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We study the following equation

∂u(t, x)

∂t
= �u(t, x) + b

(
u(t, x)

) + σẆ(t, x), t > 0,

where σ is a positive constant and Ẇ is a space–time white noise. The initial condition u(0, x) = u0(x) is assumed
to be a nonnegative and continuous function. We first study the problem on [0,1] with homogeneous Dirichlet
boundary conditions. Under some suitable conditions, together with a theorem of Bonder and Groisman in (Phys.
D 238 (2009) 209–215), our first result shows that the solution blows up in finite time if and only if for some
a > 0, ∫ ∞

a

1

b(s)
ds < ∞,

which is the well-known Osgood condition. We also consider the same equation on the whole line and show that
the above condition is sufficient for the nonexistence of global solutions. Various other extensions are provided;
we look at equations with fractional Laplacian and spatial colored noise in Rd .

Keywords: fractional stochastic heat equation; space–time white noise; spatial colored noise

1. Introduction and main results

Consider the following non-linear heat equation,∣∣∣∣∣∣∣
∂u(t, x)

∂t
= �u(t, x) + u(t, x)1+η, x ∈ Rd, t > 0,

u(0, x) = u0(x),

where u0(x) is a nonnegative, continuous, and bounded function. It is well known that when 0 < η ≤
2/d , there is no nontrivial global solution no matter how small the nontrivial initial condition u0 is,
while for η > 2/d , one can construct nontrivial global solutions when u0 is small enough; see [7,8,11]
for more precise statements and proofs. The exponent ηc = 2/d is often called the Fujita exponent after
the author of the very influential paper [7]. When the equation is considered on the interval [0,1] with
homogeneous Dirichlet boundary conditions (i.e., u(t,0) = u(t,1) = 0), a different picture emerges.
In this case, for any η > 0, one can always construct nontrivial global solutions by taking u0 small
enough. And when u0 is large enough, there is no global solution for any η > 0; see Theorem 17.3 of
[15] for a precise statement.
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One can ask whether the above phenomena still occur when one perturbs the equation with a noise
term. For example, consider the following stochastic heat equation∣∣∣∣∣∣∣

∂u(t, x)

∂t
= �u(t, x) + u(t, x)1+η + Ẇ (t, x)

u(0, x) = u0(x),

(1)

where Ẇ is a space–time white noise and the initial condition u0(x) is as above. More precisely, one
can ask the following two questions.

• Does there exists a Fujita exponent? Or equivalently, for which values of η one can find a nonneg-
ative initial function so that there exist global solutions?

• For the same equation on [0,1] with homogeneous Dirichlet boundary conditions, can one take
u0 small enough so that there exist global solutions no matter what η > 0 is?

For stochastic differential equations, the answer to the analogous question is given by Feller’s test
for explosions; see [10], Chapter 5. It is quite surprising that much less is known for stochastic partial
differential equations. To the best of our knowledge, there are only two papers which look at these types
of questions; [1] and [6]. In the first paper the authors consider the equation on [0,1] and give a negative
answer to the second question above. In fact they consider the following more general equation∣∣∣∣∣∣∣

∂u(t, x)

∂t
= �u(t, x) + b

(
u(t, x)

) + σẆ(t, x), x ∈ [0,1], t > 0,

u(0, x) = u0(x),

(2)

with homogeneous Dirichlet boundary conditions. Here σ > 0, b : R → R is a locally Lipschitz func-
tion, and the initial condition u0(x) is taken to be nonnegative and continuous; we will assume this
throughout the whole paper. The stochastic forcing term Ẇ is a space–time white noise. The main
result of [1] says that the solution to (2) blows up in finite time whenever b is nonnegative, convex, and
satisfies the following well-known Osgood condition: for some a > 0∫ ∞

a

1

b(s)
ds < ∞, (3)

where 1/0 = ∞. In [6], the authors investigate whether the Osgood condition is optimal. In particular,
their Theorem 1.4 shows that if |b(x)| = O(|x| log |x|) as |x| → ∞, then there exists a global solution
to equation (2).

As far as we know, the first question above has not been addressed till now. We briefly summarise the
main findings of this current paper. For equation (2), we will show that Osgood condition (3) is also
necessary. Together with the result in [1], this result shows the optimality of the Osgood condition.
We will then consider equation (1) and answer the first question. We will show that ηc = ∞ meaning
that there is no global solution no matter how small the initial condition is. This shows that the Fujita
phenomenon does not occur in this stochastic setting. In fact, we will show that the Osgood condition
(3) is sufficient for the nonexistence of global solutions for equation (1).

Before giving the main results of the paper, we provide some precision on various assumptions and
technicalities. We will need the following condition.

Assumption 1.1. The function b : R → R+ is nonnegative, locally Lipschitz and nondecreasing on
(0,∞) and the initial condition u0(x) is nonnegative and continuous.
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As in [6], we look at random field solutions.

Definition 1.2. A local random field solution to (2) is a jointly measurable and adapted space–time
process u = {u(t, x)}(t,x)∈R+×[0,1] satisfying the following integral equation

u(t, x) =
∫ 1

0
p(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0
p(t − s, x, y)b

(
u(s, y)

)
dy ds

+ σ

∫ t

0

∫ 1

0
p(t − s, x, y)W(dy ds),

for all t ∈ (0, τ ), where τ is some stopping time. If we can take τ = ∞, then the local solution is also
a global one. The function p(t, x, y) is the heat kernel associated with the operator � with Dirichlet
boundary conditions.

As u0 is continuous and b is locally Lipschitz, the existence and uniqueness of a local solution to
equation (2) is not an issue. Indeed, for each N ≥ 1, one can define the truncation function

bN(x) := 1{|x|≤N}b(x) + 1{|x|>N}b(N) + 1{|x|<−N}b(−N) (4)

and obtain a unique global solution {uN(t, x)}(t,x)∈R+×[0,1] to equation (2) where b is replaced by bN .
Moreover, uN(t, x) is almost surely continuous in (t, x). We consider the stopping time

τN := inf
{
t > 0 : sup

x∈[0,1]
∣∣uN(t, x)

∣∣ > N
}
,

where inf∅ := ∞. Then by the local property of the stochastic integral, one can easily show (see [6],
Section 4) that for each N ≥ ‖u0‖∞, we have a unique local random field solution u(t, x) = uN(t, x)

for all x ∈ [0,1] and t ∈ [0, τN). In particular, u(t, x) is almost surely continuous in (t, x). Moreover,
τN ≤ τN+1. Denote τ∞ = limN→∞ τN . If P(τ∞ < ∞) > 0, then we say that the solution blows up
in finite time with positive probability and if P(τ∞ < ∞) = 1, we say that the solution blows up in
finite time almost surely. Alternatively, since the noise is additive, one could also use a local inversion
theorem to obtain local existence of solutions. We are now ready to state the first result of this paper.

Theorem 1.3. Suppose that Assumption 1.1 holds. If the solution to (2) blows up in finite time with
positive probability then b satisfies the Osgood condition (3).

Together with the result of Bonder and Groisman, this can be seen as an extension of a similar result
for stochastic differential equations with additive noise. Indeed in later case, Feller’s test for explosions
says that the Osgood condition is necessary and sufficient for blow up of the solution when the noise is
a Brownian motion. We will later describe a new method for proving this without appealing to Feller’s
test that works for a larger class of processes including the bifractional Brownian motion. This is due
to [14] which was also the inspiration for the proof of the above theorem.

We also consider equation (2) in the whole line, that is,∣∣∣∣∣∣∣
∂u(t, x)

∂t
= �u(t, x) + b

(
u(t, x)

) + σẆ(t, x) x ∈ R, t > 0,

u(0, x) = u0(x).

(5)
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As before, we look at the random field solution u = {u(t, x)}(t,x)∈R+×R which in this case, satisfies the
following integral equation

u(t, x) =
∫

R
G(t, x, y)u0(y)dy +

∫ t

0

∫
R

G(t − s, x, y)b
(
u(s, y)

)
dy ds

+ σ

∫ t

0

∫
R

G(t − s, x, y)W(dy ds), (6)

where now G(t, x, y) is the heat kernel associated with the Laplacian defined on the whole line. Here,
the existence of a local solution is not straightforward. We will be more precise about this later. Next,
we describe our second main result which is a non-existence result.

Theorem 1.4. Suppose that Assumption 1.1 holds. Then, if b satisfies the Osgood condition (3), then
almost surely, there is no global solution to equation (5).

Here we use a completely different approach to that of [1]. We use the almost sure growth properties
of the stochastic term together with an observation borrowed from [14] to arrive at our result. This
observation is contained in the statement and proof of Proposition 2.2 below. A key step in our strategy
is to use the fact that for each x, the stochastic term in (6) is a bifractional Brownian motion. We will
use various continuity estimates as a well as the law of iterated logarithm for bifractional Brownian
motion to arrive at the growth properties we need.

Our method is flexible enough so that some of the results above can extended to a wider class of
equations. We describe these results next. Consider the following equation

∣∣∣∣∣∣∣
∂u(t, x)

∂t
= Lu(t, x) + b

(
u(t, x)

) + Ḟ (t, x), x ∈ B1(0), t > 0,

u(0, x) = u0(x),

(7)

where Br(z) denotes the (open) ball of center z and radius r in Rd . Here L is the generator of an
α-stable process killed upon exiting the ball B1(0) and Ḟ is a Gaussian noise which is white in time
and has a spatial correlation given by the Riesz kernel. That is,

E
(
Ḟ (t, x)Ḟ (s, y)

) = δ0(t − s)f (x − y),

where f (x) = |x|−β , 0 < β < d . The homogeneous Dirichlet boundary condition is given by

u(t, x) = 0 x ∈ Rd \ B1(0), t > 0.

As before, the solution to equation (7) is a jointly measurable adapted random field u =
{u(t, x)}t>0,x∈B1(0) satisfying the integral equation

u(t, x) =
∫

B1(0)

pα(t, x, y)u0(y)dy +
∫ t

0

∫
B1(0)

pα(t − s, x, y)b
(
u(s, y)

)
dy ds

+ σ

∫ t

0

∫
B1(0)

pα(t − s, x, y)F (dy ds), (8)
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where pα(t, x, y) is the Dirichlet fractional heat kernel. Recall that we have the following spectral
decomposition

pα(t, x, y) =
∞∑

n=1

e−λntφn(x)φn(y) for all x, y ∈ B1(0), t > 0, (9)

where {φn}n≥1 is an orthonormal basis of L2(B1(0)) and 0 < λ1 < λ2 ≤ λ3 ≤ · · · is a sequence of
positive numbers such that, for every n ≥ 1,{

−(−�)α/2φn(x) = −λnφn(x) x ∈ B1(0),

φn(x) = 0 x ∈ Rd \ B1(0).

As for equation (2), one can easily show that if β < α, then for each N ≥ ‖u0‖∞, there exists a
unique local random field solution u(t, x) to equation (7) defined for all x ∈ B1(0) and t ∈ [0, τN),
where

τN := inf
{
t > 0 : sup

x∈B1(0)

∣∣uN(t, x)
∣∣ > N

}
,

inf∅ := ∞, and uN(t, x) is the solution to equation (7) where b is replaced by bN defined in (4). The
condition β < α ensures that the stochastic integral in (8) is well-defined and almost surely continuous;
see Remark 1.7 below.

The next result is the extension to equation (7) of Bonder and Groisman theorem and of Theorem 1.3.

Theorem 1.5. Suppose that Assumption 1.1 holds. Then if b satisfies the Osgood condition (3) and
under the additional assumption that b is convex, the solution to (7) blows up in finite time almost
surely. On the other hand, if the solution blows up in finite time with positive probability, then b satisfies
the Osgood condition (3).

Remark 1.6. The proof of the first part of Theorem 1.5 is an adaptation of the proof in [1]. But our
method can do better, it can be used to prove that infx∈B(0,1−ε) u(t, x) blows up in finite time for any
ε > 0. We leave the proof for future work.

Remark 1.7. Theorem 1.5 holds for a general spatial correlation f , where f : Rd → R is a nonnega-
tive and nonnegative definite (generalized) function, continuous on Rd \ {0}, integrable in a neighbor-
hood of 0, and whose Fourier transform Ff = μ is a tempered measure satisfying∫

Rd

μ(dξ)

(1 + |ξ |α)ρ
< ∞, (10)

for some ρ ∈ (0,1), where (Ff )(ξ) = ∫
Rd f (y)ei〈y,ξ〉 dy. Condition (10) with ρ = 1 implies the exis-

tence and uniqueness of solutions; see Dalang [4]. The slightly more stringent condition (10) ensures
that the solution is almost surely continuous as well; see Sanz-Solé and Sarrà [16]. In particular, when
f is the Riesz kernel, then μ(dξ) = c|ξ |−(d−β) dξ and condition (10) holds for any ρ > β/α whenever
β < α.

Consider now equation (7) in the whole space, that is,∣∣∣∣∣∣∣
∂u(t, x)

∂t
= Lu(t, x) + b

(
u(t, x)

) + Ḟ (t, x), x ∈ Rd, t > 0,

u(0, x) = u0(x),

(11)
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where all the parameters are the same as above except that now L is associated with an α-stable process
defined on the whole space.

As before, we are looking at random field solutions satisfying the following integral equation

u(t, x) =
∫

Rd

Gα(t, x, y)u0(y)dy +
∫ t

0

∫
Rd

Gα(t − s, x, y)b
(
u(s, y)

)
dy ds

+ σ

∫ t

0

∫
Rd

Gα(t − s, x, y)F (dy ds), (12)

where now Gα(t, x, y) is the heat kernel in Rd for the α-stable process. Our final theorem is as follows.

Theorem 1.8. Suppose that Assumption 1.1 holds. Then, if b satisfies the Osgood condition (3), then
almost surely, there is no global solution to equation (11).

We end this introduction with some remarks concerning local existence of solutions when the equa-
tions are defined on the whole space. D. Khoshnevisan pointed to us that since for any fixed t > 0,
the last term of (6) grows like

√
logx as x goes to infinity, the solution to (6) might blow up instanta-

neously. That is, any solution of (6) can blow up for any t > 0 so that there is no local solution. In the
deterministic setting, similar phenomenon arises; see for instance [17] where the exponential reaction-
diffusion is studied. Proving such non-existence results is beyond the scope of this paper where the
main concern is non-existence of global solution. The above result for instance makes no claim about
the existence of a local solution.

The rest of the paper is organized as follows. In Section 2, we give some preliminary results needed
for the proofs of our results. Section 3 is devoted to the proofs of Theorems 1.3 and 1.4. Theorems
1.5 and 1.8 are proved in Section 4. Finally, in Section 5 we discuss the extension of the results to the
multiplicative noise case.

2. Preliminary information and estimates

In this section, we give some background information needed for the proof of our results. We start off
with a deterministic result about integral equations. This is taken from [14] where it is used to show
blow up for stochastic differential equations. We include a proof since it contains the main ideas of our
method.

2.1. The Osgood condition for integral equations

We start off with the following remark. Suppose that b satisfies Assumption 1.1 and consider the
following integral equation for a ≥ 0

y(t) = a +
∫ t

0
b
(
y(s)

)
ds, t ≥ 0.

By Picard–Lindelöf theorem this equation admits a unique solution up to its blow up time defined as

T := sup
{
t > 0 : ∣∣y(t)

∣∣ < ∞}
,
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where sup∅ := −∞. Then we say that the solution blows up in finite time if T < ∞. One can show
that this blow up time is equal to the following∫ ∞

a

1

b(s)
ds.

Therefore, we have that the solution blows up in finite time if and only of
∫ ∞
a

1
b(s)

ds < ∞.
We next consider the following assumption. In the upcoming sections, we will show that a large

class of stochastic processes verify a similar condition.

Assumption 2.1. g : [0,∞) → R is a continuous function such that

lim sup
t→∞

inf
0≤h≤1

g(t + h) = ∞.

Proposition 2.2. Let a ≥ 0 and suppose that Assumptions 1.1 and 2.1 hold. Then the solution to the
integral equation

Xt = a +
∫ t

0
b(Xs)ds + g(t) (13)

blows up in finite time if and only if the function b satisfies the Osgood condition (3).

Proof. Suppose that the solution blows up at finite time T . Since g is continuous, we can set

M := sup
0≤s≤T

∣∣g(s)
∣∣.

Let 0 ≤ t ≤ T . Upon noting that b is nonnegative, (13) gives

Xt ≤ a + M +
∫ t

0
b(Xs)ds.

The nonnegativity of b together with the continuity of g imply that Xt can only blow up to positive
infinity. Let Yt = a + M + 1 + ∫ t

0 b(Ys)ds. Then by a standard comparison result, we have Xt ≤ Yt on
[0, T ]. But since Xt blows up at time T , Yt should also blow up by time T . This means that b satisfies
the Osgood condition (3).

We now suppose that Xt does not blow up in finite time. Let {tn}∞n=1 be some sequence which tends
to infinity. The nonnegativity of b implies that

Xt+tn ≥ a +
∫ t+tn

tn

b(Xs)ds + g(t + tn)

≥ a +
∫ t

0
b(Xs+tn )ds + g(t + tn)

≥ a + inf
0≤h≤1

g(h + tn) +
∫ t

0
b(Xs+tn )ds,

where the last inequality holds whenever 0 ≤ t ≤ 1. This means that Xt+tn ≥ Zt where

Zt = 1

2

(
a + inf

0≤h≤1
g(h + tn)

)
+

∫ t

0
b(Zs)ds.
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Since we are assuming that Xt does not blow up in finite time, the blow up time of Zt has to be greater
than 1, which implies that ∫ ∞

1
2 (a+inf0≤h≤1 g(h+tn))

1

b(s)
ds > 1.

But from Assumption 2.1, we can find a sequence tn → ∞ such that 1
2 (a + inf0≤h≤1 g(h + tn)) → ∞.

This contradicts the Osgood condition (3) and the proof is complete. �

As mentioned in the introduction, the above result provides an alternative way to prove blow-up for
stochastic differential equations of the following type,

dXt = b(Xt )dt + dBt , X0 = a,

where Bt is a Brownian motion. This can be written as the following integral equation,

Xt = a +
∫ t

0
b(Xs)ds + Bt .

We can now show that almost surely Bt satisfies Assumption 2.1 above. Hence the Osgood condition
is a necessary and sufficient condition for blow-up of the solution to the above equation. As showed
in [14], one can replace the Brownian motion by a more general class of processes including the
bifractional Brownian motion for which Feller’s test for explosions is not applicable.

2.2. The bifractional Brownian motion and related results

The bifractional Brownian motion introduced in [9] is a generalization of the fractional Brownian
motion. It is defined as a centered Gaussian process BH,K = (B

H,K
t , t ≥ 0) with covariance

RH,K(t, s) = 2−K
((

t2H + s2H
)K − |t − s|2HK

)
,

where H ∈ (0,1) and K ∈ (0,1]. Note that if K = 1, then BH,1 is a fractional Brownian motion with
Hurst parameter H . The bifractional Brownian motion is Hölder continuous for any exponent less that
HK . Moreover, it satisfies the following law of iterated logarithm; see, for instance, Lemma 4.1 of
[14] for an idea of the proof and further references. Set

ψH,K(t) := tHK
√

2 log log t, t > e.

Lemma 2.3. Almost surely,

lim sup
t→∞

B
H,K
t

ψH,K(t)
= 1.

Consider now the process

g(t, x) :=
∫ t

0

∫
R

G(t − s, x, y)W(dy ds),

where we recall that G(t, x, y) denotes the Gaussian heat kernel. Clearly the above is the solution to
the stochastic heat equation (5) with zero drift, zero initial condition, and σ = 1.
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It is shown in [13] that for a fixed x ∈ R, the process (g(t, x), t ≥ 0) is a bifractional Brownian
motion with parameters H = K = 1

2 multiplied by a constant. In fact, the covariance of g(t, x) is given
by

E
(
g(t, x)g(s, x)

) = 1√
2π

(√
t + s − √|t − s|).

In particular, the process (g(t, x), t ≥ 0) is Hölder continuous for any exponent less than HK = 1/4.
The following estimates on the increments of g(t, x) are well known. For instance, see Theorem 6.7

in p. 28 of [3] and the proof of Corollary 3.4 in [18].

Lemma 2.4. For all p ≥ 2 there exist constants cp, c̃p > 0 such that for all x, y ∈ R and s, t ≥ 0,

sup
t>0

E
[∣∣g(t, x) − g(t, y)

∣∣p] ≤ cp|x − y|p/2

and

sup
x∈R

E
[∣∣g(t, x) − g(s, x)

∣∣p] ≤ c̃p|s − t |p/4.

As a consequence of Lemma 2.4 and the improvement of the classical Garsia’s lemma obtained in
Proposition A.1. of [5], we have the following estimate.

Proposition 2.5. For all p ≥ 2, there exists a constant Ap > 0 such that for any integer n ≥ 1,

E

[
sup

s,t∈[n,n+2],x,y∈[0,1]
∣∣g(t, x) − g(s, y)

∣∣p]
≤ Ap2p/4.

Proof. The proof follows along the same lines as the proof of Lemma 4.5 in [5]. Indeed, by Lemma 2.4
and Proposition A.1. in [5], we get that for all p ≥ 2, there exists a constant Ap > 0 such that for any
ε > 0,

E

[
sup

(|t−s|1/2+|x−y|)1/2≤ε

∣∣g(t, x) − g(s, y)
∣∣p]

≤ Apεp.

Then, using this inequality with ε = √
221/4 implies the desired result. �

We can now use Proposition 2.5 to get the following almost sure result. This is an extension to the
multiparameter case of Lemma 4.2 in [14].

Proposition 2.6. Almost surely,

sup
s,t∈[n,n+2],x,y∈[0,1]

|g(t, x) − g(s, y)|
ψ 1

2 , 1
2
(n)

−→ 0, as n → ∞.

Proof. Proposition 2.5 implies that for p > 4,

E

[ ∞∑
n=1

sup
s,t∈[n,n+2],x,y∈[0,1]

|g(t, x) − g(s, y)|p
ψ 1

2 , 1
2
(n)p

]
≤

∞∑
n=1

Ap2p/4

ψ 1
2 , 1

2
(n)p

< ∞,

which gives us the desired result. �
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As a consequence of Proposition 2.6, we get the following estimate.

Proposition 2.7. Almost surely, there exists a sequence tn → ∞ such that

inf
h∈[0,1],x∈[0,1]g(tn + h,x) → ∞ as n → ∞.

Proof. Fix x0 ∈ [0,1]. Choose ω such that both Proposition 2.6 and Lemma 2.3 hold. We now write

inf
h∈[0,1],x∈[0,1]g(t + h,x)

= g(t, x0) + inf
h∈[0,1],x∈[0,1]

(
g(t + h,x) − g(t, x0)

)
≥ g(t, x0) + inf

h∈[0,1],x∈[0,1]
(−∣∣g(t + h,x) − g(t, x0)

∣∣)

≥ g(t, x0)

ψ 1
2 , 1

2
(t)

ψ 1
2 , 1

2
(t) − sup

h∈[0,1],x∈[0,1]
|g(t + h,x) − g(t, x0)|

ψ 1
2 , 1

2
([t]) ψ 1

2 , 1
2

([t]).
We use Proposition 2.6 and Lemma 2.3 to choose an appropriate sequence tn and finish the proof. �

3. Proofs of Theorems 1.3 and 1.4

As mention earlier, the proof of Theorem 1.3 follows that of Proposition 2.2 but it heavily relies on the
fact that the stochastic term in the random field formulation is continuous and that the equation itself
is defined on an interval.

Proof of Theorem 1.3. Set

T := sup
{
t > 0 : sup

x∈[0,1]

∣∣u(t, x)
∣∣ < ∞

}
,

where sup∅ := −∞. Since the solution blows up in finite time with positive probability, we can find a
set � satisfying P(�) > 0 such that for any ω ∈ �, we have T (ω) < ∞. We now fix such an ω but for
the sake of notational convenience, we won’t indicate the dependence on ω in what follows. We recall
that we are looking at the mild formulation

u(t, x) =
∫ 1

0
p(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0
p(t − s, x, y)b

(
u(s, y)

)
dy ds

+ σ

∫ t

0

∫ 1

0
p(t − s, x, y)W(dy ds).

The third term in the above display is almost surely continuous. Therefore, the following quantity
below is finite almost surely

M := sup
x∈[0,1]t∈(0,T ]

∣∣∣∣
∫ t

0

∫ 1

0
p(t − s, x, y)W(dy ds)

∣∣∣∣.
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Moreover, by the nonnegativity of b and the initial condition, we have

u(t, x) ≥ σ

∫ t

0

∫ 1

0
p(t − s, x, y)W(dy ds).

This means that

inf
t∈[0,T ],x∈[0,1]u(t, x) ≥ −σM.

Since u0 is bounded, we have

∣∣∣∣
∫ 1

0
p(t, x, y)u0(y)dy

∣∣∣∣ ≤ a,

for some positive constant a. Denote A := {s ∈ (0, t), y ∈ (0,1);−σM ≤ u(s, y) ≤ 0} and B := {s ∈
(0, t), y ∈ (0,1);u(s, y) > 0} and write

∫ t

0

∫ 1

0
p(t − s, x, y)b

(
u(s, y)

)
dy ds =

∫∫
A

p(t − s, x, y)b
(
u(s, y)

)
dy ds

+
∫∫

B
p(t − s, x, y)b

(
u(s, y)

)
dy ds

:= I1 + I2.

Since we are assuming that b is nonnegative and nondecreasing on (0,∞), this immediately gives us

I2 ≤
∫ t

0
b(Ys)ds,

where Yt := supx∈[0,1] u(t, x). Since b is assumed to be continuous, we have I1 ≤ K , where K is an
almost sure finite quantity. Putting all these estimates together, we obtain

Yt ≤ a + σM + K +
∫ t

0
b(Ys)ds.

We can now proceed as in the proof of Proposition 2.2 to conclude the proof. �

Remark 3.1. We remark that the blow up time T used above is the same as τ∞ defined in the in-
troduction. Indeed if T < τ∞, then T < t < τ∞ for some t . By the definition of T , we should have
supx∈[0,1] |u(t, x)| = ∞, but then this would imply (by the definition of τN ) that t > τN for any N .
Thus, t > τ∞, which contradicts the assumption. Therefore, we have that τ∞ ≤ T . If τ∞ < T , then
τ∞ < t < T for some t . As t > τ∞, we get supx∈[0,1] |u(t, x)| = ∞ which contradicts the fact that
t < T . Therefore, we conclude that T = τ∞.
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Proof of Theorem 1.4. Let {tn} be a sequence of positive numbers which we are going to choose later.
From the mild formulation of the solution and the nonnegativity of the function b, we obtain

u(t + tn, x) =
∫

R
G(t + tn, x, y)u0(y)dy +

∫ t+tn

0

∫
R

G(t + tn − s, x, y)b
(
u(s, y)

)
dy ds

+ σ

∫ t+tn

0

∫
R

G(t + tn − s, x, y)W(dy ds)

≥
∫

R
G(t + tn, x, y)u0(y)dy +

∫ t

0

∫
R

G(t − s, x, y)b
(
u(s + tn, y)

)
dy ds

+ σ

∫ t+tn

0

∫
R

G(t + tn − s, x, y)W(dy ds).

We will take 0 ≤ t ≤ 1 and x ∈ (0,1). Recall that

g(t + tn, x) :=
∫ t+tn

0

∫
R

G(t + tn − s, x, y)W(dy ds).

Hence by Proposition 2.7, we can find a sequence tn → ∞ so that the above quantity is positive for
0 ≤ t ≤ 1 and x ∈ (0,1). Therefore, u(t + tn, x) is also positive for any x ∈ (0,1) and any 0 ≤ t ≤ 1.
We now use the fact that b is nondecreasing on (0,∞) to bound the second term as follows. For fixed
x ∈ (0,1),

∫ t

0

∫
R

G(t − s, x, y)b
(
u(s + tn, y)

)
dy ds

≥
∫ t

0
b
(

inf
y∈(0,1)

u(s + tn, y)
)∫

(0,1)

G(t − s, x, y)dy ds

≥
∫ t

0
b
(

inf
y∈(0,1)

u(s + tn, y)
)

ds,

where we have used that fact that G(t, x, y) ≥ c

t1/2 whenever |x − y| ≤ t1/2. We now set Yt :=
infy∈(0,1) u(t + tn, y) and combine the above estimates to obtain

Yt ≥ inf
0≤h≤1,x∈(0,1)

{∫
R

G(h + tn, x, y)u0(y)dy + σg(h + tn, x)

}
+

∫ t

0
b(Ys)ds.

We now choose ω as in Proposition 2.7, and we can therefore find a sequence tn → ∞ such that
inf0≤h≤1,x∈(0,1) g(h + tn, x) goes to infinity. By the proof of Proposition 2.2, we have the required
result. �

4. Extension to fractional Laplacian and colored noise

The aim of this section is to prove Theorems 1.5 and 1.8. For this, we first define rigorously the
Gaussian noise F and extend the results of Section 2.2 to the equation in Rd .
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4.1. The Gaussian noise F

Let D(R+ × Rd) be the space of real-valued infinitely differentiable functions with compact support.
Following [4], on a complete probability space (�,F,P), we consider a centered Gaussian family of
random variables {F(ϕ),ϕ ∈D(R+ × Rd)} with covariance

E
[
F(ϕ)F (ψ)

] =
∫

R+×R2d

ϕ(t, x)ψ(t, y)f (x − y)dx dy dt,

where f is as in Remark 1.7. Let H be the completion of D(R+ ×Rd) with respect to the inner product

〈ϕ,ψ〉H =
∫

R+×R2d

ϕ(t, x)ψ(t, y)f (x − y)dx dy dt

=
∫

R+×Rd

Fϕ(t, ·)(ξ)Fψ(t, ·)(ξ)μ(dξ)dt, (14)

where the last equality follows by Parseval’s identity. The mapping ϕ �→ F(ϕ) defined in D(R+ × Rd)

extends to a linear isometry between H and the Gaussian space spanned by F . We will denote the
isometry by

F(ϕ) =
∫

R+×Rd

ϕ(t, x)F (dt dx), ϕ ∈H.

Notice that if ϕ,ψ ∈ H, then E[F(ϕ)F (ψ)] = 〈ϕ,ψ〉H. Moreover, H contains the space of measurable
functions φ on R+ × Rd such that

∫
R+×R2d

∣∣φ(t, x)φ(t, y)
∣∣f (x − y)dx dy dt < ∞.

4.2. Estimates for the whole space

Consider the solution to the stochastic heat equation (11) with zero drift, zero initial condition, and
σ = 1, that is,

gα,β(t, x) :=
∫ t

0

∫
Rd

Gα(t − s, x, y)F (dy ds),

where recall that Gα(t, x, y) is the fractional heat kernel in Rd and F has a spatial correlation given
by the Riesz kernel.

Let us compute the covariance of the Gaussian process (gα,β(t, x), t ≥ 0) for x ∈ Rd fixed. By (14),
as

FGα(t, x, ·)(ξ) = ei〈x,ξ〉− 1
2 t |ξ |α , ξ ∈ Rd, (15)
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we get that, for s ≤ t ,

E
(
gα,β(t, x)gα,β(s, x)

)
=

∫ s

0

∫
Rd×Rd

Gα(t − u,x, y)Gα(s − u,x, z)|z − y|−β dy dz du

= cd,β

∫ s

0

∫
Rd

|ξ |−(d−β)e− 1
2 (t−u)|ξ |α e− 1

2 (s−u)|ξ |α dξ du

= cd,β

∫
Rd

|ξ |−(d−β)−αe− 1
2 (t+s)|ξ |α (

es|ξ |α − 1
)

dξ

= cd,β

∫
Rd

|ξ |−(d−β)−α
(
e− 1

2 (t−s)|ξ |α − e− 1
2 (t+s)|ξ |α )dξ

= cd,β

∫
Rd

|ξ |−(d−β)−α

(∫ 0

− 1
2 (t+s)|ξ |α

ez dz −
∫ 0

− 1
2 (t−s)|ξ |α

ezdz

)
dξ

= cd,β,α

(
(t + s)1− β

α − (t − s)1− β
α
)
,

where cd,β,α = cd,β

∫
Rd |ξ |−(d−β)−α(1 − e− 1

2 |ξ |α )dξ .
Therefore, for x ∈ Rd fixed, the process (g(t, x), t ≥ 0) is a bifractional Brownian motion with

parameters H = α−β
2 and K = 1

α
, multiplied by a constant. In particular, it is Hölder continuous for

any exponent less than HK = α−β
2α

.
The next proposition is the extension of Lemma 2.4 and Propositions 2.5, 2.6 and 2.7 to the process

gα,β .

Proposition 4.1.

(a) For all p ≥ 2 there exists constants cp, c̃p > 0 such that for all x, y ∈ Rd and s, t ≥ 0,

sup
t>0

E
[∣∣gα,β(t, x) − gα,β(t, y)

∣∣p] ≤ cp|x − y| (α−β)p
2

and

sup
x∈Rd

E
[∣∣gα,β(t, x) − gα,β(s, x)

∣∣p] ≤ c̃p|s − t | (α−β)p
2α .

(b) For all p ≥ 2, there exists a constant Ap > 0 such that for any integer n ≥ 1,

E

[
sup

s,t∈[n,n+2],x,y∈B1(0)

∣∣gα,β(t, x) − gα,β(s, y)
∣∣p]

≤ Ap2
(α−β)p

2α .

(c) Almost surely,

sup
s,t∈[n,n+2],x,y∈B1(0)

|gα,β(t, x) − gα,β(s, y)|
ψα−β

2 , 1
α
(n)

−→ 0, as n → ∞.

(d) Almost surely, there exists a sequence tn → ∞ such that

inf
h∈[0,1],x∈B1(0)

gα,β(tn + h,x) → ∞.
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Proof. The proof of (a) follows from [16] and (15). Moreover, (a) implies that Lemma 4.5 in [5]
also holds for our process gα,β(t, x), which gives (b). Finally, (c) and (d) follow as in the proof of
Propositions 2.6 and 2.7. �

4.3. Proof of Theorems 1.5 and 1.8

The proof of the first part of Theorem 1.5 follows as in the proof of the main result in [1], but a different
constant arises in Feller’s test. The proof of the second part follows along the same lines as the proof
of Theorem 1.3 and is therefore omitted.

Proof of the first part of Theorem 1.5. As in [1], we set

Yt =
∫

B1(0)

u(t, x)cφ1(x)dx

where u(t, x) is the local solution to (8), φ1 is defined in (9) and c−1 = ∫
B1(0)

φ1(x) dx. Recall that
φ1(x) > 0 for all x ∈ B1(0), see, for example, [2], Theorem 4.2. Then we obtain that Yt ≥ Xt a.s.,
where Xt is the solution to the stochastic differential equation

dXt = (−λ1Xt + b(Xt )
)

dt + dZt , X0 = Y0

and

Zt :=
∫ t

0

∫
B1(0)

cφ1(y)F (dy ds).

Finally, we can use Feller’s test for explosion as in [1] to show that Xt explodes in finite time with
probability one. In fact, it suffices to consider as scale function

p(x) =
∫ x

0
exp

(
− 2

κ

∫ s

0

(−λ1ξ + b(ξ)
)
dξ

)
ds,

where κ := c2
∫
B1(0)×B1(0)

φ1(y)φ1(z)|y − z|−β dy dz, as Zt = √
κBt , where Bt is a Brownian mo-

tion. �

The proof of Theorem 1.8 is similar to that of Theorem 1.4. We will indicate the differences only.

Proof of Theorem 1.8. The proof follows that of Theorem 1.4. We use the last part of Proposition 4.1
together with the following inequality

Gα(t, x, y) ≥ c

td/α
whenever |x − y| ≤ t1/α (16)

to prove the required result. See, for instance, [12] for justifications of the above inequality. We leave
it to the reader to fill in the details. �

5. Extension to multiplicative noise

In this section, we discuss the extension of the previous results when the constant σ is replaced by a
locally Lipschitz function σ : R → R. For equations on bounded domains, we believe that the Osgood



310 M. Foondun and E. Nualart

condition is necessary and sufficient for finite time blow-up under the condition 1
K

≤ σ(x) ≤ K for
all x ∈ R, for some constant K > 0. We leave this for future work but the following extension is
straightforward. We start with equations (2) and (7) on [0,1] and B1(0), respectively. In this case, the
proof of Theorem 1.3 and the second half of Theorem 1.5 extend easily if σ is bounded. This yields
the following result.

Theorem 5.1. Consider equations (2) or (7) with σ replaced by σ(u(t, x)), where σ : R → R is
a locally Lipschitz and bounded function. Suppose that Assumption 1.1 holds. If the corresponding
solution blows up in finite time with positive probability, then b satisfies the Osgood condition (3).

However, the proof of the first half of Theorem 1.5 which follows by Bonder and Groisman’s method
does not directly extend to the multiplicative noise case. We can apply the method used in the proof of
Theorem 1.4 but we require a new idea since the stochastic term is no longer Gaussian.

Consider now equation (5) on the real line and assume that σ is replaced by a locally Lipschitz
function σ : R → R bounded away from zero and infinity. Then, the statement of Theorem 1.4 holds
true provided that we prove Proposition 2.7 for

g(t, x) :=
∫ t

0

∫
R

G(t − s, x, y)σ
(
u(s, y)

)
W(dy ds).

We believe that this is true but the proof is out of the scope of this paper and is left for further work.
The same discussion applies for the equation on the whole space (11) and Theorem 1.8.
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