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In this paper, we obtain uniform and non-uniform bounds on the Kolmogorov distance in the normal approximation
for Jack deformations of the character ratio, by using Stein’s method and zero-bias couplings. Our uniform bound
comes very close to that conjectured by Fulman (J. Combin. Theory Ser. A 108 (2004) 275–296). As a by-product
of the proof of the non-uniform bound, we obtain a Rosenthal-type inequality for zero-bias couplings.
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1. Introduction and main results

Let G be a finite group, and G∗ the set of all the irreducible representations of G. Then

∑
π∈G∗

dim(π)2 = |G|,

where dim(π) denotes the dimension of the irreducible representation π (Sagan [28], Proposi-
tion 1.10.1). The Plancherel measure is a probability measure on G∗ defined by

P
({π}) = dim(π)2

|G| .

Let n be a positive integer. An important special case is the finite symmetric group Sn. For this group,
the irreducible representations are parametrized by partitions λ of n, and the dimension of the rep-
resentation associated to λ is known to be equal to the number of standard λ-tableaux (Sagan [28],
Theorem 2.6.5). We also denote the number of standard λ-tableaux by dim(λ), and write a partition
λ = (λ1, λ2, . . . , λm) of n simply λ � n. The hooklength of a box s in the partition λ is defined as
h(s) = a(s) + l(s) + 1. Here a(s) denotes the number of boxes in the same row of s and to the right
of s (the “arm” of s) and l(s) denotes the number of boxes in the same column of s and below s (the
“leg” of s). The Plancherel measure in this case is

P
({λ}) = dim(λ)2

n! .
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By the hook formula (see, e.g., Sagan [28]) which states that

dim(λ) = n!∏
s∈λ h(s)

,

where the product is over boxes in the partition and h(s) is the hooklength of a box s, we also have

P
({λ}) = n!∏

s∈λ h2(s)
. (1.1)

A random partition λ chosen by the Plancherel measure has interesting connections to the Gaussian
unitary ensemble (GUE) of random matrix theory. We recall that the joint probability density of the
eigenvalues x1 ≥ x2 ≥ · · · ≥ xn of the Gaussian orthogonal ensemble (GOE), Gaussian unitary ensem-
ble (GUE), and Gaussian symplectic ensemble (GSE) is given by

1

Zβ

exp

(
−x2

1 + · · · + x2
n

2

) ∏
1≤i<j≤n

(xi − xj )
β (1.2)

with β = 1,2,4, respectively. Here Zβ is a normalization constant. Let π be a permutation chosen
from the uniform measure of the symmetric group Sn and l(π) the length of the longest increasing
subsequence in π . Baik, Deift and Johansson [1] proved that (l(π) − 2

√
n)/n1/6 converges to the

Tracy–Widom distribution as n → ∞. It follows from the Robinson–Schensted–Knuth correspondence
(see Sagan [28]) that the first row of a random partition distributed according to the Plancherel measure
has the same distribution as the longest increasing subsequence of a random permutation distributed
according to the uniform measure. So the result of Baik, Deift and Johansson [1] says that a suitably
normalized length of the first row of a random partition distributed according to the Plancherel measure
converges to the Tracy–Widom distribution. Borodin, Okounkov and Olshanski [2], Johansson [21]
proved that the joint distribution of suitably normalized lengths of the rows of a random partition
distributed according to the Plancherel measure converges to the joint distribution of the eigenvalues
x1 ≥ x2 ≥ · · · ≥ xn of a n × n GUE matrix.

Jackα measure is an extension of the Plancherel measure. For α > 0, the Jackα measure is a prob-
ability measure on the set of all partitions of a positive integer n, which chooses a partition λ with
probability

Pα

({λ}) = αnn!∏
s∈λ(αa(s) + l(s) + 1)(αa(s) + l(s) + α)

,

where the product is over all boxes in the partition. For example, the partition

λ =
� � �
� �
�

of 6 has Jackα measure

720α3

(3α + 2)(2α + 3)(α + 2)2(2α + 1)2
.

We notice that the Jack measure with parameter α = 1 agrees the Plancherel measure of the sym-
metric group since it coincides with (1.1). It is mentioned in Matsumoto [26] that for any positive real
number β > 0, the Jackα measure with α = 2/β is the counterpart of the Gaussian β-ensemble (GβE)
with the probability density function proportional to (1.2).
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Let λ be a partition of n chosen from the Plancherel measure of the symmetric group Sn, and χλ(12)

the character of the irreducible representation associated to λ evaluated on the transposition (12). Char-
acters of the irreducible representations of a symmetric group are of interest in the literature because
they play central roles in representation theory and other fields of mathematics such as random walks
(Diaconis and Shahshahani [8]) and the moduli space of curves (Eskin and Okounkov [11]). The quan-
tity χλ(12)/dim(λ), which is a normalization of χλ(12), is called a character ratio. As λ is distributed
according to the Plancherel measure, χλ(12) is a random variable.

In Kerov [23], it is stated that √(
n
2

)
χλ(12)

dim(λ)
(1.3)

is asymptotically normal with mean 0 and variance 1 as n → ∞. A proof of Kerov’s central limit
theorem can be found in Hora [18], which uses the method of moments and combinatorics. More
recently, a proof in Śniady [30] uses the genus expansion of random matrix theory, and another in Hora
and Obata [19] uses quantum probability.

By a formula due to Frobenius [12] (see also Fulman [14]), we have

χλ(12)

dim(λ)
= 1(

n
2

) ∑
i

((
λi

2

)
−

(
λ′

i

2

))
. (1.4)

Now, for α > 0, the random variable we will study in this paper is

Wn,α = Wn,α(λ) =
∑

i

(
α
(
λi

2

) − (λ′
i

2

))
√

α
(
n
2

) , (1.5)

where λ is chosen from the Jackα measure on partitions of a positive integer n, λi is the length of the
i-th row of λ and λ′

i is the length of the i-th column of λ. By (1.4), Wn,α coincides with (1.3) when
α = 1. Therefore, the value Wn,α is regarded as a Jack deformation of the character ratio. Moreover, as
remarked by Fulman [13], when α = 2, Wn,2 is the value of a spherical function corresponding to the
Gelfand pair (S2n,H2n), where H2n is the hyperoctahedral group of size 2nn!.

Normally approximation for Wn,α has been studied by Fulman [13,14], Shao and Su [29], and Ful-
man and Goldstein [15] by using Stein’s method (see, e.g., Stein [31]). In Fulman [13], the author
proved that for any fixed α ≥ 1,

sup
x∈R

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤ Cα

n1/4
, (1.6)

where Cα is a constant depending only on α, �(x) = 1√
2π

∫ x

−∞ exp(−t2/2)dt is the distribution func-
tion of the standard normal distribution.

The bound Cαn−1/4 was later improved in Fulman [14] to Cαn−1/2 using an inductive approach to
Stein’s method. We note that in all these results, α > 0 is fixed, but we do not know how Cα depends
on α. An explicit constant is obtained by Shao and Su [29] only when α = 1. More precisely, when
α = 1, Shao and Su [29] obtained the rate 761n−1/2 by using Stein’s method for exchangeable pairs.
More recently, Dołęga and Féray [9] proved the Berry–Esseen bound for the multivariate case with rate
Cαn−1/4, and Dołęga and Śniady [10] proved a general multivariate central limit theorem for the case
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where α = α(n) varying with n, satisfying

−√
α + 1/

√
α√

n
= g1 + g2√

n
+ o

(
1√
n

)
,

where g1 and g2 are constants.
Fulman [13] conjectured that for general α ≥ 1, the correct bound is a universal constant multiplied

by max{ 1√
n
,

√
α

n
}. While this bound was conjectured for the Kolmogorov distance in (1.6), using Stein’s

method and zero-bias couplings, Fulman and Goldstein [15] proved that it is indeed the correct bound
for the Wasserstein distance for Wn,α . By the result in Fulman and Goldstein [15], the central limit
theorem for Wn,α holds for α = α(n) varying with n as long as

√
α/n → 0. As observed by Fulman

[13], this is necessary for Wn,α to be asymptotically normal. The bound conjectured by Fulman [13] for
the Kolmogorov distance remains unsolved as bounds on the Kolmogorov distance are usually harder
to obtain than bounds on the Wasserstein distance. This paper is an attempt to prove the conjecture of
Fulman [13] for the Kolmogorov distance. We use Stein’s method and zero-bias couplings to obtain
both uniform and non-uniform error bounds on the Kolmogorov distance for Wn,α . We have obtained
a uniform error bound which comes very close to that conjectured by Fulman [13]. Besides, we have
obtained a very small constant. As a by-product of the proof of the non-uniform bound, we obtain a
Rosenthal-type inequality for zero-bias couplings.

Throughout this paper, Z denotes the standard normal random variable and �(x) = 1√
2π

×∫ x

−∞ exp(−t2/2)dt its distribution function. For a positive number x, logx denotes the natural log-
arithm of x, and �x� denotes the greatest integer number that is less than or equal to x. For a set S, the
indicator function of S is denoted by 1(S) and the cardinality of S denoted by |S|. For p ≥ 1 and a ran-
dom variable X, (E|X|p)1/p is denoted by ‖X‖p . The symbol Cp denotes a generic positive constant
bounded by Bp for some constant B which can be different for each appearance. We denote Jackα

measure by Pα .

Theorem 1.1. Let n ≥ 3 be an integer. Let α > 0 and Wn,α be as in (1.5). Then

sup
x∈R

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤ 8.2 max

{
1√
n
,

max{√α,1/
√

α} logn

n

}
.

Remark 1.2. If log2 n
n

≤ α ≤ n

log2 n
, then the bound in Theorem 1.1 is 8.2√

n
. For α ≥ 1, the bound in

Theorem 1.1 is 8.2 max{ 1√
n
,

√
α logn

n
}, which is very close to that conjectured by Fulman [13].

We prove Theorem 1.1 by using Stein’s method for zero bias couplings. Non-uniform bounds on
the Kolmogorov distance in the normal approximation for independent random variables using Stein’s
method were first investigated by Chen and Shao [5]. Stein’s method has also been used to study
non-uniform bounds on the Kolmogorov distance (Chen and Shao [6]) and concentration inequalities
(Chatterjee and Dey [3]) for dependent random variables. The method developed in this paper also
allows us to obtain a non-uniform bound on the Kolmogorov distance, which we state in the following
theorem.

Theorem 1.3. Let n ≥ 3 be an integer. Let p ≥ 2, 1/n2 < α < n2 and Wn,α be as in (1.5). Then for all
x ∈R, we have

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤ Cp

1 + |x|p
(

p2

logp

)p

max

{
1√
n
,

max{√α,1/
√

α} logn

n

}
.
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Remark 1.4. If α ≥ n2, then, as shown by Fulman [13], the random variables Wn,α are no longer
asymptotically normal as n,α → ∞. However, we can still derive an upper bound for the tail proba-
bility Pα(|Wn,α| ≥ x). Indeed, for α ≥ n2, n ≥ 3, and p ≥ 2, it will be shown in the Appendix that

E|Wn,α|p ≤ Cp

(
p2

logp

)p(√
α

n

)p−2

, (1.7)

so that, by Markov’s inequality,

Pα

(|Wn,α| ≥ x
) ≤ E(1 + |Wn,α|p)

1 + xp
≤ Cp

1 + xp

(
p2

logp

)p(√
α

n

)p−2

for all x ≥ 0.

2. A Rosenthal-type inequality for zero-bias couplings

It was shown in Goldstein and Reinert [17] that for any mean zero random variable W with positive
finite variance σ 2, there exists a random variable W ∗ which satisfies

EWf (W) = σ 2
Ef ′(W ∗) (2.1)

for all absolutely continuous f with E|Wf (W)| < ∞. The random variable W ∗ and its distribution are
called W -zero biased. Goldstein and Reinert [17] (see also Proposition 2.1 of Chen, Goldstein and Shao
[4]) showed that the distribution of W ∗ is absolutely continuous with the density g(x) = E[W1(W >

x)]/σ 2.
In this section, we prove a Rosenthal-type inequality for zero-bias couplings, which we state as a

proposition below. We will show later that this proposition can be applied to obtain the Rosenthal
inequality for sums of independent random variables. The use of a Rosenthal-type inequality is crucial
for obtaining a non-uniform bound on the Kolmogorov distance.

Proposition 2.1. Let W be a random variable with mean zero and variance σ 2 > 0 and let W ∗ be
W -zero biased. Assume that W and W ∗ are defined on the same probability space. Let T = W ∗ − W .
Then for every p ≥ 2,

E|W |p ≤ κp

(
σp + σ 2

E|T |p−2), (2.2)

where

κp = (log 8)3

196

(
7p

4 logp

)p

.

Proof. Let

f (x) =
{

xp−1 if x ≥ 0,

−(−x)p−1 if x < 0.
(2.3)

Then f ′(x) = (p − 1)|x|p−2 and xf (x) = |x|p .
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If 2 ≤ p ≤ 4, then

E|W |p = EWf (W) = σ 2
Ef ′(W + T )

= σ 2(p − 1)E|W + T |p−2

≤ σ 2(p − 1)max
{
1,2p−3}(

E|W |p−2 +E|T |p−2)
≤ σ 2(p − 1)max

{
1,2p−3}(σp−2 +E|T |p−2)

= (p − 1)max
{
1,2p−3}(σp + σ 2

E|T |p−2). (2.4)

Elementary calculus shows that

(p − 1)max
{
1,2p−3} ≤ (log 8)3

196

(
7p

4 logp

)p

for all 2 ≤ p ≤ 4. Therefore, from (2.4), we see that (2.2) holds for all 2 ≤ p ≤ 4.
If p > 4, by Jensen’s inequality, we have for all 0 < θ < 1,

E|W |p = EWf (W) = σ 2
Ef ′(W + T )

= σ 2(p − 1)E|W + T |p−2

≤ σ 2(p − 1)

(
θE

( |W |
θ

)p−2

+ (1 − θ)E

( |T |
1 − θ

)p−2)

= σ 2(p − 1)

(
E|W |p−2

θp−3
+ E|T |p−2

(1 − θ)p−3

)
. (2.5)

By using the following inequality

xαy1−α ≤ x + y for all 0 < α < 1, x ≥ 0, y ≥ 0, (2.6)

we have

E
(
σ 2|T |p−4) = E

((
σp−2) 2

p−2
(|T |p−2) p−4

p−2
)

≤ E
(
σp−2 + |T |p−2)

= σp−2 +E|T |p−2. (2.7)

For the case where 4 < p ≤ 6, (2.4) and (2.7) yield

E|W |p−2 ≤ (p − 3)max
{
1,2p−5}(σp−2 + σ 2

E|T |p−4)
≤ (p − 3)max

{
1,2p−5}(2σp−2 +E|T |p−2). (2.8)

By letting θ := θ1 = 1/2, we have from (2.5) that

E|W |p ≤ σ 2(p − 1)2p−3(
E|W |p−2 +E|T |p−2). (2.9)

Combining (2.9) and (2.8), we obtain

E|W |p ≤ (p − 1)(p − 3)2p−2 max
{
1,2p−5}(σp + σ 2

E|T |p−2). (2.10)
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Numerical calculations show that

(p − 1)(p − 3)2p−2 max
{
1,2p−5} ≤ (log 8)3

196

(
7p

4 logp

)p

for all 4 < p ≤ 6. Therefore, from (2.10), we see that (2.2) holds in this case.
For the case where 6 < p ≤ 8, (2.7) and (2.10) yield

E|W |p−2 ≤ (p − 3)(p − 5)2p−4 max
{
1,2p−7}(2σp−2 +E|T |p−2). (2.11)

By letting θ := θ2 = 2/3, we have from (2.5) that

E|W |p ≤ σ 2(p − 1)

(
3

2

)p−3(
E|W |p−2 + 2p−3

E|T |p−2). (2.12)

Combining (2.11) and (2.12), we obtain

E|W |p ≤ (p − 1)(p − 3)(p − 5)3p−3 max
{
1,2p−7}(σp + σ 2

E|T |p−2). (2.13)

Numerical calculations also show that

(p − 1)(p − 3)(p − 5)3p−3 max
{
1,2p−7} ≤ (log 8)3

196

(
7p

4 logp

)p

for 6 < p ≤ 8. Therefore, from (2.13), we see that (2.2) holds in this case.
For the case where p > 8, we prove the result by induction. Assume that (2.2) holds with p replaced

by p − 2. By (2.7), we have

E|W |p−2 ≤ κp−2
(
σp−2 + σ 2

E|T |p−4)
≤ κp−2

(
2σp−2 +E|T |p−2). (2.14)

Combining (2.5) and (2.14), we obtain

E|W |p ≤ (p − 1)

(
2κp−2

θp−3
σp +

(
κp−2

θp−3
+ 1

(1 − θ)p−3

)
σ 2

E|T |p−2
)

. (2.15)

The proof is completed if we can choose 0 < θ < 1 such that

2(p − 1)κp−2

θp−3
≤ κp and

p − 1

(1 − θ)p−3
≤ κp

2
. (2.16)

By Lemma A.1 in the Appendix, we have

κp ≥ 8

(
p − 1

log(p − 1)

)2

κp−2. (2.17)

Let

θ = θ(p) :=
(

log2(p − 1)

4(p − 1)

)1/(p−3)

.

Then 0 < θ < 1 and the first half of (2.16) holds by (2.17). By Lemma A.2 (in the Appendix), the
second half of (2.16) holds.

The proof of the proposition is completed. �
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We now present a simple proof of the Rosenthal inequality (Rosenthal [27]) for sums of mean zero
independent random variables by using Proposition 2.1. If {Xi,1 ≤ i ≤ n} are independent symmetric
random variables, Johnson, Schechtman and Zinn [22] proved that∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ Kp

logp
max

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

,

(
n∑

i=1

‖Xi‖p
p

)1/p}
for all p ≥ 2, (2.18)

where K is a universal constant satisfying 1
e
√

2
≤ K ≤ 7.35. Johnson, Schechtman and Zinn [22] also

proved that the rate p/ logp is optimal. Latała [25] showed that (2.18) holds with K approximately
equal to 2e (see Theorem 2 and Corollary 3 ibidem). In Ibragimov and Sharakhmetov [20], the authors
proved that the constant K in (2.18) is approximated by 1/e when p is large enough (see the corollary
in page 295 ibidem). However, we are not aware of any result in the literature (even with assuming the
symmetry of the random variables) which proved (2.18) holds with K ≤ 3.5 for all p ≥ 2 as given in
the following proposition.

Proposition 2.2. Let p ≥ 2 and {Xi,1 ≤ i ≤ n} be a collection of n independent mean zero random
variables with E|Xi |p < ∞, 1 ≤ i ≤ n. Then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
p

≤ 3.5p

logp
max

{∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

,

(
n∑

i=1

‖Xi‖p
p

)1/p}
. (2.19)

Proof. Let W = ∑n
i=1 Xi and σ 2 = Var(W). Denote Var(Xi) by σ 2

i , 1 ≤ i ≤ n. Let X∗
i have the Xi -

zero biased distribution with {X∗
i ,1 ≤ i ≤ n} mutually independent and X∗

i independent of {Xj , j �= i}.
Let I be a random index, independent of {Xi,X

∗
i ,1 ≤ i ≤ n}, with the distribution

P(I = i) = σ 2
i

σ 2
.

The argument proving part (v) of Lemma 2.1 in Goldstein and Reinert [17] shows that removing XI

and replacing it by X∗
I gives a random variable W ∗ with the W -zero biased distribution, that is,

W ∗ = W − XI + X∗
I

has the W -zero biased distribution.
Let κp be as in Proposition 2.1. By Proposition 2.1, we have

E|W |p ≤ κp

(
σp + σ 2

E
∣∣W ∗ − W

∣∣p−2)
= κp

(
σp + σ 2

E
∣∣XI − X∗

I

∣∣p−2)
= κp

(
σp + σ 2

n∑
i=1

E
∣∣Xi − X∗

i

∣∣p−2 σ 2
i

σ 2

)

≤ κp

(
σp + max

{
1,2p−3} n∑

i=1

σ 2
i

(
E|Xi |p−2 +E

∣∣X∗
i

∣∣p−2))

≤ κp

(
σp + 2p−2

n∑
i=1

σ 2
i

(
E|Xi |p−2 +E

∣∣X∗
i

∣∣p−2))
. (2.20)
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By Hölder’s inequality, we have

σ 2
i E|Xi |p−2 ≤ (

E|Xi |p
)2/p(

E|Xi |p
)(p−2)/p = E|Xi |p (2.21)

for all 1 ≤ i ≤ n. With the function f as defined in (2.3), it follows from (2.1) that

(p − 1)σ 2
i E

∣∣X∗
i

∣∣p−2 = E|Xi |p. (2.22)

Combining (2.20)–(2.22), we have

E|W |p ≤ κp

(
σp + 2p−1

n∑
i=1

E|Xi |p
)

≤ 2pκp max

{
σp,

n∑
i=1

E|Xi |p
}

,

which proves (2.19). �

3. Uniform and non-uniform Kolmogorov bounds for zero-bias
couplings

Optimal bounds on the Kolmogorov distance for zero-bias couplings have already been obtained by
Goldstein [16] provided the difference between the original random variable and its zero bias transform
is properly bounded. In this section, we improved the mentioned result by Goldstein [16] in two direc-
tions: firstly, a truncation argument is used to go beyond the boundedness, and secondly, non-uniform
bounds with polynomial decay are provided. The following theorem gives the Kolmogorov bound in
normal approximation for W ∗.

Theorem 3.1. Let W be such that EW = 0 and Var(W) = 1, and let W ∗ be W -zero biased and be
defined on the same probability space as W . Let T = W ∗ − W .

(i) We have

sup
x∈R

∣∣P(
W ∗ ≤ x

) − �(x)
∣∣ ≤

(
1 +

√
2π

4

)√
ET 2. (3.1)

(ii) Let p ≥ 2. Then for all x ∈ R,

∣∣P(
W ∗ ≤ x

) − �(x)
∣∣ ≤ Cp

1 + |x|p
(

p

logp

)p(√
ET 2 +

√
E|T |2p+2

)
. (3.2)

Proof. For x ∈ R, let fx be the unique bounded solution of the Stein equation

f ′(w) − wf (w) = 1(w ≤ x) − �(x), (3.3)

and let

gx(w) = (
wfx(w)

)′
. (3.4)

We have 0 < fx(w) ≤ √
2π/4 and |f ′

x(w)| ≤ 1 for all w ∈ R (see Stein [31]). Therefore∣∣gx(w)
∣∣ = ∣∣fx(w) + wf ′

x(w)
∣∣ ≤ 1 + |w| for all w ∈R, (3.5)

E
∣∣Tfx(W + T )

∣∣ ≤
√

2π

4
E|T | ≤

√
2π

4

√
ET 2, (3.6)
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and

E
∣∣(W (

fx(W + T ) − fx(W)
)∣∣ ≤ E|WT | ≤

√
EW 2ET 2 =

√
ET 2. (3.7)

Since ∣∣P(
W ∗ ≤ x

) − �(x)
∣∣ = ∣∣Ef ′

x

(
W ∗) −EW ∗fx

(
W ∗)∣∣

= ∣∣EWfx(W) −E(W + T )fx(W + T )
∣∣

≤ E
∣∣W (

fx(W + T ) − fx(W)
)∣∣ +E

∣∣Tfx(W + T )
∣∣, (3.8)

the conclusion (3.1) follows by combining (3.6), (3.7), and (3.8). Theorem 3.1(i) is proved.
To prove Theorem 3.1(ii), it suffices to consider the case where x ≥ 0 since we can simply apply the

result to −W ∗ when x < 0 (see (2.59) in Chen, Goldstein and Shao [4]). In view of the uniform bound
(3.1), it suffices to consider the case where x ≥ 2. By applying Markov’s inequality and Proposition 2.1,
we have ∣∣P (

W ∗ ≤ x
) − �(x)

∣∣ ≤ max
{
P

(
W ∗ > x

)
,1 − �(x)

}
≤ max

{
E|W ∗|p+1

xp+1
,1 − �(x)

}

= max

{
E|W |p+3

(p + 2)xp+1
,1 − �(x)

}

≤ max

{
κp+3

(
1 +E|T |p+1

)
(p + 2)xp+1

,1 − �(x)

}
. (3.9)

By using the fact that
√

2π(1 − �(x)) ≤ e−x2/2/x for all x > 0, we have

max
x>0

xp+1(1 − �(x)
) ≤ 1√

2π
max
x>0

xpe−x2/2 = 1√
2π

(√
p√
e

)p

. (3.10)

Combining (3.9) and (3.10), we obtain

∣∣P (
W ∗ ≤ x

) − �(x)
∣∣ ≤ Cp

1 + xp

(
p

logp

)p(
1 +

√
E|T |2p+2

)
. (3.11)

If E|T |2p+2 ≥ 1, then 1 + √
E|T |2p+2 ≤ 2

√
E|T |2p+2. Therefore, (3.2) holds by (3.11). It remains to

consider the case where E|T |2p+2 < 1. In this case, by applying Proposition 2.1 and Jensen’s inequal-
ity, we have

E|W |2p ≤ κ2p

(
1 +E|T |2p−2)

≤ 2κ2p ≤ Cp

(
p

logp

)2p

, (3.12)

and

E|W |2p+2 ≤ κ2p+2
(
1 +E|T |2p

)
≤ 2κ2p+2 ≤ Cp

(
p

logp

)2p

. (3.13)
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Since

P
(
W ∗ ≤ x

) − �(x) = E
{
Wfx(W) − W ∗fx

(
W ∗)}

= −E

∫ T

0
gx(W + t)dt,

we have ∣∣P(
W ∗ ≤ x

) − �(x)
∣∣ ≤ R1 + R2, (3.14)

where

R1 =
∣∣∣∣E

∫ T

0
gx(W + t)

(
1(W + t ≤ 0) + 1

(
0 < W + t ≤ x

2

))
dt

∣∣∣∣ (3.15)

and

R2 =
∣∣∣∣E

∫ T

0
gx(W + t)1

(
W + t >

x

2

)
dt

∣∣∣∣. (3.16)

From the definition of fx and gx , we have (see Chen and Shao [5])

gx(w) =
{(√

2π
(
1 + w2)ew2/2(1 − �(w)

) − w
)
�(x) if w ≥ x,(√

2π
(
1 + w2)ew2/2�(w) + w

)(
1 − �(x)

)
if w < x.

(3.17)

Chen and Shao [5] proved that gx ≥ 0, gx(w) ≤ 2(1 − �(x)) for w ≤ 0, and gx is increasing for
0 ≤ w < x. From (3.17) and the fact that

√
2π(1 − �(x)) ≤ e−x2/2/x for all x > 0, we have

gx(x/2) =
(√

2π

(
1 + x2

4

)
ex2/8�(x/2) + x

2

)(
1 − �(x)

)

≤
(

1

x
+ x

4

)
e−3x2/8 + 1

2
√

2π
e−x2/2. (3.18)

For all r ≥ 1, a straightforward calculation shows that

max
x>0

xre−x2/2 < max
x>0

xre−3x2/8 =
(

2
√

r√
3e

)r

.

Therefore, from (3.15) and (3.18) and a similar argument as the one used in (3.10), we have

R1 ≤ E

∫ |T |

0

(
2
(
1 − �(x)

) + gx(x/2)
)

dt

≤ Cp

1 + xp

(
p

logp

)p

E|T | ≤ Cp

1 + xp

(
p

logp

)p√
ET 2. (3.19)

To bound R2, we estimate

1
(

W + t >
x

2

)
≤ Cp

1 + xp

(|W |p + |T |p)
for all 0 ≤ t ≤ |T |. (3.20)
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Combining (3.5) and (3.20), we have

R2 ≤ Cp

1 + xp
E

∫ |T |

0

(
1 + |W | + |T |)(|W |p + |T |p)

dt

= Cp

1 + xp
E

(
1 + |W | + |T |)(|W |p|T | + |T |p+1). (3.21)

We bound each term in (3.21) as follows. Firstly, we have

E|T |p+1 ≤
√
ET 2p+2 and E|W ||T |p+1 ≤

√
EW 2ET 2p+2 =

√
ET 2p+2. (3.22)

Secondly, by using the Cauchy–Schwarz inequality, (3.12) and (3.13), and by noting that E|T |2p+2 < 1,
we have

E|W |p|T | ≤
√
E|W |2pET 2 ≤ Cp

(
p

logp

)p√
ET 2, (3.23)

E|W |p+1|T | ≤
√
E|W |2p+2ET 2 ≤ Cp

(
p

logp

)p√
ET 2, (3.24)

and

E|T |p+2 ≤
√
ET 2ET 2p+2 ≤

√
ET 2. (3.25)

Finally,

E|W |p|T |2 = E

((|W |p+1|T |)p/(p+1)(|T |p+2)1/(p+1)
)

≤ E
(|W |p+1|T | + |T |p+2)

≤ Cp

(
p

logp

)p√
ET 2, (3.26)

where we have used (2.6) in the first inequality, and (3.24) and (3.25) in the second inequality. From
(3.21)–(3.26), we have

R2 ≤ Cp

1 + xp

(
p

logp

)p(√
ET 2 +

√
E|T |2p+2

)
. (3.27)

Combining (3.14), (3.19) and (3.27), we obtain (3.2). �

Theorem 3.1 is a normal approximation for W ∗. When T = W ∗ − W has fast decaying tails, by
using Theorem 3.1, we can obtain useful bounds in normal approximation for W . This gives us the
following theorem.

Theorem 3.2. Let W be such that EW = 0 and Var(W) = 1, and let W ∗ be W -zero biased and defined
on the same probability space as W . Let T = W ∗ − W and ε > 0 be arbitrary.

(i) We have

sup
x∈R

∣∣P(W ≤ x) − �(x)
∣∣ ≤

(
1 +

√
2π

4

)√
ET 2 + ε√

2π
+ P

(|T | > ε
)
. (3.28)
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(ii) Let p ≥ 2. Then for all x ∈ R,

∣∣P(W ≤ x) − �(x)
∣∣

≤ Cp

1 + |x|p
(

p

logp

)p(√
ET 2 +

√
E|T |2p+2 + ε +

√
P
(|T | > ε

))
. (3.29)

Remark 3.3. If |T | ≤ ε almost surely, then (3.28) reduces to

sup
x∈R

∣∣P(W ≤ x) − �(x)
∣∣ ≤

(
1 +

√
2π

4
+ 1√

2π

)
ε. (3.30)

In Theorem 1.1 in Goldstein [16], the author considered the following distance between W and the
standard normal random variable Z

d(W,Z) = sup
h∈H

∣∣Eh(W) −Eh(Z)
∣∣,

where H is a class of measurable functions on the real line which contains the collection of indicators
of all half lines. When H coincides with the collection of indicators of all half lines, the author proved
that (see the first half of (10) in Goldstein [16])

sup
x∈R

∣∣P(W ≤ x) − �(x)
∣∣ ≤ (127 + 12ε)ε. (3.31)

Proof of Theorem 3.2. Let ε > 0 be arbitrary. Then by (3.1), we have

P(W ≤ x) − �(x) = P
(
W ∗ ≤ x + W ∗ − W

) − �(x)

≤ P
(
W ∗ ≤ x + ε

) − �(x + ε) + �(x + ε) − �(x)

+ P
(
W ∗ − W > ε

)
≤

(
1 +

√
2π

4

)√
ET 2 + ε√

2π
+ P

(∣∣W ∗ − W
∣∣ > ε

)
, (3.32)

and

P(W ≤ x) − �(x) ≥ P
(
W ∗ ≤ x − ε

) − �(x − ε) + �(x − ε) − �(x)

− P
(
W ∗ − W < −ε

)
≥ −

(
1 +

√
2π

4

)√
ET 2 − ε√

2π
− P

(∣∣W ∗ − W
∣∣ > ε

)
. (3.33)

Combining (3.32) and (3.33), we obtain (3.28).
To prove (3.29), it suffices to consider x ≥ 2, as in the proof of (3.2). Similar to the proof of (3.11),

we have

∣∣P(W ≤ x) − �(x)
∣∣ ≤ Cp

1 + xp

(
p

logp

)p(
1 +

√
E|T |2p+2

)
. (3.34)
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Therefore, if either E|T |2p+2 ≥ 1 or ε ≥ 1, then (3.29) holds. It remains to consider the case where
E|T |2p+2 < 1 and ε < 1. In this case, similar to (3.12), we have

E
∣∣W ∗∣∣2p = E|W |2p+2

(2p + 1)EW 2
≤ 2κ2p+2

2p + 1
≤ Cp

(
p

logp

)2p

. (3.35)

Since

P
(
W ∗ > x + ε

) = P
(
W ∗ > x + ε,T > ε

) + P
(
W ∗ > x + ε,T ≤ ε

)
≤ P

(
W ∗ > x,T > ε

) + P(W > x),

we have

P(W ≤ x) − �(x) = 1 − P(W > x) − �(x)

≤ 1 − P
(
W ∗ > x + ε

) − �(x) + P
(
W ∗ > x,T > ε

)
. (3.36)

Combining (3.2), (3.10), (3.35) and (3.36), we have

P(W ≤ x) − �(x) ≤ P
(
W ∗ ≤ x + ε

) − �(x + ε)

+ �(x + ε) − �(x) + P
(
W ∗ > x,T > ε

)
≤ Cp

1 + xp

(
p

logp

)p(√
ET 2 +

√
E|T |2p+2

)

+ εe−x2/2

√
2π

+
√
P
(|T | > ε

)√
P
(∣∣W ∗∣∣ > x

)

≤ Cp

1 + xp

(
p

logp

)p(√
ET 2 +

√
E|T |2p+2 + ε

)

+
√
P(|T | > ε)

√
E|W ∗|2p

xp

≤ Cp

1 + xp

(
p

logp

)p(√
ET 2 +

√
E|T |2p+2 + ε +

√
P
(|T | > ε

))
. (3.37)

Similarly, by noting that x − ε > x − 1 ≥ 1, we can show that

P(W ≤ x) − �(x)

≥ − Cp

1 + xp

(
p

logp

)p(√
ET 2 +

√
E|T |2p+2 + ε +

√
P
(|T | > ε

))
. (3.38)

Combining (3.37) and (3.38), we obtain (3.29). �

4. Proofs of the main results

The rate in the following proposition is better than that of Theorem 1.1 in the case where α ≥ n1+δ

for some δ > 0 fixed. We would like to note here that when 1 ≤ α ≤ n/ log2 n or α ≥ n1+δ for some
δ > 0 fixed, the convergence rate obtained in Proposition 4.1 is exactly the rate in Fulman’s conjecture.
Chen, Goldstein and Röllin [7] also obtained the bound O(

√
α/n) for the case α ≥ n1+δ by applying

induction with Stein’s method.
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Proposition 4.1. Let n ≥ 3 be an integer. Let α ≥ 1 and Wn,α be as in (1.5). Then

sup
x∈R

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤ 8.2 max

{
1√
n
,

√
α logn

n

}
. (4.1)

If, in addition, α ≥ n1+δ for some δ := δ(α,n) > 0, then

sup
x∈R

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤

(
4.7 + 3.1

δ

)√
α

n
. (4.2)

Remark 4.2. If α > n, then we can write α = n1+δ , where

δ = logα − logn

logn
> 0.

Applying (4.2), we have

sup
x∈R

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤ 4.7 logα − 1.6 logn

logα − logn

√
α

n
. (4.3)

We make some notes as follows.

(i) If α ∼ Kn for some K > 1 fixed, then the rate obtained in (4.3) is O(
√

α logn

n
) which is the

same as the rate obtained in (4.1).
(ii) If α ∼ n(logn)K for some K > 0 fixed, then the rate obtained in (4.3) is O(

√
α logn

n log(logn)
) which

is better than the rate obtained in (4.1).
(iii) If α ≥ n1+δ for some δ > 0 fixed, then the convergence rate obtained in (4.3) is O(

√
α

n
) which

is exactly the rate in Fulman’s conjecture.

We will prove Proposition 4.1 by applying Theorem 3.2. In Kerov [24], the author proved that there
is a growth process giving a sequence of partitions (λ(1), . . . , λ(n)) with λ(j) distributed according to
the Jackα measure on partitions of size j . We refer to Fulman [13] for details. Given Kerov’s process,
let X1,α = 0, Xj,α = cα(a) where a is the box added to λ(j − 1) to obtain λ(j) and the “α-content”
cα(a) of a box a is defined to be α(column number of a − 1) − (row number of a − 1), j ≥ 2. Then
one can write (see Fulman [14], Fulman and Goldstein [15])

Wn,α =
∑n

j=1 Xj,α√
α
(
n
2

) . (4.4)

Therefore, constructing ν from the Jackα measure on partitions of n − 1 and then taking one step in
Kerov’s growth process yields λ with the Jackα measure on partitions of n, we have

Wn,α = Vn,α + ηn,α, (4.5)

where

Vn,α =
∑

x∈ν cα(x)√
α
(
n
2

) =
√

n − 2

n
Wn−1,α, ηn,α = Xn,α√

α
(
n
2

) = cα(λ/ν)√
α
(
n
2

) , (4.6)
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and cα(λ/ν) denotes the α-content of the box added to ν to obtain λ. Fulman [14] proved that

EWn,α = 0, EW 2
n,α = 1, (4.7)

Eηn,α = 0, Eη2
n,α = 2

n
, (4.8)

and

Eη4
n,α = 2

n2

(
4n − 6

n − 1
+ 2(α − 1)2

α(n − 1)

)
. (4.9)

From Theorems 3.1 and 4.1 in Fulman and Goldstein [15], there exists a random variable η∗
n,α defined

on the same probability space with ηn,α , and satisfying that η∗
n,α has ηn,α-zero biased distribution and

that

W ∗
n,α = Vn,α + η∗

n,α (4.10)

has Wn,α-zero biased distribution. Hereafter, we denote

Tn,α = ηn,α − η∗
n,α.

The following lemma gives a bound for E(η∗
n,α)2.

Lemma 4.3. For α ≥ 1, we have

E
(
η∗

n,α

)2 = 1

3n

(
4n − 6

n − 1
+ 2(α − 1)2

α(n − 1)

)

≤ 1

3n

(
4 + 2α

n − 1

)
. (4.11)

Proof. Applying (2.1) with f (x) = x3, we have

E
(
η∗

n,α

)2 = E(ηn,α)4

3Eη2
n,α

. (4.12)

Combining (4.8), (4.9) and (4.12), we obtain (4.11). �

For a partition λ of a positive integer n, we recall that the length of row i of λ and the length of
column i of λ are denoted by λi and λ′

i , respectively.
From a computation in the proof of Lemma 6.6 in Fulman [13] and Stirling’s formula, we have the

following lemma.

Lemma 4.4. Let α > 0. Then for 1 ≤ l ≤ n, we have

Pα(λ1 = l) ≤ α

2π

(
ne2

αl2

)l

. (4.13)

Proof. It is proved by Fulman [13] that

Pα(λ1 = l) ≤
(

n

α

)l
αl

(l!)2
. (4.14)
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By Stirling’s formula, we have for all l ≥ 1,

l! ≥ √
2πl

(
l

e

)l

. (4.15)

Combining (4.14) and (4.15), we have (4.13). �

In order to apply Theorem 3.2, we need to bound P(|Tn,α| > ε) for suitably chosen ε. The following
lemma shows that |Tn,α| has a very light tail.

Lemma 4.5. For all α ≥ 1 and q > 1, we have

Pα

(
|Tn,α| > 2e

√
2q√

n − 1

)
≤ α

π(q − 1)qe
√

qn/α
+ α2q

(
e
√

qn/α(q − 1) + q + 1
)

π(n − 1)(q − 1)3qe
√

qn/α
.

Proof. First, we take an arbitrary α > 0. It follows from (4.13) that

Pα(λ1 = k + 1) ≤ α

2πqk+1
(4.16)

for all k ≥ e
√

qn/α. Therefore,

Pα(λ1 − 1 > e
√

qn/α) = Pα

(
λ1 − 1 ≥ �e√qn/α� + 1

)
=

∑
k≥�e√qn/α�+1

Pα(λ1 = k + 1)

≤ α

2π

∑
k≥�e√qn/α�+1

1

qk+1

= qα

2π(q − 1)q�e√qn/α�+2

≤ α

2π(q − 1)qe
√

qn/α
. (4.17)

We note that from the definition of Jack measure, Pα(λ) = P1/α(λt ), where λt is the transpose partition
of λ. Applying (4.17) with α replaced by 1/α, we have

Pα

(
λ′

1 − 1 > e
√

qαn
) ≤ 1

2πα(q − 1)qe
√

qαn
. (4.18)

Since |Xn,α| ≤ max{α(λ1 − 1), λ′
1 − 1}, it follows from (4.17) and (4.18) that

Pα

(
|ηn,α| > e

√
2q√

n − 1

)
= Pα

( √
2|Xn,α|√

αn(n − 1)
>

e
√

2q√
n − 1

)

≤ Pα

(
max

{
α(λ1 − 1), λ′

1 − 1
}

> e
√

qαn
)

≤ Pα(λ1 − 1 > e
√

qn/α) + Pα

(
λ′

1 − 1 > e
√

qαn
)

≤ α

2π(q − 1)qe
√

qn/α
+ 1

2πα(q − 1)qe
√

qαn
. (4.19)



Normal approximation for Jack measures 459

For α ≥ 1, it reduces to

Pα

(
|ηn,α| > e

√
2q√

n − 1

)
≤ α

π(q − 1)qe
√

qn/α
. (4.20)

Recall that if X is a random variable with EX = 0, EX2 = σ 2 and if X∗ has X-zero-biased distribu-
tion, then for x > 0, applying (2.1) with fx(w) = (w − x)1(w > x), we have

P
(
X∗ > x

) = E
[
X(X − x)1(X > x)

]
/σ 2. (4.21)

By using (4.21) and (4.16), and noting that

ηn,α ≤
√

2α(λ1 − 1)√
n(n − 1)

,

we have

Pα

(
η∗

n,α >
e
√

2q√
n − 1

)

= n

2
E

(
ηn,α

(
ηn,α − e

√
2q√

n − 1

)
1
(

ηn,α >
e
√

2q√
n − 1

))

≤ α

n − 1
E

(
(λ1 − 1)(λ1 − 1 − e

√
qn/α)1(λ1 − 1 > e

√
qn/α)

)

≤ α

n − 1

∞∑
k=1

k
(
k + �e√qn/α�)Pα

(
λ1 = k + �e√qn/α� + 1

)

≤ α2

2π(n − 1)

∞∑
k=1

k
(
k + �e√qn/α�)
qk+�e√qn/α�+1

= α2
(�e√qn/α�(q − 1) + q + 1

)
2π(n − 1)(q − 1)3q�e√qn/α�

≤ α2q
(
e
√

qn/α(q − 1) + q + 1
)

2π(n − 1)(q − 1)3qe
√

qn/α
. (4.22)

Applying (4.13) again, we have

Pα

(
λ′

1 = k + 1
) = P1/α(λ1 = k + 1) ≤ 1

2παqk+1
(4.23)

for all k ≥ e
√

qαn. By using (4.23) and noting that

ηn,α ≥ −
√

2(λ′
1 − 1)√

αn(n − 1)
,
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we have

Pα

(
−η∗

n,α >
e
√

2q√
n − 1

)

= n

2
E

[
−ηn,α

(
−ηn,α − e

√
2q

n − 1

)
1
(

−ηn,α >
e
√

2q√
n − 1

)]

≤ 1

α(n − 1)
E

((
λ′

1 − 1
)(

λ′
1 − 1 − e

√
qαn

)
1
(
λ′

1 − 1 > e
√

qαn
))

≤ 1

α(n − 1)

∞∑
k=1

k
(
k + �e√qαn�)Pα

(
λ′

1 = k + �e√qαn� + 1
)

≤ 1

2πα2(n − 1)

∞∑
k=1

k(k + �e√qαn�)
qk+�e√qαn�+1

= �e√qαn�(q − 1) + q + 1

2πα2(n − 1)(q − 1)3q�e√qαn�

≤ q(e
√

qαn(q − 1) + q + 1)

2πα2(n − 1)(q − 1)3qe
√

qαn
. (4.24)

For α ≥ 1, (4.22) and (4.24) reduce to

Pα

(∣∣η∗
n,α

∣∣ >
e
√

2q√
n − 1

)
≤ α2q(e

√
qn/α(q − 1) + q + 1)

π(n − 1)(q − 1)3qe
√

qn/α
. (4.25)

The conclusion of the lemma follows from (4.20) and (4.25). �

Proof of Proposition 4.1. It suffices to consider x ≥ 0 since we can simply apply the result to −Wn,α

when x < 0. For a random variable W with EW = 0 and Var(W) = 1, Chen and Shao [5] proved that

sup
x≥0

∣∣P(W ≤ x) − �(x)
∣∣ ≤ sup

x≥0

∣∣∣∣ 1

1 + x2
− (

1 − �(x)
)∣∣∣∣ ≤ 0.55. (4.26)

Firstly, we prove (4.1). From (4.26), it follows that it suffices to prove the proposition for n ≥ 200.
Let

K ≥ e1/4, q = K2 max

{
1,

α log2 n

n

}
, ε = 2e

√
2q√

n − 1
. (4.27)

By applying Lemma 4.5 and noting that qn/α ≥ K2 log2 n, we have

Pα

(
|Tn,α| > 2e

√
2q√

n − 1

)
≤ qn

π(q − 1)qeK lognK2 log2 n

+ n2q3(e(q − 1)K logn + q + 1)

π(n − 1)(q − 1)3qeK lognK4 log4 n
:= f (q). (4.28)



Normal approximation for Jack measures 461

Since eK logn > 1, f (q) is decreasing on (1,∞). Therefore,

f (q) ≤ f
(
K2) = n

π(K2 − 1)K2eK logn log2 n

+ n2K2(e(K2 − 1)K logn + K2 + 1)

π(n − 1)(K2 − 1)3K2eK logn log4 n
. (4.29)

By choosing K = e1/4 (the general case will be used later) and noting that n > 200, we have

Pα

(|Tn,α| > ε
) ≤ f

(
e1/2)

= n

π(
√

e − 1)n0.5e5/4 log2 n

+ n2√e
(
e5/4(

√
e − 1) logn + √

e + 1
)

π(n − 1)(
√

e − 1)3n0.5e5/4 log4 n

≤ 0.05√
n

, (4.30)

and

ε√
2π

= 2e5/4√n√
π(n − 1)

max

{
1√
n
,

√
α logn

n

}

≤ 3.95 max

{
1√
n
,

√
α logn

n

}
. (4.31)

By (4.8) and (4.11), we have

√
ET 2

n,α =
√
E

(
η∗

n,α − ηn,α

)2

≤
√
E

(
η∗

n,α

)2 +
√
E(ηn,α)2

≤
(

4

3n
+ 2α

3n(n − 1)

)1/2

+
(

2

n

)1/2

≤
((

4

3
+ 2n

3(n − 1) log2 n

)1/2

+ √
2

)
max

{
1√
n
,

√
α logn

n

}
. (4.32)

Since n > 200, it follows from (4.32) that

(
1 +

√
2π

4

)√
ET 2

n,α ≤ 4.2 max

{
1√
n
,

√
α logn

n

}
. (4.33)

Applying Theorem 3.2(i), (4.1) follows from (4.30), (4.31) and (4.33).
Now we prove (4.2). If either δ ≥ 1 or 0 < δ < 1 and n ≤ 200, then (4.2) holds by (4.26). Therefore,

we may assume that 0 < δ < 1 and n > 200. Let

0 < L ≤ 1, q = α

(Lδ)2n
, ε′ = 2e

√
2q√

n − 1
. (4.34)
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Since n > 200 and 0 < δ < 1, elementary calculus shows that

q ≥ nδ

δ2
> 51.

By applying Lemma 4.5, we have

Pα

(|Tn,α| > ε′) ≤ α

π(q − 1)qe/(Lδ)
+ (Lδ)2q2nα

(
e(q − 1)/(Lδ) + q + 1

)
π(n − 1)(q − 1)3qe/(Lδ)

. (4.35)

By choosing L = 1 (the general case will be used later) and noting n > 200, q > 51, we have from
(4.35) that

Pα

(|Tn,α| > ε′)
≤

√
α

πnqe/δ−3/(2δ)−1/2

(
1

q − 1
+ ne

n − 1

q2

(q − 1)2
+ n

n − 1

q2(q + 1)

(q − 1)3

)

≤ 0.08
√

α

n
, (4.36)

and

ε′
√

2π
= 2

√
ne

δ
√

π(n − 1)

√
α

n
≤ 3.1

δ

√
α

n
. (4.37)

Using the second inequality in (4.32) and noting again that α > n > 200, we also have

√
ET 2

n,α ≤
(

4

3n
+ 2α

3n(n − 1)

)1/2

+
(

2

n

)1/2

≤
(√

4

3
+ 2 × 201

3 × 200
+ √

2

)√
α

n
. (4.38)

It follows from (4.38) that (
1 +

√
2π

4

)√
ET 2

n,α ≤ 4.62

√
α

n
. (4.39)

Applying Theorem 3.2(i) with ε′ playing the role of ε, (4.2) follows from (4.36), (4.37) and (4.39). �

The following proposition establishes non-uniform bounds on the Kolmogorov distance for Jack
measures.

Proposition 4.6. Let n ≥ 3 be an integer. Let p ≥ 2, 1 ≤ α < n2 and Wn,α be as in (1.5). Then for all
x ∈ R, we have

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤ Cp

1 + |x|p
(

p2

logp

)p

max

{
1√
n
,

√
α logn

n

}
. (4.40)

If, in addition, there exists δ > 0 such that n1+δ ≤ α < n2, then for all x ∈R, we have

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ ≤

(
1 + 1

δp+1

)
Cp

1 + |x|p
(

p2

logp

)p √
α

n
. (4.41)
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Proof. We observe that if α > n5/4, then (4.41) implies (4.40). Therefore, once we have proved (4.41),
we only need to prove (4.40) for the case where 1 ≤ α < n5/4. For n ≥ 3 and 1 ≤ α < n5/4, we have

max

{
1√
n
,

√
α logn

n

}
< 1. (4.42)

Let K = p + 2 and let q , ε be as in (4.27). Then for n ≥ 3,

ε ≤ 10(p + 2)max

{
1√
n

,

√
α logn

n

}
. (4.43)

From (4.28) and (4.29), we have

Pα

(|Tn,α| > ε
) ≤ n

π
(
(p + 2)2 − 1

)
n2e(p+2) log2 n

+ n2(p + 2)2
(
e(p + 2)((p + 2)2 − 1) logn + (p + 2)2 + 1

)
π(n − 1)

(
(p + 2)2 − 1

)3
n2e(p+2) log4 n

≤ Cp

n2e(p+2)−1
. (4.44)

To apply Theorem 3.2(ii), we also need to bound E|Tn,α|2p+2. Since |Xn,α| ≤ α(n − 1), we have
|ηn,α| ≤ √

2α and therefore |η∗
n,α| ≤ √

2α (see (2.58) in Chen, Goldstein and Shao [4]). Combining
(4.42)–(4.44), we have

E
(|Tn,α|2p+2) ≤ ε2p+2 + (8α)p+1

P
(|Tn,α| > ε

)
≤ ε2p+2 + Cpαp+1

n2e(p+2)−1

≤ Cpp2p

(
max

{
1√
n
,

√
α logn

n

})2p+2

≤ Cpp2p

(
max

{
1√
n
,

√
α logn

n

})2

. (4.45)

Applying Theorem 3.2(ii), (4.40) follows from (4.32) and (4.43)–(4.45).
To prove (4.41), we will need the following lemma.

Lemma 4.7. Let n ≥ 3. If there exists 0 < δ ≤ 1 such that α ≥ n1+δ , then for all p ≥ 0, we have

E
(|Tn,α|p) ≤ Cppp

δp

(√
α

n

)p

. (4.46)

Proof. Let L = 1/(p + 2) and let q , ε′ be as in (4.34). Then

q ≥ (p + 2)2 nδ

δ2
> 8 and ε′ ≤ 10(p + 2)

√
α

δn
. (4.47)
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Noting that Lδ ≤ 1 and q = α/(L2δ2n) ≥ nδ , we have from (4.35) and the first half of (4.47) that

Pα

(|Tn,α| > ε′) ≤ α

π(q − 1)ne(p+2)
+ eq2(q − 1) + q2(q + 1)

π(q − 1)3(n − 1)

α

ne(p+2)−1

≤ α

n2p+4
. (4.48)

Similar to (4.45), (4.48) combined with the second half of (4.47) yields

E
(|Tn,α|p) ≤ (

ε′)p + (
2
√

2α
)p
P
(|Tn,α| > ε′)

≤ (
ε′)p + Cpαp/2+1

n2p+4

≤ Cppp

δp

(√
α

n

)p

. (4.49)

The proof of Lemma 4.7 is completed. �

Now, we will prove (4.41). Let L, q , ε′ be as in the proof of Lemma 4.7. From the latter, we have

E
(|Tn,α|2p+2) ≤ Cpp2p

δ2p+2

(√
α

n

)2p+2

≤ Cpp2p

δ2p+2

(√
α

n

)2

. (4.50)

Applying Theorem 3.2(ii) with ε′ playing the role of ε, (4.41) follows from the second inequality in
(4.32), (4.48), (4.50) and the second half of (4.47). �

Proofs of Theorem 1.1 and Theorem 1.3. When α ≥ 1, Theorem 1.1 is a direct consequence of
Proposition 4.1. We also see that (4.1) holds if we replace Wn,α by −Wn,α . To obtain Theorem 1.1
for 0 < α < 1, we note that from the definition of Jack measure, Pα(λ) = P1/α(λt ), where λt is the
transpose partition of λ. It also follows from (4.4) and the definition of α-content that Wn,α(λ) =
−Wn,1/α(λt ). Therefore,

Pα(Wn,α = x) = Pα

{
λ : Wn,α(λ) = x

}
= P1/α

{
λt : Wn,1/α

(
λt

) = −x
}

= P1/α(Wn,1/α = −x).

From this, we conclude that Pα(Wn,α ≤ x) = P1/α(Wn,1/α ≥ −x). Therefore,

sup
x∈R

∣∣Pα(Wn,α ≤ x) − �(x)
∣∣ = sup

x∈R

∣∣P1/α(Wn,1/α ≥ −x) − �(x)
∣∣

= sup
x∈R

∣∣P1/α(−Wn,1/α ≤ x) − �(x)
∣∣

≤ 8.2 max

{
1√
n
,

logn√
αn

}
.

Therefore, Theorem 1.1 also holds when 0 < α < 1. This completes the proof of Theorem 1.1.
When 1 ≤ α < n2, Theorem 1.3 is a direct consequence of Proposition 4.6. When 1/n2 < α < 1,

one can use a similar argument as that in the proof of Theorem 1.1, and this completes the proof of
Theorem 1.3. �
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Appendix

In this section, we will prove (1.7) and two lemmas which are used in Section 2.

Proof of (1.7). For p ≥ 2, applying Proposition 2.1 and Lemma 4.7 with noting that α ≥ n2 (so that
δ = 1), we have

E|Wn,α|p ≤ κp

(
1 +E|Tn,α|p−2)

≤ κp

(
1 + Cppp

(√
α

n

)p−2)

≤ Cp

(
p2

logp

)p(√
α

n

)p−2

(A.1)

establishing (1.7). �

Lemma A.1. Let p > 8 and let κp be as in Proposition 2.1, then

κp

κp−2
≥ 8

(
p − 1

log(p − 1)

)2

. (A.2)

Proof. Letting

h(p) = log(κp) = p
(
logp − log(logp) + log(7/4)

) + log
(
(log 8)3/196

)
,

we have

h(p) − h(p − 2) =
∫ p

p−2
h′(t)dt

= 2 + 2 log(7/4) +
∫ p

p−2
log t dt −

∫ p

p−2
log(log t)dt −

∫ p

p−2

dt

log t
. (A.3)

Since the function t �→ log(log t) is concave,∫ p

p−2
log(log t)dt ≤ 2 log

(
log(p − 1)

)
. (A.4)

Next, since p > 8, we have ∫ p

p−2

dt

log t
≤

∫ 8

6

dt

log t
, (A.5)

and ∫ p

p−2
log t dt =

∫ 1

−1
log(p − 1 + s)ds

= 2 log(p − 1) +
∫ 1

−1
log

(
1 + s

p − 1

)
ds
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= 2 log(p − 1) +
∫ 1

0
log

(
1 − s2

(p − 1)2

)
ds

≥ 2 log(p − 1) +
∫ 1

0
log

(
1 − s2

49

)
ds. (A.6)

Combining (A.3)–(A.6), numerical calculation gives

h(p) − h(p − 2) ≥ 2 + 2 log(7/4) + 2 log(p − 1) − 2 log
(
log(p − 1)

)
−

∫ 8

6

dt

log t
+

∫ 1

0
log

(
1 − s2

49

)
ds

> 2 log(p − 1) − 2 log
(
log(p − 1)

) + log 8

for all p > 8. This implies (A.2). �

Lemma A.2. Let p > 8 and let κp be as in Proposition 2.1. Then

2(p − 1)

(1 − θ)p−3
≤ κp, (A.7)

where

θ = θ(p) :=
(

log2(p − 1)

4(p − 1)

)1/(p−3)

.

Proof. Firstly, we will prove that

1

1 − θ
≤ 7p

4 logp
(A.8)

which is equivalent to

1

p − 3
log

(
log2(p − 1)

4(p − 1)

)
≤ log

(
1 − 4 logp

7p

)
. (A.9)

Since 4 logp
7p

is decreasing when p > 8, we have

4 logp

7p
≤ 0.1486. (A.10)

On the other hand, it is easy to prove that

log(1 − x) ≥ −13x

12
for all 0 ≤ x ≤ 0.1486. (A.11)

From (A.10) and (A.11), we have

log

(
1 − 4 logp

7p

)
≥ −13 logp

21p
. (A.12)

Therefore, to prove (A.9), it suffices to prove that

1

p − 3
log

(
log2(p − 1)

4(p − 1)

)
≤ −13 logp

21p
(A.13)
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which is equivalent to

R1(p) + R2(p) ≥ 0, (A.14)

where

R1(p) = 13 log(p − 1)

21(p − 3)
− 13 logp

21p
,

and

R2(p) = (8/21) log(p − 1) − 2 log(log(p − 1)) + log(4)

p − 3
.

Elementary calculus shows that R1(p) ≥ 0 and R2(p) ≥ 0 for all p > 8. Therefore (A.13) holds,
completing the proof of (A.8).

Now, we will prove (A.7). Since p > 8, we have from (A.8) that

2(p − 1)

(1 − θ)p−3
≤ 2(p − 1)

(
4 logp

7p

)3( 7p

4 logp

)p

≤ (log 8)3

196

(
7p

4 logp

)p

= κp.

The proof of the lemma is completed. �
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