L̂

are small but λk+1 is ‘relatively’ large. This ‘eigengap’ heuristic can be justified through the spectral
properties of the population graph Laplacian and Lemma 3.1. In practice, such approaches are also
known to be very sensitive to the construction of the similarity graph and can quickly fail unless the



482 A. van Delft and H. Dette

data is well separated. Deemed therefore an unsolvable problem, it is not uncommon to apply multiple
criteria and pick the criteria that works best for the particular problem at hand (see Charrad et al. [11],
for an implementation of various criteria).

A thorough development of a new method would be beyond the scope of this paper. In our empirical
study in Section 5, we investigate the performance of available methods to choose k for our particular
algorithm. Additionally, we consider two variations of the eigengap heuristic each with a different
interpretation of a ‘relatively large’ eigengap.

4. Testing for equality

Besides from the application of the similarity measure as a basis for spectral clustering of functional
time series, a well-defined limiting distribution allows it to be meaningful in a variety of statistical
applications and in particular for the construction of hypothesis tests. The problem to detect similarities
or to compare time series is of interest in a wide range of scientific fields and for classical time series
a variety of methods have been proposed (see references in the introduction and examples therein).
In case of function-valued time series, the literature is less well developed. Horváth, Hušková and
Rice [32] proposed a procedure to test the hypothesis that two sets of functional data are identical
and independently distributed using the sum of L2-distances of the sequence of correlation functions.
Tavakoli and Panaretos [55] instead proposed a test between two stationary functional time series based
upon the Hilbert–Schmidt norm of the difference of the sample spectral density operators restricted to
a Hilbert–Schmidt space of finite dimension. Bootstrap-based methods to test for equality of mean
functions or covariance operators are proposed in Paparoditis and Sapatinas [48] and, more recently,
Leucht, Paporoditis and Sapatinas [44] discussed a test for the equality of spectral density operators
for linear functional time series.

To the best of our knowledge, no procedure is available that allows to test for similarities between
functional time series of which the second order structure is allowed to be time-dependent. In this
section, we develop such a test using the previously defined similarity measure Ai1,i2 in (2.3). For the
sake of brevity, we restrict ourselves to the case of two functional time series and consider for a fixed
pair (i1, i2) (with i1 �= i2) the hypothesis

H0 : F (i1)
u,ω ≡F (i2)

u,ω a.e. on [−π,π] × [0,1] (4.1)

versus

Ha : F (i1)
u,ω �=F (i2)

u,ω on a subset of [−π,π] × [0,1] of positive Lebesgue measure. (4.2)

The similarity measure in (2.3) lends itself quite naturally to test this hypothesis, that is, we can equiv-
alently formulate the hypothesis as

H0 :Ai1,i2 = 0 versus Ha : Ai1,i2 > 0. (4.3)

By Theorem 2.1, the statistic Âi1,i2 defined in (2.7) is a consistent estimator of the normalized distance
Ai1,i2 . Therefore, it is reasonable to reject the null hypothesis for large values of the estimator Âi1,i2 .
In order to derive the distributional properties of Âi1,i2 , we require the following assumptions on the
functional processes {Xi,t,T : t ∈ Z}T ∈N, i = 1, . . . , d .

Assumption 4.1. Assume {Xi,t,T : t ∈ Z}T ∈N, i ∈ [d], are d locally stationary zero-mean stochastic
processes taking values in HR and, for even m ∈N, let κm;t1,...,tm−1 : L2([0,1]m/2) → L2([0,1]m/2) be



A similarity measure for second order properties of non-stationary functional time series 483

a positive operator independent of T such that, for all j = 1, . . . ,m − 1 and some � ∈ N,∑
t1,...,tm−1∈Z

(
1 + |tj |�

)|||κm;t1,...,tm−1 |||1 < ∞. (4.4)

Let us denote

Y
(T )
i,t = Xi,t,T − X

(t/T )
i,t and Y

(u,v)
i,t = X

(u)
i,t − X

(v)
i,t

(u − v)
(4.5)

for T ≥ 1, 1 ≤ t ≤ T and u,v ∈ [0,1] such that u �= v. Suppose furthermore that the m-th order joint
cumulant tensors satisfy

(i) |||Cum(Xi1,t1,T , . . . ,Xim−1,tm−1,T , Y
(T )
im,tm

)|||1 ≤ 1
T

|||κm;t1−tm,...,tm−1−tm |||1;

(ii) |||Cum(X
(u1)
i1,t1

, . . . ,X
(um−1)

im−1,tm−1
, Y

(um,v)
im,tm

)|||1 ≤ |||κm;t1−tm,...,tm−1−tm |||1;

(iii) supu |||Cum(X
(u)
i1,t1

, . . . ,X
(u)
im−1,tm−1

,X
(u)
im,tm

)|||1 ≤ |||κm;t1−tm,...,tm−1−tm |||1;

(iv) supu ||| ∂�

∂u� Cum(X
(u)
i1,t1

, . . . ,X
(u)
im−1,tm−1

,X
(u)
im,tm

)|||1 ≤ |||κm;t1−tm,...,tm−1−tm |||1.

We remark that if the process is in fact stationary, the dependence on localized time u drops. Fur-
thermore, these assumptions are intricately related to the existence of moments (see Lemma S2.1 of
the online supplement). As explained in Section 2, the estimator requires splitting the sample T ∈ N

as T = N(T )M(T ), where N(T ) defines the resolution in frequency of the local fDFT and M(T )

controls the number of non-overlapping local fDFT’s in (2.6). Since these correspond to the number of
terms used in a Riemann sum approximating the integrals with respect to du and dω they have to be
sufficiently large. We assume

Assumption 4.2. M → ∞, N → ∞ as T → ∞, such that

N/M → ∞ and N/M3 → 0.

The number of elements in the blocks grows therefore must grow faster than the number of blocks,
but slower than the cube number of blocks. Observe that the uncertainty principle implies that accuracy
of estimation is limited by the reciprocal relationship that exists between time and frequency resolution.
A high degree of nonstationarity would benefit from more blocks to resolve the position of the energy
dispersion which, for a fixed length of data, means less data is available to resolve the peak in frequency
direction, and vice versa. Smoothness of the mapping (u,ω) �→ Fu,ω in both directions affects the
sensitivity to the specified parameter. The choice of the number of blocks is carefully discussed in van
Delft, Characiejus and Dette [59], who used localized integrated periodogram operators as a basis for
a stationarity test, and showed that the resulting procedure is fairly robust with respect to the choice of
M and N . The following result gives the asymptotic distribution of Âi1,i2 .

Theorem 4.1. Suppose that Assumption 4.1 with m ≥ 1 and Assumption 4.2 hold. Then,{√
T (Âi1,i2 −Ai1,i2)

}
{i1,i2∈[d]} →N (0,�) as T → ∞,

where 0 ∈Rd and � is a positive definite element of Rd×d .

Under the null hypothesis, the asymptotic variance reduces to a very succinct form in case the pro-
cesses are moreover independent.
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Theorem 4.2. Suppose that Assumption 4.1 with m ≥ 1 and Assumption 4.2 hold and suppose that for
i1 �= i2 ∈ [d] the functional time series {Xi1,t,T } and {Xi2,t,T } are independent. Then, under the null

hypothesis H0 : F i1
u,ω ≡F i2

u,ω, we have
√

T Âi1,i2 →N
(
0, σ 2

H0

)
as T → ∞,

where the asymptotic variance is given by

σ 2
H0

= 4π

∫ π

−π

∫ 1
0 |||F i1

u,ω|||42 dudω

(
∫ π

−π

∫ 1
0 |||F i1

u,ω|||22 dudω)2
‘. (4.6)

Let I
uj ,ωk
p = (I

uj ,ωk

i1
+ I

uj ,ωk

i2
)/2 be the pooled periodogram operator evaluated at uj and ωk . The

asymptotic variance under the null can be estimated by

σ̂ 2
H0

= 2

3T

M∑
j=1

�N/2�∑
k=1

(〈
I

uj ,ωk
p , I

uj ,ωk−1
p

〉
HS

)2/( 2

T

M∑
j=1

�N/2�∑
k=1

〈
I

uj ,ωk
p , I

uj ,ωk−1
p

〉
HS

)2

. (4.7)

Lemma 4.1. Under the conditions of Theorem 4.2, the estimator defined in (4.7) satisfies

σ̂ 2
H0

p→ σ 2
H0

(T → ∞).

Consequently, a test for the hypothesis (4.1) can be based upon rejecting the null if

Âi1,i2 >
σ̂ 2

H0√
T

z1−α, (4.8)

where z1−α denotes the (1 − α)-quantile of the standard normal distribution. It follows from Theo-
rem 4.2 that this test has asymptotic level α under the null hypothesis Ai1,i2 = 0. Moreover, under the
alternative Ai1,i2 > 0, we obtain from Theorem 4.1 that the left hand side of (4.8) converges to the
positive constant Ai1,i2 in probability while the right hand side converges to 0. Therefore, the test is
also consistent. The finite sample performance of this test is studied in a simulation study at the end of
Section 5.

Remark 4.1. We emphasize that Theorem 4.2 still holds in case the series are dependent but the
expression of the asymptotic variance is slightly more involved. It can however still be estimated similar
in spirit to (4.7). See Appendix A for more details.

5. Simulation study

An application of the new clustering method to high-resolution meteorological data can be found in
the Online Supplement. In this section, we study the performance in finite samples by means of a
simulation study in a mixture of stationary and non-stationary models. We vary the number of clusters
k and the number of observations per cluster n as well as the models we include. Furthermore, we
investigate the algorithm both in the scenario of the number of true clusters being known and in the
scenario that this number is unknown. In the latter case, we obtain an additional source of variability
as the number of clusters needs to be estimated from the data. Finally, we consider the effect on the
simulations of applying a scaling factor η to the similarity matrix. Before we discuss how to determine
k, we start by introducing the simulation setting and data-generating processes.
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5.1. Simulation setting

We simulate functional autoregressive and functional moving average via their basis representation as
follows. A p-th order (time-varying) functional autoregressive process (tvFAR(p)), {Xt, t ∈ Z} can be
defined as

Xt =
p∑

t ′=1

At,t ′(Xt−t ′) + εt , (5.1)

where At,1, . . . ,At,p are time-varying autoregressive operators on HR and {εt }t∈Z is a sequence of
mean zero innovations taking values in HR. To generate such processes, let {ψl}l≥1 be a Fourier basis
of HR. By means of a basis expansion, one can show that (see, e.g., Aue and van Delft [4]) the first
Lmax coefficients of (5.1) are generated using the p-th order vector autoregressive, VAR(p), process

X̃t =
p∑

t ′=1

Ãt,t ′X̃t−t ′ + ε̃t ,

where X̃t := (〈Xt,ψ1〉, . . . , 〈Xt,ψLmax〉)� is the vector of basis coefficients and the (l, l′)-th entry of
Ãt,j is given by 〈At,j (ψl),ψl′ 〉 and ε̃t := (〈εt ,ψ1〉, . . . , 〈εt ,ψLmax〉)T . The entries of the matrix Ãt,j

are generated as N(0, ν
(t,j)

l,l′ ) with ν
(t,j)

l,l′ specified below. To ensure stationarity or existence of a causal
solution the norms κt,j of At,j are required to satisfy certain conditions (see Bosq [7] for stationary and
van Delft and Eichler [61] for local stationary functional time series, respectively). We also consider
the following time-varying functional moving-average process or order 1:

Xt,T = B1(εt ) − 1

2

(
1 + b cos

(
2π

t

T

))
B2(εt−1), (5.2)

where B1 and B2 are bounded linear operators on L2([0,1]) and b ∈ R. Similarly as above, we use a
basis expansion and generate data from the model

X̃t,T = B̃1ε̃t − 1

2

(
1 + b cos

(
2π

t

T

))
B̃2ε̃t−1,

where X̃t,T = (〈Xt,T ,ψ1〉, . . . , 〈Xt,T ,ψLmax〉)T is the vector of basis coefficients, the (l, l′)-th entry of
B̃1 and B̃2 are given by 〈B1(ψl),ψl′ 〉 and 〈B2(ψl),ψl′ 〉, respectively and ε̃t is as above.

We consider the following data generating processes:

(I) The functional i.i.d. process {εt }Tt=1 with coefficient variances E〈εt ,ψl〉2 = exp(−(l − 1)/10);

(II) The FAR(2) {Xt }Tt=1 with operators specified by variances ν
(1)

l,l′ = exp(−l − l′) and ν
(2)

l,l′ =
1/(l + l′3/2) with norms κ1 = 0.75 and κ2 = −0.4 and innovations as in (I);

(III) The MA(1) with b = 0 and operators specified by variances ν
(1)

l,l′ = exp(−l − l′);
(IV) The tvFAR(1) with operator specified by variances ν

(t,1)

l,l′ = ν
(1)

l,l′ = exp(−l − l′) and norm κ1 =
0.8, and innovations are as in (I) but with a multiplicative time-varying variance

σ 2(t) = cos

(
1

2
+ cos

(
2πt

T

)
+ 0.3 sin

(
2πt

T

))
;

(V) The tvFAR(2) with operators as in (IV), but with time-varying norm κ1,t = 1.8 cos(1.5 −
cos( 4πt

T
)) and constant norm κ2 = −0.81 and innovations as in (I);
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(VI) A FAR(2) with structural break;

• for t ≤ 3T/8, the operators are as in (II) with norms κ1 = 0.7 and κ2 = 0.2, with innova-
tions as in (I);

• for t > 3T/8, the operators are as in (II) with norms κ1 = 0 and κ2 = −0.2, with innova-
tions as in (I) but with coefficient variances Var(〈εt ,ψl〉) = 2 exp((l − 1)/10).

Our simulation consists of the following balanced settings:

Setting 1: k = 3 with models I, II and III, where the replications per cluster are taken n = 10 and
n = 30;

Setting 2: k = 3 with models IV, V and VI, where the replications per cluster are taken n = 10 and
n = 30;

Setting 3: k = 6 with models I–VI, where the replications per cluster are taken n = 10 and n = 30
and n = 50.

In order to investigate the performance in case of imbalanced scenarios, we investigate two addi-
tional settings where the replications per cluster are specified via a permutation of the six models
π : (I, II, III, IV,V ,VI) → (I, II, III, IV,V ,VI) and take the replications per cluster in each setting
as:

Setting 4: The replications per cluster are taken as nπ = (20,20,30,30,40,40) with permutation
π1 · · ·π6 = 143625;

Setting 5: The replications per cluster are taken as nπi
= �20 × 1.25(πi−1)�, i = 1, . . . ,6, with per-

mutation π1 · · ·π6 = 263415.

Per set-up, we run 500 simulations for both T = 256 with M = 8 and T = 512 with M = 16.
For the choice of k we investigated a subset of well-known classical criteria that have been demon-

strated to work well in aforementioned comparison studies on classical clustering: the Silhouette Index
(Kaufman and Rousseeuw [41]), the CH Index (Caliński and Harabasz [8]), the Hartigan Index (Har-
tigan [28]) and the KL Index (Krzanowski and Lai [42]). We respectively refer to these in the tables
as ‘sil’,‘ch’, ‘hartigan’ and ‘kl’. Because these cannot be applied to the spectral embedding directly,
the respective criteria were constructed using the similarity graph Ŵ . Additionally, we considered two
variations of the eigengap heuristic each with a different interpretation of ‘relatively large’ eigengap.
Let 0 = λ̂1 ≤ · · · ≤ λ̂d be the estimated eigenvalues of L̂ in ascending order

1. ‘Relgap’: define the relative contribution of the k-th eigenvalue as

ρk = (λ̂k − λ̂k−1)

λ̂k

.

Then the rule is to pick k� as the largest k for which the k-th contribution is still larger than a
threshold value that is allowed to depend on the scaling parameter η of the graph (see (5.3) below)

k� = max
k

{
k ∈ {1, . . . , kmax} : ρk ≤ 0.01η

}
2. ‘sd1gap’: let

σ(λ̂[−1:k]) = 1

d − k

d∑
j=k+1

(
λ̂j − 1

d − k

d∑
j=k+1

λ̂j

)2
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be the squared deviation from the mean excluding the first k eigenvalues. Then the rule is to pick
k� as the largest k for which the k-th gap is still larger than σ(λ̂[−1:k]), that is,

k� = max
k

{
k ∈ {1, . . . , kmax} : λ̂k+1 − λ̂k ≥ σ(λ̂[−1:k])

}
For all criteria, the maximum numbers of clusters to consider was set to kmax = 15.

5.2. Simulation results

Table 1 provides the average k chosen according to the different criteria in each setting, while the
corresponding percentage of misclustered points averaged over simulations are given in Table 2. From
the first row for T = 256 and T = 512 of Table 2, we find that our algorithm does very well if the
true k is known; it has a very low percentage of misclustered points across the different settings. Based
upon the percentage of misclustered points, the most difficult model is clearly setting 3 with T = 256
and n = 10. This finding is in accordance with the upper bound in Theorem 3.1, which is less tight for
larger k and for lower estimation precision of L̂.

If the true k is not known, we obtain higher percentages of misclustered points where the percentages
appear to be caused by the selection method for k. As can be seen from Table 1, the CH Index does best
in determining the true number of clusters, while the KL index does worst when the number of true
clusters increases. Both the Silhouette Index and the Hartigan Index tend to pick k more conservatively.
The two rules based upon the estimated eigenvalues of the graph Laplacian – ‘Relgap’ and ‘sd1gap’
– appear competitive with the CH index, except in setting 2 for n = 10. We observe a clear overall
improvement as both n and T increase. It appears in particular that the eigenvalue-based methods suffer

Table 1. Chosen k per method averaged over simulations (standard deviation in brackets)

Setting 1 Setting 2 Setting 3

method n = 10 n = 30 n = 10 n = 30 n = 10 n = 30 n = 50

T = 256

true k 3 3 3 3 6 6 6

sil 2 (0) 2 (0) 3 (0.1) 3 (0) 5.3 (0.8) 5.2 (0.5) 5.2 (0.4)
ch 3 (0.5) 3.0 (0.2) 3.1 (0.2) 3 (0) 6.4 (0.6) 6.1 (0.3) 6.0 (0.2)
kl 2.2 (1.4) 2.0 (0.7) 3.1 (1) 3.2 (1.4) 10.4 (3.1) 11.1 (3.5) 10.8 (3.6)
hart 3.0 (0.2) 3 (0) 3 (0) 3 (0) 4.8 (0.9) 4.9 (0.7) 4.9 (0.6)
Relgap 3.0 (0.2) 3 (0) 3.9 (1.1) 3.1 (0.3) 5.1 (0.4) 5.2 (0.4) 5.2 (0.4)
sd1gap 3.1 (0.3) 3.0 (0.2) 3.8 (1.2) 3.6 (1) 5.7 (0.9) 6.2 (0.7) 6.4 (0.9)

T = 512

true k 3 3 3 3 6 6 6

sil 2 (0) 2 (0) 3 (0) 3 (0) 5.9 (0.4) 6.0 (0.2) 6.0 (0.1)
ch 3.1 (0.4) 3 (0) 3 (0) 3 (0) 6.5 (0.7) 6.2 (0.4) 6.1 (0.3)
kl 2.4 (1.7) 2.2 (1) 3.1 (0.7) 3.4 (2.1) 9.9 (3.3) 10.5 (3.5) 9.5 (3.5)
hart 3 (0) 3 (0) 3 (0) 3 (0) 5.3 (0.7) 5.4 (0.6) 5.4 (0.5)
Relgap 3 (0) 3 (0) 3.6 (0.8) 3.0 (0.2) 5.5 (0.6) 5.9 (0.3) 6.0 (0.1)
sd1gap 3.1 (0.4) 3.0 (0.1) 3.9 (1.2) 3.4 (0.8) 6.4 (0.9) 6.3 (0.6) 6.2 (0.5)
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Table 2. Percentage of misclustered points of the spectral clustering algorithm averaged over simulations (stan-
dard deviation in brackets)

Setting 1 Setting 2 Setting 3

method n = 10 n = 30 n = 10 n = 30 n = 10 n = 30 n = 50

T = 256

true 0.1 (0.6) 0.1 (0.2) 0.0 (0.1) 0 (0) 3.2 (6.6) 0.3 (1.1) 0.1 (0.2)

sil 33.3 (0) 33.3 (0) 0.03 (0.4) 0 (0) 13.2 (10.2) 13.0 (8.2) 13.9 (6.9)
ch 4.7 (10.4) 1.4 (6.6) 0.5 (2.6) 0 (0) 5.1 (6.8) 0.8 (2.2) 0.3 (1.1)
kl 33.3 (6.4) 33.5 (2.4) 0.6 (6) 1.45 (9.4) 25.6 (14.7) 25.9 (15.6) 22.6 (14.4)
hart 0.6 (2.6) 0.1 (0.2) 0.0 (0.1) 0 (0) 19.8 (14.6) 18.9 (12.5) 19.0 (10.7)
Relgap 0.6 (2.4) 0.1 (0.2) 10.8 (11.9) 1.3 (4.2) 15.75 (5.6) 14.5 (6.3) 13.7 (6.7)
sd1gap 1.3 (4) 0.5 (2.3) 9.1 (12.5) 6.6 (10.9) 12.33 (7.5) 3.0 (5.5) 2.8 (5.2)

T = 512

true 0 (0) 0 (0) 0 (0) 0 (0) 0.23 (1.7) 0.01 (0.1) 0 (0)

sil 33.3 (0) 33.3 (0) 0.03 (0.4) 0 (0) 2.7 (5.8) 0.8 (3.5) 0.4 (2.4)
ch 1.7 (4.6) 0 (0) 0.4 (2.1) 0 (0) 3.4 (4.4) 1.1 (2.6) 0.6 (2)
kl 28.0 (14.5) 30.6 (10.2) 1.7 (10.3) 2.6 (12.5) 20.9 (16.8) 21.4 (16.3) 15.6 (14.4)
hart 0 (0) 0 (0) 0 (0) 0 (0) 12.3 (12.1) 10.0 (9.4) 9.6 (8.7)
Relgap 0.02 (0.4) 0 (0) 6.9 (9.7) 0.4 (2.2) 8.7 (8.4) 2 (5.4) 0.2 (1.7)
sd1gap 1.1 (4.4) 0.1 (1.4) 10.2 (12.6) 5.0 (9.7) 4.2 (6) 1.9 (3.9) 1.4 (3.4)

from more variation when n and T are small. This is intuitive, since the choice of k directly depends
upon the estimation precision of the spectral properties, which can be expected to be more sensitive to
estimation error for small T and n (see also Theorem 3.1). From the results in Table 2, we find the CH
index to perform best in combination with our algorithm. It is most stable across the different settings
and has the lowest percentage of misclustered points, which appears to be a direct consequence of the
fact that this index estimated the true number of clusters best and that our algorithm exhibits lower
error conditional upon knowing the correct number of clusters.

The results for the two imbalanced settings, setting 4 and 5, are given in Table 3. Due to space
constraints, we only report the results for the true number of clusters and for the CH Index. As expected
from the discussion below Theorem 3.1, we observe that a larger imbalance in replications per cluster
leads in principal to a higher percentage of misclustered points. In the very imbalanced scenario of
setting 5, where the replications per cluster vary according to an exponential growth rate, the percentage
is considerably higher for T = 256 compared to setting 3 and 4 but the error clearly drops fast as the
sample size increases; the percentages do not appear much worse than in the balanced scenario with
n = 10 for T = 512.

Finally, we investigate the robustness of our method with respect to scaling. As explained in Sec-
tion 2, we apply a local scaling to our measure in order to avoid the well-known sensitivity problem to
the specification of a global scaling parameter. Indeed, methods of which the similarity graph relies on
such a global parameter can lead the spectral clustering to fail; it is usually not clear how to specify this
parameter and differences in scales might be amplified. Scaling pairwise ensures the similarity graph
does not have the latter issue. To verify the robustness, we consider our clustering algorithm as ex-
plained in Section 3 but with an additional scaling parameter η > 0 in the construction of the adjacency
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Table 3. Percentage of misclustered points and specified k for various values of η

averaged over simulations (standard deviation in brackets) for imbalanced scenarios

% of misclustered points average chosen k

method Setting 4 Setting 5 Setting 4 Setting 5

T = 256

true 0.8 (3) 16.6 (7.1) 6 6
ch 1.0 (3.3) 16.0 (7.2) 6.0 (0.1) 6.0 (0.3)

T = 512

true 0.1 (0.8) 3.2 (6.7) 6 6
ch 0.2 (1.4) 3.3 (6.7) 6.0 (0.2) 6.0(0.2)

Table 4. Percentage of misclustered points and specified k for various values of η averaged over simulations
(standard deviation in brackets) for T = 512, n = 30

% of misclustered points average chosen k

meth. η = 0.5 η = 2.5 η = 5 η = 10 η = 0.5 η = 2.5 η = 5 η = 10

Setting 1: T = 512, n = 30

true 0 (0) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)

sil 33.3 (0) 33.3 (0) 2.1 (8.2) 0 (0) 2 (0) 2 (0) 2 (0) 2.9 (0.2)
ch 0.0 (0.6) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)
kl 33.0 (5.1) 2.8 (9.3) 0 (0) 0.3 (4.3) 2.1 (0.9) 2.2 (1) 2.9 (0.3) 3 (0)
hart 0 (0) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)
Relgap 0 (0) 0.0 (0.5) 0.0 (0.5) 0.0 (0.5) 3 (0) 3 (0) 3 (0) 3 (0)
sd1gap 0.1 (0.8) 0.9 (3.5) 1.1 (3.9) 0.6 (2.7) 3 (0.1) 3.0 (0.1) 3.1 (0.3) 3.1 (0.3)

Setting 2: T = 512, n = 30

true 0 (0) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)

sil 0 (0) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)
ch 0 (0) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)
kl 0.4 (4.6) 2.4 (11.2) 1.6 (9.4) 0.4 (4.6) 3.1 (0.7) 3.4 (2.1) 3.4 (2) 3.3 (1.7)
hart 0 (0) 0 (0) 0 (0) 0 (0) 3 (0) 3 (0) 3 (0) 3 (0)
Relgap 0.1 (1.2) 2.3 (5.8) 6.7 (9.3) 7.1 (8.5) 3.0 (0.1) 3.0 (0.2) 3.2 (0.5) 3.6 (0.9)
sd1gap 4.8 (9.5) 5.5 (9.7) 4.6 (8.7) 2.9 (5.9) 3.4 (0.8) 3.4 (0.8) 3.5 (0.9) 3.4 (0.8)

Setting 3: T = 512, n = 30

true 0.0 (0.1) 0 (0) 0.0 (0.9) 0.1 (0.9) 6 (0) 6 (0) 6 (0) 6 (0)

sil 1.0 (3.9) 0.0 (0.7) 0.0 (0.9) 0.1 (0.9) 6.0 (0.2) 6.0 (0.2) 6 (0) 6 (0)
ch 1.7 (3.2) 0.3 (1.4) 0.0 (0.9) 0.1 (0.9) 6.2 (0.5) 6.2 (0.4) 6.0 (0.2) 6 (0)
kl 22.7 (16.4) 13.9 (15.5) 7.4 (12.2) 4.6 (10.5) 10.5 (3.4) 10.5 (3.5) 9.2 (3.6) 7.8 (3.1)
hart 11.5 (8) 7.2 (13.5) 0.0 (0.9) 0.1 (0.9) 5.3 (0.5) 5.4 (0.6) 5.6 (0.8) 6 (0)
Relgap 7.2 (8.3) 0.6 (2.2) 3.2 (3.9) 3.9 (4.4) 5.6 (0.5) 5.9 (0.3) 6.1 (0.3) 6.6 (0.8)
sd1gap 1.4 (3.4) 4.5 (5.1) 6.0 (5.6) 4.2 (5.1) 6.2 (0.5) 6.3 (0.6) 6.8 (1) 7.2 (1.3)
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matrix. That is, we consider the simulations but with

Ŵ = e−ηÂ ∈R
d×d, (5.3)

where η = {0.5,2.5,5,10}. We remark that for any η > 0 the theory derived in Section 3 remains true
(see also Appendix B). The results in Table 2 correspond to the choice η = 1 and in Table 4 we present
the four alternative choices. Because of space constraints, we only report these for the specification
T = 512 and n = 30. The results for the other cases show a very similar picture and are available upon
request. It can be observed from the first row for each of the settings that the outcomes are fairly similar
when k is known. Variation again therefore seems mostly caused by the way k is chosen, where we find
the Silhouette index is sensitive as well as the KL index, but also the eigengap heuristics show some
sensitivity for η = 10. Overall, we may conclude that our method seems capable to detect the correct
number of clusters, despite the highly complicated nature of the data. The numerical study moreover
suggests that the CH index should be used to find the numbers of clusters if these are unknown (see
also our data application in the Online Supplement).

5.3. Testing for equality

We conclude this section with a small investigation of the proposed asymptotic α-level test in (4.8) for
the hypothesis of equality of (possibly) time-varying spectral density operators. To investigate the finite
samples properties of the test, we performed a simulation study which includes the previously defined
stationary and non-stationary models with parameter specifications for T = 256 and T = 512 with
blocks fixed to M = 16. The pairwise rejection percentages at the 5% and 10% over 1000 replications
are provided in Table 5 and Table 6, where the diagonal elements correspond to the null hypothesis. We
observe a good approximation of the nominal level, albeit with model II–IV a bit undersized. Given the
relatively small value of N , it is reasonable to believe that this is caused by finite sample bias present
in the pooled variance estimator and that, for these models, more data is required in order to reflect the
asymptotic independence of the local fDFT at lagged frequencies. The off-diagonal shows good power
overall, with both model I and IV appearing more difficult to distinguish from model II. Power of
the test clearly improves with increasing sample size. Regardless of the second order properties being
time-varying or not, it appears therefore that the quantiles of the normal distribution are well-captured
for the various models if H0 is true, while good power is observed under HA.

Appendix A: Distributional properties of the similarity measure

Due to space constraints, we provide here only the main steps of the proof. Auxiliary statements and
necessary background are relegated to the Online Supplement. In the following, for random variables
Y0, Y1, Y2, Y3 let cumm0,m1,m2,m3(Y0, Y1, Y2, Y3) denote the joint cumulant

cum(Y0, . . . , Y0︸ ︷︷ ︸
m0 times

, Y1, . . . , Y1︸ ︷︷ ︸
m1 times

, Y2, . . . , Y2︸ ︷︷ ︸
m2 times

, Y3, . . . , Y3︸ ︷︷ ︸
m3 times

),

where 0 ≤ mi ≤ m, i = 0,1,2,3 s.t.
∑3

i=0 mi = m. Using the results in Section S2, we can derive the
order of the higher order joint cumulants of elements defined in (2.6).
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Table 5. Rejection percentages of the pairwise equality test (4.8) at the 10% (top); and 5% level for T = 256

I II III IV V VI

I 11.4 74.2 100 97.9 99.9 100
II 74.2 8.3 100 75.4 95.9 100
III 100 100 5.7 100 100 100
IV 97.9 75.4 100 10.3 97.7 100
V 99.9 95.9 100 97.7 10.5 99.8
VI 100 100 100 100 99.8 11.1

I II III IV V VI

I 5.6 61.3 100 95.0 99.6 100
II 61.3 3.3 100 61.7 91.3 99.9
III 100 100 1.9 99.8 100 100
IV 95.0 61.7 99.8 3.9 95.4 100
V 99.6 91.3 100 95.4 3.9 99.4
VI 100 99.9 100 100 99.4 5.2

Table 6. Rejection percentages of the pairwise equality test (4.8) at the 10% (top); and 5% level for T = 512

I II III IV V VI

I 10.8 96.6 100 100 100 100
II 96.6 8.0 100 96.1 99.9 100
III 100 100 6.0 100 100 100
IV 100 96.1 100 8.5 100 100
V 100 99.9 100 100 9.8 100
VI 100 100 100 100 100 10.0

I II III IV V VI

I 5.4 93.1 100 99.9 100 100
II 93.1 3.2 100 92.0 99.7 100
III 100 100 2.1 100 100 100
IV 99.9 92.0 100 3.2 99.9 100
V 100 99.7 100 99.9 3.6 100
VI 100 100 100 100 100 4.7

Theorem A.1. If Assumption 4.1 is satisfied then for finite m

T m/2 cumm0,m1,m2,m3(F̂i1,i2, F̂i3,i4, F̂i5,i6, F̂i7,i8)

= 1

T m/2

�N/2�∑
k1,...,km=1

M∑
j1,...,jm=1

Tr

( ∑
P=P1∪···∪PG

SP

( G⊗
g=1

cum
(
D

ujp ,ωkp

ip
|p ∈ Pg

)))= O
(
T 1−m/2),

uniformly in 0 ≤ mi ≤ m s.t.
∑3

i=0 mi = m.
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Proof of Theorem A.1. For a fixed partition P = {P1, . . . ,PG}, let the cardinality of set Pg be denoted
by |Pg| = Cg . By (S2.3) of Corollary S2.1 and Lemma S2.3 an upperbound of (S2.2) is given by

O

(
T −m/2

�N/2�∑
k1,...,km=1

M∑
j1,...,jm=1

G∏
g=1

1

NCg/2−1
M

−δ{∃p1,p2∈Pg :|jp1 −jp2 |>1}
)

. (A.1)

Similar to Lemma 4.3 of van Delft, Characiejus and Dette [59], we can show inductively that the
indecomposability of the array (S2.2) and the behavior of the joint cumulants of the local fDFT’s at
different midpoints imply this is at most of order

O
(
Nm/2M−m/2EmMN−2m+G

)= O
(
T 1−m/2NG−m−1).

Thus, partitions of size G ≤ m + 1 will vanish as T → ∞. For G ≥ m + 2, indecomposability of the
array requires to stay on the frequency manifold (see equation (S2.4) of Corollary S2.1) and there-
fore imposes additional restrictions in frequency direction. It can be shown that for a partition of size
G = m + r1 + 1 with r1 ≥ 1 of the array (S2.2) only partitions with at least r1 restrictions in frequency
direction are indecomposable if m > 2, while if m = 2 there must be at least 1 restriction in frequency
direction. Consequently, the joint cumulant is at most of order O(T 1−n/2Nm+r1+1−m−1N−r1) =
O(T 1−n/2). �

Proof of Theorem 2.1. Using Theorem S2.1 with n = 1 implies

EFi1,i2 = 1

T

�N/2�∑
k=1

M∑
j=1

Tr
(
E
[
D

uj1 ,ωk1
i1

⊗ D
uj1 ,−ωk1
i1

⊗ D
uj1 ,−ωk1−1

i2
⊗ D

uj1 ,ωk1−1

i2

])
.

Rewriting this expectation in cumulant tensors, we get

EFi1,i2 = 1

T

�N/2�∑
k=1

M∑
j=1

Tr(S1234 Cum
((

D
uj1 ,ωk1
i1

,D
uj1 ,−ωk1
i1

,D
uj1 ,−ωk1−1

i2
,D

uj1 ,ωk1−1

i2

))

+ 1

T

�N/2�∑
k=1

M∑
j=1

Tr
(
S1234

(
Cum

(
D

uj1 ,ωk1
i1

,D
uj1 ,−ωk1
i1

)⊗ Cum
(
D

uj1 ,−ωk1−1

i2
,D

uj1 ,ωk1−1

i2

)))

+ 1

T

�N/2�∑
k=1

M∑
j=1

Tr
(
S1324

(
Cum

(
D

uj1 ,ωk1
i1

,D
uj1 ,−ωk1−1

i2

)⊗ Cum
(
D

uj1 ,−ωk1
i1

,D
uj1 ,ωk1−1

i2

)))

+ 1

T

�N/2�∑
k=1

M∑
j=1

Tr
(
S1423

(
Cum

(
D

uj1 ,ωk1
i1

,D
uj1 ,ωk1−1

i2

)⊗ Cum
(
D

uj1 ,−ωk1
i1

,D
uj1 ,−ωk1−1

i2

)))
.

By Corollary S2.1 and Lemma S2.2, we thus find

EFi1,i2 = 1

T

�N/2�∑
k=1

M∑
j=1

〈
F i1

uj ,ωk
,F i2

uj ,ωk−1

〉
HS + O

(
1

M2

)
+ O

(
1

N

)
.
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Hence,

lim
N,M→∞EFi1,i2 = 1

2π

∫ π

0

∫ 1

0

〈
F i1

u,ω,F i2
u,ω

〉
HS dudω = 1

4π

∫ π

−π

∫ 1

0

〈
F i1

u,ω,F i2
u,ω

〉
HS dudω.

Secondly, we have for any i1, i2, i3, i4 ∈ {1, . . . , d}
T Cov(Fi1,i2,Fi3,i4) = T Cum(Fi1,i2,Fi3,i4)

Hence, if Assumption 4.1 is satisfied with m = 8, Theorem A.1 implies this term is of order O(1). sum-
marizing, we find Fi1,i1 , Fi2,i2 , Fi1,i2 and Fi2,i1 are asymptotically unbiased and jointly convergence in
probability. The continuous mapping theorem establishes then that Âi1,i2 is a

√
T -consistent estimator

of Ai1,i2 for any i1, i2,∈ {1 . . . , d}. �

Proof of Theorem 4.1. If Assumption 4.1 holds for all moments, then Theorem A.1, yields that for
m > 2

T m/2 cumm0,m1,m2,m3(Fi1,i2,Fi3,i4,Fi5,i6,Fi7,i8) → 0 as T → ∞,

from which asymptotic joint normality of Fi1,i2 , Fi3,i4 , Fi5,i6 , Fi7,i8 follows, i.e., we have

√
T

⎛⎜⎜⎝
4πFi1,i1 −E(Fi1,i1)

4πFi2,i2 −E(Fi2,i2)

4πFi1,i2 −E(Fi1,i2)

4πFi2,i1 −E(Fi1,i1)

⎞⎟⎟⎠−→N (0,�),

where

� =

⎛⎜⎜⎝
Var(Fi1,i1) Cov(Fi1,i1,Fi2,i2) Cov(Fi1,i1,Fi1,i2) Cov(Fi1,i1,Fi2,i1)

Cov(Fi1,i1,Fi2,i2) Var(Fi2,i2) Cov(Fi2,i2,Fi1,i2) Cov(Fi2,i2,Fi2,i1)

Cov(Fi1,i1,Fi1,i2) Cov(Fi2,i2,Fi1,i2) Var(Fi1,i2) Cov(Fi1,i2,Fi2,i1)

Cov(Fi1,i1,Fi2,i1) Cov(Fi2,i2,Fi2,i1) Cov(Fi1,i2,Fi2,i1) Var(Fi2,i1)

⎞⎟⎟⎠ . (A.2)

To derive from this the distribution of Âi1,i2 , consider the function g :R4 →R

g(x1, x2, x3, x4) = 1 − x3

(x1 + x2)
− x4

(x1 + x2)

of which the gradient is given by

∇g�(x) =

⎛⎜⎜⎝
x3(x1 + x2)

−2 + x4(x1 + x2)
−2

x3(x1 + x2)
−2 + x4(x1 + x2)

−2

−(x1 + x2)
−1

−(x1 + x2)
−1

⎞⎟⎟⎠= 1

(x1 + x2)

⎛⎜⎜⎜⎜⎜⎝
x3 + x4

(x1 + x2)
x3 + x4

(x1 + x2)−1
−1

⎞⎟⎟⎟⎟⎟⎠ .

Then since we can write

Âi1,i2 = g(Fi1,i1,Fi2,i2,Fi1,i2 ,Fi2,i1) = 1 − Fi1,i2

(Fi1,i1 + Fi2,i2)
− Fi2,i1

(Fi1,i1 + Fi2,i2)
,
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the Delta method implies, that as T → ∞,{√
T (Âi1,i2 −Ai1,i2)

}
{i1,i2∈[d]} → N

(
0,∇g�(x)�∇g(x)

)
, (A.3)

where for fixed i1, i2 ∈ {1, . . . , d},

x =

⎛⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

4π

∫ π

−π

∫ 1

0

〈
F i1

u,ω,F i1
u,ω

〉
HS dudω

1

4π

∫ π

−π

∫ 1

0

〈
F i2

u,ω,F i2
u,ω

〉
HS dudω

1

4π

∫ π

−π

∫ 1

0

〈
F i1

u,ω,F i2
u,ω

〉
HS dudω

1

4π

∫ π

−π

∫ 1

0

〈
F i2

u,ω,F i1
u,ω

〉
HS dudω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.4)

and � is defined in (A.2). Derivation of the covariance structure is tedious and relegated to the Online
Supplement. �

Appendix B: Analysis of the spectral clustering algorithm

B.1. Consistency of L̂ for L

Proof of Lemma 3.1. From Theorem 2.1, we have that Â ∈R
d×d is a

√
T -consistent estimator of the

distance measure A. The continuous mapping theorem therefore implies that Ŵ is consistent, that is,
A simple calculation shows that, as T → ∞,

P
(‖Ŵ − W‖∞ ≥ ε

)≤ P

(
d max

i,j
|Ŵi,j − Wi,j | ≥ ε

)
→ 0. (B.1)

Similarly,

P

(
max

i
|Di − D̂i | ≥ ε

)
= P

(
max

i

∣∣∣∣∑
j

Ŵi,j −
∑
j

Ŵi,j

∣∣∣∣≥ ε

)

≤ P

(
d max

i,j
|Ŵi,j − Wi,j | ≥ ε

)
→ 0. (B.2)

We use the decomposition

L̂ − L = D̂−1/2Ŵ D̂−1/2 − D−1/2ŴD−1/2 + D−1/2ŴD−1/2 − D−1/2WD−1/2

= (D̂−1/2 − D−1/2)Ŵ D̂−1/2 + D−1/2Ŵ
(
D̂−1/2 − D−1/2)+ D−1/2(Ŵ − W)D−1/2

= (I − D−1/2D̂1/2)D̂−1/2Ŵ D̂−1/2 + (D−1/2D̂1/2)D̂−1/2Ŵ D̂−1/2(I − D̂1/2D−1/2)
+ D−1/2(Ŵ − W)D−1/2
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and bound these terms separately. Note that as D and D̂ are degree matrices, they are diagonal with
nonnegative entries. We therefore have

∣∣∣∣∣∣I − D−1/2D̂1/2
∣∣∣∣∣∣∞ = max

i

∣∣∣∣1 −
√

D̂i

Di

∣∣∣∣≤ max
i

∣∣∣∣1 − D̂i

Di

∣∣∣∣≤ max
i

|Di − D̂i |
mini Di

.

The triangle inequality gives

∣∣∣∣∣∣D−1/2D̂1/2
∣∣∣∣∣∣∞ = ∣∣∣∣∣∣I − (I − D−1/2D̂1/2)∣∣∣∣∣∣∞ ≤ 1 + max

i

|Di − D̂i |
mini Di

.

Additionally, since D̂i = ∑
j Ŵi,j it follows that |||D̂−1/2ŴD̂−1/2|||∞ = 1. Furthermore,

|||D−1/2(Ŵ − W)D−1/2|||∞ ≤ 1
mini Di

|||Ŵ − W |||∞. Therefore,

|||L̂ − L|||∞ ≤ maxi |Di − D̂i |
mini Di

(
2 + maxi |Di − D̂i |

mini Di

)
+ 1

mini Di

|||Ŵ − W |||∞.

Consequently, (B.1) and (B.2) imply

∀ε > 0, lim
T →∞P

(|||L̂ − L|||∞ > ε
)= 0. �

B.2. Concentration of Û

We shall use Lemma 3.1 to analyze the concentration of Û . We first need the following auxiliary
lemma.

Lemma B.1. Let S ⊂ R an interval. Let A,H ∈ Rd×d be two symmetric matrices and let Â = A + H

denote a perturbed version of A. Denote Q̂ and Q be orthornormal matrices of dimension R
d×k whose

column spaces equal the eigenspace of Â and A, respectively. Then there exists an orthonormal rotation
matrix O ∈ R

k×k such that

‖Q̂ − QO‖2 ≤
√

2k|||H |||∞
δ

where δ = min{|λ − s| : λ eigenvalue of A,λ /∈ S, s ∈ S}.
Proof of Lemma B.1. Using the singular value decomposition, we can find orthonormal matrices P1
and P2 such that the singular values of Q�Q̂ are exactly the cosines of the principal angles �, that
is, we can find P1 and P2 such that Q�Q̂ = P1�P �

2 where the diagonal of � contains the principal
angles between the column space of Q̂ and Q. Define the rotation matrix O as O = P1P

�
2 . Then, by

definition of the Frobenius norm, the orthonormality of Q̂ and Q

‖Q̂ − QO‖2
2 = Tr

(
(Q̂ − QO)�(Q̂ − QO)

)= 2k − 2 Tr
(
OQ�Q̂

)
= 2k − 2 Tr(cos�) = 2k − 2

k∑
i=1

cos θi

≤ 2k − 2
k∑

i=1

cos(θ)2
i = 2k − 2k + 2

k∑
i=1

sin(θ)2
i = 2‖ sin�‖2

2.



496 A. van Delft and H. Dette

The classical Davis–Kahan theorem (Davis and Kahan [17]) then yields

‖Q̂ − QO‖2
2 ≤ 2‖ sin�‖2

2 ≤ 2
‖H‖2

2

δ2
.

Finally, since ‖H‖2
2 ≤ k maxj |λH

j |2 = k|||H |||2∞, we obtain

‖Q̂ − QO‖2 ≤ √
2k

|||H |||∞
δ

. �

Corollary B.1. There exists an orthonormal rotation matrix O ∈ R
k×k such that

‖Û − UO‖2 ≤ 2
√

k|||L̂ − L|||∞
λk+1

where λk+1 is the (k + 1)-th smallest eigenvalue of L.

Proof of Corollary B.1. By construction, L̂ and L are symmetric and it is clear that we can view
L̂ as a perturbed version of L. Additionally, the columns of Û and U contain the eigenvectors that
correspond to the k smallest eigenvalues of L̂ and L, respectively. It follows therefore directly from
Lemma B.1 that

‖Û − UO‖2 ≤ 2
√

k|||L̂ − L|||∞
δ

≤ 2
√

k|||L̂ − L|||∞
λk+1

.

The last inequality is a consequence of the following observation. The matrix L has exactly k zero
eigenvalues. Hence if we take S = [0, ε) for arbitray small ε > 0 or actually the singleton S = {0}, then
the first k eigenvalues of L all belong to S. The smallest distance between eigenvalues that belong to S
and that do not belong to S is thus given by |0 − λk+1|. Hence, δ = λk+1. �

Proof of Lemma 3.2. We note that by definition we have Ûi,· = Ûi,·
‖Ûi,·‖2

and Ui,· = (UO)i,·
‖Ui,·‖2

. Therefore

standard linear algebra shows

‖Û − U‖2
2 =

d∑
i=1

∥∥∥∥ Ûi,·
‖Ûi,·‖2

− (UO)i,·
‖Ui,·‖2

∥∥∥∥2

2

≤ 2
d∑

i=1

∥∥∥∥ Ûi,·(‖Ui,·‖2 − ‖Ûi,·‖2)

‖Ûi,·‖2‖Ui,·‖2

∥∥∥∥2

2
+
∥∥∥∥ Ûi,· − (UO)i,·

‖Ui,·‖2

∥∥∥∥2

2

= 2
d∑

i=1

|‖Ui,·‖2 − ‖Ûi,·‖2|2
‖Ui,·‖2

2

+ ‖Ûi,· − (UO)i,·‖2
2

‖Ui,·‖2
2

≤ 4
d∑

i=1

‖Ûi,· − (UO)i,·‖2
2

‖Ui,·‖2
2

≤ 4

mini ‖Ui,·‖2
2

∥∥Û − (UO)
∥∥2

2 = 4

mini Di

∥∥Û − (UO)
∥∥2

2.
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The last equality follows since U collects eigenvectors of the form
√

D1Cl
for l = 1, . . . , k, where

1Cl
∈ R

d denotes the indicator vector that equals 1 if point i belongs to component Cl . This means in
particular that U has exactly one nonzero entry per row. A trivial lower bound on mini Di can be given
by

min
i

‖Ui,·‖2
2 ≥ mini Di

Cmax

where Cmax = maxi

∑
i1∈Gi

∑
i2∈Gi

Wi1,i2 . Hence, using Corollary B.1 and Lemma 3.1

‖Û − U‖2 ≤ 4
√

k

√
Cmax

mini Di

‖L̂ − L‖∞
λk+1

→ 0 as T → ∞. �

B.3. Analyzing the k-means step

Using the properties of the row-normalized eigenvectors of L, we proceed by providing a definition of
the set of points that are clustered correctly and then derive a bound on the complement set (see also
Rohe, Chatterjee and Yu [50], Lei and Rinaldo [43]).

Lemma B.2. Assume the graph has k components. Let C� defined in (3.6) and U defined in (3.4).
Then, the set of correctly clustered points is defined as the complement of the set

� =
{
i : ∥∥C�

i,· − Ui,·
∥∥

2 ≥ 1√
2

}
. (B.3)

Proof of Lemma B.2. By construction and using the properties of the Laplacian, U has exactly one 1
per row. All other entries in that row are zero. In total, there are k distinct rows which are orthonormal.
Therefore, ‖Ui,· −Uj,·‖2 = 0 if the embedded points i and j belong to the same component and ‖Ui,· −
Uj,·‖2 = √

2 if they belong to different components. At the same time, ‖C�
i,· − C�

j,·‖2 = 0 if and only
if the algorithm has clustered i, j in the same cluster. So let, i and j belong to �c. Minkowski’s
inequality yields

‖Ui,· − Uj,·‖2 ≤ ∥∥Ui,· − C�
i,·
∥∥

2 + ∥∥C�
i,· − C�

j,·
∥∥

2 + ∥∥C�
j,· − Uj,·

∥∥
2 ≤ 2

1√
2

= √
2

if and only if i and j are clustered in the same cluster. Otherwise, we have a contradiction. Additionally,
since C� ∈M(d, k) clusters cannot be split. Hence, points in �c must be correctly clustered �

Proof of Theorem 3.1. First note that U ∈M(d, k) since it has exactly k distinct rows. Consequently,

arg min
C∈M(d,k)

‖Û − C‖2
2 = ∥∥Û − C�

∥∥2
2 ≤ ‖Û − U‖2

2,

|�| =
∑
i∈�

1 ≤
∑
i∈�

2
∥∥C�

i,· − Ui,·
∥∥2

2 ≤ 2
∥∥C� − U

∥∥2
2

≤ 4
(∥∥C� − Û

∥∥2
2 + ‖Û − U‖2

2

)
= 8‖Û − U‖2

2.

The result now follows from Lemma 3.2. �
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