
Bernoulli 27(1), 2021, 274–294
https://doi.org/10.3150/20-BEJ1237

Generalized four moment theorem and an
application to CLT for spiked eigenvalues of
high-dimensional covariance matrices
DANDAN JIANG1 and ZHIDONG BAI2

1School of Mathematics and Statistics, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an 710049,
China. E-mail: jiangdd@xjtu.edu.cn
2KLASMOE and School of Mathematics and Statistics, Northeast Normal University, No. 5268 People’s Street,
Changchun 130024, China. E-mail: baizd@nenu.edu.cn

We consider a more generalized spiked covariance matrix, which is a general non-negative definite matrix with the
spiked eigenvalues scattered into spaces of a few bulks and the largest ones allowed to tend to infinity. The study is
split into two cases by whether the maximum absolute value of the eigenvector of the corresponding spikes tends
to zero or not. On one hand, if it is zero, a Generalized Four Moment Theorem (G4MT) is proposed by relaxing
the matching of the 3rd and the 4th moment to the tail probability decaying with certain rate, which shows the
universality of the asymptotic law for the spiked eigenvalues of the generalized spiked covariance model. On
the other hand, if it is not zero, the matches of the third and fourth moments in usual four moment theorem are
weakened to only requiring the match of the 4th moment. Moreover, by applying the results to the Central Limit
Theorem (CLT) for the spiked eigenvalues of the generalized spiked covariance model, we successively remove
the restrictive condition of block wise diagonal assumption on the population covariance matrix in the previous
works. This condition implies an unrealistic fact that the spiked eigenvalues and bulked eigenvalues are generated
by independent variables, respectively. Thus, the new CLT will have much better application domain.

Keywords: central limit theorem; generalized four moment theorem; high-dimensional covariance matrix;
random matrix theory; spiked model

1. Introduction

The study on the universality conjecture for the spectral statistics of random matrices, which is mo-
tivated by similar phenomena in physics, has been one of the key topics in random matrix theory. It
not only plays an important role in the local field of statistics, but has also been widely used in many
other fields, such as mathematical physics, combinatorics and computing science. In this paper, we
are going to propose a Generalized Four Moment Theorem (G4MT) to prove the universality of the
asymptotic law for the spiked eigenvalues of generalized spiked covariance matrices, and then apply
it to the Central Limit Theorem (CLT) for the spiked eigenvalues of the generalized spiked model in a
general case.

1.1. Background of universality

As well known, universality has been conjectured by many statisticians since the 1960s, including
Wigner [29], Dyson [13], and Mehta [21]; it states that local statistics are universal, implying that
the conclusions hold not only for the Gaussian Unitary Ensemble (GUE) but also the general Wigner
random matrix. It provides new ideas and techniques for the research of random matrix theory, which
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implies that to prove one result suitable for Non-Gaussian case, it is sufficient to show the same result
under the Gaussian assumption if the universality is true.

The similar universality phenomena of the bulk of the spectrum has been also investigated in many
studies, such as Soshnikov [26], Johansson [19], Ben Arous and Péché [11], Erdős et al. [14], Erdős
et al. [15]. More recently, Tao and Vu [27] showed the universality of the asymptotic law for the local
spectral statistics of the Wigner matrix by the so called Four Moment Theorem, which assumes that
the moments of the entries match that of the complex standardized Gaussian ensemble up to the 4th
order and requires the C0 condition satisfying the uniform exponential decay to hold. Although they
asserted that the fine spacing statistics of a random Hermitian matrix in the bulk of the spectrum are
only sensitive to the first four moments of the entries, they also conjectured that it may be possible to
reduce the number of matching moments in their theorem.

Inspired by these previous works, the G4MT is proposed by replacing the condition of matching the
3rd and 4th moments by a tail probability as detailed in Assumption (b). Then the universality of the
asymptotic law for the bulks of spiked eigenvalues of generalized covariance matrices is automatically
proved by the proposed G4MT. As an application, we also apply the proposed G4MT to the CLT for
the spiked eigenvalues in the generalized spiked covariance model.

1.2. Related works of spiked model

The spiked model in high dimensional settings is originated from the common phenomenon of large
or even huge dimensionality p compared to the sample size n, occurring in many modern scientific
fields, such as wireless communication, gene expression and climate studies. It was first proposed by
Johnstone [20] under the assumptions of high dimensionality and an identity population covariance
matrix with fixed and relatively small spikes. Then some impressive works are devoted to investigating
on the limiting properties of the spiked eigenvalues under this simplified assumption, including Baik,
Ben Arous and Péché [9], Baik and Silverstein [10], Paul [24], Bai and Yao [4], etc.

To improve the simplified assumptions, Bai and Yao [5] contributed to deal with a more general
spiked model, in which a condition of the diagonal block independence and finite 4th moments are
assumed. Efforts have also been devoted to Principal Component Analysis (PCA) or Factor Analy-
sis (FA) as a different way to improve the work on the spiked population model. For example, Bai
and Ng [1], Hoyle and Rattray [16], Onatski [22] and so on. The more general works are the recent
contributions from Wang and Fan [28] and Cai, Han and Pan [12], which both study the asymptotic
distributions of the spiked eigenvalues and eigenvectors of a general covariance matrix. However, the
result of Wang and Fan [28] only has one threshold for the spiked eigenvalues. More importantly, their
main theorems are involved with an unspecified “Op(·)” term, because they study the difference be-
tween the ratio λi/αi and 1, where λi is the corresponding sample eigenvalue. Furthermore, both of
the works in Wang and Fan [28] and Cai, Han and Pan [12] require the bounded 4th moments and
the condition p/(nαi) → 0, with αi, i = 1, . . . ,K being the spikes, so that it limits the relationship
between the dimensionality and the spikes. On the basis of these works, we further consider a general
spiked covariance matrix, by applying the proposed G4MT to the CLT for its spiked eigenvalues, we
give the explicit CLT for the spiked eigenvalues of high-dimensional generalized covariance matrices.

1.3. Highlights of the paper

Highlights are mainly in two aspects: The universality and the CLT of spiked model. In the first aspect,
it takes several advantages as follows: First, when proving the universality of the asymptotic law for the
bulk of the spiked eigenvalues, it only requires the condition of matching moments up to the 2nd order
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and a rate o(x−4) of the tail probability P(|X| ≥ x) as x → ∞, which is a necessary and sufficient con-
dition in the weak convergence of the largest eigenvalue. Second, we reduce the study of universality
of an asymptotic law of the normalized spiked eigenvalues to the asymptotic law of a low-dimensional
matrix, unlike Tao and Vu [27], which considers a general function of a finite number of eigenvalues of
a large dimensional Wigner matrix under the strong C0 condition as well as assumptions on the partial
derivatives. As a by-product, we get rid of the restrictive C0 condition with uniform exponential decay.

In the other aspect, the proposed CLT demonstrates several advantages as below: First, the spiked
covariance matrix we considered is a general non-negative definite matrix with the spectrum formu-
lated in (2.1). Automatically, the diagonal block independent assumption given in Bai and Yao [4,5] is
removed. In fact, it is an unrealistic condition in practice, which is added to avoid the difficulty caused
by the dependence of spiked eigenvalues with respect to non-spiked ones. Many people have raised the
issue that whether the diagonalizing assumption is necessary, but it is open due to technical difficulties
until solved in this paper. Second, our method permits the spiked eigenvalues to be scattered into a
few bulks, any of which are larger than their related left-threshold or smaller than their related right-
threshold. So our focused work is extended to a generalized case with a few pairs of thresholds. Finally,
the spiked eigenvalues and the population 4th moments are not necessarily required to be bounded in
our work, thus meeting the actual cases better.

1.4. Outline of the paper

The rest of the paper is arranged as follows: In Section 2, the problem is described in a generalized
setting, and the phase transition for the spiked eigenvalues of generalized covariance matrix is also
presented. Section 3 gives the main results of the G4MT and applies it to the CLT for the spiked
eigenvalues of the generalized spiked covariance matrix in high-dimensional setting. In Section 4, sim-
ulations are conducted to evaluate our work comparing with the existing works. Then, an application
to determining the number of the spikes and real data analysis are also discussed in Section 5. Finally,
we draw a conclusion in the Section 6. Detailed proofs are all provided in the Supplementary file [18].

2. Phase transition for the spiked eigenvalues of generalized
covariance matrix

Consider the random samples TpX, where

X = (x1, . . . ,xn) = (xij ), 1 ≤ i ≤ p,1 ≤ j ≤ n,

and Tp is a p × p deterministic matrix. Thus TpT∗
p = � is the population covariance matrix, which

can be seen as a general non-negative definite matrix with the spectrum formed as

ρp,1, . . . , ρp,j , . . . , ρp,p (2.1)

in descending order. Let ρp,jk+1, . . . ρp,jk+mk
be equal to αk, k = 1, . . . ,K , respectively, where Jk =

{jk +1, . . . , jk +mk} is the set of ranks of the mk-ple eigenvalue αk in the array (2.1). Then α1, . . . , αK

with multiplicity mk, k = 1, . . . ,K , respectively, satisfying m1 + · · · + mK = M , a fixed integer, are
the population spiked eigenvalues of � lined arbitrarily in groups among all the eigenvalues.
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Define the corresponding sample covariance matrix of the observations TpX as

S = 1

n
TpXX∗T∗

p, (2.2)

then S is the so-called generalized spiked sample covariance matrix.
Define the singular value decomposition of Tp as

Tp = V

⎛
⎝D

1
2
1 0

0 D
1
2
2

⎞
⎠U∗, (2.3)

where U and V are unitary matrices, D1 is a diagonal matrix of the M spiked eigenvalues and D2 is
the diagonal matrix of the non-spiked eigenvalues with bounded components. Since the investigation
on the limiting distribution of the spiked eigenvalues of the sample covariance matrix depends on the
characteristic equation |λI − S| = 0, it is obvious that it only involves the right unitary matrix U but
not the left one.

Denote the eigenvalues of a p × p matrix A by {lj (A)}. The sample eigenvalues of the generalized
spiked sample covariance matrix S are sorted in descending order as

l1(S), . . . , lj (S), . . . , lp(S).

To consider the limiting distribution of the spiked eigenvalues of a generalized sample covariance
matrix S, it is necessary to determine the following Assumptions (a)–(e):

Assumption (a). The double array {xij , i, j = 1,2, . . .} consist of i.i.d. random variables with mean 0
and variance 1. Furthermore, Ex2

ij = 0 for the complex case, where both x’s and Tp are complex.

Assumption (b). Suppose that

lim
τ→∞ τ 4P

(|xij | > τ
) = 0

for the i.i.d. sample (xi1, . . . , xin), i = 1, . . . , p, where the 4th moments may unnecessarily exist.

Assumption (c). The p × p matrix � = TpT∗
p forms a sequence of population covariance matrices

{�p} and Tp admits the singular decomposition (2.3). The matrix D2 is bounded in the spectral norm.
Moreover, denote the empirical spectral distribution (ESD) of � as Hn, which tends to a proper prob-
ability measure H as p → ∞.

Assumption (d). Suppose that

max
t,s

|uts |2E
{|x11|4I

(|x11| < √
n
) − μ

} → 0, (2.4)

where for some constant μ, I (·) is the indicator function and U1 = (uts)t=1,...,p;s=1,...,M is the first M

columns of matrix U defined in (2.3). The detailed explanation of Assumption (d) can be found in the
Supplement A.

Assumption (e). Assuming that p/n = cn → c > 0 and both n and p go to infinity simultaneously,
the spiked eigenvalues of the matrix �, α1, . . . , αK with multiplicities m1, . . . ,mK laying outside the
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support of H , satisfy φ′(αk) > 0 for 1 ≤ k ≤ K , where

φ(x) = x

(
1 + c

∫
t

x − t
dH(t)

)

is detailed in the following Proposition 2.1.

The phase transition for each spiked eigenvalue of a generalized sample covariance matrix is detailed
in the following Proposition. To avoid the sample spikes tending to a common limit, we regulate the
spikes by the separation condition

min
j 	=k

∣∣∣∣αk

αj

− 1

∣∣∣∣ > d, (2.5)

for some constant d > 0, when the phase transition and the CLT for the spiked eigenvalues of a gener-
alized spiked covariance matrix are studied.

For each population spiked eigenvalue αk with multiplicity mk and the associated sample eigenvalues
{lj (S), j ∈ Jk}, k = 1, . . . ,K , we have

Proposition 2.1. For the spiked sample covariance matrix S given in (2.2), assume that p/n = cn →
c > 0 and both the dimensionality p and the sample size n grow to infinity simultaneously. For any
population spiked eigenvalue αk, (k = 1, . . . ,K), let

ψk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(αk), if φ′(αk) > 0,

φ(αk), if there exists αk such that φ′(αk) = 0

and φ′(t) < 0, for all αk ≤ t < αk,

φ(αk), if there exists αk such that φ′(αk) = 0

and φ′(s) < 0, for all αk < s ≤ αk,

where

φk := φ(αk) = αk

(
1 + c

∫
t

αk − t
dH(t)

)
. (2.6)

Then, it holds that for all j ∈ Jk , {lj /ψk − 1} almost surely converges to 0 under the bounded 4th-
moment assumption. The conclusion also holds in probability under the Assumption (d).

The Proposition 2.1 theoretically shows that the diagonal block independent assumption

� =
(

�M 0
0 Vp−M

)

in Bai and Yao [5] can be removed. The proof of Proposition 2.1 can be easily obtained following
the truncation procedure and the G4MT, which are presented in the next section. By the truncation
procedure, the limiting behavior of the sample spiked eigenvalues are the same in probability for both
the cases of the bounded 4th-moment assumption and Assumption (d). By the G4MT, it is reasonable
to assume the Gaussian entries from X; then, Proposition 2.1 is proved by the almost sure convergence
and the exact separation of eigenvalues in Bai and Silverstein [7].
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Remark 2.1. Since the convergence of cn → c and Hn → H may be very slow, the difference
√

n(lj −
ψk) may not have a limiting distribution. So, we usually use

φn,k := φn(αk) = αk

(
1 + cn

∫
t

αk − t
dHn(t)

)
, (2.7)

instead of φk in ψk , in particular during the process of CLT. Then, we only require cn = p/n, and
both the dimensionality p and the sample size n grow to infinity simultaneously, but not necessarily in
proportion.

3. Main results

The main results are in two key points: First, it is the G4MT, which shows that the samples satisfying
the Assumptions (a)–(e) lead to the same asymptotic distributions of the spiked eigenvalues of a gener-
alized spiked covariance matrix. Second, it is the CLT for the spiked eigenvalues of a high-dimensional
generalized covariance matrix under our relaxed assumptions. For ease of reading and understanding,
the G4MT is introduced during its application to the CLT for the spiked eigenvalues of a generalized
covariance matrix. The proof of G4MT will be postponed to Section D in the Supplement for the con-
sistency of reading. Before that, we also give some explanations of the truncation procedure as below.

3.1. Truncation

Let x̂ij = xij I (|xij | < ηn

√
n) and x̃ij = (x̂ij − Ex̂ij )/σn with σ 2

n = E|x̂ij − Ex̂ij |2, where ηn → 0 with
a slow rate. We can demonstrate that it is equivalent to replace the entries of X with the truncated
and renormalized ones by Assumption (b). Details of the proof are presented in Supplement B and the
convergence rates of arbitrary moments of x̃ij are depicted.

Therefore, we only need to consider the limiting distribution of the spiked eigenvalues of S̃, which
is generated from the entries truncated at ηn

√
n, centralized and renormalized. For simplicity, it is

equivalent to assume that |xij | < ηn

√
n, Exij = 0, E|x2

ij | = 1, and Assumption (b) is satisfied for the

real case. But it cannot meet the requirement of Ex2
ij = 0 for the complex case; instead, one can show

that Ex2
ij = o(n−1).

3.2. CLT for the spiked eigenvalues of generalized covariance matrix

As seen from the Proposition 2.1, there is a packet of mk consecutive sample eigenvalues {lj (S), j ∈
Jk} converging to a limit ψk laying outside the support of the limiting spectral distribution (LSD),
Fc,H , of S. Since the spiked eigenvalues may be allowed to tend to infinity in our work, and the
difference between lj (S) and ψk make convergence very slow as mentioned in Remark 2.1, we consider
the renormalized random vector

γ k = (γkj )
′ =

(√
n

(
lj (S)

φn,k

− 1

)
, j ∈ Jk

)′
(3.1)

which can be seen as an improved version of the one in Bai and Yao [5]. Then, we are going to propose
a CLT for (γkj , j ∈ Jk)

′ for a general case. Before that, we introduce some of the characteristics of the
sample spikes first.
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For the generalized spiked covariance matrix � = TpT∗
p , consider the corresponding sample covari-

ance matrix S = TpSxT∗
p , where Sx = n−1XX∗ is the standard sample covariance with sample size n.

By singular value decomposition of Tp in (2.3), the eigen-equation is

0 = |λI − S| =
∣∣∣∣∣∣λI − V

⎛
⎝D

1
2
1 0

0 D
1
2
2

⎞
⎠U∗SxU

⎛
⎝D

1
2
1 0

0 D
1
2
2

⎞
⎠V∗

∣∣∣∣∣∣ ,

where I denotes the identity matrix with suitable dimension. If no confusion, we omit the subscript of
the identity matrix. Set Q = U∗SxU, and partition it in the same way as the form

(
Q11 Q12
Q21 Q22

)
�

(
U∗

1SxU1 U∗
1SxU2

U∗
2SxU1 U∗

2SxU2

)
,

then we have

0 =
∣∣∣∣∣∣λI −

⎛
⎝D

1
2
1 Q11D

1
2
1 D

1
2
1 Q12D

1
2
2

D
1
2
2 Q21D

1
2
1 D

1
2
2 Q22D

1
2
2

⎞
⎠

∣∣∣∣∣∣
= ∣∣λI − D

1
2
2 Q22D

1
2
2

∣∣∣∣λI − D
1
2
1 Q11D

1
2
1 − D

1
2
1 Q12D

1
2
2

(
λI − D

1
2
2 Q22D

1
2
2

)−1D
1
2
2 Q21D

1
2
1

∣∣.
If we only consider the sample spiked eigenvalues of S, lj , j ∈ Jk , k = 1, . . . ,K , then |lj I −
D

1
2
2 Q22D

1
2
2 | 	= 0, hence

0 =
∣∣∣∣lj D−1

1 − 1

n
U∗

1X
{

I + 1

n
X∗U2D

1
2
2

(
lj I − 1

n
D

1
2
2 U∗

2XX∗U2D
1
2
2

)−1

D
1
2
2 U∗

2X
}

X∗U1

∣∣∣∣
=

∣∣∣∣lj D−1
1 − lj

n
U∗

1X
(

lj I − 1

n
X∗U2D2U∗

2X
)−1

X∗U1

∣∣∣∣, (3.2)

where the last equality above follows from the identity Z(Z∗Z−λI)−1Z∗ = I+λ(ZZ∗ −λI)−1. Define

�M(λ,X) = λ√
n

[
tr

{(
λI − 1

n
X∗�X

)−1}
I − U∗

1X
(

λI − 1

n
X∗�X

)−1

X∗U1

]
, (3.3)

where � = U2D2U∗
2. Let

θk = φ2
km2(φk), (3.4)

where

m2(λ) =
∫

1

(λ − x)2
dF(x) (3.5)

with F(x) being the LSD of the matrix n−1X∗�X. Set �φk
as an M × M Hermitian matrix, which

follows the limiting distribution of �M(φn,k,X) and is detailed in Corollary 3.1. Then, the CLT for
(γkj , j ∈ Jk)

′ for a general case is proposed in the following theorem.

Theorem 3.1. Suppose that the Assumptions (a)–(e) hold with the constant μ = 2 + q in Assumption
(d), where q = 1 for real case and 0 for complex. The random vector γ k defined in (3.1) converges
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weakly to the joint distribution of the mk eigenvalues of Gaussian random matrix

− 1

θk

[�φk
]kk

where φk , φn,k , θk are defined in (2.6), (2.7) and (3.4), respectively. Moreover, [�φk
]kk is the kth

diagonal block of �φk
corresponding to the indices {i, j ∈ Jk}.

Proof. By the definition of (3.3), it follows from (3.2) that

0 =
∣∣∣∣lj D−1

1 − lj

n
tr

{(
lj I − 1

n
X∗�X

)−1}
I + 1√

n
�M(lj ,X)

∣∣∣∣. (3.6)

It seems natural to get that

�M(lj ,X) = �M(φn,k,X) + op(1)

since (lj − φn,k)/φn,k → 0.
Thus, it follows from (3.6) that

∣∣∣∣φn,kD−1
1 − φn,k

n
tr

{(
φn,kI − 1

n
X∗�X

)−1}
I

+ B1(lj ) + B2(lj ) + 1√
n
�M(φn,k,X) + op

(
1√
n

)∣∣∣∣
= 0, (3.7)

where

B1(lj ) = (lj − φn,k)D
−1
1 = 1√

n
φn,kγkj D−1

1 , (3.8)

B2(lj ) = φn,k

n
tr

(
φn,kI − 1

n
X∗�X

)−1

I − lj

n
tr

(
lj I − 1

n
X∗�X

)−1

I

= φn,k

n

[
tr

(
φn,kI − 1

n
X∗�X

)−1

− (
1 + n− 1

2 γkj

)
tr

{
φn,k

(
1 + n− 1

2 γkj

)
I − 1

n
X∗�X

}−1]
I

= φn,k

n

[
tr

(
φn,kI − 1

n
X∗�X

)−1

− tr

{
φn,k

(
1 + n− 1

2 γkj

)
I − 1

n
X∗�X

}−1]
I

− n− 1
2 γkjφn,k

1

n
tr

[{
φn,k

(
1 + n− 1

2 γkj

)
I − 1

n
X∗�X

}−1]
I

= φ2
n,kγkj

n3/2
tr

[(
φn,kI − 1

n
X∗�X

)−1{
φn,k

(
1 + n− 1

2 γkj

)
I − 1

n
X∗�X

}−1]
I

− γkjφn,k

n1/2

1

n
tr

{(
φn,kI − 1

n
X∗�X

)−1}
I + o

(
n− 1

2
)
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= γkj

n1/2

[
φ2

n,k

n
tr

{(
φn,kI − 1

n
X∗�X

)−2}
− φn,k

1

n
tr

{(
φn,kI − 1

n
X∗�X

)−1}]
I

+ o
(
n− 1

2
)

= γkj

n1/2

{
φ2

km2(φk) + φkm(φk)
}
I + op

(
n− 1

2
)
, (3.9)

with m2 defined in (3.5) and m(λ) = ∫
1/(x − λ)dF(x). The calculations are based on the formula

A−1 − B−1 = A−1(B − A)B−1 with A, B being two arbitrary n × n invertible matrices, and the facts
that

1

n
tr

(
φn,kI − 1

n
X∗�X

)−1

→ −m(φk); 1

n
tr

(
φn,kI − 1

n
X∗�X

)−2

→ m2(φk).

Furthermore, if consider the kth diagonal block of the item

φn,kD−1
1 − φn,k

n
tr

{(
φn,kI − 1

n
X∗�X

)−1}
I

in (3.7), denote the analogue of m as mn, with H substituted by the ESD Hn and c by cn, which satisfies
the equation

φn,k = − 1

mn(φn,k)
+ cn

∫
t

1 + tmn(φn,k)
dHn(t)

by the definition of the Stieltjes transform. By the proof of Theorem 1.1 in Bai and Silverstein [8], it is
found that

1

n
φn,k tr

(
φn,kI − 1

n
X∗�X

)−1

+ φn,kmn(φn,k) = o

(
1√
n

)
. (3.10)

Note that φn,k is the inverse of the Stieltjes transform mn at −1/αk , we have mn(φn,k) = −1/αk , hence

φn,k + φn,kmn(φn,k)αk = 0. (3.11)

Therefore, to complete the proof of Theorem 3.1, it is needed to derive the limiting distributions
of �M(φn,k,X). So the theoretical tool named G4MT is established in the following theorem, which
is used to prove the limiting distributions of �M(φn,k,X). For the consistence of reading, we only
introduce the theorem here, but postpone the proof to the Supplement D.

3.3. Generalized four moment theorem

The G4MT is established in the following theorem, which shows that the limiting distributions of the
spiked eigenvalues of a generalized spiked covariance matrix is independent of the actual population
distributions provided the samples to satisfy the Assumptions (a)–(e).

Theorem 3.2 (G4MT). Assuming that X and Y are two sets of double arrays satisfying Assumptions
(a)–(e), X and Y should share same μ in condition (d), then it holds that �M(φn,k,X) and �M(φn,k,Y)

have the same limiting distribution, provided one of them has.



Generalized four moment theorem 283

By Theorem 3.2, we may assume that X consists of entries of i.i.d. standard normal variables in
deriving the limiting distribution of �M(φn,k,X). Namely, we have the following corollary, which is
proved in the Supplement E.

Corollary 3.1. If X satisfies the Assumptions (a)–(e) with μ = 2 + q in Assumption (d), let θk be
defined as (3.4), then �M(φn,k,X) tends to a limiting distribution of an M ×M Hermitian matrix �φk

,
where �φk

/
√

θk is Gaussian Orthogonal Ensemble (GOE) for the real case, with the entries above the
diagonal being i.i.d.N (0,1) and the entries on the diagonal being i.i.d.N (0,2). For the complex case,
the �φk

/
√

θk is GUE, whose diagonal entries are i.i.d. real N (0,1), and the off diagonal entries are
i.i.d. complex CN (0,1).

Remark 3.1. If the Assumption (d) is not met, it is weaken to the Assumption (d’), that is,
all πx,i1j1i2j2 = lim

∑p

t=1 ūti1utj1uti2 ūtj2E{|x11|4I (|x11| ≤ √
n) − 2 − q} are finite, and ui = (u1i ,

. . . , upi)
′ are the ith column of the matrix U1. Then, the conclusion of this corollary remains hold,

with the variances and covariances of the element ωij of �φk
given by

Cov(ωi1,j1,ωi2,j2) =

⎧⎪⎨
⎪⎩

(q + 1)θk + πx,iiiiνk, i1 = j1 = i2 = j2 = i;
θk + πx,ij ij νk, i1 = i2 = i 	= j1 = j2 = j ;
πx,i1j1i2j2νk, other cases

where θk is define in (3.4), νk = φ2
km2(φk).

For such cases, one may derive a partial G4MT by replacing the matrix X in U∗
2X with U∗

2Y as
column to column and keeping U∗

1X unchanged. The readers are reminded that in the definition of
πx function, the factor E|x11|4I (|x11| ≤ √

n) seems ought to be E|x11|4I (|x11| ≤ ηn

√
n). However, it

can be shown that the limit of πx functions remain unchanged by using either one of the two. The
derivation is detailed in the Supplement E.

3.4. Completing the proof of Theorem 3.1

Now, we continue to the previous proof of Theorem 3.1. For every sample spiked eigenvalue, lj , j ∈ Jk ,
k = 1, . . . ,K , it follows from (3.7) that

0 =
∣∣∣∣φn,kD−1

1 − φn,k

n
tr

{(
φn,kI − 1

n
X∗�X

)−1}
I

+ B1(lj ) + B2(lj ) + 1

n1/2
�M(φn,k,X) + op

(
n− 1

2
)∣∣∣∣

=
∣∣∣∣φn,kD−1 + φn,kmn(φn,k)IM + 1

n1/2
�M(φn,k,X)

+ 1

n1/2
γkj

[
φn,kD−1 + {

φ2
n,km2(φn,k) + φn,km(φn,k)

}
IM

] + op

(
n− 1

2
)∣∣∣∣ (3.12)

by the equations (3.8), (3.9) and (3.10).
By the G4MT, we can derive the limiting distribution of �M(φn,k,X) under the assumption of Gaus-

sian entries. Details of the proof for the limiting distribution of �M(φn,k,X) is provided in Supplement
E. Therefore, applying Skorokhod strong representation theorem (see Skorohod [25], Hu and Bai [17]),
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we may assume that the convergence of �M(φn,k,X) and (3.12) are in the sense of “almost surely” by
choosing an appropriate probability space.

To be specific, by (3.12) and noting mn(φn,k) = −1/αk , it yields

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φn,k

αk

(
αk

α1
− 1

)
Im1 0 · · · 0

0
. . .

φn,k

αk

{
1 + αkmn(φn,k)

}
Imk

...

...

. . . 0

0 · · · 0
φn,k

αk

(
αk

αK

− 1

)
ImK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ γkj

n1/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
φn,k

α1
+ φ2

n,km2 + φn,km

)
Im1 0 · · · 0

0
. . .

φ2
n,km2

...
...

. . . 0

0 · · · 0

(
φn,k

αK

+ φ2
n,km2 + φn,km

)
ImK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

n1/2
�M(φn,k,X) + o

(
n− 1

2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

where m, m2 are the simplified notations of m(φn,k) and m2(φn,k), respectively.
For the population eigenvalues αu in the uth diagonal block of D1, if u 	= k, then mn(φn,k) = −1/αk

by the definition of φn,k , hence φn,kα
−1
k (αkα

−1
u − 1) keeps away from 0, by the separation condition

of spikes (2.5). Moreover, φn,kα
−1
k {1+αkmn(φn,k)} = 0 by definition. Then, multiplying n

1
4 to the kth

block row and kth block column of the above equation, by Lemma 4.1 in Bai et al. [6], it follows that
as n → ∞

0 = ∣∣[�M(φk,X)
]
kk

+ limγkj

{
φ2

km2(φk)
}
Imk

∣∣,



Generalized four moment theorem 285

where [·]kk is the kth diagonal block of a matrix corresponding to the indices {i, j ∈ Jk}. This
shows that (γkjφ

2
km2(φk), j ∈ Jk)

′ tends to the mk eigenvalues of the mk × mk matrix −[�φk
]kk ,

or equivalently (γkj , j ∈ Jk)
′ tends to the eigenvalues of the mk × mk matrix −[�φk

]kk/θk , where
θk = φ2

km2(φk), and �φk
is the limit of �M(φn,k,X) defined in Corollary 3.1. Because limiting behav-

ior keeps orders of the variables, we claim that the mk ordered variables (γkj , j ∈ Jk)
′ tend to the mk

ordered eigenvalues of the matrix −[�φk
]kk/θk .

By the strong representation theorem, we conclude that the mk-dimensional real vector (γkj , j ∈ Jk)
′

converges weakly to the joint distribution of the mk eigenvalues of the Gaussian random matrix

− 1

θk

[�φk
]kk

for each distant generalized spiked eigenvalue. Then, the CLT for each distant spiked eigenvalue of a
generalized covariance matrix is obtained. �

Remark 3.2. Suppose that X satisfies the Assumptions (a),(b),(c) and (e), with the Assumption (d)
weakened as the existence of various limit πx functions in Assumption (d’). Then all the conclusions
of Theorem 3.1 still holds, but the limiting distribution of �M(φn,k,X) turns to an M × M Hermitian
Gaussian matrix �φk

= (ωst ) whose variances and covariances are defined in Remark 3.1.

This remark is used for the case of non-Gaussian assumptions when the population covariance matrix
has a diagonal or diagonal block structure in the following simulations.

4. Simulation study

Simulations are conducted in this section to evaluate the performance of our proposed method. Four
scenarios are considered including two cases of the population covariance matrix structure under two
different population assumptions: On one hand, the Case I assumes that � is a diagonal matrix, where
the Assumption (d) is not satisfied, but weakened as the Assumption (d’). On the other hand, the Case
II is provided as a general form of �, where the Assumption (d) holds. They are detailed as below:

Case I: The matrix � = diag(4,3,3,0.2,0.2,0.1,1, . . . ,1) is a finite-rank perturbation of a identity
matrix Ip with the spikes (4,3,0.2,0.1) of the multiplicity (1,2,2,1), thus K = 4 and M = 6.

Case II: The matrix � = U0�U∗
0 is a general positive definite matrix, where � is a diagonal matrix

with the spikes (4,3,0.2,0.1) of the multiplicity (1,2,2,1) as defined in Case I and U0 is the
matrix composed of eigenvectors of the following matrix

⎛
⎜⎜⎝

1 ρ ρ2 · · · ρp−1

ρ 1 ρ · · · ρp−2

. . . . . .

ρp−1 ρp−2 · · · ρ 1

⎞
⎟⎟⎠ ,

where ρ = 0.5.

For each case, the following population assumptions are studied:

Gaussian Assumption. {xij } are i.i.d. samples from standard Gaussian population;

Binomial Assumption. {xij } are i.i.d. samples from the binary variables valued at {−1,1} with equal
probability 1/2, and πx = E|x11|4 − 3 = −2.
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The simulated results are depicted as follows with 1000 replications at the values of p = 500, n =
1000. As described above, we have the spikes α1 = 4, α2 = 3, α3 = 0.2 and α4 = 0.1.

First, the Remark 3.2 is applied to the Case I. For the single population spikes α1 = 4 and α4 = 0.1,
we obtain the limiting distributions

γk = √
n

(
lj (S)

φn,k

− 1

)
→ N

(
0, σ 2

k

)

where φn,1 = 4.667, φn,4 = 0.044, and σ 2
1 = 1.390, σ 2

4 = 3.950 under the Gaussian Assumption, σ 2
1 =

0.074, σ 2
4 = 2.414 under the Binomial Assumption.

For the spikes α2 = 3 and α3 = 0.2 with multiplicity 2, we obtain that the two-dimensional random
vector

γ k = (γk1, γk2)
′ =

(√
n

(
lj (S)

φn,k

− 1

)
,
√

n

(
lj+1(S)

φn,k

− 1

))′
, k = 2,3

converges to the eigenvalues of random matrix −θk
−1[�φk

]22, where φn,2 = 3.750, θk = 1.770 for the
spike α2 = 3 and φn,3 = 0.075, θk = 0.633 for the spike α3 = 0.2.

Since it is difficult to show a good fit by the contour plots of the empirical density, so it is better to
choose a asymptotically normal marginal function to investigate. Because only the sum of their linear
functions is normal, then it arrives at

γ2,s = γ21 + γ22

2σ2,s

+ 0.5 → N(0,1);

where σ 2
2,s = 0.847 under the Gaussian Assumption and σ 2

2,s = 0.088 under the Binomial Assumption.
and the constant 0.5 is an adjusted central parameter due to the effect of the multiple root with the
multiplicity 2. The following are the same except for the sign. Then, it follows that

γ3,s = γ31 + γ32

2σ3,s

− 0.5 → N(0,1);

where σ 2
3,s = 2.370 under the Gaussian Assumption and σ 2

3,s = 2.012 under the Binomial Assumption.
Second, for the Case II, the Theorem 3.1 is used to calculate the limiting distributions. It is easily

obtained that the calculated results of the both population assumptions are the same to the one of
Gaussian Assumption in Case I, which can well fit their corresponding limiting behaviors under the
Case II with different population assumptions.

As shown in the calculations and simulations, our approach provides the same results to the ones in
Bai and Yao [5] under the Gaussian assumption. So we only show the two scenarios where our approach
is superior to the method in Bai and Yao [5]. Firstly, our method performs slightly better for the non-
Gaussian distribution even if the diagonal independent assumption in Bai and Yao [5] holds under the
Case I. Because there is a missing item in their calculation of the variance. The simulated empirical
distributions of γ2,s , γ4 from Binomial assumption under Case I are drawn in Figure 1 comparing to
the ones of standardized (l2 + l3)/2, lp in Bai and Yao [5], as well as their Gaussian limits. In addition,
their corresponding limiting distributions are in dashed lines.

Moreover, our proposed results are obviously better than the ones in Bai and Yao [5] for the non-
Gaussian population assumption in the Case II. The simulated empirical distributions of γ1, γ2,s from
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Figure 1. Case I under Binomial Assumption.

Binomial assumption under Case II are drawn in Figure 2 comparing to the ones of standardized l1,
(l2 + l3)/2 in Bai and Yao [5], as well as their Gaussian limits. As shown in the simulated results,
the asymptotic distribution in Bai and Yao [5] performs not well for the non-Gaussian population
assumption in the Case II. Because their method is involved with the 4th moment and the diagonal
independent assumption. Therefore, it is reasonable to theoretically remove the diagonal independent
restrictions in results of Bai and Yao [5] as illustrated in the simulations.

5. Application and real data analysis

5.1. An application to determine the number of the spikes

Since the spiked model is closely related to PCA, it has important applications to the statistical infer-
ences in many scientific fields. For example, to reconstruct the original signals in wireless communi-
cation, to rebuild the observed assets into a low-dimensional set of unobserved variables, which are
the factors in economics, and so on. One of the basic but important statistical inferences in these ap-
plications is to determine the number of principal components / signals / factors, that is, the number of
spiked eigenvalues.

As formulated in (2.1), we propose to estimate the number of the spikes, M , by our result in Theo-
rem 3.1. First, for every sample eigenvalue lj , j ∈ Jk , it follows from Theorem 3.1 that

√
n

σk

(
lj (S)

φn,k

− 1

)
∼N (0,1),

where σ 2
k = 2/θk under our Assumption (a)–(e) and σ 2

k = (2θk + πx,jjjj νk)/θ
2
k under the assumptions

of the diagonal or diagonal block independence with the bounded spikes and the 4th moments.

Figure 2. Case II under Binomial assumption.
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Then, for every sample eigenvalue lj , we can calculate an corresponding interval

Cj =
[(

z0.05σk√
n

+ 1

)
φk,

(
z0.95σk√

n
+ 1

)
φk

]
,

where z0.05, z0.95 are the 5% and 95% quantiles of the standard normal distribution. If lj ∈ Cj , then
it is concluded that the population eigenvalues in according to lj is a spike; Otherwise, it is not a
spike. Similarly, the same procedures are conducted for all the sample eigenvalues, and consequently
a sequence of intervals {Cj , j = 1, . . . , p} are obtained. Therefore, we propose an estimator for the
number of the spikes, M , as follows

M̂0 =
p∑

j=1

I(lj ∈Cj ).

However, φk in (2.6) and σ 2
k calculated by Theorem 3.1 or Remark 3.1 cannot be directly obtained

by their expressions in practice, because they are involved with the unknown population spikes αk, k =
1, . . . ,K . Therefore, we refer to the work in Bai and Ding [3] and obtain the estimator of αk . Then, we
provide the estimated interval Ĉj and M̂0 = ∑p

j=1 I
(lj ∈Ĉj )

, which is feasible in practice.
In fact, by the first equation in (3.7), it asymptotically holds that lj + ljm(lj )αk = 0, so we get

α̂k = −1/m(lj ). Since the number of spikes is fixed, the LSD of n−1X∗�X is approximately the same
as the one of the matrix n−1X∗UDU∗X. Therefore, we further define rij = |li − lj |/max(li , lj ) and let
Jo = {j : rij ≤ 0.2 for any i = 1, . . . , p.}, c̃ = (p − |Jo|)/n. Then we adopt

m̂(lj ) = 1

p − |Jo|
p∑

i /∈Jo;i=1

(li − lj )
−1,

which is a good estimator of m(lj ). The setting J0 is selected to avoid the effect of multiple roots,
which makes the estimations of the population spikes inaccurate. The constant 0.2 is a more suitable
threshold value of the ratio based on our simulated results. Moreover, we obtain the estimator of m(lj )

as below m̂(lj ) = −(1 − c̃)/ lj + c̃m̂(lj ). Finally, we obtain the estimator of αk , which is expressed as

α̂k = −1/m̂(lj ).

Without extra efforts, the following estimators are automatically obtained that φ̂k = φ(α̂k) and

m̂(φk) = 1

p

p∑
i=1

(li − φ̂k)
−1; m̂(φk) = −1 − c

φ̂k

+ cm̂(φ̂k);

m̂2(φk) = 1

p

p∑
i=1

(li − φ̂k)
−2; m̂2(φk) = 1 − c

φ̂2
k

+ cm̂2(φ̂k);

So the estimators of σk , φk for the renewal interval Ĉj can be expressed by the above estimations.
Through our approach, not only can we estimate the number of the spikes more accurately, but

we can also give the estimations of the population spikes, as well as the limits of the sample spiked
eigenvalues. More importantly, we can also provide the specific locations of these spikes.
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5.2. Numerical results for Section 5.1

For the two cases of � designed in Section 4 with M = 6, we use the method provided in Section 5.1
to estimate the number of the population spikes under different population assumptions in Section 4.

To evaluate the performance of our approach, we shall compare it with some existing methods.
Since the method in Onatski [22] provides a better estimator than that in Bai and Ng [1], and Cai,
Han and Pan [12] shows that their approach performs better than that in both of Onatski [22] and Bai,
Choi and Fujikoshi [2], so we only consider the procedure proposed in Cai, Han and Pan [12] and the
method introduced by Passemier and Yao [23], which are simply denoted as CHP and PY in the tables,
respectively.

The following Tables 1–4 report the estimator of the number of the spikes and its corresponding
frequency by three methods. Furthermore, it provides the locations and estimates of the population
spikes by our method. As shown in the tables, our method can give an accurate estimate of the number
of the spikes in a large probability, while the other two methods fail to detect the very small spikes.
That’s because they both assume that the population spikes are the larger eigenvalues, satisfying that
α1 ≥ · · · ≥ αM ≥ ρp,M+1 ≥ · · · ≥ ρp,p . However, it makes sense to detect all the spiked eigenvalues,
including the minimal ones. For example, the original system with all the same eigenvalues has changed
after the input of some signals. If we want to test which part in the system have changed, then it is
equivalent to find out all the spiked eigenvalues. In addition, our method has an advantage over other
methods, that is, it also presents the the estimations of the population spikes, and the specific locations
of these spikes in the tables.

Table 1. Estimations about the spikes: Case I under Gaussian Assumption

Frequency of M̂0
M̂0 1 2 3 4 5 6 7

p = 200 PY 0.358 0 0.642 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.024 0.943 0.033

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

3.993 3.207 3.014 0.202 0.198 0.098

Frequency of M̂0
p = 400 PY 0.371 0 0.629 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.027 0.928 0.045

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

3.930 3.052 3.015 0.206 0.186 0.117
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Table 2. Estimations about the spikes: Case I under Binomial Assumption

Frequency of M̂0
M̂0 1 2 3 4 5 6 7

p = 200 PY 0.622 0 0.378 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.054 0.943 0.003

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

4.025 3.091 2.951 0.194 0.185 0.099

Frequency of M̂0
p = 400 PY 0.640 0 0.360 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0.005 0.073 0.910 0.012

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

4.018 3.008 2.876 0.207 0.194 0.101

5.3. Real data analysis

Now we apply the procedure of determining the number of the spikes proposed in Section 5.1 to the ac-
tual data titled as “Early stage of Indians Chronic Kidney Disease(CKD)”1 The data came from records
collected by a hospital in India over a period of about 2 months, which consists of 400 observations
and 25 variables. The first 24 variables X1 . . . ,X24 are independent variables, which rerecord the var-
ious laboratory indicators and hospital records, including age, blood pressure (bp), specific gravity
(sg), albumin (al), sugar (su), red blood cells (rbc), pus cell (pc), pus cell clumps (pcc), bacteria (ba),
blood glucose random (bgr), blood urea (bu), serum creatinine (sc), sodium (sod), potassium (pot),
hemoglobin (hemo), packed cell volume (pcv), white blood cell count (wc), red blood cell count (rc),
hypertension (htn), diabetes mellitus (dm), coronary artery disease (cad), appetite (appet), pedal edema
(pe), anemia (ane). The 25th variable is the dependent variable to indicate whether the patient has
chronic kidney disease(ckd).

We apply our method to determine the number of the spikes of the covariance matrix �0 generated
from the standardized data of the first 24 variables with 114 observations (For simplicity, we have only
chosen 114 observations without missing values). Then, we obtain the following results in the Table 5.

As seen from the Table 5, if we define the singular value decomposition of �0 as �0 = U�0U′, and
ui is the ith column of the orthogonal matrix U, then the factors generated from independent variables
X = (X1 . . . ,X24)

′ can be roughly divided into three groups: one group has a greater impact with larger

1The data is downloaded from https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease.

https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease.
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Table 3. Estimations about the spikes: Case II under Gaussian Assumption

Frequency of M̂0

M̂0 1 2 3 4 5 6 7
p = 200 PY 0.375 0 0.625 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.019 0.950 0.031

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

4.080 3.122 2.909 0.208 0.191 0.010
M̂0 1 2 3 4 5 6 7

p = 400 PY 0.356 0 0.644 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.025 0.927 0.048

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

3.949 3.217 2.887 0.231 0.188 0.102

spiked eigenvalues, like u′
1X, u′

2X; Another group of much weaker effects, like u′
iX, i = 18, . . . ,24;

The last group that may have most of the same effects, like u′
iX, i = 3, . . . ,17. Furthermore, if we use

the data with the missing values made up, the experimental results may be more accurate. To make up
for missing values, one can use the miss Forest function in the package missForest.

6. Conclusion

In this paper, we propose a G4MT for a generalized spiked covariance matrix, which shows the uni-
versality of the asymptotic law for its spiked eigenvalues. Through the concrete example of the CLT of
normalized spiked eigenvalues, we illustrate the basic idea and procedures of the G4MT to show the
universality of a limiting result related to the large dimensional random matrices. Unlike Tao and Vu
[27], we avoid the estimates of high-order partial derivatives of an implicit function to the entries of the
random matrix, and thus, the strong condition C0 of sub-exponential property is avoided. Moreover,
the required 4th moment condition is reduced to a tail probability in Assumption (b), which is neces-
sary for the existence of the largest eigenvalue limit. Without the constraint of the existence of the 4th
moment, we only need a more regular and minor condition (2.4) on the elements of U1. On the one
hand, our result has much wider applications than Bai and Yao [4], Bai and Yao [5]; on the other hand,
the result of Bai and Yao [5] shows the necessity of the condition (2.4) for the total universality.
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Table 4. Estimations about the spikes:Case II under Binomial Assumption

Frequency of M̂0
M̂0 1 2 3 4 5 6 7

p = 200 PY 0.343 0 0.657 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.018 0.980 0.002

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

3.838 3.275 2.922 0.216 0.192 0.098

Frequency of M̂0
p = 400 PY 0.374 0.001 0.625 0 0 0 0
n = 1000 CHP 0 0 0 1 0 0 0

Ours 0 0 0 0 0.041 0.952 0.007

Locations
(1, 2, 3, 198, 199, 200)

Estimates of spikes
α̂1 α̂2 α̂3 α̂4 α̂5 α̂6

4.123 3.211 3.001 0.216 0.195 0.096
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Supplementary Material

Supplement to “Generalized four moment theorem and an application to CLT for spiked eigen-
values of high-dimensional covariance matrices” (DOI: 10.3150/20-BEJ1237SUPP; .pdf). We pro-
vide the detailed explanation of Assumption (d), some necessary lemmas and the proofs of Theorem 3.2
and Corollary 3.1.

Table 5. Estimations of the number, sizes and locations of the spikes by the real data

Number: 9
Location: (1, 2, 18, 19, 20, 21, 22, 23, 24)
Sizes: α̂1 α̂2 α̂3 α̂4 α̂5 α̂6 α̂7 α̂8 α̂9

10.818 2.143 0.219 0.166 0.124 0.101 0.064 0.048 0.009

https://doi.org/10.3150/20-BEJ1237SUPP
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[14] Erdős, L., Péché, S., Ramírez, J.A., Schlein, B. and Yau, H.-T. (2010). Bulk universality for Wigner matrices.
Comm. Pure Appl. Math. 63 895–925. MR2662426 https://doi.org/10.1002/cpa.20317
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