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In this paper, we propose a test for the equality of multiple distributions based on kernel mean embeddings.
Our framework provides a flexible way to handle multivariate data by virtue of kernel methods and allows the
number of distributions to increase with the sample size. This is in contrast to previous studies that have been
mostly restricted to classical univariate settings with a fixed number of distributions. By building on Cramér-type
moderate deviation for degenerate two-sample V -statistics, we derive the limiting null distribution of the test
statistic and show that it converges to a Gumbel distribution. The limiting distribution, however, depends on an
infinite number of nuisance parameters, which makes it infeasible for use in practice. To address this issue, the
proposed test is implemented via the permutation procedure and is shown to be minimax rate optimal against
sparse alternatives. During our analysis, an exponential concentration inequality for the permuted test statistic is
developed which may be of independent interest.
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1. Introduction

Let P1, . . . ,PK be probability distributions defined on a common measurable space (X ,B) for K ≥ 2.
The K-sample problem is concerned with testing the null hypothesis H0 : P1 = · · · = PK against the al-
ternative hypothesis H1 : Pi �= Pj for some i, j ∈ {1, . . . ,K}. This fundamental problem of comparing
multiple distributions is a classical topic in statistics with a wide range of applications (Thas [49], Chen
and Pokojovy [15], for reviews). Despite its long history, previous approaches to the K-sample problem
have several limitations. First, many methods are limited to dealing with univariate data. For instance,
Kiefer [28] proposes the K-sample analogues of the Kolmogorov–Smirnov and Cramér–Von Mises
tests. Scholz and Stephens [44] generalize the Anderson–Darling test (Anderson and Darling [3]) to
the K-sample case. These approaches are based on empirical distribution functions and are not easily
extendable to multivariate data. Some other references that are restricted to the univariate K-sample
problem include Conover [16], Zhang and Wu [54], Wyłupek [52], Quessy and Éthier [42], Lemeshko
and Veretelnikova [34]. Second, most research in this area has been carried out under classical asymp-
totic regimes where the sample size goes to infinity but the number of distributions is fixed (e.g., Burke
[10], Bouzebda, Keziou and Zari [9], Hušková and Meintanis [25], Martínez-Camblor, De Uña-Álvarez
and Corral [37], Jiang, Ye and Liu [27], Mukhopadhyay and Wang [41], Sosthene et al. [46]). Clearly
this classical asymptotic analysis is not appropriate for a dataset with large K and it only provides
a narrow picture of the behavior of a test. To the best of our knowledge, Zhan and Hart [53] is the
only study in the literature that considers large K . However, their analysis is limited to univariate data
with fixed sample size. Third, recent developments on the multivariate K-sample problem are largely
built upon an average difference between distributions (Bouzebda, Keziou and Zari [9], Hušková and
Meintanis [25], Rizzo and Székely [43], Zhan and Hart [53], Mukhopadhyay and Wang [41], Sosthene
et al. [46]). It is well known that the test based on an average-type test statistic tends to be power-
ful against dense alternatives in which many of P1, . . . ,PK are different to each other. On the other
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hand, it tends to suffer from low power against sparse alternatives where only a few of P1, . . . ,PK are
different from the others. Recently, sparse alternatives have been motivated by numerous applications
such as DNA microarray analysis and anomaly detection where there are a small number of treatments
that can actually contribute response variables. These applications have led to recent developments of
tests tailored to sparse alternatives in the context of testing a high-dimensional vector (Jeng, Cai and
Li [26], Fan, Liao and Yao [18], Liu and Li [36]), two-sample mean or covariance testing (Cai, Liu and
Xia [11,12], Cai and Xia [13]), analysis of variance (Arias-Castro, Candès and Plan [4], Cai and Xia
[13]) and independence testing (Han, Chen and Liu [23]). To our knowledge, however, a multivariate
K-sample test specifically designed for sparse alternatives is not available in the current literature.

In this study, we propose a new K-sample test that addresses the aforementioned limitations of the
previous approaches. More specifically, we introduce a K-sample test based on the kernel mean em-
bedding method that has been successfully applied to multivariate hypothesis testing. Our test statistic
is defined as the maximum of pairwise maximum mean discrepancies (Gretton et al. [20,21]), which
leads to a powerful test against sparse alternatives. Throughout this paper, we investigate statistical
properties of the proposed test under the asymptotic regime where both the sample size and the num-
ber of distributions tend to infinity. Below, we summarize our main findings and contributions.

• Limiting null distribution: By building on Drton, Han and Shi [17], we develop Cramér-type mod-
erate deviation for degenerate two-sample V -statistics. Based on this result, we study the limiting
distribution of the proposed test statistic when the sample size and the number of distributions in-
crease simultaneously. In particular, we show the test statistic converges to a Gumbel distribution
under some appropriate conditions.

• Concentration inequality under permutations: We demonstrate the usefulness of Bobkov’s in-
equality (Bobkov [7]) in studying a concentration inequality for the permuted test statistic. By
applying his result, we derive an exponential concentration inequality for the proposed test statis-
tic under permutations. In contrast to usual Hoeffding or Bernstein-type inequalities, the devel-
oped inequality relies solely on completely known and easily computable quantities without any
moment assumption.

• Uniform consistency of the permutation test: Leveraging the developed concentration inequality
for the permuted statistic, we prove the uniform consistency of the permutation test over the
class of sparse alternatives. Under some regularity conditions, we also show that the power of the
permutation test cannot be improved from a minimax point of view.

• Empirical power comparison against sparse alternatives: A simulation study is conducted to
compare the performance of the proposed maximum-type test with the existing average-type tests
in the literature. The simulation results show that the proposed test consistently outperforms the
average-type tests against sparse alternatives based on isotropic Laplace and Gaussian distribu-
tions.

Outline. The paper is organized as follows. In Section 2, we briefly review the maximum mean dis-
crepancy and introduce our test statistic. Section 3 studies the limiting distribution of the proposed test
statistic when the sample size and the number of distributions tend to infinity simultaneously. Section 4
formally introduces permutation procedures. In Section 5, we provide an exponential concentration in-
equality for the proposed test statistic under permutations. Section 6 investigates the power of the pro-
posed test and proves its optimality property against sparse alternatives. In Section 7, we demonstrate
the finite-sample performance of the proposed approach via simulations. Finally, Section 8 concludes
the paper and discusses future work. The proofs not presented in the main text can be found in the
supplemental article (Kim [29]).
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2. Test statistic

We start with a brief overview of the maximum mean discrepancy proposed by Gretton et al. [20,21].
Let H be a reproducing kernel Hilbert space (RKHS) on X with a reproducing kernel h : X ×X �→ R.
For two functions f,g ∈ H, we write the inner product on H by 〈f,g〉H and the associated norm
by ‖f ‖H. Given a probability distribution P , the kernel mean embedding of P is given by μh(P ) =
EX∼P [h(X, ·)]. Using the feature map ψ : X �→ H, which satisfies h(x, y) = 〈ψ(x),ψ(y)〉H, the
kernel mean embedding can also be written as EX∼P [ψ(X)] (see, e.g., Muandet et al. [40] for details).
We now provide the definition of the maximum mean discrepancy (MMD) associated with kernel h.

Definition 2.1 (Maximum mean discrepancy). Given two probability distributions, say P1 and P2,
such that EX1∼P1‖ψ(X1)‖H < ∞ and EX2∼P2‖ψ(X2)‖H < ∞, the maximum mean discrepancy is
defined as the RKHS norm of the difference between μh(P1) and μh(P2), that is,

Vh(P1,P2) = ∥∥μh(P1) − μh(P2)
∥∥
H.

It has been shown that when kernel h is characteristic (see, e.g., Fukumizu et al. [19], Sriperumbudur,
Fukumizu and Lanckriet [47]), the MMD becomes zero if and only if P1 = P2. Some examples of
characteristic kernels include Gaussian and Laplace kernels on X = R

d . This characteristic property
allows to have a consistent two-sample test against any fixed alternatives. For general K-sample cases,
we consider the maximum of pairwise maximum mean discrepancies as our metric, that is,

Vh,max(P1, . . . ,PK) = max
1≤k<l≤K

∥∥μh(Pk) − μh(Pl)
∥∥
H.

Hence as long as h is characteristic, it is clear to see that Vh,max(P1, . . . ,PK) is zero if and only if
P1 = · · · = PK .

Suppose that we observe identically distributed samples X1,k, . . . ,Xnk,k ∼ Pk for each k = 1, . . . ,K

and assume that the samples are mutually independent. We propose our test statistic defined as a plug-in
estimator of Vh,max:

V̂h,max = max
1≤k<l≤K

∥∥∥∥∥ 1

nk

nk∑
i1=1

ψ(Xi1,k) − 1

nl

nl∑
i2=1

ψ(Xi2,l)

∥∥∥∥∥
H

.

In practice, the test statistic can be computed in a straightforward manner based on the kernel trick
(e.g., Lemma 6 of Gretton et al. [21]):

V̂h,max = max
1≤k<l≤K

{
1

n2
k

nk∑
i1,i2=1

h(Xi1,k,Xi2,k) + 1

n2
l

nl∑
i1,i2=1

h(Xi1,l ,Xi2,l)

− 2

nknl

nk∑
i1=1

nl∑
i2=1

h(Xi1,k,Xi2,l)

}1/2

.

Throughout this paper, we denote the pooled samples by {Z1, . . . ,ZN } = {X1,1, . . . ,XnK,K } where
N =∑K

k=1 nk .
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3. Limiting distribution

Given the test statistic, our next step is to determine a critical value of the test with correct size α and
good power properties. A common way of calibrating the critical value is based on the limiting null
distribution of the test statistic. In this asymptotic approach, the critical value is set to be the 1 − α

quantile of the limiting null distribution and the null hypothesis is rejected when the test statistic ex-
ceeds the critical value. The purpose of this section is to demonstrate the difficulty of implementing this
asymptotic-based test in our setting. In particular, we show that V̂h,max converges to a Gumbel distribu-
tion with a potentially infinite number of unknown parameters under certain conditions. Unfortunately,
it is by no means trivial to consistently estimate these infinite nuisance parameters. Furthermore, it is
well known that a maximum-type statistic converges slowly to its limiting distribution (e.g., Hall [22]),
which also makes the asymptotic test less attractive in practice. These limitations motivate us to delve
into the permutation approach later in Sections 4–6.

3.1. Cramér-type moderate deviation

In order to derive the limiting distribution of the maximum of pairwise MMD statistics, it is important
to understand the tail behavior of the two-sample MMD statistic. The main tool to this end is Cramér-
type moderate deviation for degenerate two-sample V -statistics that we will develop in this subsection.
Our result largely builds upon Cramér-type moderate deviation for degenerate one-sample U -statistics
recently presented by Drton, Han and Shi [17].

Let us start with some notation and assumptions. For notational convenience, we write the MMD
statistic between P1 and P2 as

V̂2
12 = 1

n2
1

n1∑
i1,i2=1

h(Xi1,1,Xi2,1) + 1

n2
2

n2∑
i1,i2=1

h(Xi1,2,Xi2,2) − 2

n1n2

n1∑
i1=1

n2∑
i2=1

h(Xi1,1,Xi2,2).

By defining h∗(x1, x2;y1, y2) := h(x1, x2) + h(y1, y2) − h(x1, y1)/2 − h(x1, y2)/2 − h(x2, y1)/2 −
h(x2, y2)/2, the MMD statistic can also be written in the form of a two-sample V -statistic

V̂2
12 = 1

n2
1n

2
2

n1∑
i1,i2=1

n2∑
j1,j2=1

h∗(Xi1,1,Xi2,1;Xj1,2,Xj2,2). (3.1)

Under the null hypothesis, the considered V -statistic is degenerate meaning that the conditional ex-
pectation of h∗(Xi1,1,Xi2,1;Xj1,2,Xj2,2) given any one of Xi1,1, Xi2,1, Xj1,2, Xj2,2 has zero variance
whenever i1 �= i2 and j1 �= j2.

Let X1, X2 be independent random vectors from P1. We then define the centered kernel

h(x1, x2) := h(x1, x2) −E
[
h(x1,X2)

]−E
[
h(X1, x2)

]+E
[
h(X1,X2)

]
,

which satisfies E[h(X1,X2)] = 0 and E[h(x1,X2)] = 0 almost surely. Under the finite second moment
condition of the centered kernel, i.e. E[{h(X1,X2)}2] < ∞, we may write

h(x1, x2) =
∞∑

v=1

λvϕv(x1)ϕv(x2), (3.2)
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where {λv}∞v=1 and {ϕv(·)}∞v=1 are the eigenvalues and eigenfunctions of the integral equation
E[h(x1,X2)ϕv(X2)] = λvϕv(x1) (see, e.g., page 80 of Lee [32]).

To facilitate the analysis, we make the following assumptions regarding the kernel function.

(A1) Assume that E[|h(X1,X1)|] < ∞.
(A2) Suppose that h(x1, x2) admits the decomposition in (3.2) with λ1 ≥ λ2 ≥ · · · ≥ 0. For all

u,v ∈ S
T −1 := {x ∈ R

T : ‖x‖2 = 1} where ‖ · ‖2 is Euclidean norm in R
T and any positive

integer T , assume that there exists a constant η > 0 independent of T such that

E
[∣∣{ϕ1···T (X1)

�u
}2{

ϕ1···T (X1)
�v
}m−2∣∣]≤ ηmmm/2, (3.3)

where ϕ1···T (X1) := (ϕ1(X1), . . . , ϕT (X1))
� and m = 3,4, . . .

It is worth noting that the given conditions are more general than those used in Drton, Han and
Shi [17]. Specifically, Drton, Han and Shi [17] assume that the kernel h and its eigenfunctions
are uniformly bounded. Clearly, (A1) and (A2) are fulfilled under their boundedness assumptions.
We also note that h(x1, x2) is a valid positive definite kernel (Sejdinovic et al. [45]), which yields
{h(x1, x2)}2 ≤ h(x1, x1)h(x2, x2). Hence, the second moment condition E[{h(X1,X2)}2] < ∞ is also
satisfied under (A1). Finally, the multivariate moment condition (3.3) implies that individual eigen-
functions are sub-Gaussian (e.g., Vershynin [51]).

Under the given conditions, we present Cramér-type moderate deviation for the two-sample degen-
erate V -statistic described in (3.1). The proof of the following theorem can be found in Appendix A.

Theorem 3.1 (Cramér-type moderate deviation). Suppose that (A1) and (A2) are fulfilled. Assume
that there exists a constant C1 ≥ 1 such that C−1

1 ≤ n1/n2 ≤ C1 and n1/N converges to a constant as
N := n1 + n2 → ∞. Then under the null hypothesis P1 = P2, we have

P(n1n2V̂2
12/N ≥ x)

P(
∑∞

v=1 λvξ2
v ≥ x)

= 1 + o(1), (3.4)

uniformly over x ∈ (0, o(Nθ )) where ξ1, ξ2, . . . are independent and identically distributed as N(0,1).
Here θ is a constant that satisfies

θ < sup

{
q ∈ [0,1/3) :

∑
v>�N(1−3q)/5�

λv = O
(
N−q

)}
,

when there exist infinitely many non-zero eigenvalues and θ = 1/3 otherwise.

Remark 3.1. Although we restrict our attention to the two-sample V -statistic with a second-
order kernel h∗(x1, x2;y1, y2), our result can be straightforwardly extended to higher-order kernels
h∗(x1, . . . , xr ;y1, . . . , yr ) for some r ≥ 3. The key idea is to consider Hoeffding’s decomposition of
two-sample U -statistics (page 40 of Lee [32]) and properly control the remainder terms (see, Drton,
Han and Shi [17] for one-sample case). Finally, using the relationship between U - and V -statistics
(e.g., page 183 of Lee [32]), one can derive the desired result for the V -statistic with a higher-order
kernel. We do not pursue this direction here since the second-order kernel is enough for our application.

3.2. Gumbel limiting distribution

With the aid of Theorem 3.1, we are now ready to describe the limiting distribution of the proposed
statistic under large K and large N situations. The main ingredient is Chen–Stein method for Poisson
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approximations (Arratia, Goldstein and Gordon [5]) that has been successfully applied to approximate
the distribution of a maximum-type test statistic to a Gumbel distribution (see, e.g., Han, Chen and Liu
[23], Drton, Han and Shi [17]). For sake of completeness, we state Theorem 1 of Arratia, Goldstein
and Gordon [5].

Lemma 3.1 (Theorem 1 of Arratia, Goldstein and Gordon [5]). Let I be an arbitrary index set and
for i ∈ I , let Yi be a Bernoulli random variable with pi = P(Yi = 1) > 0. For each i ∈ I , consider a
subset of I such that Bi ⊂ I with i ∈ Bi . Let us define W =∑i∈I Yi and λ = E(W) =∑i∈I pi . Let
V be a Poisson random variable with mean λ. Then we have that∣∣P(W = 0) − P(V = 0)

∣∣≤ min
{
1, λ−1}(b1 + b2 + b3)

where

b1 :=
∑
i∈I

∑
j∈Bi

pipj , b2 :=
∑
i∈I

∑
i �=j∈Bi

E(YiYj ) and

b3 :=
∑
i∈I

E

∣∣∣∣E[Yi − pi

∣∣∣ ∑
j∈I−Bi

Yj

]∣∣∣∣.
Let us denote the two-sample MMD statistic between Pk and Pl by V̂2

kl , that is V̂2
kl = ‖n−1

k ×∑nk

i=1 ψ(Xi,k) − n−1
l

∑nl

j=1 ψ(Xj,l)‖2
H. Assume the sample sizes are the same as n := n1 = · · · = nK

for simplicity. Then based on the following key observation

P
(
nV̂2

h,max/2 ≤ x
)= P

{ ∑
1≤k<l≤K

1
(
nV̂2

kl/2 > x
)= 0

}
,

Lemma 3.1 can be applied in our context with W = ∑
1≤k<l≤K 1(nV̂2

kl/2 > x) and λ =∑
1≤k<l≤K P(nV̂2

kl/2 > x). Ultimately the proof boils down to showing that b1, b2, b3 converge to
zero under appropriate conditions. This has been established in Appendix A and the result is summa-
rized as follows.

Theorem 3.2 (Gumbel limit). Suppose that (A1) and (A2) are fulfilled. Consider a balanced sample
case such that n := n1 = · · · = nK . Let θ be a constant chosen as in Theorem 3.1 and assume that
logK = o(nθ ). Then under the null hypothesis P1 = · · · = PK , for any y ∈R,

lim
n,K→∞P

(
n

2λ1
V̂2

h,max − 4 logK − (μ1 − 2) log logK ≤ y

)
= exp

{
−2μ1/2−2κ


(μ1/2)
exp

(
−y

2

)}
,

where κ =∏∞
v=μ1+1(1 − λv/λ1)

−1/2 and μ1 is the multiplicity of the largest eigenvalue among the
sequence {λv}∞v=1.

Remark 3.2. From Theorem 3.2, it is clear that we need to know or at least estimate a potentially
infinite number of parameters {λv}∞v=1 in order to implement the asymptotic test. Even if one has
access to these eigenvalues, the asymptotic test might suffer from slow convergence. This means that
the test can be too liberal or too conservative in finite sample size situations.
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Remark 3.3. When the sample sizes are unbalanced, the limiting distribution of V̂2
h,max may not have

an explicit expression as in Theorem 3.2. In particular, it depends on the limit values of nk/(nk + nl)

for 1 ≤ k < l ≤ K . To avoid this complication, we simply focus on the case of equal sample sizes and
present the explicit formula for the limiting distribution. Nevertheless, if we instead use the weighted
K-sample statistic:

max
1≤k<l≤K

(
nknl

nk + nl

V̂2
kl

)
,

we may obtain the same Gumbel limiting distribution as in Theorem 3.2 for general sample sizes.

3.3. Examples

In general, it is challenging to find closed-form expressions for {λv}∞v=1 and {ϕv(·)}∞v=1 as they depend
on the kernel as well as the underlying distribution. We end this section with two simple examples for
which {λv}∞v=1 and {ϕv(·)}∞v=1 are explicit. Based on these, we illustrate Theorem 3.2.

• Linear kernel: Suppose that {X1,1, . . . ,Xn,1, . . .X1,K, . . . ,Xn,K } are independent and identically
distributed as a multivariate normal distribution with mean zero and covariance matrix �. Suppose
further that � is a diagonal matrix whose diagonal entries are λ1 = · · · = λμ1 > λμ1+1 ≥ · · · ≥
λd > 0 for some μ1 ≥ 1. Let us consider the linear kernel given as h(x1, x2) = x�

1 x2. Then it is
straightforward to see that the centered kernel in (3.2) has the eigenfunction decomposition as

h(x1, x2) =
d∑

v=1

λvϕv(x1)ϕv(x2) =
d∑

v=1

λv

(
x

(v)
1 /
√

λv

)(
x

(v)
2 /
√

λv

)
where x

(v)
1 is the vth component of x1. Under the given setting, {ϕ1(X1,1), . . . , ϕd(X1,1)} are

independent and identically distributed as N(0,1). It can be shown that the conditions in Theo-
rem 3.2 are satisfied with θ = 1/3 under the Gaussian assumption. Thus, the resulting test statistic
converges to a Gumbel distribution as in Theorem 3.2.

• Chi-square kernel: Suppose that {X1,1, . . . ,Xn,1, . . .X1,K, . . . ,Xn,K} are independent and iden-
tically distributed on a discrete domain {1, . . . ,m} with fixed m. Let pv > 0 be the probability of
observing the value v among {1, . . . ,m} and consequently

∑m
v=1 pv = 1. Consider the chi-square

kernel defined as h(x1, x2) =∑m
v=1 p−1

v 1(x1 = v)1(x2 = v). Let A be a (m−1)× (m−1) matrix
whose (v1, v2) entry is av1,v2 = p−1

v1
+ p−1

m if v1 = v2 and av1,v2 = p−1
m otherwise. Let us define

the eigenfunction ϕv(x) to be the vth row of A1/2{1(x = 1)−p1, . . . ,1(x = m−1)−pm−1}� for
v = 1, . . . ,m − 1. Then, following the calculation in Theorem 14.3.1 of Lehmann and Romano
[33],

h(x1, x2) =
m−1∑
v=1

λvϕv(x1)ϕv(x2) =
m∑

v=1

{1(x1 = v) − pv}{1(x2 = v) − pv}
pv

,

where λ1 = · · · = λm−1 = 1 and λv = 0 for v ≥ m and the eigenfunctions are bounded. Thus, the
conditions in Theorem 3.2 are satisfied with θ = 1/3 and the resulting test statistic converges to a
Gumbel distribution.
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4. Permutation approach

So far we have investigated the limiting null distribution of the proposed test statistic and demonstrated
the difficulty of implementing the resulting asymptotic test. To address the issue, we take an alternative
approach based on permutations that does not require prior knowledge on unknown parameters. The
key advantage of the permutation approach is that it yields a valid level α test (or a size α test via
randomization) for any finite sample size and for any number of distributions. This attractive property
is true for any type of underlying distributions, provided that {Z1, . . . ,ZN } are exchangeable under
H0. In the following, we briefly describe the original and randomized permutation procedures. The
randomized procedure has a computational advantage over the original procedure by considering a
random subset of all permutations.

• Permutation approach: Let BN be the collection of all possible permutations of {1, . . . ,N}. For
b = (b1, . . . , bN) ∈ BN , we denote by V̂(b)

h,max the test statistic computed based on the permuted

dataset {Zb1 , . . . ,ZbN
}. We then clearly have V̂(b0)

h,max = V̂h,max for b0 = (1, . . . ,N). The permuta-
tion p-value is calculated by

pperm = 1

N !
∑

b∈BN

1
(
V̂(b)

h,max ≥ V̂h,max
)
. (4.1)

It is well known that P(pperm ≤ t) ≤ t for any 0 ≤ t ≤ 1 under H0 (e.g., Chapter 15 of Lehmann
and Romano [33]). Consequently 1(pperm ≤ α) is a valid level α test.

• Randomized version: For large N , it would be beneficial to consider a subset of BN and compute
the approximated permutation p-value. Suppose that b′

1, . . . ,b
′
M are sampled uniformly from BN

with replacement. We then define a Monte-Carlo version of the permutation p-value by

pMC = 1

M + 1

{
1 +

M∑
i=1

1
(
V̂(b′

i )

h,max ≥ V̂h,max
)}

. (4.2)

It can be shown that P(pMC ≤ t) ≤ t for any 0 ≤ t ≤ 1 under H0 (see, e.g., Chapter 15 of Lehmann
and Romano [33]). Hence, 1(pMC ≤ α) is a valid level α test as well.

Having motivated the permutation approach, we next analyze uniform consistency as well as mini-
max optimality of the resulting permutation test against sparse alternatives in Section 6, building on
concentration inequalities developed in the following section.

5. Concentration inequalities under permutations

This section develops a concentration inequality for the permuted MMD statistic with an exponential
tail bound. The result established here is especially useful for studying the type II error (or the power)
of the proposed permutation test in Section 6. Our result can also be valuable in addressing the compu-
tational issue of the permutation test. The permutation approach suffers from high computational cost
as the number of all possible permutations increases very quickly with the sample size. As a result,
it is common in practice to use Monte-Carlo sampling of random permutations to approximate the p-
value of a permutation test. However, in some application areas such as genetic where extremely small
p-values are of interest, the Monte-Carlo approach still requires heavy computations (Knijnenburg et
al. [30], He et al. [24]). Our concentration inequality has an exponential tail bound with completely
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known quantities. Based on this, one can find a sharp upper bound for the permutation p-value (or the
permutation critical value) without any computational cost for permutations. We discuss this direction
in more detail in Remark 5.2.

5.1. Bobkov’s inequality

Before we state the main result of this section, we introduce Bobkov’s inequality (Bobkov [7]), which
is the key ingredient of our proof. To state his result, we need to prepare some notation in advance.
Consider a discrete cube given by

GN,m = {w = (w1, . . . ,wN) ∈ {0,1}N : w1 + · · ·wN = m
}
.

Note that for each w ∈ GN,m, there are exactly m(N −m) neighbors {sijw}i∈I (w),j∈J (w) where I (w) =
{i ≤ N : wi = 1} and J (w) = {j ≤ N : wj = 0} such that (sijw)r = wr for r �= i, j and (sijw)i = wj ,
(sijw)j = wi . Now for a function f defined on GN,m, the Euclidean length of discrete gradient ∇f (w)

is given as ∣∣∇f (w)
∣∣2 =

∑
i∈I (w)

∑
j∈J (w)

∣∣f (w) − f (sijw)
∣∣2.

For more details, we refer to Bobkov [7]. Then Bobkov’s inequality is stated as follows.

Lemma 5.1 (Theorem 2.1 of Bobkov [7]). For every real-valued function f on GN,m and |∇f (w)| ≤
� for all w,

Pw

[
f (w) −Ew

{
f (w)

}≥ t
]≤ exp

{−(N + 2)t2/
(
4�2)},

where Pw(·) represents a counting probability measure on GN,m and Ew(·) is the expectation associ-
ated with Pw(·).

5.2. Two-sample case

We first focus on the two-sample case. When K = 2, it is clear that the proposed test statistic becomes
the V -statistic in Gretton et al. [21] and

V̂h,max = N

n2

∥∥∥∥∥ 1

n1

n1∑
i1=1

ψ(Xi,1) − 1

N

N∑
j=1

ψ(Zj )

∥∥∥∥∥
H

= N

n1n2

∥∥∥∥∥
n1∑

i1=1

ψ(Zi)

∥∥∥∥∥
H

, (5.1)

where ψ(Zi1) = ψ(Zi1) − 1
N

∑N
j=1 ψ(Zj ). Recall that b is a N -dimensional random vector uniformly

distributed over BN in the permutation procedure. As before in Section 4, we denote the test statistic
based on the permuted dataset {Zb1, . . . ,ZbN

} by

V̂(b)
h,max := N

n1n2

∥∥∥∥∥
n1∑

i1=1

ψ(Zbi1
)

∥∥∥∥∥
H

.

We also denote the probability law under permutations (conditional on Z1, . . . ,ZN ) by Pb(·) and the
expectation associated with Pb(·) by Eb(·).
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It should be stressed that in the two-sample case, there exists w ∈ GN,n1 corresponding to each
b ∈ BN such that

V̂(b)
h,max = V̂ [w]

h,max := N

n1n2

∥∥∥∥∥
N∑

i=1

wiψ(Zi)

∥∥∥∥∥
H

.

More importantly, both V̂(b)
h,max and V̂ [w]

h,max have the same probability law when b and w are uniformly
distributed over BN and GN,n1 , respectively. In other words, we have

Pb

{
V̂(b)

h,max −Eb

(
V̂(b)

h,max

)≥ t
}= Pw

{
V̂ [w]

h,max −Ew

(
V̂ [w]

h,max

)≥ t
}

for all t ∈ R.

This key observation allows us to apply Bobkov’s inequality to obtain a concentration inequality for
the permuted test statistic in the following theorem.

Theorem 5.1 (Concentration inequality for two-sample statistic). For K = 2, let Pb be the uniform
probability measure over permutations conditional on {Z1, . . . ,ZN }. Let us write γ1,2 = n1n2/(n1 +
n2)

2. Further denote h̃(Zi,Zj ) = h(Zi,Zi) + h(Zj ,Zj ) − 2h(Zi,Zj ) ≥ 0 and

σ̂ 2 = 1

N(N − 1)

N∑
i �=j=1

h̃(Zi,Zj ). (5.2)

Then for all t > 0, we have

Pb

(
V̂(b)

h,max ≥ t +
√

σ̂ 2

2Nγ1,2

)
≤ exp

(
−Nγ 2

1,2t
2

2σ̂ 2

)
. (5.3)

Proof. From the previous discussion, it suffices to investigate a concentration inequality for f (w) :=
V̂ [w]

h,max, which is uniformly distributed on GN,n1 . Since Bobkov’s inequality holds for f (w), all we
need to do is to find meaningful bounds of the expected value of f (w) and the Euclidean length of
∇f (w). We first bound the expected value of f (w). Using the feature map representation of kernel h,
it is straightforward to see that

N∑
i=1

∥∥ψ(Zi)
∥∥2
H = −

N∑
i �=j=1

〈
ψ(Zi),ψ(Zj )

〉
H = 1

2N

N∑
i �=j=1

h̃(Zi,Zj ). (5.4)

Then using Jensen’s inequality together with the above identities,

Ew

[∥∥∥∥∥
N∑

i=1

wiψ(Zi)

∥∥∥∥∥
H

]
≤

√√√√√Ew

[
N∑

i=1

w2
i

∥∥ψ(Zi)
∥∥2
H +

N∑
i �=j=1

wiwj

〈
ψ(Zi),ψ(Zi)

〉
H

]

=

√√√√√n1

N

N∑
i=1

∥∥ψ(Zi)
∥∥2
H + n1(n1 − 1)

N(N − 1)

N∑
i �=j=1

〈
ψ(Zi),ψ(Zj )

〉
H
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=

√√√√√ n1n2

2N2(N − 1)

N∑
i �=j=1

h̃(Zi,Zj ).

By multiplying the scaling factor N/(n1n2) on both sides, we have Ew[f (w)] ≤√σ̂ 2/(2Nγ1,2).
Next, we bound |∇f (w)|. Recall the definition of sijw in Section 5.1. Using the triangle inequality,

we see that∣∣∣∣∣ N

n1n2

∥∥∥∥∥
N∑

l=1

wlψ(Zl)

∥∥∥∥∥
H

− N

n1n2

∥∥∥∥∥
N∑

l=1

(sijw)lψ(Zl)

∥∥∥∥∥
H

∣∣∣∣∣≤ N

n1n2

∥∥ψ(Zi) − ψ(Zj )
∥∥
H.

Based on this observation, one can find �, which is independent of w, as

∣∣∇f (w)
∣∣2 ≤ �2 := N2

n2
1n

2
2

∑
1≤i<j≤N

‖ψ(Zi) − ψ(Zj )‖2
H = N2

2n2
1n

2
2

N∑
i �=j=1

h̃(Zi,Zj ),

where the last equality uses the identities in (5.4). Now apply Bobkov’s inequality with the above
pieces to obtain the desired result. �

Remark 5.1. Before we move on, we make several comments on Theorem 5.1.

(a) The tail of the given concentration inequality relies solely on the variance term of the kernel.
This is in sharp contrast to Hoeffding or Bernstein-type inequalities (Boucheron, Lugosi and
Massart [8]) that usually depend on the (possibly unknown) range of random variables.

(b) The given concentration inequality requires no assumption on random variables such as bound-
edness or more generally sub-Gaussianity. Furthermore, it only depends on known and easily
computable quantities in practice.

(c) For 0 < α < 1, consider a test function φ2 : {Z1, . . . ,ZN } �→ {0,1} such that

φ2 = I

{
V̂h,max ≥

√
2σ̂ 2

Nγ 2
1,2

log

(
1

α

)
+
√

σ̂ 2

2Nγ1,2

}
.

As a corollary of Theorem 5.1, it can be seen that φ2 is a valid level α test whenever
{Z1, . . . ,ZN } are exchangeable.

(d) We stress that our test statistic is a degenerate two-sample V -statistic. Therefore, the previous
studies on concentration inequalities for the permuted simple sum (e.g., Chatterjee [14], Adam-
czak, Chafaï and Wolff [1], Albert [2]) cannot be applied in our context.

5.3. Numerical illustrations

We illustrate the usefulness of Theorem 5.1 via simulations. First of all, we can use Theorem 5.1 to
compute an upper bound for the original permutation p-value. In detail, suppose that n1 = n2 with
N = n1 + n2 for simplicity. Then it is straightforward to see that the permutation p-value is less than
or equal to

pBobkov :=

⎧⎪⎨⎪⎩exp

{
− N

32σ̂ 2

(
V̂h,max −

√
2σ̂ 2

N

)2}
, if V̂h,max ≥

√
2σ̂ 2

N

1, else.
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By the nature of the permutation test, pBobkov is a valid p-value in any finite sample size, in a sense that
P(pBobkov ≤ α) ≤ α under H0. Another way of obtaining a finite-sample valid p-value is to use an un-
conditional concentration inequality. For example, Gretton et al. [21] employ McDiarmid’s inequality
(McDiarmid [39]) to have an concentration inequality for the MMD V -statistic with a bounded kernel.
Based on Theorem 7 of Gretton et al. [21] under the bounded kernel assumption 0 ≤ h(x, y) ≤ B ,
another valid p-value can be obtained as

pMcDiarmid :=

⎧⎪⎨⎪⎩exp

{
− N

8B

(
V̂h,max −

√
32B

N

)2}
, if V̂h,max ≥

√
32B

N

1, else.

Both approaches provide exponentially decaying p-values in sample size but we should emphasize that
pBobkov does not require any moment conditions on the kernel. Even if the kernel is bounded, pBobkov
would be preferred to pMcDiarmid when σ̂ 2 is much smaller than B . This point is illustrated under the
following set-up.

Set-up. We consider two kernels: (1) energy distance kernel h(x, y) = (‖x‖2 + ‖y‖2 − ‖x − y‖2)/2
and (2) linear kernel h(x, y) = x�y. Although these kernels are unbounded in general, they are
bounded when the underlying distributions have compact support. For this purpose, we consider two
truncated normal distributions with the different location parameters μ1 = 1 and μ2 = −1 and the
same scale parameter σ 2 = 1. We let both distributions have the same support as [−5,5] so that we
can calculate the bound B for each kernel. For each sample size N among {100,200, . . . ,900,1000},
the experiments were repeated 200 times to estimate the expected values of the p-values.

Results. In Figure 1, we present the simulation results of the comparison between pBobkov and
pMcDiarmid under the described scenario. The p-values are displayed in log-scale for better visual com-
parison. Under the given setting, we observe that σ̂ 2 is much smaller than B for both kernels, which
in turns leads to a smaller value of pBobkov compared to pMcDiarmid. More specifically, we observe
(1) σ̂ 2 ≈ 1.61 on average and B = 10 for the energy distance kernel and (2) σ̂ 2 ≈ 4.01 on average and
B = 100 for the linear kernel. It is worth noting that the benefit of using pBobkov becomes more evident
for unbounded random variables for which pMcDiarmid is not even applicable.

Remark 5.2. The test based on pBobkov may not be recommended when the sample size is small
and the significance level α is of moderate size (e.g., α = 0.05). In this case, the permutation test via
Monte-Carlo simulations would be more satisfactory. However, when the sample size is large and the
significance level is very small (e.g., α = 10−100), the Monte-Carlo approach would be computation-
ally infeasible, requiring at least α−1 random permutations in order to reject H0. In this large-sample
and small α situation, the approach based on pBobkov would be practically valuable, which does not
require any computational cost on permutations.

Remark 5.3. While we focused on the case where σ̂ 2 � B to highlight the advantage of pBobkov, it is
definitely possible to observe that pMcDiarmid is smaller than pBobkov, especially when B is comparable
to or smaller than σ̂ 2.

5.4. K-Sample case

Next, we give a general result for arbitrary K ≥ 2. Unfortunately, we cannot directly apply Bobkov’s
inequality when K > 2 since the inequality holds only for a function f (w) defined on a binary discrete



Comparing a large number of multivariate distributions 431

Figure 1. Comparisons between Bobkov’s inequality and McDiarmid inequality in their application to p-value
evaluation. In both energy distance kernel and linear kernel, Bobkov’s inequality returns significantly smaller
p-values than McDiarmid inequality. See Section 5.3 for details.

cube. Our strategy to overcome this problem is to first apply Bobkov’s inequality to each pairwise
MMD test statistic and then aggregate the results via the union bound. To start, we introduce σ̂ 2

K in
Algorithm 1 that generalizes σ̂ 2 to the K-sample case.

It can be seen that σ̂ 2
K is the same as σ̂ 2 in (5.2) when K = 2 and can be computed in quadratic time

for large K . Using σ̂ 2
K , we extend Theorem 5.1 as follows.

Theorem 5.2 (Concentration inequality for K-sample statistic). For K ≥ 2, let Pb be the uniform
probability measure over permutations conditional on {Z1, . . . ,ZN }. For distinct k, l ∈ {1, . . . ,K}, let
γk,l = nknl/(nk + nl)

2 and consider σ̂ 2
K in Algorithm 1. Then for any t ≥ 0,

Pb

{
V̂(b)

h,max ≥ t + max
1≤k<l≤K

√
σ̂ 2

K

2(nk + nl)γk,l

}

≤
(

K

2

)
exp

{
− min

1≤k<l≤K

(nk + nl)γ
2
k,l t

2

2σ̂ 2
K

}
. (5.5)

Algorithm 1: Calculation of σ̂ 2
K

Require: the pooled samples {Z1, . . . ,ZN }, the number of samples n1, . . . , nK .

(1) Calculate h̃(Zi,Zj ) for 1 ≤ i �= j ≤ N .
(2) Sort and denote the previous outputs by h̃[1] ≥ · · · ≥ h̃[N(N−1)].
(3) Compute σ̂ 2

K := max1≤k<l≤K σ 2
kl where σ 2

kl is the sample average of h̃[1], h̃[2], . . . ,
h̃[(nk+nl)(nk+nl−1)].

(4) Return σ̂ 2
K .
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Proof. For a given permutation b ∈ BN , let us denote

V̂(b)
kl =

∥∥∥∥∥ 1

nk

nk∑
i=1

ψ(Zbmk−1+i
) − 1

nl

nl∑
j=1

ψ(Zbml−1+j
)

∥∥∥∥∥
H

,

where ml−1 =∑l−1
k=1 nk and m0 = 0 so that V̂(b)

h,max = max1≤k<l≤K V̂(b)
kl . Based on the triangle inequal-

ity and the union bound, observe that

Pb

{
V̂(b)

h,max ≥ t + max
1≤k<l≤K

√
σ̂ 2

K

2(nk + nl)γk,l

}

≤ Pb

[
max

1≤k<l≤K

{
V̂(b)

kl −
√

σ̂ 2
K

2(nk + nl)γk,l

}
≥ t

]

≤
∑

1≤k<l≤K

Pb

{
V̂(b)

kl ≥ t +
√

σ̂ 2
K

2(nk + nl)γk,l

}
. (5.6)

Let Z̃ = {Z̃1, . . . , Z̃nk+nl
} be the nk +nl samples uniformly drawn from {Z1, . . . ,ZN } without replace-

ment. Write

V̂ [w]
kl = nk + nl

nknl

∥∥∥∥∥
nk+nl∑
i1=1

wi1

{
ψ(Z̃i1) − 1

nk + nl

nk+nl∑
i2=1

ψ(Z̃i2)

}∥∥∥∥∥
H

,

where w = {w1, . . . ,wnk+nl
} is a set of Bernoulli random variables uniformly distributed on Gnk+nl,nk

as before. Then by the law of total expectation and a slight modification of the proof of Theorem 5.1,
it can be seen that

Pb

(
V̂(b)

kl ≥ t +
√

σ̂ 2
K

2(nk + nl)γk,l

)
= EZ̃

[
Pw

{
V̂ [w]

kl ≥ t +
√

σ̂ 2
K

2(nk + nl)γk,l

|Z̃
}]

≤ EZ̃

[
exp

{
− (nk + nl)γ

2
k,l t

2

2σ̂ 2
K

}]

= exp

{
− (nk + nl)γ

2
k,l t

2

2σ̂ 2
K

}
,

where the last equality follows since σ̂ 2
K is invariant to the choice of Z̃. By putting this result into the

right-hand side of (5.6), the proof is complete. �

Remark 5.4. We provide some comments on Theorem 5.2.

(a) When K = 2, the concentration inequality given in (5.5) recovers the one in (5.3).
(b) One can replace σ̂ 2

K with max1≤i<j≤N h̃(Zi,Zj ) in (5.5), which takes less time to com-
pute, but at the expense of the loss of the tightness. Note, however, that the bound with
max1≤i<j≤N h̃(Zi,Zj ) is tight enough to prove minimax rate optimality of the proposed test.
See the proof of Theorem 6.1 for details.
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(c) As before in the two-sample case, the proposed K-sample concentration inequality is valid with-
out any moment condition and it depends solely on known and easily computable quantities.

(d) Consider a test function φK : {Z1, . . . ,ZN } �→ {0,1} such that

φK = I

[
V̂h,max ≥ max

1≤k<l≤K

√√√√{ 2σ̂ 2
K

(nk + nl)γ
2
k,l

}
log

{(K
2

)
α

}

+ max
1≤k<l≤K

√
σ̂ 2

K

2(nk + nl)γk,l

]
.

As a corollary of Theorem 5.2, it can be seen that φK is a valid level α test whenever
{Z1, . . . ,ZN } are exchangeable under H0.

6. Power analysis

In this section, we study the power of the permutation test based on the proposed test statistic and
prove its minimax rate optimality against certain sparse alternatives. Throughout this section, we need
the following assumptions:

(B1) Assume that kernel h is uniformly bounded by 0 ≤ h(x, y) ≤ B for all x, y ∈ X .
(B2) There exists a fixed constant c > 0 such that nmax/nmin ≤ c for any sample sizes where nmax

and nmin are the maximum and the minimum of {n1, . . . , nK} respectively.

Note that the assumption (B1) is satisfied by some widely used kernels for example, Gaussian and
Laplace kernels. It can also be satisfied by many other kernels when the underlying distributions have
compact support. The second assumption (B2) states that n1, . . . , nK are well-balanced. This assump-
tion, for example, holds for the equal sample sizes with c = 1.

6.1. Power of the permutation test

Let P be the set of all distributions on (X ,B). We characterize the difference between the null and the
alternative in terms of max1≤k<l≤K Vh(Pk,Pl), which is the population counterpart of the proposed
test statistic V̂h,max. In particular, for a given positive sequence εN and kernel h, let us define a class of
alternatives:

Fh(εN) =
{
(P1, . . . ,PK) ∈P : max

1≤k<l≤K
Vkl ≥ εN

}
, (6.1)

where Vkl = Vh(Pk,Pl) for simplicity. We call the collection of alternatives in Fh(εN) as the sparse
alternatives, in a sense that only a few of {Vkl}1≤k<l≤K are required to be greater than εN while the rest
of them can be zero. Such sparse alternatives have been considered by many authors including Cai, Liu
and Xia [11,12] and Han, Chen and Liu [23] in different contexts. The main goal of this subsection is to
characterize the conditions under which the permutation test can be uniformly powerful over Fh(εN).
More specifically, we show that as long as the lower bound εN is sufficiently larger than

r�
N :=

√
logK

nmin
,
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then the proposed permutation test is uniformly consistent. Furthermore, in Section 6.2, we prove that
this rate cannot be improved from a minimax perspective under some mild conditions on kernel h. In
other words, the proposed test is minimax rate optimal against the sparse alternatives with the minimax
rate r�

N .
We start by providing one lemma, which states that max1≤k<l≤K |V̂kl − Vkl | is bounded by

C
√

logK/nmin for some constant C with high probability.

Lemma 6.1. Suppose that (B1) holds and recall that V̂kl = ‖n−1
k

∑nk

i1=1 ψ(Xi1,k) − n−1
l ×∑nl

i2=1 ψ(Xi2,l)‖H. Then with probability at least 1 − β where 0 < β < 1, we have

max
1≤k<l≤K

|V̂kl − Vkl | ≤ 4

√
B

nmin
+ 2

√
B

nmin
log

{
2

β

(
K

2

)}
.

Proof. Using Theorem 7 of Gretton et al. [21], one can obtain

P

(
|V̂kl − Vkl | ≥ 2

√
n−1

k B + 2
√

n−1
l B + t

)
≤ 2 exp

{
− (nk + nl)γk,l t

2

2B

}
.

Then the result follows by applying the union bound as in Theorem 5.2 and the following inequality

min
1≤k<l≤K

(nk + nl)γk,l ≥ nmin

2
. �

By building on Theorem 5.2 and Lemma 6.1, we prove the uniform consistency of the permutation
test against Fh(εN) when εN is much larger than r�

N . We provide the proof in Appendix A.

Theorem 6.1 (Uniform consistency of the original permutation test). Assume that (B1) and (B2)
are fulfilled. Denote the permutation test function by φK,perm = 1(pperm ≤ α) where pperm is given in
(4.1). Then under H1,

lim sup
nmin→∞

sup
(P1,...,PK)∈Fh(bN r�

N )

P(φK,perm = 0) = 0,

where bN is an arbitrary sequence that goes to infinity as nmin → ∞.

Next by using Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (e.g., Massart [38]), we extend the
previous result to the randomized permutation test.

Corollary 6.1 (Uniform consistency of the randomized permutation test). Assume that (B1) and
(B2) are fulfilled. Denote the Monte-Carlo-based permutation test function by φK,MC = 1(pMC ≤ α)

where pMC is given in (4.2). Then under H1,

lim
M→∞ lim sup

nmin→∞
sup

(P1,...,PK)∈Fh(bN r�
N )

P(φK,MC = 0) = 0,

where bN is an arbitrary sequence that goes to infinity as nmin → ∞.

Remark 6.1. It is worth pointing out that the results of both Theorem 6.1 and Corollary 6.1 hold
regardless of whether K is fixed or increases with nmin. However, we note that K cannot increase
much faster than enmin as max1≤k<l≤K Vkl is upper bounded by a positive constant under (B1) and
thereby r�

N = √
logK/nmin is also bounded.
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6.2. Minimax rate optimality

Theorem 6.1 as well as Corollary 6.1 show that the original and randomized permutation tests can
be uniformly powerful over Fh(bNr�

N) when bN is sufficiently large. In this subsection, we focus
on the MMD associated with a translation invariant kernel defined on R

d and further show that the
previous result cannot be improved from a minimax point of view. A kernel h : Rd × R

d �→ R is
called translation invariant if there exists a symmetric positive definite function ϕ : Rd �→ R such that
ϕ(x − y) = h(x, y) for all x, y ∈R

d (Tolstikhin, Sriperumbudur and Muandet [50]). Then our result is
stated as follows.

Theorem 6.2. Let 0 < α < 1 and 0 < ζ < 1 − α. Suppose that nmin → ∞ and K → ∞. Consider the
class of sparse alternatives Fh(εN) defined with a translation invariant kernel h on R

d . Assume that
there exists z ∈R

d and κ1, κ2 > 0 such that ϕ(0)−ϕ(z) ≥ κ1 and r�
N ≤ κ2 for all nmin. Further assume

that (B1) and (B2) hold. Then under H1, there exists a small constant b > 0 such that

lim inf
nmin→∞ inf

φ∈�N(α)
sup

(P1,...,PK)∈Fh(br�
N )

P(φ = 0) ≥ ζ,

where �N(α) is the set of all level α test functions such that φ : {Z1, . . . ,ZN } �→ {0,1}.

Remark 6.2. The results in Theorem 6.1 and Theorem 6.2 imply that the proposed permutation test is
not only consistent but also minimax rate optimal against the considered sparse alternatives. As far as
we are aware, this is the first time that the power of the permutation test is theoretically analyzed under
large N and large K situations.

Remark 6.3. In our problem setup, a distance between two distributions is measured in terms of the
maximum mean discrepancy associated with kernel h. One can also study minimax optimality of the
proposed test over a class of alternatives measured in terms of a more standard metric such as the L2

distance. For this direction, the results of Li and Yuan [35] seem useful in which the authors explore
minimax rate optimality of kernel mean embedding methods over a Sobolev space in the L2 distance.
We leave a detailed analysis of minimax optimality of the proposed test in other metrics to future work.

7. Simulations

In this section, we demonstrate the finite-sample performance of the proposed approach via simula-
tions. We consider two characteristic kernels for our test statistic; (1) Gaussian kernel and (2) energy
distance kernel. Gaussian kernel is given by h(x, y) = exp(−‖x − y‖2

2/σ) for which we choose the
tuning parameter σ by the median heuristic (Gretton et al. [21]). On the other hand, energy distance
kernel is given by h(x, y) = (‖x‖2 + ‖y‖2 − ‖x − y‖2)/2 as before. Note that the MMD statistic with
energy distance kernel is equivalent to the energy statistic (Székely and Rizzo [48], Baringhaus and
Franz [6]) in the two-sample case.

7.1. Other multivariate K-sample tests

We compare the performance of the proposed tests with two multivariate K-sample tests. The first one
is the test based on DISCO statistic proposed by Rizzo and Székely [43]. Let Ekl,α′ be the α′-energy
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statistic between Pk and Pl given by

Ekl,α′ = 2

nknl

nk∑
i1=1

nl∑
i2=1

gα′(Xi1,k,Xi2,l) − 1

n2
k

nk∑
i1,i2=1

gα′(Xi1,k,Xi2,k)

− 1

n2
l

nl∑
i1,i2=1

gα′(Xi1,l ,Xi2,l),

where gα′(x, y) = ‖x −y‖α′
2 . Let us write the between-sample and within-sample dispersions by Sα′ =

K−1∑
1≤k<l≤K Ekl,α′ and Wα′ = 2−1∑K

k=1 n−1
k

∑nk

i1,i2=1 gα′(Xi1,k,Xi2,k). Then DISCO statistic is
defined as ratio of the between-sample dispersion to the within-sample dispersion, that is

Dγ = Sα′/(K − 1)

Wα′/(N − K)
.

The second test, proposed by Hušková and Meintanis [25], is based on the empirical characteristic
functions. For a given α′′ ∈ R, Hušková and Meintanis [25] consider the weighted L2 distance between
empirical characteristic functions as their test statistic, that is

Hα′′ =
K∑

k=1

N − nk

Nnk

nk∑
i1,i2=1

e−‖Xi1,k−Xi2,k‖2
2/4α′′ − 1

N

∑
1≤k �=l≤K

nk∑
i1=1

nl∑
i2=1

e−‖Xi1,k−Xi2,l‖2
2/4α′′

.

In their paper, Hušková and Meintanis [25] consider α′′ = 1,1.5,2 in their simulation study. Through-
out our simulations, we choose α′ = 1 for Dα′ and α′′ = 1.5 for Hα′′ and reject the null for large values
of Dα′ and Hα′′ .

We also attempted to consider the graph-based K-sample test recently developed by Mukhopadhyay
and Wang [41]. To implement their test, we used the R package provided by the same authors. Un-
fortunately, their method was not applicable when K is large due to numerical overflow in computing
orthogonal polynomials. Hence, we focus on the first two methods described in this subsection and
compare them with the proposed tests against sparse alternatives.

7.2. Set-up

Let us denote a multivariate normal distribution with mean vector μ and covariance matrix � by
N(μ,�). Similarly we denote a multivariate Laplace distribution with mean vector μ and covariance
matrix � by L(μ,�). We examine the performance of the considered tests under the following sparse
alternatives:

(a) Normal Location: P1 = N(δ1, Id) and P2 = · · · = PK = N(δ0, Id),
(b) Normal Scale: P1 = N(δ0,3 × Id) and P2 = · · · = PK = N(δ0, Id),
(c) Laplace Location: P1 = L(δ1.2, Id) and P2 = · · · = PK = L(δ0, Id),
(d) Laplace Scale: P1 = L(δ0,3 × Id) and P2 = · · · = PK = L(δ0, Id),

where δb = (b, . . . , b)� and Id is the d-dimensional identity matrix. In words, we consider the sparse
alternatives where only one of the distributions differs from the other K − 1 distributions. Conse-
quently, the signal is getting sparser as K increases. Throughout our experiments, we fix sample
sizes n1 = n2 = · · · = nK = 10 and dimension d = 5 while increasing the number of distributions
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K ∈ {2,20,40,60,80,100}. All tests were implemented via the randomized permutation procedure
with M = 200 random permutations using the p-value in (4.2). As a result, they are all valid level α

tests. Simulations were repeated 800 times to estimate the power at significance level α = 0.05.

7.3. Results

From the results presented in Figure 2, we observe that the tests based on Dα′ and Hα′′ have consistently
decreasing power as K increases in all sparse scenarios. This can be explained by the fact that Dα′ and
Hα′′ are defined as an average between pairwise distances. Under the given sparse scenario, the average
of pairwise distances, which is a signal to reject H0, decreases as K increases. Hence, the resulting

Figure 2. Empirical power comparisons of the considered tests against (a) Normal location, (b) Normal scale,
(c) Laplace location, (d) Laplace scale alternatives. We refer to the tests based on V̂h,max with Gaussian kernel
and energy distance kernel as MaxGau and MaxEng, respectively. In addition, the tests based on Dα′ and Hα′′ are
referred to as DISCO and ECF, respectively. See Section 7 for details.
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tests based on Dα′ and Hα′′ suffer from low power in large K . On the other hand, the proposed tests
show robust performance to the number of distributions K under the given setting. They in fact have
power very close to one even when K is considerably large, which emphasizes the benefit of using the
maximum-type statistic against sparse alternatives.

Despite their good performance over sparse alternatives, the proposed tests do not always perform
better than the average-type tests based on Dα′ and Hα′′ . For example, these average-type tests may
outperform the proposed maximum-type tests against dense alternatives where many of P1, . . . ,PK

differ from each other. Given that prior knowledge on alternatives is not always available to users,
developing a powerful test against both dense and sparse alternatives is an interesting direction for
future work.

8. Conclusion

In this paper, we introduced a new nonparametric K-sample test based on the maximum mean discrep-
ancy. The limiting distribution of the proposed test statistic was derived based on Cramér-type moderate
deviation for degenerate two-sample V -statistics. Unfortunately, the limiting distribution relies on an
infinite number of nuisance parameters, which are intractable in general. Due to this challenge, we con-
sidered the permutation approach to determine the cut-off value of the test. We provided a concentration
inequality for the proposed test statistic with a sharp exponential tail bound under permutations. On
the basis of this result, we studied the power of the permutation test in large K and large N situations
and further proved its minimax rate optimality under some regularity conditions. From our simulation
studies, the proposed test is shown to be powerful against sparse alternatives where the previous meth-
ods suffer from low power. These findings suggest that our method will be useful in application areas
where only a small number of populations differ from the others.

The power analysis in Section 6 relies on the assumption that a kernel is uniformly bounded. Al-
though some of the popular kernels satisfy this assumption, our result cannot be applied to unbounded
cases. One possible way to address this issue is to impose appropriate moment conditions on a kernel
and utilize a suitable concentration inequality (e.g., a modified McDiarmid’s inequality in Kontorovich
[31]) to obtain a similar result to Lemma 6.1. This topic is reserved for future work.
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